
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Integrated web-based analysis of high-dimensional biological information

Permalink
https://escholarship.org/uc/item/07c6v5tn

Author
Kingsley, Christopher Bowron

Publication Date
2005

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/07c6v5tn
https://escholarship.org
http://www.cdlib.org/

Integrated Web-Based Analysis of High-Dimensional Biological Information

by

Christopher Bowron Kingsley

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Biological and Medical Informatics

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

Approved: 7 ,-

‘2’

º
º

()

&
º

º

&

W.
º J/

- ".
1. I

-

'º.

º
sº

-
º

-

º
t

... *
* *

* s
*

wº

*-

º

Copyright 2005

by

Christopher Bowron Kingsley

ii

Advisor: Ajay Jain Christopher B. Kingsley

Integrated Web-Based Analysis of
High-Dimensional Biological
Information

iii

Acknowledgements
At some point during the preparation of my PhD thesis, it occurred to me that this

document was likely to be the last gasp of my long phase as a student. Such milestones

often inspire a moment of reflection, so I paused for a moment and tried to recount the

series of steps that led from my days as a dazed 18 year old freshman at Berkeley to my

current position. What struck me first was how so many of these steps had been the

result of seemingly minor or serendipitous events. One such event occurred during my

freshman year of college when I noticed a copy of Jim Watson’s “Double Helix’ sitting

on a bookshelf. The inspiration I received by reading that book sent me down a ten year

long path of splicing and dicing DNA, as well as regular exposure to chemical fumes and

radiation.

In contrast to that single transformative moment, my transition from molecular

biology to bioinformatics was a journey of several smaller steps. My initial interest in

bioinformatics arose as a result of my background as an experimental molecular

biologist, and my frustration with the pace of discovery. Although we don’t care to admit

it, a single moment of inspiration followed by six months of hard, repetitive work at the

bench and the tissue culture hood is enough to wear down even the most idealistic among

us. Thankfully (and out of the blue) a coworker of mine at Chiron Corporation suggested

that I apply for a job opening in the bioinformatics department, and the next ten years of

my professional life was settled. I would like thank my coworkers at Chiron, especially

iv

George Lamson, David Pot and Altaf Kassam for making the transition a smooth and

enjoyable one.

The decision to return to graduate school was not an easy one, but the professors

in the Biological and Medical Informatics Graduate Program made the transition as

smooth as possible. I acknowledge all the members of the department, but particularly

Tom Ferrin, Patsy Babbitt, and Teri Klein for all their advice and support.

No graduate thesis is a product of isolated effort, and I have many people to thank

for their support and assistance in this effort. First and foremost, I would like to thank

my family. I acknowledge my father for instilling in me an interest in science at an early

age. Almost everything else I owe to my mother. My Grandmother, my sister, and uncle

were also extremely supportive, and I always appreciated having the excuse of a family

visit to justify my forays into the Sawtooth Mountains and the jungle of Manhattan.

Thanks go to my good friends John, Arjuna, and Yoon for keeping my spirits up

during those dark days when I couldn’t help but wonder why a man of my advancing

years had given up a stable (if sometimes tedious) position in the real world in order to

return to the ivory towers of academia. Thanks also to Daniel Murphy and Tobias

Dansen for temporarily chasing the pointer errors from my brain by periodically dragging

me up Mt. Tamalpais on my bicycle. Beautiful scenery, endorphins, hypoxia and a heart

rate of 170 beats per minute have a funny way of putting things in their proper

perspective.

No applied bioinformatics project can go very far without data. I thank my many

experimental collaborators for their willingness to share their hard earned results with

me. I would first thank Joe Gray and the members of his laboratory, especially Koei

Chin, Wen-Lin Kuo, Rich Neve, and Daniel Polikof for their data from ovarian and

breast tumors. Thanks to Frank McCormick, Luika Timmerman and Jennifer Yeh for

their data from breast cancer cell lines. Thanks also to Martin McMahan and Stephan

Gysin for sharing their data from cultured pancreatic cancer cell lines.

I would also like to thank the members of the Jain laboratory for their camaraderie

and advice. Lawrence Hon could always be relied on for a good conversation over lunch

on topics that varied from coding strategies to job prospects to the latest computer games.

Barbara Novak was instrumental in helping to develop and refine the Magellan database,

and Karen Kimura was also very helpful in this area. Adam Olshen and Jane Fridlyand

were two postdoctoral statisticians in the lab who (thankfully) believed that helping me

decipher the mysteries of statistics was not an utter waste of their time. Thanks also to

Tuan Pham and Taku Tokuyasu, who each shared an office with me and were able to

withstand my many moods while maintaining a pleasant demeanor. I am indebted to

them all.

Lastly, I must thank my thesis adviser Ajay Jain for all of his guidance and

support. I have worked in laboratories in industry and academia for almost 20 years, and

I have found that good mentors in this field are a precious commodity. Ajay is one of

those rare advisers who has an abundance of ideas and advice, but who knows when to

give you a shove and when to leave you alone. In some respects, running a productive

laboratory is as much about psychology as it is a about intellect, and Ajay excelled at

both.

