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Abstract

Graph signal processing (GSP) is an important methodology for studying data residing on 

irregular structures. As acquired data is increasingly taking the form of multi-way tensors, new 

signal processing tools are needed to maximally utilize the multi-way structure within the data. In 

this paper, we review modern signal processing frameworks generalizing GSP to multi-way data, 

starting from graph signals coupled to familiar regular axes such as time in sensor networks, and 

then extending to general graphs across all tensor modes. This widely applicable paradigm 

motivates reformulating and improving upon classical problems and approaches to creatively 

address the challenges in tensor-based data. We synthesize common themes arising from current 

efforts to combine GSP with tensor analysis and highlight future directions in extending GSP to 

the multi-way paradigm.

1. INTRODUCTION

Over the past decade, graph signal processing (GSP) [1] has laid the foundation for 

generalizing classical Fourier theory as defined on a regular grid, such as time, to handle 

signals on irregular structures, such as networks. GSP, however, is currently limited to 

single-way analysis: graph signals are processed independently of one another, thus ignoring 

the geometry between multiple graph signals. In the coming decade, generalizing GSP to 

handle multi-way data, represented by multidimensional arrays or tensors, with graphs 

underlying each axis of the data will be essential for modern signal processing. This survey 

discusses the burgeoning family of multi-way graph signal processing (MWGSP) methods 

for analyzing data tensors as a dependent collection of axes.

To introduce the concept of way, consider a network of N sensors each measuring a signal 

sampled at T time points. On the one hand, classic signal processing treats these signals as a 

collection of N independent 1D time-series ignoring the relation structure of the graph. On 

the other hand, the standard GSP perspective treats the data as a collection of T independent 
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1D graph signals that describe the state of all sensors for a given time point tj ∈ T. Both are 

single-way perspectives that ignore the underlying geometry of the other way (also referred 

to as mode). The recent time-vertex (T-V) framework [2, 3] unifies these perspectives to 

form a dual-way framework that processes graph signals that are time-varying1, thus 

bridging the gap between classical signal processing and GSP. While one of the axes of a T-

V signal is a regular grid, time, in general a regular geometry may not underlie any of the 

ways of the data, e.g. genes and cells in sequencing data or users and items in 

recommendation systems [4–6]. Thus, the T-V framework is a subset of a more general 

MWGSP framework that considers the coupling of multiple geometries, whether predefined 

temporal or spatial axes, or irregular graph-based axes. MWGSP is by definition more 

versatile and is our main focus.

Classical signal processing and GSP typically process one or two-dimensional signals [1–3, 

7] and do not address datasets of higher dimensions. However, such datasets, given as multi-

way tensors, are becoming increasingly common in many domains. Mathematically, tensors 

generalize matrices to higher dimensions [8], and in this work the term tensors includes 

matrices (as they are 2-tensors). Examples of tensors includes video, hyperspectral imaging, 

MRI scans, multi-subject fMRI data, chemometrics, epigenetics, trial-based neural data, and 

higher-order sparse tensor data such as databases of crime incident reports, taxi rides or ad 

click data [9–14]. While tensors are the primary structure for representing D-dimensional 

signals, research on tensors and signal processing on tensors has primarily focused on 

factorization methods [8, 15], devoting less attention to leveraging the underlying geometry 

on the tensor modes. Recent MWGSP approaches incorporate graph smoothness in 

multiway tensor analysis, both for robust tensor factorization [12–14] and direct data 

analysis of tensors [9, 10].

In this overview of multi-way data analysis, we present a broad viewpoint to simultaneously 

consider general graphs underlying all modes of a tensor. Thus, we interpret multi-way 

analyses in light of graph-based signal processing to consider tensors as multi-way graph 
signals defined on multi-way graphs. GSP is a powerful framework in the multi-way setting, 

leading to intuitive and uniform interpretations of operations on irregular geometry.

Thus, MWGSP is a non-trivial departure from classical signal processing, producing an 

opportunity to exploit joint structures and correlations across modes to more accurately 

model and process signals in real-world applications of current societal importance: climate, 

spread of epidemics and traffic, as well as complex systems in biology.

Both the GSP and tensor analysis communities have been developing methods for multiway 

data analysis and have taken different but complementary strategies to solving common 

problems. We lay the mathematical and theoretical foundations drawing on work from both 

communities to develop a framework for higher-order signal processing of tensor data, and 

explore the challenges and algorithms that result when one imposes relational structure 

along all axes of data tensors. At the heart of this framework is the graph Laplacian, which 

provides a basis for harmonic analysis of data in MWGSP and an important regularizer in 

1Note that the graph itself is static while the signals are time-varying.
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modeling and recovery of multi-way graph signals. We illustrate the breadth of MWGSP by 

reinterpreting classic techniques, such as the 2-D discrete Fourier transform, as a special 

case of MWGSP and introduce a general Multi-Way Graph Fourier Transform (MWGFT). 

Further, we review novel multi-way regularizations that are not immediately obvious by 

viewing the data purely as a tensor. Thus, we synthesize into a coherent family a spectrum of 

recent and novel MWGSP methods across varied applications in inpainting, denoising, data 

completion, factor analysis, dictionary learning, and graph learning [10, 11, 4, 16–21].

The organization of this paper is as follows. Sec. II reviews standard GSP, which we refer to 

as single-way GSP. Sec. III introduces tensors and multilinear operators and constructs 

multi-way graphs, transforms, and filters. Sec. IV briefly highlights two recent multiway 

frameworks: the time-vertex framework, a natural development of MWGSP that couples a 

known time axis to a graph topology, and the Generalized Graph Signal Processing 

framework which extends MWGSP by coupling non-discrete and arbitrary geometries into a 

single signal processing framework. Sec. V moves to multi-way signal modeling and 

recovery, where graph-based multi-way methods are used in a broad range of tasks. Sec. VI 

concludes with open questions for future work.

II. SINGLE-WAY GSP

GSP generalizes classical signal processing from regular Euclidean geometries such as time 

and space, to irregular, and non-Euclidean geometries represented discretely by a graph. In 

this section, we review basic concepts.2

a) Graphs:

This tutorial considers undirected, connected, and weighted graphs G = V, ℰ, W  consisting 

of a finite vertex set V, an edge set ℰ, and a weighted adjacency matrix W. If two vertices 

vi, vj are connected, then vi, vj ∈ ℰ, and Wi,j = Wj,i > 0; otherwise Wi,j = Wj,i = 0. We 

employ a superscript parenthetical index to reference graphs and their accompanying 

characteristics from a set of graphs G i , i.e., G = G i = V i , ℰ i , W i
i = 1
D

. Contextually 

we will refer to the cardinality of the vertex set of a graph G i  as V i = ni. When 

parenthetical indexing is not used, we refer to a general graph G on n nodes. For details on 

how to construct a graph see the box “Graph construction.”

b) Graph Signals:

A signal f :V ℝn on the vertices of a graph on n nodes may be represented as a vector 

f ∈ ℝn, where fi = f(i) is the signal value at vertex vi ∈ V.

