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Abstract

How individuals respond to and cope with stress is linked with their health and well-being. It

is presumed that early stress responsiveness helps shape the health of the developing organism,
but the relationship between stress responsiveness and early immune function during development
is not well-known. We hypothesized that stress responsiveness may shape epigenetic regulation

of immune genes in infancy. We investigated whether aspects of behavioral responsiveness and
hypothalamic-pituitary-adrenal stress-response were associated with epigenome-wide immune cell
DNA methylation patterns in 154 infant rhesus monkeys (3—4 months old). Infants’ behavioral
and physiological responses were collected during a standardized biobehavioral assessment, which
included temporary relocation and separation from their mother and social group. Genome-wide
DNA methylation was quantified using restricted representation bisulfite sequencing (RRBS)
from blood DNA collected 2-hours post-separation. Epigenome-wide analyses were conducted
using simple regression, multiple regression controlling for immune cell counts, and permutation
regression, all corrected for false discovery rate. Across the variables analyzed, there were 20,368
unique sites (in 9,040 genes) at which methylation was significantly associated with at least one
behavioral responsiveness or cortisol measure across the three analyses. There were significant
associations in 442 genes in the /mmune System Process ontology category, and 94 genes in the
Inflammation mediated by chemokine and cytokine signaling gene pathway. Out of 35 candidate
genes that were selected for further investigation, there were 13 genes with at least one site

at which methylation was significantly associated with behavioral responsiveness or cortisol,
including two intron sites in the glucocorticoid receptor gene, at which methylation was negatively
correlated with emotional behavior the day following the social separation (Day 2 Emotionality;

B =-.39, g<.001) and cortisol response following a relocation stressor (Sample 1; p = - .33, ¢
<.001). We conclude that biobehavioral stress responsiveness may correlate with the developing
epigenome, and that DNA methylation of immune cells may be a mechanism by which patterns of
stress response affect health and immune functioning.

“indicates corresponding author: Kinnally, E. L.: elkinnally@ucdavis.edu.
Declarations of interest: none.
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1 Introduction

It is widely recognized that severe and chronic stress can lead to poor health outcomes,
including infectious disease, cardiovascular disease, respiratory disease, and diseases of
inflammation (Caspi et al., 2006; Danese et al., 2008; Dong et al., 2004; Felitti et al., 1998).
Early childhood is an especially sensitive period when the effects of stress can become
“biologically embedded”, leading to potentially long-lasting health consequences (Danese &
McEwen, 2012; Dhabhar, 2014; Miller et al., 2011; Nusslock & Miller, 2016; Shonkoff et
al., 2009). The biological embedding model of stress-disease (Miller et al., 2011) proposes
that severe early-life stress has systemic epigenetic effects during development. These
epigenetic modifications change how the brain, the hypothalamic-pituitary adrenal (HPA)
axis, and the immune system respond to future and concurrent stressors, as well as how
these systems interact. In this model, the effects of stress are relatively dose-dependent, and
are compounded as stress exposure continues across time.

Biological stress embedding is also affected by differences in how individuals
characteristically respond to and behave in stressful circumstances (i.e., behavioral
responsiveness). For example, because children react differently from each other to stressors
(see Carson & Bittner, 1994; Rothbart et al., 2000), children with more anxious or vigilant
phenotypes may be especially sensitive to the biological embedding process (Strelau, 1995).
Many other behavioral traits likely contribute to how individuals cope with stress, including
behavioral inhibition, emotionality, reactivity, anxious temperament, aggression, impulsivity,
physical activity / motor arousal, and extraversion / sociability (Carver & Connor-Smith,
2010; Compas et al., 2004; Goldsmith et al., 1987; Kagan et al., 2007). Consequently,

by moderating the frequency, degree, and severity of the stress response (Strelau, 1995),
behavioral responsiveness can affect the net stress effect on health (Miller et al., 2011).
There is also evidence that behavioral responses can directly affect health, potentially
independently of specific stressful experiences (see Capitanio, 2011). For example, some
studies have linked anxious temperament with increased inflammatory profiles (Nelson et
al., 2018; Tas & Caglar, 2019), and other studies suggest that affective response patterns
like cyclothymia are related to hypertension (Korési et al., 2019; Laszl6 et al., 2016).
Although it is not possible to completely rule out the effects of early life stressors in

these correlational studies, animal studies using subjects with a controlled, uniform, and
relatively-typical rearing history have shown that both nervous temperament (Capitanio et
al., 2011) and behavioral inhibition (Chun et al., 2013; Michael et al., 2020) are associated
with different aspects of immune system functioning. It is therefore possible that different
biobehavioral response patterns can become biologically embedded, potentially through the
same mechanisms as stressful experiences.
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One of the primary epigenetic mechanisms underlying biological embedding is DNA
methylation (Fagundes et al., 2013; Miller et al., 2011; Weaver et al., 2004), a process by
which methyl groups bind to nucleotide base pairs to affect gene expression without altering
gene sequence. DNA methylation is highly sensitive to individual experience in some

parts of the genome, particularly during early development, and in some cases, experience-
dependent changes can be relatively permanent and lead to long-lasting changes in gene
expression (Bird, 2002; Szyf & Bick, 2013). Thus far, the biological embedding model

has proved a useful framework for guiding investigations, and many studies have shown
that stress can alter DNA methylation in genes and gene-networks related to inflammatory
disease (for reviews, see Bick et al., 2012; Szyf & Bick, 2013; Vinkers et al., 2015),
particularly in brain cells (Hostinar et al., 2018; Nusslock & Miller, 2016). There is still
much to be learned about how stress responsiveness shapes the epigenome in the very cells
that protect individuals from disease — the immune system. This path of investigation could
provide a critical mechanistic link for the biological embedding hypothesis—for example, our
previous work has shown that early epigenetic programming predicts health outcomes in
adulthood (Kinnally, 2014).

There is some evidence that behavioral responses to stress are associated with different
epigenetic signatures across various immune tissue and cell types, potentially in genes
related to health. Studies using candidate gene approaches have shown that, across different
tissue types, various behavioral domains correlate with methylation in candidate genes like
the serotonin transporter gene (Kinnally et al., 2010; Kinnally et al., 2011; Montirosso

et al., 2016) and the glucocorticoid receptor gene (Appleton et al., 2015; Conradt et al.,
2015; Ostlund et al., 2016). Although few studies have investigated stress responsiveness
and DNA methylation in older children or adults, one series of studies showed that, relative
to the general population, individuals with a history of aggression and/or temperamental
dispositions towards aggression exhibited differences in DNA methylation in several genes
related to cytokine signaling and inflammation (Guillemin et al., 2014; Provencal et al.,
2013) (however, see van Dongen et al., 2015). DNA methylation also correlates with HPA
axis functioning. For example, variation in the cortisol response to stress has been linked
with differential methylation of the glucocorticoid receptor gene in infants (Conradt et al.,
2015; Oberlander et al., 2008), children (Stonawski et al., 2018), and adult women (Edelman
et al., 2012), and with methylation of the serotonin transporter gene in young adolescents
(Ouellet-Morin et al., 2013). Although these studies are correlational, these findings suggest
bi-directional links between behavioral stress responses, HPA axis functioning, and DNA
methylation in genes linked with inflammation and stress response.