In closing, one event that was jogged from my memory while reminiscing over

the past several decades was a conversation I had with a coworker during my days as an

vi

experimentalist. After a long day of pipetting little drops of liquid into little plastic tubes,

my colleague and I were lamenting the pace of our respective projects when he made a

statement that stuck with me: “One day, we’ll look back at what we’re doing now and

realize that we were working with clubs and spears.” While I would not say that we have

reached this point just yet, I do see signs of its pending arrival, and I believe that the

journey toward it will continue to be a fruitful and fascinating one.

vii

Abstract

Integrated Web-Based Analysis of High-Dimensional Biological Information

Christopher B. Kingsley

Recent advances in high throughput biological methods allow researchers to

generate enormous amounts of data from a single experiment. In order to extract

meaningful conclusions from this tidal wave of data, it will be necessary to develop

analytical methods of sufficient power and utility. It is particularly important that

biologists themselves perform many of these analyses, such that their background

knowledge of the experimental system under study can be used to interpret results and

direct further inquiries.

This dissertation describes the development of a web-based system, Magellan,

which allows the upload, storage, and analysis of multivariate data and textual or numeric

annotations. Data and annotations are treated as abstract entities, to maximize the

different types of information the system can store and analyze. Annotations can be used

in analyses/visualizations, as a means of sub setting data to reduce dimensionality, or as a

means of projecting variables from one data type or data set to another. Analytical

methods are deployed within Magellan such that new functionalities can be added in a

straightforward fashion.

The Magellan system has been used to analyze a number of cancer genomics data

sets. These analyses have involved the development and deployment of a number of

viii

analytical methods that relate different types of genomic variables, typically comparative

genomic hybridization (CGH), mRNA expression and clinical information. In addition, I

have worked with the National Cancer Institute on the Cancer Bioinformatics Grid

(cablG) initiative, to develop and deliver the functionality of Magellan as an open source

project available to any researcher.

Ajay N. Jain
- -

ix

Table of Contents

Acknowledgements iv

Abstract viii

Table of Contents X

Table of Figures xiii

Chapter 1 Introduction 1

Chapter 2 The Biology of Cancer... 4
2.1. Introduction........................….....................…. 4

2.2. Cellular Changes in Cancer... 5
2.3. The Molecular Basis of Cancer... 7
2.4. The Future of Cancer Research... 9

Chapter 3 Microarray Technology in Cancer Research 12
3.1. Introduction..…. 12

3.2. Microarray Platforms.. 13
3.3. Microarray Based Comparative Genomic Hybridization................................. 15
3.4. The Nature and Source of the Primary Signal in DNA Microarray Experiments 17
3.5. Conclusion ….......................…. 19

Chapter 4 Statistical Issues Associated With High Dimensional Genomic Data... 21
4.1. Introduction.…. 21

4.2. The Multiple Comparisons Problem... 23
4.2.1. Bonferroni Method.. 25

4.2.2. False Discovery Rates... 25
423. MaxT.….26

4.3. Correlation of CGH and mRNA Expression Data.. 27

Chapter 5 Optimization Methods to Determine the Relationship between DNA
Copy Number and Gene Expression 29

5.1. Introduction...…...........................…..... 29

5.2. Hill Climbing.. 32
5.3. Gradient Descent... 33
54. Conclusions... 35

Chapter 6 Magellan: System Design 37
6.1. Introduction...…... 37

6.2. Definitions and Examples of Terms.. 38
6.2.1. Data Type... 38

6.2.2. Variable... 38
62.3. Identifier..…. 39
6.2.4. Annotation... 39

6.3. Abstract Representation of Data and Annotations.. 40
6.4. Use of Biological Annotations within Magellan... 42

6.4.1. Variable Selection... 43
6.4.2. Variable Projection.. 44

6.5. Other Analytical Applications... 45
6.6. Conclusions.…. 46

Chapter 7 Magellan: System Implementation 47
7.1. Introduction.....…. 47

7.2. Magellan System Architecture.. 47
7.2.1. Server Sided Application Using JSP Technology................................. 48
7.2.2. Centralized Oracle Database Utilizing an Open Architecture.............. 50
7.2.3. Analytical Applications... 51

7.3. Documentation...…. 52

74. System Security... 53
7.5. User Interfaces to Magellan Features.. 53

7.5.1. File Format Independent Method of Data Entry................................... 53
7.5.2. Variable Selection... 55
7.5.3. Variable Projection.. 56

7.6. Analytical Processes.. 58
7.6.1. UML Representation of the Analytical Process.................................... 58
7.6.2. User Interface to the Analytical Functions Deployed in Magellan.......60

7.7. Conclusions.…. 61

Chapter 8 Magellan Use Case: Analysis of Genomic Data in Ovarian Cancer.... 62
8.1. Introduction.…. 62