The graph Fourier transform decomposes a graph signal in terms of the eigenvectors of a 

graph shift operator. Many choices have been proposed for graph shifts, including the 

adjacency matrix W and various forms of the graph Laplacian ℒ, a second order difference 

operator over the edge set of the graph. In this paper we use the popular combinatorial graph 

2A complete survey of graph signal processing is provided in [1].
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Laplacian defined as ℒ: = D − W, where the degree matrix D is diagonal with elements 

Dii = ∑jWij.

This matrix is real and symmetric. Its eigendecomposition is ℒ = ΨΛGΨ∗, where the 

columns of Ψ are a complete set of orthonormal eigenvectors ψℓ ℓ = 0
n − 1 , Ψ∗ is the conjugate 

transpose of Ψ, and the diagonal of ΛG are the real eigenvalues λℓ ℓ = 0
n − 1 .

c) Graph Fourier Analysis:

The Graph Fourier Transform (GFT) and its inverse are

f λℓ : = f, ψℓ = ∑
k = 1

N
f k ψℓ

∗ k and f k = ∑
ℓ = 0

N − 1
f λℓ ψℓ k , (1)

or in matrix form GFT f = Ψ∗f. The GFT generalizes the classical Fourier transform since 

the former is the spectral expansion of a vector in the discrete graph Laplacian eigensystem 

while the latter is the spectral expansion of a function in the eigensystem of the continuous 

Laplacian operator. Indeed, the GFT is synonymous with the discrete Fourier transform 

(DFT) when the graph Laplacian is built on a cyclic path or ring graph. It is typical to 

reinforce the classical Fourier analogy by referring to the eigenvectors of ℒ as graph 

harmonics and the eigenvalues as graph frequencies and indexing the harmonics in 

ascending order of the eigenvalues such that the lowest indexed harmonics are the smoothest 

elements of the graph eigenbasis.

Despite these analogies, it is non-trivial to directly extend classical tools to signals on 

graphs. For example, there is no straightforward analogue of convolution in the time domain 

to convolution in the vertex domain. Instead, filtering signals in the GFT domain is defined 

analogously to filtering in the frequency domain, with a filtering function ℎ ⋅  applied to the 

eigenvalues λℓ, that take the place of the frequencies:

f k = ∑
ℓ = 0

N − 1
ℎ λℓ f λℓ ψℓ k , (2)

where f is the result of filtering f with the graph spectral filter ℎ ℒ . This spectral analogy is 

a common approach for generalizing classical notions that lack clear vertex interpretations.

III. EXTENDING GSP TO MULTI-WAY SPACES

Classical D-dimensional Fourier analysis provides a template for constructing unified 

geometries from various data sources. The D-dimensional Fourier transform applies a 1-

dimensional Fourier transform to each axis of the data sequentially. For example, a 2D-DFT 

applied to an n1 × n2 real image X is

2D‐DFT X = DFTc DFTr X = DFTr DFTc X = Un1XUn2, (3)
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where DFTr (DFTc) applies the DFT to the rows (columns) of X and Un denotes a 

normalized n-point DFT matrix: Un t, k = 1
nexp −2πjt k − 1 /n  for t, k = 1, …, n. This 2D 

transform decomposes the input into a set of plane waves.

The 2D graph Fourier transform (2D-GFT) is algebraically analogous to the 2D-DFT. For 

two graphs G 1  and G 2  on n1 and n2 vertices, the 2D-DFT of X ∈ ℝn1 × n2 is

2D‐GFT X = GFTn1 GFTn2 X = GFTn2 GFTn1 X , (4)

and was presented in [7] as a method for efficiently processing big-data. Note that when 

G 1 = Pn1 and G 2 = Pn2, i.e., they are cyclic path graphs on n1 and n2 vertices, this 

transform is equivalent to a 2D-DFT [7].

In this section, we present the MWGSP framework for general D-dimensional signal 

processing on coupled and irregular domains, which enables holistic data analysis by 

considering relational structures on potentially all modes of a mutli-way signal. MWGSP 

encompasses standard GSP while extending fundamental GSP tools such as graph filters to 

D-dimensions. Furthermore, because graphs can be used to model discrete structures from 

classical signal processing, MWGSP forms an intuitive superset of discrete signal processing 

on domains such as images or video.

A. Tensors

Tensors are both a data structure representing D-dimensional signals, as well as a 

mathematical tool for analyzing multilinear spaces. We use both perspectives to formulate 

MWGSP. In this paper, we adopt the tensor terminology and notation used by [8].

1) Tensors as a D-dimensional array: The number of ways or modes of a tensor is its 

order. Vectors are tensors of order one and denoted by boldface lowercase letters, e.g., a. 

Matrices are tensors of order two and denoted by boldface capital letters, e.g., A. Tensors of 

higher-order, namely order three and greater, we denote by boldface Euler script letters, e.g., 

A. If A is a D-way data array of size n1 × ⋯ × nD, we say A is a tensor of order D.

There are multiple operations to reshape tensors, used for convenient calculations. 

Vectorization maps the elements of a matrix into a vector in column-major order. That is, for 

X ∈ ℝn1 × n2,

vec X = X1, 1, …, Xn1, 1, X12, …, Xn1, 2, …, X1, n2, …, Xn1, n2
T .

A tensor mode-d vectorization operator, vecd X  is similarly defined by stacking the 

elements of X in mode-d major order. Let ten x, ℓ, n1, …, nD = X be the ℓ-th tensorization 

of x, which is the inverse of the ℓ-major vectorization of X. Denote by 

n\ℓ = ∏i = 1
ℓ − 1ni∏j = ℓ + 1

D nj the product of all factor sizes except for the ℓ-th factor. Then, let 

mat X, ℓ = X ℓ ∈ ℝnℓ × n\ℓ be the mode-ℓ matricization of X formed by setting the ℓ-th mode 
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of X to the rows of X(ℓ), vectorizing the remaining modes to form the columns of X(ℓ) as in 

Fig. 1.

2) Tensor products: Up to this point we have avoided explicitly constructing D-

dimensional transforms. In the 2D case, applying a two-dimensional transform is calculated 

via linear operators as in (3); generalizing to higher-order tensors requires multilinear 

operators. Therefore, we introduce the tensor product and its discrete form, the Kronecker 
product. These products are powerful tools for succinctly describing D-dimensional 

transforms.

The great utility of the tensor product is that it simultaneously transforms spaces alongside 

their linear operators. This is the so-called universal property of the tensor product. In brief, 

it states that the tensor product, denoted by ⊗, of two vector spaces V and W is the unique 

result of a bilinear map φ : V × W → V ⊗ W. The power in φ is that it uniquely factors any 

bilinear map on V × W into a linear map on V ⊗ W. The universal property implies that the 

tensor product is symmetric: V ⊗ W is a canonical isomorphism of W ⊗ V. Though the 

tensor product is defined in terms of two vector spaces, it can be applied repeatedly to 

combine many domains, so we generically refer to it as a product of many spaces.