To better understand how stress responses may shape the immune epigenome, the rhesus
macaque (Macaca mulatta) offers a promising translational model for study. Rhesus
monkeys share strong genetic homology (approximately 95%) with humans (Gibbs et
al., 2007), show similar temperament domains exhibited by human infants and children
(Kay et al., 2010; Suomi et al., 2011; Wood et al., 2020), and are a well-established
model for investigating stress physiology, early life development, and health (Capitanio,
2017a; Harlow, 2008; Kinnally et al., 2019; Suomi, 2006). For example, one study found
that infant rhesus monkeys rated high in nervous temperament showed dysregulation of
cortisol-mediated leukocyte trafficking (Capitanio et al., 2011). In another study, Alisch
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et al. (2014) showed that methylation determined from amygdala tissue was associated
with a multi-dimensional measure of anxious temperament in juvenile rhesus monkeys at
several genes, including BCL11A and JAGI, two genes linked with brain development.
The use of infant rhesus monkeys to interrogate these relationships allows rigorous and
controlled investigation during early life and allows investigators to detect potentially
important associations during standardized and sensitive periods of development.

In this study, we used a genome-wide approach to assess whether infant rhesus monkeys’
behavioral stress responses and parameters of the HPA response predict differential
methylation profiles in mononuclear blood cells. We draw upon a comprehensive assessment
of infant behavioral responsiveness and stress responsivity to assess associations between
genome-wide methylation in immune cell DNA and eight measures of behavioral
responsiveness (determined from two different assessments), as well as four different
cortisol samples that span HPA activation and habituation to stress, response to
dexamethasone suppression, and response to ACTH stimulation. To enhance the specificity
of our findings, we considered the role of immune cell sub-populations, which differ in DNA
methylation patterns, as well as sex. We hypothesized that infant rhesus monkeys’ cortisol
output and behavioral responses to stress would be specifically associated with differential
methylation in immune related genes that are stress-responsive, such as inflammatory
pathways, and identified differentially methylated regions (DMRs) across the genome

that predicted each biobehavioral measure, using bioinformatics to implement rigorous
correction for false discovery rate. To interrogate the functional significance of the genome-
wide DMRs, we took three data analytic approaches to: 1.) identify which sites were
classified as part of gene annotation sets specifically linked with immune function and
inflammation, processes that are regulated by the tissue type in this study; 2.) explore other
biological pathways that were statistically overrepresented among DMRs; and 3.) determine
which DMRs were detected in candidate genes previously linked with stress response and
health.

2 Methods
2.1 Subjects

Subjects were n= 154 infant rhesus monkeys (82 males), aged 3—4 months, housed at

the California National Primate Research Center. Most subjects (r7= 143) were housed

in 0.2-hectare outdoor field pens with approximately 80-100 other monkeys, conditions

that approximate naturalistic social groups and environmental conditions. A small subset

of subjects (n= 11) was separated from their mother at birth and reared indoors with a

peer group. Animals were selected for this study because they were genetically unrelated
(average relatedness < 6%) and had undergone a biobehavioral assessment (see below).
Microsatellite analysis was used to confirm the individual’s place in the colony pedigree, i.e.
the identity of their mothers, fathers, grandparents and great-grandparents (Kanthaswamy et
al., 2006).

All procedures in this study conformed with the guidelines established in the National
Institutes of Health guide for the care and use of Laboratory animals, and all procedures
were approved by the Institutional Animal Care and Use Committee at UC Davis.

Brain Behav Immun. Author manuscript; available in PMC 2022 March 07.
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2.2 Biobehavioral Assessment of Behavioral Responsiveness, Stress Physiology, and
Immune Profile

All measures of behavioral responsiveness and physiology were obtained from a
biobehavioral assessment, a standardized 25-hour battery of tests (see Capitanio, 2017b;
Golub et al., 2006; Golub et al., 2009). From this assessment, the following metrics

were used in the current study: behavioral responses to social separation and relocation
determined from holding cage behavior observations, behavioral responses to an acute
challenge determined from a human intruder test, cortisol determined from four blood
samples, and immune cell counts from a hematology analysis (the distribution of these
variables is shown in Supplementary Figure S1, and the intercorrelation between variables is
shown in Supplementary Figure S2). Data from the biobehavioral assessment were collected
in eight test-year cohorts (including 2005, and each year from 2009-2015). There were no
cohort differences for any of the behavioral variables (ANOVA, p> .17) or immune cell
counts (ANOVA, monocytes p = .054; all others p > .44). There were no cohort differences
(ANQVA, p> .30) for any of the cortisol samples when analyzed separately by assay
method (see below).

Holding cage behavior observations.—Infants were temporarily separated from their
social group and relocated to a testing room for 25 hours. During this time, infants were
observed for two five-minute periods, once at 15-minutes post-separation and relocation

(the Day 1 assessment) and once at 22-hours post-separation and relocation (the Day 2
assessment). Behavioral data were live-scored by a trained observer, who sat approximately
eight feet away from the holding cage and avoided direct eye contact with subjects
(Capitanio et al., 2006). Exploratory and confirmatory factor analysis of the behavioral data
(see Golub et al., 2009 for a full description) revealed the following factor scales: Activity
(including the behaviors Locomotion, Exploration, Eating, Drinking, and Crouching) and
Emotionality (included Cooing, Scratching, Threatening, and Lip-smacking). Based on these
factors, holding cage scales for Day 1 Activity, Day 2 Activity, Day 1 Emotionality, and Day
2 Emotionality were created by summing the z-scored behaviors that loaded into each factor,
and z-scoring within test-year cohort (see Golub et al., 2009).

Human intruder test.—At 5 hours post-separation and relocation (1400 hrs), subjects
were tested in a human intruder paradigm modified for infant monkeys (see Capitanio

et al., 2006; Kalin & Shelton, 1989). Prior to the human intruder testing, subjects were
administered a blood draw (1100 hrs; see below) and two different behavioral tests (not
considered here). For testing, subjects were relocated to an adjacent room and experienced
four one-minute conditions in the following order: “Profile Far” (human intruder presents
left-side profile to subject from 1 meter away), “Profile Near” (human intruder moves
forwards to ~0.3 meters away and continues presenting left-side profile), “Stare Far”
(human intruder steps back to 1 meter away and turns to makes direct eye contact), and
“Stare Near” (human intruder steps forward to ~0.3 meters away and continues making
eye contact with subject). Monkeys’ responses were video recorded and were later scored
for stress response behaviors (including threats, activity, emotionality, and anxiety-like
behaviors). Based on exploratory and confirmatory factor analyses performed on a larger
population of previously tested infants (see Gottlieb & Capitanio, 2013), scales were created

Brain Behav Immun. Author manuscript; available in PMC 2022 March 07.
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based on the following four factors: Activity (locomotion, cage shaking, environment
exploration), Aggression (threatening, barking, other vocalizations), Displacement (teeth
grinding, yawning), and Emotionality (convulsive jerk, fear grimace, self-clasp, cooing).
Following a similar approach used to create the holding cage scales (Golub et al., 2009),
each human intruder scale was created by summing the average behavior frequency (across
the four test conditions) of the z-scored behaviors that loaded into each factor, then z-scoring
this sum within test-cohort year (Gottlieb & Capitanio, 2013).