8.2. Description of the Data Set... 62
8.3. Single-Mode Analysis... 64
8.4. Annotation Based Correlation Methods.. 67

84.1. Gene Dosage Effect... 68
84.2. Gene Annotations.. 70
8.4.3. Derived Annotations... 70

8.5. Conclusions... 73

Chapter 9 Integration of Magellan with the cab■ (; Project.................................... 75
9.1. Introduction.….............................. 75
92. Goals of caBIG.. 76
9.3. Compatibility Standards Imposed by caBIG... 78
9.4. NCI Data Sources Accessible through caBIG .. 79

94.1 caBIO .. 80
942. CaArray.. 81

9.5. Interaction of Magellan with caBIO ... 82
9.5.1. UML Use Case Model.. 82

9.5.2. UML Sequence Diagram... 83

xi

9.5.3. Performance..…. 84
9.6. Conclusions.…............…. 85

Chapter 10 Conclusions 87

Bibliography 89

Appendix 92
10.1. Distribution of Data and Source Code.. 92
102. Javadocs.…......................................…. 92

xii

Table of Figures
Figure 1– The effect of age on the incidence of ovarian cancer.. 6

Figure 2 – Overview of two color spotted cDNA microarrays.. 14

Figure 3 - Scanned image of an Affymetrix microarray... 14

Figure 4 – Clustering of tumor samples of different cellular origin using Affymetrix
mRNA expression data from the NCI60 cell lines.. 19

Figure 5 – Distribution of signed t-statistics using mRNA gene expression data assigned
to random classes.….. 24

Figure 6 – The effect of hillclimbing on the training set (blue) and the test set (magenta).32
Figure 7 – The mean squared error and distance functions used in the gradient descent

Figure 8–Cross validation using the gradient descent method.. 35

Figure 9 - Linking data to curated and derived annotation information. Variables of a
data type (such as genes or genomic loci) are referenced by their ordinal position.
The ordinal position can be directly linked to derived statistics (such as t-test against
patient survival) or to named identifiers (such as a Genbank IDs). Identifiers are
then used to link data to curated annotations (such as genomic mapping
information).… 40

Figure 10–UML component diagram of the Magellan system.. 48

Figure 11 – A simplified representation of the table structure of the Magellan database
schema. Tables with hatched outlines are used to store annotation information......51

Figure 12 – Example documentation of analytical methods in Magellan......................... 53

Figure 13 – Web pages used to upload unformatted biological data to the Magellan
database. The file contents, content specification, and upload preview pages are
shown.… 55

Figure 14 – User interface to perform variable selection on a data type........................... 56

Figure 15 – User interface to perform variable projection between two data types.......... 57

Figure 16 - Projection involving multiple annotation comparisons................................... 58

Figure 17 – UML sequence diagram of the execution of an analytical method on data and
annotations within Magellan.. 59

Figure 18 – User interface for execution of an analytical function in Magellan. The data
selection, analytical method selection, parameter specification and results pages are
shown.… 61

xiii

Figure 19 - Graphical representation of the frequency of chromosomal gains/losses in 20
ovarian tumors …...…..... 64

Figure 20 – Hierarchical clustering of samples based on loci whose CGH profile
correlated strongly with outcome... 66

Figure 21 - Fraction of tumors correctly classified using CGH data under cross validation.
A – Fraction of tumors correctly classified using 50 genomic loci but varying the
number of holdouts and the value of K. B - Fraction of tumors correctly classified
using one holdout but varying the number of genomic loci and the value of K........ 67

Figure 22 - Correlation of CGH and mRNA expression data, binned by genomic position.
A - All by all Pearson's correlation of CGH and expression data, binned by genomic
position as described in the text. B - Cumulative distributions of gene/locus
correlations for pairs that are within 1Mb of each other (green) or at least 50Mb
away from each other (black)... 69

Figure 23 – Projection of variables from mRNA expression to CGH. Cumulative
distribution of t-statistics of CGH loci vs. survival for all loci (solid line) or loci that
are within 1 MB of one of the top 1% of genes that correlated with survival (dashed
line).… 72

Figure 24 - Projection of Frequently Aberrant CGH loci onto mRNA Expression Data.
Cumulative distributions of t-statistics of mRNA expression vs. survival for all
genes (solid black line) or genes that are within 1MB of CGH loci whose log2
deviation from normal is at least 0.5 at a frequency of at least 20% (dashed green
line), 25% (dashed blue line), or 30% (dashed red line) of samples......................... 73

Figure 25 – The project milestones for the three year caBIG pilot project....................... 76

Figure 26 – A workflow example showing interoperability of applications in caBIG......78
Figure 27–UML use case diagram of caBIO derived annotation based analysis in
Magellan.…. 83

Figure 28 – Access of gene ontology terms by Magellan using the caCORE API 84

xiv

Chapter 1
Introduction

The field of molecular biology was born just over half a century ago as an attempt

by researchers in biology, chemistry and physics to understand the molecular basis of

biological systems. The result of this collaboration has been fifty years of extraordinary

advances toward the realization of this goal. In a single lifetime, we have gone from

possessing merely abstract notions of the physical nature of genes to sequencing and

characterizing entire mammalian genomes. This transformation of biology was driven by

the application of the quantitative molecular techniques of chemistry and physics to the

experimental systems of biology and genetics. Although our knowledge of biological

systems is still very far from complete, this hybrid approach of studying living systems at

the molecular level has revolutionized biology and fundamentally altered our

understanding of biological systems, in both the normal and disease state.