In this paper, we are concerned with the tensor product on Hilbert spaces ℋ k , k = 1, …, D. 

These metric spaces include both continuous and discrete Euclidean domains from classical 

signal processing, as well as the non-Euclidean vertex domain. Since tensor products on 

Hilbert spaces produce Hilbert spaces, we can combine time, space, vertex, or other signal 

processing domains via the tensor product and remain in a Hilbert space. Under some 

constraints, an orthonormal basis for the product of D Hilbert spaces is admitted directly by 

the tensor product of the factor spaces. These properties of the tensor product are the 

mathematical foundations for the remainder of this tutorial, in which we construct a multi-

way signal processing framework based on unifying multiple input spaces and their Fourier 

operators into a single linear representation.

Kronecker products:  The Kronecker product produces the matrix of a tensor product with 

respect to a standard basis and generalizes the outer product of vectors xy* for x ∈ ℂm and 

y ∈ ℂn. For analogy, it is common to use the same notation to denote the Kronecker and 

tensor product.

The Kronecker product is associative. Consequently the matrix M that is the Kronecker 

product of a sequence of D matrices M k ∈ ℂnk × nk for k = 1, …, D is

M = ⊗
k = 1

D
M k = M 1 ⊗ ⊗

k = 2

D
M k = ⊗

k = 1

D − 1
M k ⊗ M D = M 1 ⊗ ⋯

⊗ M D .
(5)

It is important to note that the Kronecker product is in general non-commutative. For brevity, 

we will apply a decremental Kronecker product using the notation
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↓ ⊗
k = 1

D
M k = ⊗

k = 0
D − 1

M D − k = M D ⊗ ⋯ ⊗ M 1 .

The Kronecker product has many convenient algebraic properties for computing 

multidimensional transforms.

Vectorization enables one to express bilinear matrix multiplication as a linear transformation

vec CXB = B⊤ ⊗ C vec X , (6)

assuming that the dimensions of C, X, B are compatible such that CXB is a valid operation. 

This identity is a discrete realization of the universal property of tensors, and shows that the 

Kronecker product corresponds to a bilinear operator. We will use this identity to 1) 

construct multi-dimensional discrete Fourier bases, and 2) decompose multi-way algorithms 

for computational efficiency.

B. Multi-way transforms and filters

We now apply (6) to explicitly construct a 2D-GFT. If Ψ(1) and Ψ(2) are Fourier bases for 

graph signals on any two graphs G1 and G2, a 2D-GFT basis is Ψ(2) ⊗ Ψ(1). This is a single 

orthonormal basis of dimension V 1 V 2 × V 1 V 2 , which can be used to describe a 2D 

graph signal X ∈ ℝn1 × n2 in the geometry of a single multi-way graph by the GFT

x = Ψ 2 ⊗ Ψ 1 ∗vec X .

Unlike the DFT, where it is clear that increasing dimension yields grids, cubes, and 

hypercubes, interpreting the geometry of Ψ(2) ⊗ Ψ(1) is less intuitive. For this, we must turn 

to a graph product.

Product graphs: MWGSP relies on a graph underlying each mode of the given tensor 

data. The question is: What joint geometry arises from these graphs, and what multilinear 

operators exist on this joint graph structure? Our approach is to construct a multiway graph 

G = V, ℰ, W  over the entirety of a data X as the product graph of a set of factor graphs 

G = G 1 , …, G D .

For example, if X ∈ ℝn1 × n2 × n3 contains the results of a n3 sample longitudinal survey of n2 

genes on a cohort of n1 patients, then the intramodal relationships of X are modeled by 

separate graphs G 1 , in which each patient is a vertex, G 2 , in which each gene is a vertex, 

and G 3 , which represents time as a path graph on n3 vertices. We will use this example 

throughout this section, though our derivation generalizes to tensors of arbitrary order.

While one could treat matrix-valued slices of X as signals on each individual graph, we use 

the graph product to model X as a single graph signal on G. We begin by constructing V, the 
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vertices of G, which for all graph products is performed by assigning a single vertex to every 

element in the Cartesian product of the factor vertex sets i.e., V = V 1 × ⋯ × V D . Thus, 

the cardinality of the vertex set of G is n = ∏k = 1
D nk. For example, our longitudinal survey 

will be modeled by the product graph G on n = n1n2n3 vertices. As a Cartesian product, the 

elements v ∈ V can be expressed as the tuple v =(patient, gene, time). The experimental 

observation tensor can be modeled as a graph signal3 x = vec X  in ℝn.

Our next step is to learn the topology of G by mapping the edge sets (weights) of the factor 

graphs into a single set of product edges (weights) ℰ. There are a variety of graph products, 

each of which differs from each other only in the construction of this map. We focus on the 

Cartesian graph product as it is the most widely employed in multi-way algorithms. 

However, other products such as the tensor and strong graph products each induce novel 

edge topologies that warrant further exploration for MWGSP [7].

Cartesian graph products: We denote the Cartesian product of D graphs as

G = □
ℓ = 1

D
G ℓ = G 1 □ ⋯ □ G D . (7)

The Cartesian graph product is intuitively an XOR product since for any two vertices

v = v 1 , …, v D , u = u 1 , …, u D ⊂ V, (8)

the edge (v, u) exists if and only if there exists a single i such that v i , u i ∈ ℰ i  and v(ℓ) = 

u(ℓ) for all ℓ ≠ i. In other words, the vertices of G are connected if and only if exclusively one 

pair of factor vertices are adjacent and the remaining factor vertices are the same. Figure 2a 

illustrates the generation of an n1 × n2 2D grid graph via the product of two path graphs on 

n1 and n2 vertices.

The Cartesian graph product can induce topological properties such as regularity onto a 

graph. Since the path graph basis is well-characterized as a discrete Fourier basis, it is a 

convenient tool for including Euclidean domains in multi-way analysis. For example, we can 

model time series and longitudinal graph signals as a single vector using a path graph 

product. In the case of our gene expression data X, the product of the gene and patient mode 

graphs with a path on n3 vertices, i.e., G 1 □ G 2 □ Pn3, models the data by treating the 

temporal mode as a sequence. One can intuit this operation as copying G 1 □ G 2 n3 times 

and connecting edges between each copy.

Product graph matrices: The Kronecker product links graph shift operators on Cartesian 

product graphs to the corresponding operators on the factors. The Kronecker sum of D 

matrices A k ∈ ℂnk × nk for k = 1, …, D is

3We can do this because the vectorization vec X  is isomorphic to X, which can be shown using (6).
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A = ⊕
k = 1

D
A k = ∑

k = 1

D
In > k ⊗ A k ⊗ In < k, where n > k = ∏

ℓ = k + 1

D
nℓ, and n < k = ∏

ℓ = 1

k − 1
nℓ .