Cortisol and HPA responsiveness.—Cortisol was determined from four blood samples
obtained via femoral venipuncture during the 25-hour assessment period. All samples were
obtained while subjects were awake and manually restrained, within five minutes of hand-
capture from the holding cage. Sample 1 was taken two-hours after arrival in the test area
(1100 hrs) and reflects infants’ initial response to the separation and relocation. Sample

2 was taken at seven-hours post-separation and relocation (1600 hrs) and reflects infants’
ability to adapt to the separation/relocation. Immediately after Sample 2 was taken, infants
were injected intramuscularly with 500 pg/kg ml of dexamethasone (American Regent
Laboratories, Inc., Shirley, NY). Sample 3 was taken at 23.5-hours post-separation and
relocation (0830 hrs). Immediately after Sample 3 was taken, infants were injected with
2.5 1U ACTH (Organon, Inc., West Orange, NJ) i.m., and 30 minutes later Sample 4 was
taken (24-hours post-separation and relocation, 0900 hrs). All samples were taken in un-
heparinized syringes and immediately transferred to EDTA tubes. Samples were centrifuged
at 4°C at 1277 RCF for 10 minutes, and plasma was pipetted into tubes and stored at
—80°C until assay. Most samples (n7= 128, those obtained before 2014) were assayed

for cortisol using RIA (Diagnostic Products Corp., Los Angeles, CA), with the following
coefficients of variations: inter-assay, 5.8%; intra-assay, 7.9%. Due to manufacturing
changes in this kit, the remaining samples (7= 26, obtained during 2014-2015) were
assayed using a competitive immunoassay (Siemens Healthcare Diagnostics, Tarrytown,
NY). The immunoassay produced the following coefficients of variation: inter-assay, 5.0%,
intra-assay 2.4%. We have previously shown in a validation study that both assays produce
highly correlated cortisol estimates (= 0.88) (see Vandeleest et al., 2019). We used these
validation data to predict RIA cortisol values based on immunoassay cortisol values.

Hematology.—All hematological measures were determined from blood plasma obtained
from blood Sample 1. To determine hematology, complete cell counting was performed

on 0.5 ml plasma aliquots using an ABX Pentra 60C (Horiba Medical, Irvine, CA) with
manual differential. From the available measures, the following white blood cell counts were
considered in analyses: lymphocytes, monocytes, segmented neutrophils, and eosinophils.

2.3 Reduced Representation Bisulfite Sequencing

Methylation levels were determined from blood Sample 1 using reduced representation
bisulfite sequencing (RRBS). After the sample was centrifuged and plasma was aliquoted
(see above), the remaining blood sample was stored at —80° until RRBS was performed.
RRBS libraries were generated using the Premium RRBS Kit from Diagenode (Liege,
Belgium) according to the instructions of the manufacturer. In short 100 ng of each DNA
sample were digested with the Msp/ restriction enzyme and ligated to barcoded adapters.

Brain Behav Immun. Author manuscript; available in PMC 2022 March 07.
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The ligation products were size-selected via magnetic bead purification and quantified

by gPCR using a SybrGreen protocol and equal amounts of 8 samples were pooled.

The pooled samples were bisulfite converted. The optimal PCR cycle number for the
following enrichment PCR was again determined by qPCR of an aliquot of the bisulfite
converted pool. The library pools were amplified with eleven PCR cycles. The fragment size
distribution of resulting library pools was assessed via micro-capillary gel electrophoresis
on a Bioanalyzer 2100 (Agilent, Santa Clara, CA). The library pools were quantified by
gPCR with a Kapa Library Quantification kit (Kapa Biosystems/Roche, Basel Switzerland)
and sequenced on an Illumina HiSeq 4000 (lllumina, San Diego, CA) run with single-end
90 bp reads. After adapter trimming and quality assessment, RRBS reads were mapped to
the macaque genome using Bismarck (Chen et al., 2010). After removing unmapped sites
and sites with less than 10x coverage, the RRBS yielded 9,548,543 individual sites with
methylation data for at least one of the 154 samples (see Figure 1, Supplementary Tables
S1A-C).

2.4 Genome Annotation

Sites yielding methylation data following RRBS were annotated for gene name,

gene biotype, genomic function, and genomic position relative to transcription start

sites (TSS) using the rhesus macaque Mmul_10 Ensembl (data base version 99.10)
(http://uswest.ensembl.org/Macaca_mulatta/Info/Annotation). Based on the annotated gene
biotypes, sites were classified into the following categories: protein coding genes (74%

of annotated sites), non-coding RNAs (24% of annotated sites), pseudogenes (1.3% of
annotated sites), or ribozymes (0.01% of annotated sites) (see Supplementary Table S1A).

Based on the annotated gene start and stop positions, sites were also classified as within

the gene body, upstream from the gene body, or downstream from the gene body (see
Supplementary Table S1B). Sites within the gene body were classified as being in one of

the following genomic regions, according to the annotated genomic functions: 3 Prime UTR
(1.2% of all sites), 5 Prime UTR (0.3% of all sites), Exon (2.2% of all sites), or /ntron (47%
of all sites). Because some genes were associated with multiple transcript variants, some
sites were categorized as being in the 3 Prime UTR of one transcript variant and in the 5
Prime UTR of another transcript variant. In these few cases (67 sites, < .00001% of all sites),
sites were classified as being in the 5 Prime UTR. Sites located upstream of the gene body
were classified as being in one of the following categories: Promoter 200 (between 1 —200
bp upstream of the TSS; 0.2% of all sites), Promoter 1500 (between 201-1,500 bp upstream
of the TSS; 1.3% of all sites), Promoter 10K (between 1,501-10,000 bp upstream of the
TSS; 5.9% of all sites), or /ntergenic — Upstream (more than 10,000 bp upstream of TSS;
17.1% of all sites). Sites located downstream of the gene body were classified as being in
one of the following categories: Downstream 200 (between 1-200 bp downstream of gene
body; 0.2% of all sites), Downstream 1500 (between 201-1,500 bp downstream of gene
body; 1.3% of all sites), Downstream 10K (between 1,501-10,000 bp downstream of gene
body; 5.4% of all sites), or /ntergenic — Downstream (more than 10,000 bp downstream of
gene body; 17.8% of all sites) (see Supplementary Table S1B).

Brain Behav Immun. Author manuscript; available in PMC 2022 March 07.
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Based on the distribution of percent methylation at each site, sites were also classified
according to predominant methylation state at a given site (see Supplementary Table S1C).
Sites were classified as either predominantly Hypermethylated if more than 80% of subjects
had 100% methylation at the site (43% of all sites), predominantly Hypomethylated if more
than 80% of subjects had 0% methylation at the site (24% of all sites), or Intermediately
methylated if neither criterion were met (33% of all sites) (see Supplementary Table S1C).

Using the rhesus macaque reference genome in the PANTHER data base (version 15.0,
released 2020-02-14) (Mi et al., 2018; Mi et al., 2019), sites were also annotated for
ontology terms related to biological process and gene pathways (Mi & Thomas, 2009).

2.5 Data Analysis

All analyses were performed in R programming (R Core Team, 2019). First, a series of
genome-wide analyses were performed to identify sites in the genome at which methylation
was robustly associated with the stress response variables measured in the biobehavioral
assessment (for a summary of the analyses performed, see Figure 1 and Supplementary Note
1). In all analyses, methylation was the dependent variable, and the independent variables
analyzed included the four Holding Cage observation scales (Day 1 Emationality, Day 1
Activity, Day 2 Emotionality, Day 2 Activity), the four Human Intruder scales (Activity,
Emotionality, Displacement, and Aggression), and the four cortisol samples. Although not
the primary variables of interest, to better understand how patterns of DNA methylation
associated with different immune cell profiles, genome-wide analyses were also performed
for the four immune cell counts (monocytes, lymphocytes, segmented neutrophils, and
eosinophils). Given that sex differences have also been found in stress responsiveness and in
health outcomes related to stress (see, for example, Burns et al., 2018; Gunnar et al., 2015;
Kudielka & Kirschbaum, 2005), secondary analyses were also performed for sex. Although
nursery rearing vs mother rearing in rhesus macaques has well-documented effects on stress
responsiveness and immune-cell methylation profiles (Provencal et al., 2012), analyses for
rearing status were not performed because the primary hypotheses in this study pertain to
correlations between methylation and stress responsiveness.