As molecular biology enters the 21" century, a new transformation is taking place,

this one driven by technological advances that have dramatically increased the magnitude

of data available to researchers. Recent developments in high-throughput genomic

techniques are generating unprecedented amounts of quantitative biological data.

Experimental approaches that only a few years ago required many days of painstaking

work and high cost to generate a small amount of information have been supplanted by

techniques that can generate tens of thousands of data points in a matter of hours. Large

scale biological data sets containing protein structure, whole genome sequences,

proteomics data, microarray based mRNA expression data, and comparative genomic

hybridization (to name but a few) have been curated and assembled into publicly

available datasets for analysis.

These technical advances and the data arising from them have the potential to

affect biology just as profoundly as did the impact of physics and chemistry fifty years

ago. The scale of the resulting data, however, makes it virtually impossible for biological

researchers to identify trends and patterns through direct examination. In order to extract

biologically significant conclusions from the emerging large-scale data, a new field of

study has emerged. Just as molecular biology was born of a hybrid of biology, physics,

and chemistry, the field of bioinformatics has emerged as a hybrid of molecular biology,

computer science, and mathematics. As a discipline, bioinformatics represents an attempt

to utilize the techniques of information technology to mine biological data as a means of

characterizing and modeling biological systems.

For bioinformatics to fully realize its promise, advances in analytical algorithms

must be translated into applications that can be used by the research community.

Furthermore, there is a great need for these applications to be usable by the

experimentalists who understand the system under study and who generate the data.

Unfortunately, there is still a fairly wide gulf between the biological researchers who

perform experiments and the computational researchers who analyze the resulting data.

This situation is problematic for two reasons. First, there are not enough good

bioinformaticists and statisticians to be shared among all of the biological research

community. Second, even if a bioinformaticist is available, the interaction between

experimentalist and analyst sometimes resembles a game of baseball; data is thrown at

the quantitative analysts and the results are hit back to the biologists. It is frequently (and

sadly) the case that the biologists do not understand the methods that are applied to the

data sets that they generate, while the quantitative analysts do not understand the

biological system from which the data was generated nor the questions that motivated the

experiments in the first place.

My graduate research has centered on the analysis of heterogeneous biological

data in cancer. The major accomplishment of this research has been the development of

analytical tools that can be used by biological researchers to analyze their data over the

internet. The motivation for building these tools was to provide researchers at the UCSF

Cancer Center with the ability to analyze and understand the relationship between the

different types of data they generate from tumors and tumor models.

This document begins with a brief introduction to cancer and the various types of

genomic data currently generated in the study of cancer. It then covers some of the

statistical issues associated with analyzing high dimensional cancer genomic data, and

several of the analytical methods that are employed to deal with these issues. Several of

the existing analytical applications are then discussed, and how the Magellan system

differs from them. The Magellan application itself is then covered, including its

development, functionality and use cases. I conclude with a discussion of my

collaboration with the NCI on the cancer bioinformatics grid (caRIG) project.

Chapter 2

The Biology of Cancer

2.1. Introduction

Cancer is a disease that directly or indirectly affects almost everyone in the

developed world. In the United States, cancer is second only to heart disease as a cause

of death, responsible for roughly twenty percent of all mortalities. For much of the

twentieth century, cancer death rates increased every year as a result of a growing

incidence of smoking, greater exposure to environmental carcinogens, dietary changes

and the gradual aging of the population. Over the last several years, however, there has

been a slight reversal in this trend. From 1993 through 2002, the overall death rate from

cancer has declined by 1.1% per year in the United States (Edwards, Brown et al. 2005).

While much of this drop can be accounted for by a decline in smoking among males,

other factors such as improved screening, early detection, and improved treatments also

played a significant role. The goal of the cancer research community is to further this

decreasing trend in cancer-associated mortality through the identification of better

diagnostic and prognostic biomarkers, the discovery of better therapeutic targets and the

development of new classes of drugs.

Cancer is, fundamentally, a disease of excess cellular proliferation. Tumors arise

when cells no longer respond to the normal signals that regulate cell division and cell

death, and grow unchecked. This situation becomes life threatening when these

unregulated cells spread to surrounding tissues, and disrupt the normal functions of the

organs they invade. The underlying cause of cancer has been debated for centuries, but

over the last fifty or so years a number of lines of evidence have suggested that normal

cells become tumors due to alterations in their DNA. First, a majority of the chemical

carcinogens whose exposure leads to cancer are mutagens that chemically modify DNA.