The joint adjacency matrix A and graph Laplacian ℒ are constructed by the Kronecker sum 

of their corresponding factor graph matrices. The eigensystem of a Kronecker sum is 

generated by the pairwise sum of the eigenvalues of its factors and the tensor product of the 

factor eigenbases [22, Thm. 4.4.5]. Thus, the Fourier basis Ψ for the product graph G is 

immediate from the factors. For k = 1, …, D let λℓk, ψℓk  be the ℓkth eigenpair of ℒ k  for 

0 ≤ ℓk ≤ nk − 1 Then let Iℓ = ℓ1, …, ℓD ∈ n1 × … × nD  be a multi-index to the ℓth 

eigenpair of ℒ. The product graph Fourier basis is then

λIℓ, ψIℓ = ∑
k = 1

D
λℓk

k , ⊗
k = 1

D
ψℓk

k . (9)

Thus, the MWGFT of a multiway graph signal X is

x = Ψ∗vec X = ⊗
k = 1

D
Ψ k ∗

vec X . (10)

This formulation includes applying a single-way transform along one mode of the tensor, for 

example, DFTn1 X = ⊗k = 2
D Ink ⊗ Un1

Tvec X  applies the DFT along the first mode of 

the tensor.

Efficient MWGSP by graph factorization: On the surface, the computational cost of a 

MWGFT (and MWGSP in general) seems high as multi-way product graphs are often much 

larger than their individual factors; the cardinality of the product vertex set is the product of 

the number of vertices in each factor. However, the product graph structure actually yields 

efficient algorithms. With small adjustments to fundamental operations like matrix 

multiplication, in the best case one can effectively reduce the computational burden of an 

order D tensor with n = ∏ℓ = 1
D nℓ total elements to a sequence of problems on n(1/D) 

elements. The computational strategy is to apply Equation (6) and its order-D generalization 

to avoid storing and computing large product graph operators.

We introduce the order-D form of Equation (6) via an algorithm. Given a sequence of 

operators M ℓ ∈ ℝnℓ, ℓ = 1, …, D, an efficient algorithm for computing 

y = ⊗ℓ = 1
D M ℓ vec X  proceeds by applying each M(ℓ) to the corresponding mode-wise 

matricization of X. Algorithm 1 presents pseudocode for computing this product.
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Algorithm 1 D‐tensor multilinear transformations
1: Initialize Y = X
2: for ℓ = 1, …, D do

3: Matricize: Y ℓ = mat Y, ℓ

4: Factor update:Y ℓ = M ℓ ⊤
Y ℓ

5: Reform tensor:Y = ten Y ℓ , ℓ, n1, …, nD
6:end for
7:vectorization: y = vec Y .

As a sequential product of an nℓ × nℓ matrix with an n × n \ ℓ matrix, this method can 

dramatically improve the cost of algorithms that depends on matrix multiplication. Further, 

the number of operations only depends on computations over smaller factor matrices, 

enabling one to perform computations on the product graph without computing and storing 

expensive operators.

For example, consider the computational cost of applying an MWGFT for a product graph G
on n = ∏ℓ = 1

D nℓ nodes. In the worst case, Algorithm 1 is as fast as directly computing (10). 

However, in the best-case scenario nℓ = nD  for all ℓ = 1, …, D, and computing D graph 

Fourier bases of nD × nD  requires O n3/D  operations. To compute a MWGFT using the 

factor bases, we use Ψ(ℓ) as the sequence of operators in Alg. 1, which costs O Dn1/D + 1

operations. This improves upon the standard GFT, which costs O n3  operations to obtain an 

eigenbasis and O n2  operations to apply. For example, when D = 3 and n1 = n2 = n3 = n3 , 

we obtain an asymptotically linear factorization of a graph Fourier basis for G, and the 

corresponding MWGFT can be applied in O 3n1/3 + 1  operations.

Edge density: The graph edge density impacts the scalability of signal processing 

algorithms for multi-way data. Matrix equations can be efficiently solved by iteratively 

computing sparse matrix-vector products. The computational complexity of such algorithms, 

which include fundamental techniques such as Krylov subspace methods and polynomial 

approximation, typically depend linearly on the number of edges in the graphs, e.g., [2, 25, 

5]. This dependency suggests using the sparsest possible graph that still captures the main 

similarity structure along each mode. Indeed, a common strategy is to construct sparse 

Laplacian matrices [25] or edge-incidence matrices [5], using k-nearest-neighbor graphs 

which produce edge sets whose cardinality is linear in the number of nodes. Yet, given 

sparse factors graph, there is no guarantee that the product will be sparse. Thus, major 

efficiency gains for multi-way algorithms can be made by replacing iterative matrix-vector 

multiplications (both sparse and dense) with a sequence of factor graph sparse matrix-vector 

multiplications using Algorithm 1.

Three immediate applications for such a factorization are multi-way filter approximations 

[see, e.g. 2], compressive spectral clustering [26], and fast graph Fourier transforms [27]. We 

detail the former, while briefly describing future directions for the latter. For filtering, one 
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could spectrally define and exactly compute a multi-way product graph filter (see box on 

Multi-way Filters) using the MWGSP techniques described in the previous section. Yet, 

Chebyshev approximations [2] are an efficient, robust, and accurate technique for 

approximate filtering. These approaches approximate spectrally defined filters by applying a 

recurrently defined weighted matrix-vector multiplication. Efficient multi-way Chebyshev 

approximation leverages the Kronecker sum definition for product graph Laplacians ℒ. That 

is, by noting that ℒx = ∑k = 1
D In > k ⊗ ℒ k ⊗ In < k x is equivalent to computing

In > 1 ⊗ ℒ 1 x + In > 2 ⊗ ℒ 2 ⊗ In1 x + … + ℒ D In < D x,

it is clear that Chebyshev approximations of functions on ℒ (such as spectral graph 

wavelets) can be written as a sum of sparse matrix vector multiplications; the total 

operations are now dominated by the densest factor graph.

The efficiency of this approach cannot be understated, as it facilitates many algorithms, 

including the compressive spectral algorithm [26]. Indeed, it is increasingly common to 

estimate geometric and spectral qualities of the graph Laplacian by applying ideal filter 

approximations for eigencounting and coherence estimation. Finally, factor graph sparsity 

and Algorithm 1 could be combined with recently proposed approaches for approximate 

orthogonal decompositions [27] to construct a fast product graph Fourier transform. This 

algorithm would admit striking similarities to the classical fast Fourier transform.

IV. MWGSP FRAMEWORKS

Here we highlight two recent multi-way frameworks: time-vertex framework [2] and 

Generalized GSP [28].

A. Time-vertex framework

The joint time-vertex (T-V) framework [2, 3, 23] arose to address the limitations of GSP in 

analyzing dynamic data on graphs. This required generalizing harmonic analysis to a 

coupled time-graph setting by connecting a regular axis (time) to an arbitrary graph. The 

central application of these techniques are to analyze graph signals that are time-varying, for 

example, a time-series that reside on a sensor graph. Each time point of this series is itself a 

graph signal, while each vertex on the graph maps to a time-series of T samples. This 

enables learning covariate structures from T-V signals, which are bivariate functions on the 

vertex and time domain. Such sequences of graph signals are commonly collected 

longitudinally through sensor networks, video, health data, and social networks.