Genome-wide analyses were performed using linear regression with false discovery rate
(FDR) correction, and a series of sensitivity analyses were performed to a) control for
immune cell subtype variation between subjects (using multiple regression) and b) to
account for spurious associations driven by extreme methylation values (using permutation
regression) (for a full description of these analyses and their justification, see Supplementary
Note 1). Out of over 2.2 million sites that met inclusion criteria for analyses (see Figure

1 and Supplementary Table S2), this analytic approach yielded 20,368 unique sites (in
9,040 unique genes) that were significantly (FDR ¢ < .05) associated with at least one

of the twelve primary independent variables analyzed (i.e., the holding cage scales, the
human intruder scales, and cortisol samples) (more information on these results is given

in Supplementary Table S3A and Supplementary Notes 2-3; see Supplementary Table S3B
for a summary of the genome-wide analyses of immune cell counts, and Supplementary
Table S3C for a summary of the genome-wide analyses of sex). The sites that attained
significance were relatively unique to each independent variable (see Supplementary Figure

Brain Behav Immun. Author manuscript; available in PMC 2022 March 07.
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S3) and included many positive and negative associations (see Supplementary Table S4).
Few of the significant DMRs for sex overlapped with the significant DMRs from the other
independent variables tested, suggesting that sex was not a major confound of the results
(see Supplementary Tables S3C and S3D). For a full list and summary of all the sites that
achieved genome-wide significance across all the analyses performed, see Supplementary
File 1.

Interrogation of immune processes.—Using the biological process and gene pathway
annotations obtained from the PANTHER data base, two annotation categories related to
immune cell functioning were selected for post hoc exploration. These included /mmune
System Process (a biological process annotation) and /nflammation mediated by chemokine
and cytokine signaling pathway (a gene pathway annotation; hereafter referred to as the
Inflammation pathway). The Immune System Process annotation category was chosen
because it contained a large subset of genes (1,376) related to general immune system
functioning in the PANTHER data base. The /nflammation pathway was chosen because

it contained a comprehensive list of genes (264) related to inflammation, a key process
linking epigenetic stress programming and health (see, for example, Miller et al., 2011,
Morales-Nebreda et al., 2019). There was relatively little overlap with the genes in the
Immune System Process category (only 90 genes overlapped between the two annotation
categories). Each group was explored separately by examining the sites that attained
genome-wide significance across the simple regression, multiple regression controlling for
immune cell counts, and the permutation regression, with particular focus given to sites
located in promoter or other regulatory regions. For the /nflammation pathway, we also
report summary statistics for sub-pathways of interest.

Pathway overrepresentation analyses.—In addition to assessing the two annotation
groups described above, additional biological processes and gene pathways were selected
for exploration by performing category overrepresentation analyses. For each independent
variable, overrepresentation analyses were performed to assess whether the number of
significant genes observed in each annotation category differed significantly from what
would be expected given the base occurrence rate in a larger group. Overrepresentation
analyses were performed relative to two different reference groups: the rhesus macaque
reference genome available on the PANTHER data base and the subset of sites that met
criteria for and underwent genome-wide analysis. This was done because preliminary
assessments showed that using the PANTHER reference genome yielded liberal estimates of
overrepresentation that were potentially driven by patterns of overrepresentation present in
the larger subset of genes that met inclusion criteria for the analysis, and not necessarily by
the genes that were significant in the analysis. Hence, by examining overrepresentation
relative to the subset of sites that underwent genome-wide analysis, more robust and
conservative estimates of overrepresentation were obtained (Mi et al., 2019). We focus our
interpretation on pathways that were overrepresented in both comparisons.

Exploration of candidate genes.—Based on previous investigations of links among
behavioral responsiveness, HPA function, and methylation in humans, the following rhesus
macaque ortholog genes were explored, based on the availability of methylation data

Brain Behav Immun. Author manuscript; available in PMC 2022 March 07.
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returned from the sequencing: SLC6A4 (Edelman et al., 2012; Montirosso et al., 2016),
NR3C1 (Edelman et al., 2012; Ostlund et al., 2016), CXCLS8, /L4, IL1A, NFAT5, NFKBI,
STATE (Provencal et al., 2013), EGRI (also known as NGFI-A), ESR1, (Edelman et al.,
2012), and HSD11B2 (Appleton et al., 2015). We also explored beta-adrenergic receptors
(ADRB1, ADRBZ2, and ADRB?3). Although methylation of beta-adrenergic receptors has not
previously been linked with behavioral responsiveness or cortisol, these genes were explored
because beta-adrenergic receptors play an important role in modulating physiological

stress responses (Elenkov et al., 2000; Stiles et al., 1984), and because polymorphisms

in beta-adrenergic receptor genes have been linked with different adult personality
dimensions (Numajiri et al., 2012). We also interrogated 22 other genes potentially
associated with anxious temperament, to determine consistency with an epigenome-wide
association study of rhesus monkey amygdala methylation (Alisch et al., 2014), including
BCL11A, JAGI, PIK3R1, KLHDCY, URMI1, SHKBP1, ZNF521, GRINI, PIP5K1B, ERCZ,
ABCBI1, SCAMP3, SPTBN4, GDF11, ALDH7A1, FGD1, GRM5, CDHZ, YIPFZ, CLK?Z,
TMEMI121B, and KL.

3 Results

A summary of the DMRs that attained significance across genome-wide analyses is given in
Supplementary Tables S3A-C, Supplementary Notes 2-3, and Supplementary File 1.

3.1 Exploration of Immune System Process and Inflammation Pathway Genes

Of the 1,376 genes listed in the /mmune System Process category of the PANTHER data
base biological process category, 1,135 genes had at least one site with available methylation
data for analysis in this study. Of these 1,135 genes, there were 442 unique genes (992
unique sites) that were significantly associated with at least one behavioral responsiveness
or cortisol variable in the simple regression, multiple regression, and permutation regression
(for the number of sites and genes across each independent variable, see Supplementary
Tables S3E and S3F). There were 64 unique sites (in 45 /mmune System Process genes)
located in a functional region relevant for transcription (see Table 1 and Figure 2A for a
summary of the sites in proximate promoters; for a full summary, see Supplementary File 1).

Of the 264 genes listed in the /nflammation mediated by chemokine and cytokine signaling
pathway in the PANTHER reference genome, 181 genes had at least one site with available
methylation data for analysis in this study. Of these 181 genes, there were 94 unique genes
(262 unique sites) that were significantly associated with a behavioral responsiveness or
cortisol variable in the simple regression, multiple regression, and permutation regression
(for the number sites and genes across each independent variable, see Supplementary Tables
S3G and S3H). The 94 genes that were robustly associated with at least one measure of
behavioral responsiveness or cortisol were distributed widely across /nflammation pathway
sub-pathways, including Nuclear factor of activated T cells (9 sites in 2 genes), Chemokine
(3 sites in 3 genes), Chemokine receptor (4 sites in 3 genes), Cytokine receptor (3 sites in

2 genes), and /nterleukin 2 (6 sites in 1 gene) (see Supplementary File 2). There were 20
sites (in 16 /nflammation pathway genes) with at least one significant association in a region
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functionally relevant for transcription (see Table 2 and Figure 2B for a summary of the sites
most proximate to the gene body; for a full summary, see Supplementary File 1).