Second, many cancers run in families, indicating that they are caused by inherited

mutations in DNA. Third, several well characterized cancers are associated with specific

alterations in the chromosomes, such as microscopically visible translocations. These

and other observations have led to the paradigm that cancer is a disease of genetic

alterations.

2.2. Cellular Changes in Cancer

For most cancers, incidence increases dramatically with age as shown in Figure 1

(Alberts, Johnson et al. 2002). This observation is best explained by a model in which

tumors arise from normal cells through a series of specific changes that accumulate over

time, a theory that has been condensed to the mantra ‘cancer is a multistep process’

(Knudson, Hethcote et al. 1975). This theory hypothesizes that each step in tumor

formation occurs in a single cell in a population, causing that cell to acquire a growth

advantage. Cancer development can therefore be viewed as a series of bursts of clonal

expansions, in which one cell overcomes a bottleneck to growth (Nowell 1976). Leading

credence to this theory, experiments using various animal models have shown that a

5

relatively small number of engineered mutant genes can confer abnormal growth

phenotypes, though no single gene has been shown do so (Hahn, Counter et al. 1999).

180

150

1-0

120

00

40

20

"Tº Tºo so so so no so
age

Figure 1–The effect of age on the incidence of ovarian cancer

It has been hypothesized that six different cellular changes must occur to

transform a normal cell to a cancerous one: self-sufficiency in growth signals,

insensitivity to antigrowth signals, evasion of programmed cell death, limitless replicative

potential, angiogenesis, and tissue invasion and metastasis (Hanahan and Weinberg

2000). Although it is believed that most if not all cancers must acquire these properties,

each individual tumor may accomplish these changes through different genetic

alterations. Thus, tumors that resemble each other histologically may result from

alterations in different sets of genes, and those genes can be affected by point mutations,

copy number changes, and epigenetic phenomena such as altered chromatin structure.

One characteristic observed in almost all cancers is DNA copy number

abnormalities (Albertson, Collins et al. 2003; Rajagopalan and Lengauer 2004). When

19" century researchers first examined cancerous tissues using newly invented and more

powerful microscopes, one of the first things they noticed was that cancerous cells

frequently had excess chromosomes as well as structural aberrations such as deletions

and translocations. It is widely believed that chromosomal instability arises as a result of

errors in mitosis, in particular a defect in the mitotic spindle checkpoint. Normal cells do

not divide until their chromosomes have fully replicated and are properly aligned in the

metaphase plate. Cells that are defective in this checkpoint can divide asymmetrically,

such that daughter cells receive less or more than the normal complement of genomic

DNA. In support of this theory, numerous mutations in components of the spindle

checkpoint have been found in tumor DNA (Cahill, Lengauer et al. 1998).

Some researchers have suggested that copy number abnormalities may be a

consequence of tumorigenesis rather than a cause, but several experimental observations

argue against this. One such observation is the existence of certain tumors that show very

little chromosomal aberration, but instead have defects in DNA repair processes such as

mismatch repair (Lengauer, Kinzler et al. 1997). The implication of this finding is that

the two classes of tumors have found different mechanisms to generate the genetic

alterations that cause cancer. Mismatch repair deficient cells have a high rate of point

mutations and small scale genetic instability while other cancers can also acquire

genomic changes through amplifications, deletions and translocations.

2.3. The Molecular Basis of Cancer

Many of the early studies into the cellular and molecular events that cause cancer

involved transmissible models, such as the retrovirus identified by Peyton Rous as the

cause of certain avian sarcomas. This and other tumor viruses gave researchers an

experimental toehold into cancer and led to the identification of viral oncogenes that

promote growth, and cellular tumor suppressors (as the targets of transforming viral

7

proteins) that inhibit growth. The seminal discovery by Bishop and Varmus that viral

oncogenes were, in fact, mutated versions of normal cellular genes linked the discoveries

from tumor virus models to cancer biology as a whole (Spector, Smith et al. 1978).

Many of these cellular proto-oncogenes were subsequently shown to be mutated in a

variety of sporadic human cancers. This finding indicated that even though the vast

majority of cancers are not caused by infectious agents, the process of altered gene

function is to blame for tumor formation in both sporadic and transmissible cases. In the

case of tumor retroviruses, cellular genes are hijacked by the virus and mutated such that

the host cells are programmed to proliferate. In the much more common case of non

infectious cancer, normal cellular genes are mutated into forms that promote unregulated

cellular growth. The vast majority of cancers are, therefore, caused by alterations in

normal genes (Hanahan and Weinberg 2000).

A great deal of the cancer research performed over the last 20 years has been an

attempt at determining exactly which mutations in which genes are responsible for the

different steps in tumorigenesis. This research has involved many experimental

approaches, and has identified many different genes that can contribute to abnormal

cellular proliferation when mutated. Cellular oncogenes such as myc (Shen-Ong, Keath

et al. 1982), src (Spector, Smith et al. 1978) and ras (Parada, Tabin et al. 1982) have been

found as homologues of the genes of tumor viruses. Identification of the cellular targets

of viral oncoproteins has led to the discovery of tumor suppressors such as p53 (Harris

1996). Characterization of the cell cycle regulatory machinery in model genetic systems

such as yeast has identified homologous mammalian genes such as the cyclins and cyclin

dependent kinases that act as key players in cell division (Hartwell, Culotti et al. 1974;

Morgan 1997). Genetic studies in families that show inherited susceptibility to cancer

have led to the identification of genes such as APC in colon cancer (Kinzler and

Vogelstein 1996), and the BRCA genes in breast cancer (Miki, Swensen et al. 1994).