The Joint time-vertex Fourier Transform (JFT) [2] for a T-V signal X ∈ ℝ V × T  is defined as

JFT X = Ψ∗XUT or JFT vec X = UT ⊗ Ψ ∗vec X ,

such that the multi-way Fourier transform of a T-V signal is a tensor product of the DFT 

basis with a GFT basis (see Fig. 3). Consequently, the JFT admits a fast transform in which 
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one first performs an FFT along the time mode of the data before taking the GFT of the 

result, thus requiring only one Laplacian diagonalizaiton.

Including the DFT basis in this framework immediately admits novel joint time-vertex 

structures that are based on classical tools, such as variational norms that combine classical 

variation with graph variation [2] introduce. For efficient filter analysis, they also propose an 

FFT and Chebyshev based algorithm for computing fast T-V filters, which applies to both 

separable and non-separable filters; see an example of T-V filtering in Fig. 2. Finally, 

overcomplete dictionary representations are constructed as a tensor-like composition of 

graph spectral dictionaries with classical short-time Fourier transform (STFT) and wavelet 

frames. These joint dictionaries can be constructed to form frames, enabling the analysis and 

manipulation of data in terms of time-frequency-vertex-frequency localized atoms. T-V 

spectral filtering was also introduced in [3], as well as a T-V Kalman filter, with both batch 

and online function estimators. Further works have integrated ideas from classical signal 

processing such as stationarity to graph and T-V signals [29, 30, 23]. Thus, recent 

developments in the T-V framework can serve as a road-map for the future development of 

general MWGSP methods.

B. Generalized Graph Signal Processing

Another recent development is that of the Generalized Graph Signal Processing [28] 

framework which extends the notions of MWGSP to arbitrary, non-graphical geometries. 

Generalized GSP facilitates multivariate signal processing of interesting signals in which at 

least one domain lacks a discrete geometry. This framework recognizes that the key intuition 

of graph signal processing is the utility of irregular, non-Euclidean geometries for analyzing 

signals. However, where GSP techniques axiomatize a finite relational structure encoded by 

a graph shift operator, Generalized GSP extends classical Fourier analogies to arbitrary 

Hilbert spaces (i.e., complete inner product spaces) ℋ ∈ H equipped with a compact, self-

adjoint operator A. This broad class of geometries contains GSP, as the standard space of 

square summable graph signals, i.e., L2 V = f :V ℂ, f 2 < ∞  is itself a Hilbert space.

The geometries and corresponding signals that can be induced by Generalized GSP offer an 

intriguing juxtaposition of continuous and discrete topologies. As an example, consider the 

tensor product of a graph G with the space of square integrable functions on an interval, e.g. 

G ⊗ ℒ2 −1, 1 . Graph signals in this space map each vertex to a L2 function. Conversely, 

L2 functions can be mapped to specific vertices. To generate a Fourier basis for the product 

space, one simply takes the tensor product of the factor space eigenbases. This is a 

promising future direction for MWGSP, as it implies that one can, for instance, combine 

graph Fourier bases with generalized Fourier bases for innovative signal representations.

[11] proposed an early example of Generalized GSP, though under a different name. This 

work modeled videos and collections of related matrices as matrix-valued graph signals 

using matrix convolutional networks. The authors aimed to solve the challenging missing 

data problem of node undersampling: some matrix slices from the networks are completely 

unobserved. When matrices have a low-rank graph Fourier transform, the network’s graph 

structure enables recovery of missing slices. In light of the development of Generalized GSP, 
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it is clear that [11] proposed an algorithm for denoising of multi-way signals on 

G ⊗ ℝn1 × n2.

V. SIGNAL PROCESSING ON MULTI-WAY GRAPHS

In the previous section, we focused on signal processing through the lens of harmonic 

analysis, using the graph Laplacian to analyze data in the spectral domain. In this section, 

we focus on signal modeling and recovery in the multi-way setting through the lens of 

optimization, where the graph Laplacian serves the role of imposing signal smoothness. 

Including graph structures along the modes of multi-way matrices and higher-order tensors 

has led to more robust and efficient approaches for denoising, matrix completion and 

inpainting, collaborative filtering, recommendation systems, biclustering, factorization, and 

dictionary learning [4, 16, 18, 11, 10, 21]. We begin with dual-graph modeling in the matrix 

setting and then extend to the higher-order tensor setting. In the tensor setting we review 

both using multi-way graph regularization in tensor factorization methods and in 

complementary fashion using tensor factorization in signal modeling and recovering to make 

graph regularization computationally tractable.

A. Signal processing on dual graphs

The quadratic form of the graph Laplacian of a graph G quantifies the smoothness of a 

signal f with respect to the graph, where the smoother a signal is the smaller the value:

f⊤ℒf = ∑
i, j ∈ ℰ

Wi, j fi − fj
2 . (11)

Consequently, the typical model in th multi-way signal recovery setting is to add dual row-

column graph regularizers of the form γrTr X⊤ℒrX + γcTr XℒcX⊤  to classical problem 

formulations; such regularization incentivizes the recovered signal to be smooth with respect 

to the underlying data graphs (11). The matrices ℒr and ℒc denote the graph Laplacians on 

the rows and columns of X respectively, and the nonnegative tuning parameters γr and γc 

trade off data fit with smoothness with respect to the row and column geometries encoded in 

ℒr and ℒc respectively.

Table I presents formulations of these different algorithms; multiple extensions and other 

methods exist in the literature. For the time-vertex framework [2], the graph on the columns 

is a temporal graph modeled explicitly with a ring graph Laplacian ℒT . The mapping PΩ is 

a projection operator on the set of observed entries Θ in missing data scenarios. Methods 

may differ in their fidelity term minimizing the Frobenius norm for denoising or 1-norm to 

impart robustness to outliers [25], and several methods assume a low-rank structure, either 

with a nuclear norm penalty [31] or with an explicit low-rank factorization of the data matrix 

Y as DX, sometimes with additional constraints on the factor matrices (non-negativity [33], 

sparsity [16]. A few methods aim to solve a matrix completion problem (see Fig. 4). Finally, 

while most instances of graph regularization rely on the quadratic penalty term 

Tr X⊤ℒrX = ∑ i, j ∈ ℰrwi, j Xi ⋅ − Xj . 2
2, the biclustering formulation in [5, 32] employs a 
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penalty that is either linear in the l2-norm or concave and continuously differentiable relying 

on the mapping Ω Xi ⋅ − Xj ⋅ 2 . The motivation there is that convex penalties, either when 

Ω is linear or quadratic, do not introduce enough smoothing for small differences and too 

much smoothing for large differences, resulting in poorer clustering results.

Typically an alternating optimization algorithm is used to solve the various problems in 

Table I. The T-V regularization problem is the only one with a closed form solution given by 

a joint non-separable low-pass filter (generalizing Tikhonov regularization to the T-V case). 