3.2 Exploratory PANTHER Overrepresentation Analyses

Across the sites that attained genome-wide significance in the behavioral responsiveness and
cortisol analyses, there were 94 unique biological process categories that were significantly
overrepresented (see Figure 3 for a condensed summary, and Supplementary File 3 for a

full summary). Many of the overrepresented categories were related to cellular functioning,
neuronal formation, and maturation (see Figure 3). The /mmune System Process annotation
category was not significantly overrepresented for any of the independent variables analyzed
(g > 0.98; see Supplementary File 3).

There were six gene pathways that were significantly overrepresented among the sites that
attained genome-wide significance (see Table 3). From these six pathways, the pathway
most pertinent to stress physiology and inflammatory response was the Angiotensin I1-
stimulated signaling through G proteins and beta-arrestin. From this pathway, notable
associations included a negative correlation between Day 1 Emotionality and methylation at
an intergenic site proximate to the Angiotensin Il Receptor Type 1 gene (AGTRI; p = 0.46,
simple regression; see Figure 4), and a negative correlation between Day 1 Emotionality
and methylation at an intron site in the Beta Arrestin 2 gene (ARRBZ, p = —0.31, simple
regression; see Figure 4). For a full summary of all the sites that attained significance in

the six overrepresented pathways, see Supplementary Table S5. The /nflammation mediated
by chemokine and cytokine signaling pathway was not significantly overrepresented across
any of the behavioral responsiveness or cortisol variables when assessed relative to the genes
meeting inclusion criteria for analysis (g > .06; see Supplementary File 4). However, we
note that overrepresentation approached significance among the sites that were associated
with Human Intruder Aggression (fold enrichment = 1.82, ¢ =.060) and among the sites
that were associated with Day 1 Emotionality (fold enrichment = 1.70, ¢ =.067), and in
both cases, the overrepresentation attained significance when assessed relative to the rhesus
macaque reference genome (g < .049; see Supplementary File 4) rather than to the sites
meeting inclusion criteria for analysis.

3.3 Exploration of Specific Candidate Genes

Across the 35 candidate genes that were explored, there were 13 unique genes (27
individual sites) at which methylation was significantly correlated with one of the behavioral
responsiveness or cortisol variables across the simple regression, multiple regression, and
permutation regression (see Supplementary Tables S6A and S6B). Notably, there was a
significant correlation between Day 2 Emotionality and methylation of an intron site of

the glucocorticoid receptor gene (VR3C1, B = —0.39 simple regression; see Figure 5).
Methylation was also negatively correlated with Sample 1 Cortisol at a different intron site
of the NR3C1 gene (B = —0.33 simple regression; see Supplementary Table S6A).

Of the 22 genes in which Alisch et al. (2014) found robust associations between methylation
and anxious behavioral responsiveness in adolescent rhesus monkeys, we found that nine of
these genes had at least one site that was significantly associated with one of the behavioral
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responsiveness or cortisol variables across the simple regression, multiple regression, and
permutation regression (in total, there were 19 sites across the 9 genes). Of these sites,

one that was particularly relevant to peripheral blood cells was the B-cell lymphoma/
leukemia 11A gene (BCL11A), in which methylation was negatively correlated with Day

2 Emotionality (B = —0.36, simple regression. The other eight genes included ABCBI,
ERC2Z, GRIN1, GRMS5, JAG1, KL, PIP5K1B, and ZNF521 (see Supplementary Table S6A).
Under our criteria for genome-wide significance, none of the other genes identified by
Alisch et al. (2014) were significantly associated with behavioral responsiveness or cortisol,
including: PIK3RI1, KLHDCY, URM1, SHKBP1, SCAMP3, GDF11, ALDH7A1, FGDI,
CDHZ, YIPF2, TMEMI121B, and CLKZ2.

Of the three beta-adrenergic genes that were investigated (ADRBI1, ADRB2, ADRB?3),
only the ADRB3 gene contained a site at which methylation was significantly associated
with behavioral responsiveness or cortisol. The site that attained genome-wide significance
was an intergenic site, at which methylation was negatively correlated with both Sample

3 post-dexamethasone Cortisol (p = 0.67, simple regression) and Sample 4 post-ACTH
injection cortisol (f = 0.69, simple regression; see Supplementary Table S6A).

Of the six genes that Provencal et al. (2013) found to be associated with aggressive
temperament in adult humans, we found that two of these genes contained at least one
site at which methylation was significantly associated with behavioral responsiveness (in
total there were 4 sites across the 2 genes; see Supplementary Table S6A). Two of these
sites included an intergenic site most proximate to the interleukin 1A (/L1A) gene, at which
methylation was negatively correlated (f = —0.31, simple regression; see Figure 5) with
Human Intruder Aggression, and an intron site in the signal transducer and activator of
transcription 6 (STAT6) gene, at which methylation was positively correlated with Human
Intruder Aggression (B = 0.53, simple regression; see Figure 5). The four other genes
identified by Provencal et al. (2013) were not significantly associated with behavioral
responsiveness or cortisol, including: CXCLS, /L4, NFAT5, or NFKBI.

None of the other candidate genes explored (SLC6A4, ESR1, ERG1, and HSD11B2)
attained genome-wide significance under the simple regression, multiple regression, and
permutation regression (a summary of the analyses for each available site in these and other
candidate genes is available in Supplementary File 1).

3.4 Analysis of Immune Cell Counts

The epigenome-wide analysis revealed 2,327 unique sites (in 1,962 genes) that attained
significance across the four immune cell count variables analyzed (see Supplementary Table
S3B); most of these sites were for eosinophils (2,306 sites in 1,949 genes). In the case of
eosinophils, there were 104 significant sites (in 91 genes) in the /mmune System Process
annotation category (see Supplementary Table S3F), as well as 23 sites (in 20 genes) in

the Inflammation pathway (see Supplementary Tables S3H). Although these annotation
categories were not significantly overrepresented, there were three other biological processes
(but no gene pathways) that were overrepresented for eosinophils, including Biological
Regulation (7127 genes), Regulation of Cellular Process (659 genes), and Regulation of
Biological Process (688 genes) (fold enrichment ranged from 1.12 — 1.13, ¢ < .026; see
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Supplementary File 3). Among the candidate genes that were explored, eosinophils were
associated with methylation at two sites in the TMEMI121B gene (see Supplementary Table
S6B). We note that when the behavioral responsiveness and cortisol analyses were repeated
using multiple regression to control for immune cell counts, in some cases one or more of
the immune cell variables were significant covariates (see Supplementary File 1). However,
in most cases the sites that were associated with the immune cell counts were relatively
independent of the sites that were associated with any of the behavioral responsiveness or
cortisol variables (see Supplementary Figure S3, panels E1 and E2).