The identification of individual genes that play a role in cancer has been used as

experimental entry points into the pathways in which the genes function. By using the

techniques of biochemistry, cell biology and genetics, entire pathways have been

elucidated starting with the identification of a single pathway member.

2.4. The Future of Cancer Research

It has been over 30 years and hundreds of billions of federal dollars since

President Nixon declared a “war on cancer’, and this war has had several notable

successes. Not so long ago, the only treatment options available to cancer patients were

brute force approaches that targeted dividing cells in general, such as radiation and drugs

that inhibit key steps in DNA synthesis. While these drugs were often successful (and are

still in use in many cases), they are relatively non-specific and have a number of

undesirable side effects. Indeed, some of the harsher chemotherapy regimens are the

equivalent of walking a tightrope between killing the tumor and killing the patient.

The identification of key molecular players in cancer development has created a

potential for much more specific diagnostics and therapeutics. The past several decades

have witnessed the adoption of screening methods such as mammography and PSA that,

while far from ideal, have enabled doctors to detect many cancers at much earlier stages

than previously possible. Gradually, there has been an increase in the availability of so

called ‘magic bullet’ therapeutics such as Gleevec (Wang, Healy et al. 2000), Herceptin

(Goldenberg 1999), and Iressa (Ciardiello, Caputo et al. 2000) that were designed to

9

target known gene products expressed in tumors and have fewer side effects as a result.

While the war on cancer has witnessed prominent successes such as these, there is still

much to learn about the molecular origin of cancer and a long way to go in developing

better biomarkers and therapies. For example, there have not been nearly as many

advances in understanding the later steps in tumorigenesis such as invasion, metastasis

and angiogenesis. These later steps may be the most clinically relevant, since it is the

acquisition of invasive properties by tumors that make them life threatening and resistant

to surgical intervention.

In reflecting on the last 30 years of progress in cancer research, the conceptual

breakthroughs in identifying the molecular causes of cancer have been impressive, but

their translation into useful diagnostics and treatments has been somewhat

underwhelming. Rather than waiting decades for further clinical advances, many patient

advocates (including Andy Grove of Intel) have suggested a shift toward an engineering

approach in cancer research. This would involve fewer attempts at broad conceptual

understanding of the disease and a greater emphasis on translational research such as

biomarker discovery. While reasonable people can disagree on this point, most would

accept that accelerating the pace of discoveries that positively impact patient’s lives is

crucial.

A key step in increasing the rate of discovery is increasing the productivity of the

researcher. For most of its history, molecular biology has been a ‘cottage industry’ in

which individual laboratories containing small numbers of researchers perform very

laborious studies to generate a relatively small amount of data. Until fairly recently,

researchers have been limited by the technologies available to them; most experimental

10

protocols were labor intensive and focused on a small number of genes or proteins at a

time. Over the past decade or so, several technological advances have been made that

allow experimental biologists to generate very large data sets in a relatively short amount

of time. These technological innovations include high throughput proteomics, whole

genome sequencing, and high throughput chemical screening. Arguably the most

important advance, however, has been the development of DNA microarrays. The

statistical challenges presented by the scale of microarray data, primarily the volume of

data in relation to the number of independent samples in most experimental studies, is

what motivated the development of Magellan. Microarray technology is the focus of the

next chapter, while the statistical issues involved in analyzing microarray data will be

discussed in Chapter 4.

11

Chapter 3

Microarray Technology in Cancer
Research

3.1. Introduction

DNA microarrays are based upon an experimental concept that has been in use for

several decades. The experimental technique known as the ‘dot blot’ involves

hybridization of heterogeneous radioactively labeled nucleic acids in solution to purified

homogenous DNA samples which have been spotted and immobilized onto nitrocellulose

membranes. Dot blots have been used to detect and quantify the amount of a particular

nucleic acid sequence in a heterogeneous mixture such as labeled genomic DNA or first

strand cDNA. Microarray technology has improved upon this approach using automated

techniques to apply each purified DNA sample onto a small solid surface, thereby

increasing the number of samples that can be spotted onto a given unit surface area

(DeRisi, Iyer et al. 1997). At first glance this may seem like a minor modification, but

the practical consequences are quite significant. The degree of miniaturization in

currently available microarrays allows for tens of thousands of targets to be placed in a

surface area of a few cmº. This small target size allows for nucleic acids purified from

12

Small amounts of biological material to be hybridized to arrays containing large numbers

of targets, such that information on the mRNA expression of every known human gene

can be obtained in a single hybridization experiment.