The graph Dual regularized Non-negative Matrix Factorization (DNMF) [33] relies on an 

alternating optimization scheme for the non-negative factor matrices. Other solutions are 

computed with proximal methods such as Alternating-Direction Method of Multipliers 

(ADMM) to handle multiple regularization terms via variable splitting. Dual-graph 

regularized approaches have been shown to consistently out-perform their non-regularized or 

single-graph regularized counterparts across a wide range of applications and domains. In 

Fig. 4(a) we compare several approaches for matrix completion [31, 34, 25] with single way 

or multi-way graph regularization on the ORL dataset with 10% or 50% entries missing at 

random. The ORL [35] dataset consists of 300 images of faces (30 people with 10 images 

per person), which are flattened into 2576 features. We used a row graph that connects 

similar images together and a column graph that ignores the natural 2D grid geometry and 

instead considers a wider geometry in the image plane. To set γr, γc, we ran each method for 

a range of values and selected the result with best performance. For comparison to single-

way graph regularization, we also set γc = 0 in MCG [31] and FRPCAG [34] to ignore the 

graph on the feature (column) space. In general, γr and γc induce row and column 

smoothness at different levels and their choice should be driven by the trade-off in the 

smoothness of the data along the two modes and the aspect ratio of the matrix, or informed 

by cross-validation.

We report the relative reconstruction error on the missing values, averaged over 10 

realizations. The multi-way graph regularized approaches out-performed their corresponding 

single-way versions (γc = 0) in all cases. Both FRPCAG and MCG always out-performed 

RPCAG, a single-way graph regularised method.

B. Tensor processing on graphs

A challenge of many well-studied problems in signal processing and machine learning is 

that algorithm complexity typically grows exponentially when one considers tensors with 

three or more modes. Early multi-way data analysis approaches flattened data tensors to 

matrices and then applied classical two-way analysis techniques. Flattening, however, 

obscures higher-order patterns and interactions between the different modes of the data. 

Thus, multilinear tensor decompositions have been the main workhorse in tensor signal 

processing and data analysis, generalizing the notion of matrix factorizations to higher-order 

tensors, and have become common in applications such as hyperspectral and biomedical 

imaging.

While there is no single generalization of a spectral decomposition for tensors, the two most 

common tensor decompositions are the CANDECOMP/PARAFAC (CP) decomposition (see 
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Fig. 1) and the Tucker decomposition [8]. Just as the singular value decomposition can be 

used to construct a lower-dimensional approximation to a data matrix, finding a coupled pair 

of lower dimensional subspaces for the rows and columns, these two decompositions can be 

used to construct lower dimensional approximations to a D-way tensor X ∈ ℝn1 × n2 × ⋯ × nD. 

Under mild conditions, the CP decomposition, which approximates X by a sum of rank-one 

tensors, is unique up to scaling and permutations of the columns of its factor matrices [8], 

but the CP factor matrices typically cannot be guaranteed to have orthogonal columns. The 

Tucker decomposition permits orthonormal factor matrices but in general fail to have unique 

representations [8]. Much of the multi-way literature has focused on improving and 

developing new tensor factorizations. Graph-based regularizations along modes of the tensor 

are proving versatile for developing robust tensor and low-rank decompositions [12–14], as 

well as new approaches to problems in higher order data processing such as tensor 

completion, data imputation, recommendation system, feature selection, anomaly detection, 

and co-clustering [17, 11, 18–20, 10]—a generalization of biclustering to tensors. 

Generalization of these problems to tensors incurs a higher computational cost than the 

equivalent matrix problems. Thus multi-way graph-regularized formulations typically 

combine a low-rank tensor factorization with graph-based regularization along the rows of 

the factor matrices; for example [20, 18] rely on a CP decomposition while [13] relies on a 

Tucker decomposition. In [38], a Tucker decomposition is used within MWGSP, to construct 

wavelets on multislice graphs in a two-stage approach.

An example of combining tensor decompositions with graph regularization is the following 

“low-rank + sparse” model for anomaly detection in internet traffic data [20]:

min
X, ε A i

i

Y − ℰ − X F
2 + ∑

i = 1

d
γiTr A i ⊤ℒiA i s . t . X

= ∑
i = 1

R
ai

1 ∘ ai
2 ∘ ai

3 , ℰ 0 ≤ ϵ,

(12)

where Y  is a data tensor and ℰ is the tensor of sparse outliers. The equality constraint on X
requires that X has a rank-R CP decomposition where ai

d  is the ith column of the dth factor 

matrix A d ∈ ℝnd × R and ∘ denotes an outer product. Note that the graph regularization 

terms in (12) are applied to the factor matrices A i ∈ ℝni × R, reducing the computational 

complexity of the estimation algorithm. Decomposing a data tensor into the sum of a low-

rank and sparse components is also used in [12, 19, 13].

In [14], computational complexity is further reduced by pre-calculating PR
i  mode-specific 

graph Laplacian eigenvectors of rank R from the matricization of the tensor along each 

mode and using these in solving tensor-robust PCA. The solution relies on projecting the 

tensor onto a tensor product of the graph basis PR
i , resulting in a formulation to similar to 

the Tucker decomposition.
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Co-clustering assumes the observed tensor is the sum of a “checkerbox” tensor (under 

suitable permutations along the modes) and additive noise. For example, Chi et al. [10] 

propose estimating a “checkerbox” tensor with the minimizer to a convex criterion. In the 

case of 3-way tensor, the criterion is

1
2 Y − X F

2 + γ ∑
i, j ∈ ℰ 1

wij
1 Xi: : − Xj: : F + ∑

i, j ∈ ℰ 2
wij

2 X: i: − X: j: F

+ ∑
i, j ∈ ℰ 3

wij
3 X: : i − X: : j F ,

where ℰ d  is a set of edges for the mode-d graph, γ is a nonnegative tuning parameter, and 

wij
d  is a weight encoding the similarity between the ith and jth mode-d slices. Minimizing 

the criterion in (13) can be interpreted as denoising all modes of the tensor simultaneously 

via vector-valued graph total-variation.

C. Manifold learning on multi-way data

Tensor factorization can fail to recover meaningful latent variables when nonlinear 

relationships exist among slices along each of modes. Manifold learning overcomes such 

limitations by estimating nonlinear mappings from high-dimensional data to low-

dimensional representations (embeddings). While GSP uses the eigenvectors of the graph 

Laplacian as a basis in which to linearly expand graph signals (1), manifold learning uses 

the eigenvectors ψℓ themselves as a nonlinear d-dimensional map Ψ for the datapoints xi i
as Ψ :xi ψ1 i , …, ψd i .

A naïve strategy to apply manifold learning to the multi-way data is to take the D different 

matricizations of a D-way tensor and construct a graph Laplacian using a generic metric on 

each of the D modes independently, thereby ignoring the higher-order coupled structure in 

the tensor. Recent work [6, 9, 32], however, incorporate higher-order tensor structure in 

manifold learning by thoughtfully designing the similarity measures used to construct the 

mode k graph weights W(k). The co-manifold learning framework can be viewed as blending 

GSP and manifold learning together and has most recently extended to tensors and the 

missing data setting [9, 32].