4 Discussion

How one responds to a stressor affects their long-term health trajectories: usually the more
intense and negative the stress response, the poorer the health outcomes (for reviews, see
Danese & McEwen, 2012; Dhabhar, 2014; Miller et al., 2011). Here we show that, very
early in life, how an infant monkey responds to a brief stressor is associated with variation
in the immune epigenome. Out of the approximately 2.2 million sites in the genome that
were assessed, we found 20,368 unique differentially methylated regions (DMRs) (in 9,040
genes) at which immune cell methylation was associated with at least one biobehavioral
measure. We found significant genome-wide associations between DNA methylation and
all four cortisol samples measured, and six of the eight (6/8) behavioral responsiveness
measures assessed (see Supplementary Table S3A). The DMRs were associated with a broad
range of biological processes, including maturation, cellular differentiation, and intracellular
signaling and communication (see Figure 3 and Supplementary Files 3—-4). Approximately
6% of the DMRs were in genes directly involved with immunity, and others (1.3%) were
primarily involved with cell-level signaling processes involving B-adrenergic receptors,
angiotensin 1, glutamate, and GABA (See Supplementary Table S5 and Supplementary
File 3), which may be relevant to coordinating the stress-immune axis. We found 992
unique sites (in 442 unique genes) in the /mmune System Process annotation category at
which methylation was significantly associated with at least one behavioral responsiveness
or cortisol variable analyzed, as well as 262 unique sites (in 94 unique genes) in the
Inflammation mediated by chemokine and cytokine signaling pathway (see Supplementary
Table S3E and S3G). Exploratory overrepresentation analyses revealed six gene pathways
and 94 biological function categories that were statistically overrepresented (see Figure 3
and Table 3, as well as Supplementary Files 3-4), including several pathways related to
inflammation and immune cell functioning. We also explored 35 candidate genes based

on prior studies linking DNA methylation with biobehavioral measures and found 27
unique DMRs (in 13 genes) that were associated with at least one measure of behavioral
responsiveness or cortisol, including two sites in the glucocorticoid receptor gene (NR3CI;
see Figure 5 and Supplementary Table S6A). Congruent with systems models of biological
stress embedding (see, for example, Fagundes et al., 2013; Hostinar et al., 2018; Miller

et al., 2011), our results suggest that individual stress response patterns may re-program
epigenetic regulation of the immune system.

Our investigation was based on the premise that DNA methylation likely regulates fiow
immune cells function, and may also be re-programmed by responses to ongoing challenges
(see Morales-Nebreda et al., 2019; Suarez-Alvarez et al., 2012). For example, infection
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triggers active demethylation at distal gene enhancers, particularly at sites associated with
nuclear factor-xB and interferon (Pacis et al., 2015), primary regulators of inflammation.
Altered immune cell methylation profiles are also associated with specific auto-immune
disorders and immune-system cancers (Morales-Nebreda et al., 2019; Suarez-Alvarez et al.,
2012), suggesting that some changes in DNA methylation may be specifically involved with
disease. Over-representation analyses of the entire dataset revealed many affected pathways
(see Figure 3 and Supplementary Files 3—-4). We focused on the /mmune System Process
and /nflammation Mediated by Chemokine and Cytokine Signaling pathways to specifically
identify how biobehavioral organization shapes immune function in immune cells. Although
neither category were significantly overrepresented when assessed relative to the genes

that met analysis inclusion criteria, we note that for the /nflammation pathway, there

was a trend towards significant overrepresentation in the Human Intruder Aggression and
Day 1 Emotionality analyses (and in these cases overrepresentation was significant when
assessed relative to the less-stringent reference group; see Supplementary File 4). Across the
measures considered in this study, biobehavioral stress responses predicted methylation in
992 sites in 442 distinct genes annotated in the PANTHER /mmune System Process category
and in 262 sites in 94 genes in the /nflammation Mediated by Chemokine and Cytokine
Signaling pathway (see Supplementary Tables S3E and S3G). In total there were 1,189

sites (in 507 genes) between the two annotation categories, indicating little overlap between
the two categories. Within the /nflammation pathway, these DMRs were associated with
many different sub-processes, including chemotaxis, T cell and B cell signaling, cytokine
and chemokine receptor signaling, and regulation of inflammatory transcription factors (see
Supplementary File 2). Between the two annotation categories, there were many DMRs
located in upstream- or downstream-regulatory regions or in the 5 prime or 3 prime UTR
(184 sites in 147 genes). Pending replication of our findings, bio-behaviorally linked DMRs
in these categories are likely to be immunologically meaningful. It is notable that, in general,
emotion-related (rather than motor- or exploration-related) behaviors were more strongly
associated with immune cell DNA methylation (see Supplementary Table S3A). Given that
stress-responses involve many limbic brain regions that interact with both the sympathetic
nervous system and the HPA axis, this finding may suggest that emotional responses to
stress exert a top-down influence on the epigenetic organization of immune cells.

Exploratory analyses of all the DMRs revealed 94 biological processes (see Figure 3 and
Supplementary File 3) and six gene pathways (see Table 3) that were statistically over-
represented among the sites that met criteria for genome-wide significance (i.e., associations
that remained significant even when controlling for immune cell subtype counts per
sample and when using a permutation approach). Although the overrepresented categories
contained genes that may not be highly expressed in immune cells, there were several

that are potentially relevant to immune functioning. One pathway was the Angiotensin
11-stimulated signaling through G proteins and beta-arrestin pathway, which was linked
with Day 1 Emotionality. Beyond its role in regulating blood pressure and volume, this
process also contributes to inflammatory response (for a comprehensive reviews, see Fan,
2014; Suzuki et al., 2003). Among the genes in this pathway that were associated with
Day 1 Emotionality were angiotensin type Il 1a receptor (AGTRI), the beta arrestin

1 (ARRBI) and beta arrestin 2 (ARRBZ2) genes, and two g-protein genes (GNB4 and
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GNG12) (see Supplementary Table S5 and Figure 4). Other overrepresented pathways

of interest included the Betal-and Beta2-andrenergic receptor pathways, processes that
are linked with regulating stress physiology and initiating inflammation (Elenkov et al.,
2000; Farmer & Pugin, 2000; Kolmus et al., 2015). However, an important caveat is that
neither the betal- nor the beta2-adrenergic receptor genes (ADRB1 and ADRBZ2) attained
genome-wide significance in any of the analyses performed (see Supplementary File 1),
meaning that the overrepresentation of these pathways was driven by the other elements of
the signaling pathway (see Supplementary Table S5). Three other gene pathways that were
significantly overrepresented across different behavioral responsiveness analyses, including
the Metabotropic glutamate receptor group 111 pathway, the lonotropic glutamate receptor
pathway, and the GABA-B receptor 11 signaling pathway (see Table 3). Beyond their
traditional roles in the central nervous system, there is evidence that both glutamate (for
reviews, see Boldyrev et al., 2005; Ganor & Levite, 2014) and GABA (for reviews, see
Barragan et al., 2015; Jin et al., 2013) can affect immune cell functioning and signaling.
Significant genes from these pathways included the kainate receptor genes GR/KI and
GRIKZ, the NMDA receptor genes GRINZB and GRIN3A, and the GABA-B receptor gene
GABBRZ (see Supplementary Table S5). These and the other overrepresented pathways
merit further investigation, and are possible candidates linking behavioral responsiveness
and methylation with different health outcomes.