3.2. Microarray Platforms

There are currently two major microarray technologies in use: two color

hybridization onto spotted DNA arrays and single sample hybridization to

lithographically deposited oligonucleotides (Affymetrix arrays). The two-color method is

illustrated in Figure 2 (Baggerly and Coombes 2004). Briefly, mRNA is extracted from

two different biological samples (one of which is a common reference) and separately

used as a template for the synthesis of first strand cDNA labeled with Cy3 or Cy5

fluorescent dies. These cDNA mixtures are combined and hybridized to a glass slide

containing individual spots of purified DNA (typically cloned cDNA’s amplified by

PCR). The ratio of the fluorescence of the test to the reference is normalized and can be

used to measure the relative concentration of individual mRNA’s in the biological

sample.

13

Figure 2 – Overview of two color spotted cDNA microarrays

The arrays commercialized by Affymetrix use -20 bp long oligonucleotide targets

that are generated in situ using lithographic techniques similar to those used in the

semiconductor industry. Since the degree of specificity of hybridization of a 20mer oligo

is much less than cDNAs of several hundred base pairs, Affymetrix arrays use a

combination of several perfectly matched and mismatched targets to quantify each

mRNA. A single fluorescently labeled cDNA sample is applied to the array, washed, and

scanned, yielding an image such as Figure 3 (www.affymetrix.com). The hybridization

signals of all match and mismatch oligos are fed into a proprietary algorithm that

combines all data points into a single mRNA expression value for that gene.

Figure 3 – Scanned image of an Affymetrix microarray

14

The fact that competing microarray platforms are available begs the question as to

which technology is superior. The two color array was the first method to become widely

available, and is still the method of choice for custom DNA arrays (i.e. organisms that are

not widely studied enough to justify commercial manufacture). Two color arrays have

historically been less expensive that Affymetrix arrays, although the cost differential has

come down in recent years. Because Affymetrix arrays are fabricated using lithography

for which the masks can be generated by an automated process, the design of new

Affymetrix arrays is much more rapid than two color arrays, for which new array targets

must be separately purified. In terms of quality measures of the normalized data such as

reproducibility and signal to noise ratio, Affymetrix technology typically outperforms

two color hybridization. Also, since two-color arrays depend on measurement of a

sample relative to a reference, it is difficult to compare mRNA expression data from two

samples that are measured relative to different references. Currently, many experimental

researchers who have the resources to do so are transitioning from two color microarrays

to Affymetrix chips because of better data quality, better reproducibility, and decreasing

COStS.

3.3. Microarray Based Comparative Genomic Hybridization

DNA microarrays were originally developed in order to quantify the

concentration of mRNA in biological samples. The majority of microarrays are still used

for this purpose, but DNA arrays are increasingly used for other reasons as well. Arrays

containing hybridization targets corresponding to different single nucleotide

polymorphisms have been used in high throughput genotyping. Chromatin

15

immunoprecipitation using antibodies against specific transcription factors followed by

hybridization to arrays containing genomic DNA sequences has been used to determine

binding sites for transcription factors in the genome (Buck and Lieb 2004). In cancer

biology, however, one of the most important uses of DNA microarrays is the

determination of sites of genomic aberration (amplifications and deletions) using the

technique of comparative genomic hybrization, or CGH (Pinkel, Segraves et al. 1998;

Snijders, Nowak et al. 2001).

CGH involves the hybridization of fluorescently labeled genomic DNA from

cancerous tissue and normal tissue to a common target. Briefly, genomic DNA samples

are separately purified from normal and cancerous tissue, separately labeled with

different fluorescent dies (typically Cy3 and Cy5), mixed and hybridized to the target.

Initially, the target was a metaphase spread of chromosomes (FISH, or fluorescent in situ

hybridization), but over the last five years this has been supplanted by array based CGH

which offers a far superior resolution. For array based CGH, genomic DNA samples

from specific regions of the genome are purified and spotted onto the array. For each

spot on the array, the normalized ratio of signals from the tumor vs. normal DNA is a

direct measure of amplification or deletion of tumor DNA from that region of the genome

(Pinkel, Segraves et al. 1998).

Currently, two color arrays are used for the majority of comparative genomic

hybridization (CGH) studies. CGH arrays typically contain on the order of several

thousand spotted genomic DNA’s, although CGH arrays containing approximately

30,000 spots are in development. Recently, Affymetrix single nucleotide polymorphism

(SNP) genotyping chips have also been used for CGH. These arrays are capable of

16

genotyping over 100,000 SNP's in a single hybridization. Since Affymetrix genotyping

arrays can distinguish between different SNP alleles on the maternal vs. paternal

chromosomes, they also have the advantage of distinguishing between aberrations on the

two copies of each chromosome (Nannya, Sanada et al. 2005).