From a MWGSP perspective, the key contribution of this line of work is a new metric that is 

defined between tensor slices as the difference between a graph-based multiscale 

decomposition of each slice along its remaining modes; for example the distance between 

two horizontal slices in a 3-way tensor is

d Xi ⋅ ⋅ , Xj ⋅ ⋅ = M 3 ⊗ M 2 vec Xi: : − Xj: : 1
= vec M 2 Xi: : − Xj: : M 3 ⊤

1
,

(13)
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where M(k) is a multiscale transform in the kth mode. This metric was shown to be a tree-

based Earth-mover’s distance in the 2D setting [39]. The resulting similarity depends on a 

multi-way multiscale difference between slices, and has been successfully used in practice to 

construct weighted graphs in multiway data. The multiscale decompositions are constructed 

either from data-adaptive tree transforms [6] or through a series of multi-way graph-based 

co-clustering solutions [32].

VI. FUTURE OUTLOOK

As multi-way signal processing frameworks continue to mature, several challenges remain 

ahead. While novel techniques are continually introduced into single-way graph signal 

processing, one approach to developing multi-way techniques is to identify, extend, and 

adapt techniques which are particularly useful for multi-way signals. For instance, multi-

way analysis on directed graphs will greatly broaden the versatility of MWGSP. From a 

computational perspective, it is clear that the efficiency gains offered by the march of single-

way GSP march towards fast transforms [27] are compounded in the multi-way setting.

From a theoretical perspective, open questions include 1) What additional advantages can be 

gained by treating classical domains as lying on graphs? 2) How do we learn mode-specific 

or coupled graphs from data, in general and in dynamical settings? 3) Are such tensor 

datasets typically low-rank or high-rank? 4) How do we process data whose generative 

model is nonlinear across the different modes?

From a practical perspective, ongoing growth in computational power and parallel 

computing have enabled large-scale analyses. The MWGSP framework can leverage these 

recent advances in computational building blocks. Nonetheless, there are existing 

computational challenges, such as applications requiring online real-time processing. Thus, 

future directions include developing online and distributed versions of multi-way graph 

signal processing, especially in the presence of large-scale data, where streaming solutions 

are necessary (the data does not fit in memory). In addition, there is need for new 

optimization techniques to efficiently solve problems that combine tensors with graph-based 

penalties. Deep learning is also emerging as a framework to learn rather than design wavelet-

type filterbanks in signal processing and these approaches can be extended to the graph and 

multi-way settings to learn joint multiscale decompositions. Finally, as the GSP community 

continues to address real-world data domains such as climate, traffic, and biomedical 

research, inter-disciplinary collaboration is essential to define relevant problems and 

demonstrate significant utility of these approaches within a domain.
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Order-3 tensors

For simplicity, we briefly review some tensor terminology for the 3-way tensor 

χ ∈ ℂn1 × n2 × n3. The size of each mode is denoted by nk, with n1 being the number of 

columns, n2 the number of rows, and n3 being the number of tubes [8]. Video and time-

series recording of matrix valued signals are a common application for tensors of this 

form (Fig. 1). In videos, the first and second modes of the tensor encode pixel values for 

each frame, while the third mode indexes the frames in time.

We can slice a video tensor to produce different views of the data as presented in Fig. 1.
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Multi-way signal compression

A key motivation for MWGSP is the capability of encoding multi-way data in a compact 

way. Transforms with good energy compactness summarize the data well and can be used 

to construct efficient regularizers for regression problems. Figure 3 demonstrates energy 

compression in four datasets. The Dancer mesh [2] shown in Fig. 2b couples n1 = 1502 

points to temporal evolution across n2 = 570 timesteps. The Molene weather dataset [23] 

(n1 = 32 weather stations measuring temperatures over n2 = 24 hours across n3 = 30 days) 

couples a spatially determined graph to two temporal scales (hours, days). The time lapse 

video [2] couples a 2D spatial grid (492 × 853 pixels) to a temporal axis (602 timesteps), 

while the hyperspectral dataset [24] couples a 2D spatial grid (145 × 145 pixels) to 200 

spectral bandwidths (treated as a graph). All graphs were constructed using k-nearest 

neighbors with weighted edges set using a Gaussian kernel on the matricized modes of 

the tensor. To measure energy compactness, we compute the relevant among the GFT, 

DFT (temporal axis), JFT, 2D-DFT (spatial grid), 3D-DFT (spatail grid+temporal axis) 

and MWGFT (all tensor modes) transforms for each dataset. We replace the spectrum 

coefficients with magnitudes smaller than the p-th percentile with zeros and perform the 

corresponding inverse transform on the resulting coefficients. The normalized 

compression error is computed from the signal reconstructed after thresholding the values 

of the transforms below the p-th percentile, denoted Xp, and given by 

vec XP − X 2/ vec X 2. MWGFT achieves the best compactness in all datasets, 

providing insight that there are advantages to treating classical domains (time and space) 

as lying on graphs themselves.
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Multi-way Filters

It is natural to define spectral filters for multi-way graph signals on the product G as a 

function over the product graph eigenvalues ℎ:Λ ℝ as if they are traditional spectrally 

defined GSP filters. Since these functions operate on the product eigenvalues, they 

directly consider the edge topology induced by a particular choice of product. Yet, it is 

feasible to develop filters for multi-way graph signals on G that are defined by 

multivariate functions ℎ:Λ 1 × ⋯ × ΛD ℝ. These multivariate filters are split into two 

classes: separable and nonseparable.

Separable filters have multivariate response functions that can be written as the product 

of separate univariate functions. In the D = 2 case, a separable filter for the product graph 

could be written as H 2 ⊗ H 1 x in which H 1 = Ψ 1 ℎ 1 Λ 1 Ψ 1 ∗
 and 

H 2 = Ψ 2 ℎ 2 Λ 2 Ψ 2 ∗
. Since this Kronecker product is permutation equivalent, we can 

treat its operation as an order-independent unimodal filtering of x (6). If H(1) and H(2) are 

both filters defined in a Laplacian eigenbasis of their respective factor graph, then the 

tensor product H 2 ⊗ H 1  is also diagonalized by the product eigenbasis. Thus, this 

filter is merely a reweighting of the product graph eigenbasis. In Figure 2e, we 

demonstrate the application of a product of mode-wise heat filters to a graph signal on a 

grid (Fig. 2d top) and to a time-vertex signal which is a dynamic mesh (Fig. 2d bottom). 

While there is a choice of τ1 and τ2 such that certain regions of this filter can be 

computed from a heat kernel on the Cartesian product graph spectrum, such an approach 

abandons the flexibility of bilinear filtering. By separability, each mode can be analyzed 

independently of the other by setting the appropriate τk to 0. This enables analyzing a 

joint signal along each mode independently, for example by filtering out high frequency 

structure along one domain while preserving the frequency content of the other mode. A 

D-way separable filter applied to x = vec X  is given by

x = Ψℎ ×
k = 1

D
Λ k Ψ∗x,

where ℎ ×k = 1
D Λ k  is a diagonal matrix whose elements are given by ∏k = 1

D ℎ k λℓk , 

i.e., the product of separate spectral functions h(k) for each factor graph G k .