Our candidate gene analysis allowed us to compare our results with those of previous
studies, and to determine the generalizability of our results. Thirteen out of thirty-five
(13/35) candidate genes that were assessed showed a robust association between methylation
and at least one of the behavioral responsiveness or cortisol measures considered in this
study (see Figure 5 and Supplementary Table S6A). In two out of six (2/6) candidate
inflammatory genes previously linked with temperament in humans (Provencal et al., 2013),
we found significant associations between methylation and behavioral responsiveness. We
found a negative correlation between Human Intruder Aggression and methylation of an
intergenic site upstream from the Interleukin-1 alpha (/L1A) gene (f = -0.31), and a
positive correlation between Human Intruder Aggression and methylation of an intron site
in the signal transducer and activator of transcription 6 (S7A76) gene (see Figure 5 and
Supplementary Table S6A). The direction of these results is relatively consistent with the
findings of Provencal et al. (2013), who showed that in monocytes, methylation of the

/L 1A gene was generally higher in men with a history of aggression when compared to
controls, whereas methylation of the STA76 gene was generally lower in men with high
aggression compared to controls (however, these associations were not always in the same
direction when T cells were investigated). Together with this study, our results suggest that
an aggressive behavioral disposition may contribute to methylation signatures underlying
inflammatory profiles. However, it is important to note that these results were not replicated
in two other epigenome-wide investigations of methylation and aggressive temperament
(Guillemin et al., 2014; van Dongen et al., 2015). Further, for both /L 1A and STATE,

there were additional associations between methylation and other behavioral responsiveness
measures (Human Intruder Displacement and Emotionality, respectively) at different sites in
the genes, suggesting that other high-arousal behavioral response patterns may contribute to
inflammatory profiles.
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Another key candidate gene we explored was the glucocorticoid receptor gene (NR3CI).
We found a negative correlation between Sample 1 cortisol (taken two hours post-separation
and relocation) and methylation of an intron site in the NR3C1 gene, analogous to previous
studies (Conradt et al., 2015; Conradt et al., 2016; Edelman et al., 2012; Oberlander et

al., 2008). The negative association found in this investigation was consistent with human
studies of women (Edelman et al., 2012) and infants (Conradt et al., 2016), but was in

the opposite direction of the positive associations reported in other human studies of
infants (Conradt et al., 2015; Lester et al., 2018; Oberlander et al., 2008) and children
(Stonawski et al., 2018). We also linked high intronic NR3CI methylation with low Day

2 Emotionality in the Holding Cage observations (at a different site than the one linked
with Sample 1 cortisol; see Supplementary Table S6A and Figure 5). This finding was
consistent with a study showing a negative correlation between NR3C1 methylation and
infant socio-emotional functioning (Folger et al., 2019), but was in the opposite direction
compared to other studies showing positive correlations between the severity of infants’
stress responses and methylation in promoters of the NR3C1 gene (Appleton et al., 2015;
Conradt et al., 2015; Conradt et al., 2013; Ostlund et al., 2016; Sheinkopf et al., 2016;
Stroud et al., 2016). However, in these cases the directional discrepancies may be due to
artifact, different age groups studied, different functional locations assessed, or the different
cell types investigated in the different studies (immune cells in this study, vs buccal cells
or placenta in other studies). Nonetheless, our findings add to a growing body of literature
implicating methylation of the MR3CI gene as an important factor underlying biological
stress embedding (for a review, see Palma-Gudiel et al., 2015), and further research is
needed to explore how behavioral responsiveness traits like emotionality and fearfulness
affect NR3C1 regulation.

We also compared our results to a study that examined the relationship of amygdala DNA
methylation and a composite measure of anxious temperament in juvenile rhesus monkeys.
This study identified 22 genes with functional associations between anxious temperament
and gene methylation (Alisch et al., 2014). We found that nine of those 22 genes (9/22) had
at least one robust association between methylation and one of the behavioral responsiveness
or cortisol variables analyzed in our study, including the following: BAF Chromatin
Remodeling Complex Subunit BCL11A (BCL11A), ATP Binding Cassette Subfamily B
Member 1 (ABCBI), ELKS/RABG6-Interacting/CAST Family Member 2 (ERC2), Glutamate
lonotropic Receptor NMDA Type Subunit 1 (GR/NI), Glutamate Metabotropic Receptor

5 (GRM5), Jagged Canonical Notch Ligand 1 (JAGI), Klotho (KL), Phosphatidylinositol-4-
Phosphate 5-Kinase Type 1 Beta (P/P5K1B), and Zinc Finger Protein 521 (ZNF521) (see
Supplementary Table S6A). The degree of overlap between the current study and Alisch et
al. (2014) suggests that there might be some parallel epigenetic programming in brain and
blood. This possibility is supported by the overrepresentation of many biological pathways
related to central nervous system development and regulation in our immune cell gene
ontology analysis, even though these genes play a negligible role in immune function (see
Figure 3 and Supplementary File 3). This is consistent with a seminal primate epigenomics
study that found over 200 differentially methylated gene promoters in T cells and over 1,300
differentially methylated gene promoters in the prefrontal cortex when mother-reared and
nursery-reared infants were compared, with significant enrichment of gene ontology terms
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related to immune functioning in both cell types (Provencal et al., 2012). Notably, of the top
50 DMRs in T cells and brain tissue in this prior study (Provencal et al., 2012), eleven of

the T cell DMRs (11/50) and nine of the brain cell DMRs (9/50) emerged as significant in
our study. This may support the idea that some immune cell programming reflects or mirrors
neural re-programming (see Davies et al., 2012). This would also help explain why, even
though we examined immune cell DNA, only some of the significant DMRs were involved
with normative immune cell processes, while others were more likely to affect expression

in other tissues (see Figure 3). We conclude that while some DMRs may be tissue specific,
DMRs observed across multiple tissues may arise from more global physiological processes
that are distributed throughout the body.

Our study considered a potential role for sex differences. None of our behavioral measures
differed based on sex. Consistent with previous studies, there was a sex difference in plasma
cortisol, such that females exhibited higher concentrations across sampling conditions
(Capitanio et al., 2005). While we observed a significant number of DMRs based on infant
sex (3,330 sites in 476 genes; see Supplementary Table S3C), across the eight behavioral
variables, four cortisol samples, and four immune cell counts assessed, there were few
DMRs that overlapped with the DMRs from the analysis of sex differences (most variables
had zero overlapping DMRs, and at most there were 26 overlapping DMRSs, equivalent to
<.01% of the DMRs) (see Supplementary Table S3D). Hence, it is not likely that sex
differences confounded the primary results of this study. Our findings add to a growing body
of literature showing that sex differences exist in epigenome-wide methylation. Consistent
with several genome-wide investigations in humans (see, for example, Gong et al., 2018;
Inoshita et al., 2015; Liu et al., 2010; Yousefi et al., 2015), most of the DMRs for sex in

this study were located on the X chromosome (3,275 sites, approximately 98%). As might
be expected, females exhibited higher methylation than males at most of these sites (2,252
sites, approximately 69%), likely due to the role of DNA methylation in X-inactivation
(Mohandas et al., 1981). These data may be informative for future studies of genome-wide
sex differences in methylation.

Overall, our results support the view that individual differences in biobehavioral
organization influence epigenetic regulation of the immune system (Miller et al., 2011).