Nonseparable filters cannot be designed from separate univariate filters on each mode. 

This class of filters encompasses a broad class of functions that include many filters 

defined in terms of the product graph eigenvalues, as well as multivariate functions (Fig. 

2f). Indeed, [2] find that one cannot in general describe PDEs that describe diffusion, 

wave, or disease propagation with separable filters, as the relation between frequencies is 

not independent.
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Graph Construction

A question that arises in graph-based methods is how to construct the graphs themselves. 

In some applications, e.g., social or citation networks, the graph is known a-priori. In 

transportation or communication networks, vertices represent physical locations (traffic 

intersections) or sensors (routers in a wifi network), and edges encodes connected 

locations. In other settings there is no a-priori graph, and the topology must be learned 

from the data. We describe common strategies and challenges.

Data-driven graph:

One of the most popular ways to construct a graph is from the data itself, for example, 

using a k-nearest neighbor graph with Gaussian kernel weights. For example, in our 

simulations the row graph weights are Wi, j
1 = exp − Xi ⋅ − Xj ⋅ 2

2/σ  if rows i and j are k-

nearest neighbors and zero otherwise, σ is bandwidth parameter and we set k = 7. One 

difficulty that arises is that in the presence of noise, outliers and missing entries, 

constructing a graph from the data yields a corrupted graph. Fig. 4(b) compares a ‘noisy’ 

graph constructed from the missing data to an ‘oracle’ graph constructed from the 

original complete data. The noisy graph along the images (A(1)) connects images of 

different people together while the noisy feature graph (A(2)) loses local pixel geometry. 

Results in Fig. 4(a) demonstrates that for higher percent of missing values the noisy 

graph degrades the performance compared to the oracle graph.

Graphs from side information:

Supplementary information can be leveraged to define similarity structure among rows or 

columns for the purpose of graph construction. In some cases, there may be a natural 

geometry that easily translates into similarity graphs for rows and columns. For example, 

in [23] the authors constructed the graph among the weather stations using their physical 

coordinates. In other cases, other supplemental data sets may be leveraged to provide 

similarity structure among rows or columns. As an example in music recommendation 

systems, in [36] the authors used a publicly available playlist categorization as well as 

summary statistics extracted from the audio signal to construct a graph for estimating a 

latent association matrix between playlists and songs.

Graph learning:

In [16, 19] the graphs on the feature space are learned alongside the signal, by 

minimizing over ℒ in addition to the signal recovery in the optimization problem. For a 

detailed review see [37].

Dynamically varying graphs:

Graphs may not be static, presenting a current challenge in GSP, which is especially acute 

in time-vertex frameworks which admit time as one of components in the analysis. 

Challenges include determining how to identify when a graph needs to be updated, i.e., 

when the underlying topology has changed. The challenge of accounting for dynamically 

varying graphs also poses computational questions, namely what are computationally 
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efficient ways to update graphs within the processing framework that will minimally 

spawn artifacts at transitions?
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Fig. 1. 
Tensor terminology. A Time-lapse video is an order-3 tensor. Tensor slices (left to right): A 

frontal slice is the matrix X: :k, formed by selecting the k-th frame of the video. The lateral 

slice, X: j: , is a matrix (viewable as an image) that shows the time evolution of the j-th 

column of pixels in the input. The horizontal slice Xi: :  similarly contains the time evolution 

of one row of pixels. 2D indexing of 3rd order tensors yields a 1D fiber. For example, the 

tubular fiber Xij:  is an n3 dimensional time-series of the i, jth pixel across all frames; the two 

tubular fibers correspond to the highlighted pixels in the tensor. Mode-1 matricization 
concatenates all frontal slices side by side. CP decomposition is a sum of rank-1 tensors.
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Fig. 2. 
Multi-way graphs, signals and spectral filters. (a) The Cartesian graph product generates a 

copy of G 1  at each vertex of G 2 . (b) A multiway graph formed from a dynamic mesh [2]. 

This time-vertex graph (purple = t0, yellow = t7) connects each point in the mesh to its 

counterpart in adjacent frames. The temporal evolution of the 3D coordinates is a graph 

signal on this graph. (c) A single column of the joint adjacency matrix of a 2D grid shifts 

signals to their neighbors. (d-f) Multiway filtering. (Top) A multiway signal on a 2D grid. 

This signal can be decomposed into an impulse and a smooth signal; thus it is bandlimited 

along one way of the grid. (Bottom) A frame of the Dancer mesh. (e) A separable diffusion 

filter is the product of domain-specific heat kernels. Separable filters can filter along both 

axes in unison (left), or each axis independently (middle / right). (f) Non-separable filter. For 

the dynamic mesh, filtering along only one mode reveals either skeleton structure (τ2 = 0) or 

averaged (blurred) dynamics of the figure (τ1 = 0), but joint separable or non-separable 

filtering reveals joint dependencies.
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Fig. 3. 
Compactness of single-way and multi-way transforms for different datasets: dancer mesh 

(Fig. 2), Molene weather, time-lapse video (Fig. 1) and AVIRIS Indiana Pines hyperspectral 

image.
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Fig. 4. 
Matrix completion on the ORL dataset. (a) Relative error for 10% and 50% missing values 

using noisy and oracle graphs. (b) Adjacency matrix of row Ar and column Ac graphs for 

complete data (‘oracle’) and 50% missing data (‘noisy’).
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TABLE I

MULTI-WAY GRAPH REGULARIZATION FORMULATIONS

Fidelity term Graph regularizers additional constraints

MCG [31] PΘ Y−X F
2 γrTr X⊤ℒrX + γcTr XℒcX⊤ γn X ∗

CFGI [4] PΘ Y−DX F
2 γ Tr D⊤ℒrD + Tr XℒcX⊤ α D F

2 + β X F
2

DGRDL [16] Y−DX F
2 γrTr D⊤ℒrD + γcTr XℒcX⊤ xi 0

T-V Reg [2] Y−X F
2 γrTr X⊤ℒGX + γcTr XℒTX⊤

T-V Inpaint [2] PΘ Y−X F
2 γrTr X⊤ℒGX + γcTr XℒTX⊤

Cvx Biclust [5] Y−X F
2 γr∑ i, j ∈ ℰrwi, j Xi ⋅ − Xj ⋅ 2 +

γc∑ i, j ∈ ℰcwi, j X ⋅ i − X ⋅ j 2

Comani-missing [32] PΘ Y−X F
2 γr∑ i, j ∈ ℰrΩ Xi ⋅ − Xj ⋅ 2 +

γc∑ i, j ∈ ℰcΩ X ⋅ i − X ⋅ j 2 2

FRPCAG [25] Y−X 1 γrTr X⊤ℒrX + γcTr XℒcX⊤

DNMF [33] Y−DX F
2 γrTr D⊤ℒrD + γcTr XℒcX⊤ D ≥ 0, X ≥ 0
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