It is also possible that some methylation patterns change biobehavioral organization,

via immune-brain communication (see Nusslock & Miller, 2016), or that immune cell
methylation profiles correlate with neural DNA methylation patterns that guide stress
response. Understanding these potentially cumulative forces in epigenome-behavior links
will be a key next step in this research. Regardless of origin, these epigenetic changes

linked to biobehavioral organization likely impact individual immunity, and possibly explain
the associations between intense emational and physiological stress responses and adverse
health outcomes (see, for example, Michael et al., 2020; Nelson et al., 2018; Tang et

al., 2019). A major advantage of our approach is that we examined associations between
biobehavioral traits and DNA methylation by cell subtype (see Supplementary Table S3B
and Supplementary File 1), including eosinophils, monocytes, lymphocytes, and segmented
neutrophils. These profiles likely contribute to immune cell production and/or differentiation
(see Supplementary Figure S1), as well as cell-specific roles in creating and recruiting

the necessary immune cell types to respond to injury or pathogens (Deaton et al., 2011;
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Fitzpatrick & Wilson, 2003; Schuyler et al., 2016). We found 2,327 unique sites (in 1,962
unique genes) at which methylation was associated with at least one of these cell counts.
However, these cell specific DMRs did not confound our results, as our models controlled
for cell subtype concentration, and there were relatively few overlapping DMRs between
the immune cell count analyses and the primary behavioral and cortisol analyses (see
Supplementary Figure S3). Our approach may be useful in guiding future studies with DNA
from whole-blood samples when cell subtype concentrations are known.

To our knowledge, this study is the largest genome-wide study of immune cell DNA
methylation in rhesus macaques thus far. A primary strength of our analytic strategy

was that we used a genome-wide approach that maximized the amount of data analyzed,
and enhanced reliability by identifying DMRs that survived three types of analysis:

simple regression, multiple regression controlling for immune cell counts, and permutation
regression (see Supplementary Note 1). We do not yet know if the biobehavioral-epigenome
associations found in this study are stable across development or how they might affect
long-term health and immune functioning, although our previous work suggests that early
epigenetic programming impacts health into adulthood (Kinnally, 2014). A disadvantage of
our study is that, while a small number (7= 11) of our subjects were differentially reared,
our study was not powered to estimate the role of early stress on epigenetic and behavioral
development. We expect that it does, as early life experiences can impact behavioral stress
responses (Suomi, 2006), immune cell functioning (Cole et al., 2012), and DNA methylation
(Provengal et al., 2012). Future studies should investigate how variability in biobehavioral
stress responsiveness interacts with early stressful experiences to impact health.

5 Conclusion

Congruent with many studies showing links between temperament, epigenetics, and health,
we identified 20,368 unique sites in the rhesus macaque epigenome that were associated
with behavioral or physiological responses to stressful situations. The results of this study
suggest that stress responsiveness is associated with epigenetic regulation of immune
system function and inflammatory response. This study adds to other epigenome-wide
investigations of methylation-temperament associations in humans (Guillemin et al., 2014;
van Dongen et al., 2015) and rhesus monkeys (Alisch et al., 2014), and is the first
epigenome-wide investigation, to our knowledge, to explore the association of immune
epigenomics with multi-domain measures of stress response and temperament in infants.
We speculate that, like stressful events (Danese & McEwen, 2012; Miller et al., 2011),
individual differences in early-life stress responsivity can have a programming effect on
the immune epigenome, potentially affecting later health outcomes. Continued research is
needed to explore how these epigenetic signatures emerge across development, and their role
in individual differences in health and disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Initial number of methylation sites returned from RRBS with > 10x coverage: 9,548,543
See Supplementary Tables S1A —S1C

Selection Criteria:

- At least 20 subjects with no missing data at the site
- At least two unique methylation values

- 7,291,163 sites removed that did not meet criteria

Number of Sites Meeting Inclusion Criteria: 2,257,380
See Supplementary Tables S1A —S1C

Data Analysis:
-41,646 — 161,241 sites removed that had insufficient variability in behavioral
responsiveness or cortisol IV (i.e., only one unique value)

Number of Sites Analyzed in:
- Simple Regression & Permutation Regression: 2,132,805 — 2,215,734 (depending on the V)
- Multiple Regression controlling for immune cell counts: 2,130,559 — 2,213,293 (depending on the V)

See Supplementary Table S2

Criteria for Significance:
- Association attained genome-wide significance (FDR g < .05) in Simple Regression,
Permutation Regression, and Multiple Regression controlling for immune cell counts

Number of Significant Sites across Behavioral and Cortisol Stress Response variables:
- In each analysis: 0 — 4,074 (depending on the 1V)
- In at least one analysis: 20,368
See Supplementary Table S3A, Supplementary File 1

Annotation Categories of Interest:

- Two categories Selected from PANTHER
Biological Processes and Gene Pathways because
of relevance to immune system functioning

Number of Significant Sites in the PANTHER Number of Significant Sites in the PANTHER
Immune System Process: Inflammation pathway:
- In each analysis: 0 — 204 (depending on the V) - In each analysis: 0—46 (depending on the V)
- In at least one analysis: 992 - In at least one analysis: 262
See Table 1, Supplementary Table S3E See Table 2, Supplementary Table S3G
Figurel.

Summary of Data Analysis.

The flow chart summarizes the amount of methylation data at each stage of data collection
and analysis for the primary independent variables (i.e., the holding cage observation scales,
the human intruder scales, and the cortisol samples).

Abbreviations: /Vindicates independent variable.
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Figure2.

Selected Associations of Interest from Immune-related Annotation Categories.

The figure shows the raw data for three selected sites in the /mmune System Process
biological process annotation category (Panel A, left) and the /nflammation Mediated by
Chemokine and Cytokine Signaling pathway (Panel B, right) in genomic regions that are
functionally relevant for transcription. The beta values indicate the beta weight from the
simple regression for the association between the independent and dependent variables
shown. For an expanded summary of these analyses, see Table 1 and Table 2.
Abbreviations: DI Emo indicates Day 1 Emotionality; H/ Actindicates Human Intruder
Activity; H/ Agg indicates Human Intruder Aggression; Samp 3 indicates Sample 3 Cortisol
(23.5 hours post-separation, 16.5 hours post-dexamethasone); Samp 1 indicates Sample 1
Cortisol (2 hours post-separation).
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Figure 3.
Summary of Significantly Overrepresented PANTHER Biological Processes.

The figure shows the PANTHER biological pathways that were significantly overrepresented
across the independent variables analyzed (FDR ¢ < .05). For a full summary of these
analyses, see Supplementary File 3.

Abbreviations: D1 Emoand D2 Emo indicate Day 1 and Day 2 Emotionality; H/ Agg
indicates Human Intruder Aggression; H/ Disp indicates Human Intruder Displacement; H/
Emo indicates Human Intruder Emotionality; £osin indicates Eosinophil cell counts.
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Figure 4.
Raw Data of Associations Between Day 1 Emotionality and Methylation of Two Selected

Sites in the Angiotensin I1-stimulated signaling through G proteins and beta-arrestin
pathway.

The figure shows the raw data for two selected sites in the Angiotensin I1-stimulated
signaling through G proteins and beta-arrestin in which methylation was associated with
Day 1 Emotionality. The beta values indicate the beta weight from the simple regression for
the association between the independent and dependent variables shown. For an expanded
summary of these analyses, see Supplementary Table S5.

Abbreviations: D1 Emo indicates Day 1 Emotionality.
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Figure5.
Raw Data for Selected Candidate Genes of Interest.
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The figure shows the raw data for four selected candidate genes in which methylation was

significantly correlated with behavioral responsiveness or cortisol. The beta values indicate
the beta weight from the simple regression for the association between the independent and
dependent variables shown. For a full summary of these and other candidate gene analyses,

see Supplementary Tables S6A and S6B.

Abbreviations. D2 Emo indicates Day 2 Emotionality; Samp 3indicates Sample 3 Cortisol
(23.5 hours post-separation, 16.5 hours post-dexamethasone); H/ Agg indicates Human

Intruder Aggression.
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