3.4. The Nature and Source of the Primary Signal in DNA Microarray

Experiments

The ability of Microarray experiments to comprehensively measure cellular

characteristics such as mRNA expression and DNA copy number have allowed

researchers to pursue several fundamental questions about cancer biology that were

unattainable prior to the advent of the technology. One such question is the degree to

which tumorigenesis leads to changes in mRNA gene expression, as compared to the

signature that was present in the normal parental cells. Several publications have

performed microarray analysis on cancers from different cell types of origin (lung,

kidney, ovary, colon, etc), and clustered the data together; in most cases, clusters derived

from a given cell type tend to group together (Ross, Scherf et al. 2000). This result

indicates that the primary signal in mRNA expression data in cancer does not reflect the

tumor state, but the cell type of origin. For example, one of the earliest published

attempts at performing molecular diagnosis on tumors using microarray gene expression

data involved the classification of AML (acute myeloid leukemia) from ALL (acute

lymphoblastic leukemia). The genes that were strongly differentially expressed between

these two classes were used to build a classifier that could discriminate between AML

and ALL (Golub, Slonim et al. 1999). These genes, however, are largely markers of

myeloid or lymphoid origin, as opposed to being directly related to cancer.

17

This fact somewhat complicates the interpretation of analyses of differentially

expressed genes in collections of cancers. It is sometimes the case that cancers that were

thought to be a single disease are actually derived from fundamentally different cell

types. For example, a recent study of breast tumors using microarray based mRNA gene

expression data clustered tumors into two broad classes, indicating the presence of

samples derived from two distinct cell lineages (possibly of epithelial and mesenchymal

origin) in the collection of tumors (van 't Veer, Dai et al. 2002). While the genes that

distinguish these two classes may prove useful as diagnostic markers, it seems unlikely

that very many of them will be good therapeutic targets since they are more likely to be

markers of cell lineage than to be causative agents in cancer.

Figure 4 shows an agglomerative clustering of cell-lines based on mRNA

expression data. The cell-lines with common tissues of origin tend to cluster together.

This is particularly evident in the melanoma and colon cancer cases. A somewhat

contrasting case is presented by the cell-lines derived from breast tumors. The eight

samples representing these cell-lines are spread throughout the dendrogram, again

indicating a greater degree of heterogeneity among the collection of breast tumors.

18

|
| -

|
|

Figure 4–Clustering of tumor samples of different cellular origin using Affymetrix mRNA
expression data from the NCI60 cell lines.

3.5. Conclusion

The advent of microarray technology has dramatically increased the amount of

information generated by cancer researchers. Prior to the use of microarrays, quantitation

of mRNA involved time consuming procedures such as Northern blots or RNase

protection which only measured a small number of genes at a time. Copy number

measurements using FISH were subject to fairly low resolution (~20Mb). Microarrays

have increased both the productivity and accuracy of both types of experiments, to the

point where a single researcher can comprehensively analyze mRNA expression and

CGH on a large sample of tumors in a matter of weeks.

19

While these technological advances were the dream of cancer researchers two

decades ago, they do create some difficulties as well. Traditionally, biologists have

generated small enough amounts of data that examining simple visual representations of

their data allowed them to detect trends and patterns in it. With array technology, an

experimental data set may contain several million data points, far too many for the

pattern recognition machinery of the human brain to cope with. The challenges of

analyzing these large scale data sets are the subject of the next chapter.

20

Chapter 4

Statistical Issues Associated With High
Dimensional Genomic Data

4.1. Introduction

When interpreting the quantitative results of a biological experiment, it is

essential to determine whether any observed effect could have occurred by chance. This

class of question falls into the domain of statistics, specifically the field of hypothesis

testing. Hypothesis tests seek to distinguish between the so called null and alternative

hypotheses, where the null hypothesis generally refers to a case in which there is no

difference between two observations. In order to perform a hypothesis test, a statistic to

measure the difference between the two entities must be defined, and the distribution of

that statistic under the null hypothesis must be theoretically determined or empirically

calculated. The percentile value of the calculated statistic in the null distribution is

defined as the p-value, which can be thought of as the likelihood that the observation

could have happened simply by chance. A p-value less than 0.05, therefore, indicates

21

that in only 1 case out of 20 a statistic of the magnitude observed or greater would occur

by chance.

Different statistics are employed in different cases, but in most analyses of

differences in gene expression between two classes, the t-statistic is used. This statistic is

a quantitative description of the difference between two populations, and is defined as the

absolute value of the difference in their means divided by their standard deviations.

Consider a case with a series of mRNA gene expression values from samples that fall

into two different classes (x1, x2, ..., xM) and (y1, y2, ..., yN). The t-statistic is

calculated as follows:

|X – y
M

X(x-x)' > 0, -y).
M + N

Theoretical determinations of null distributions of t in gene expression data sets

are difficult, since they are susceptible to parameters such as signal to noise ratios. Also,

there is no reason, a priori, to presume that there are no systematic experimental biases

that might cause deviation from the assumed normal distribution. Furthermore, given

that one is frequently computing thousands of p-values from a gene expression data set,

the probability that some of the computed statistics will have extreme and nominally

significant values is very high, even in the case where the null hypothesis is true.

Most analyses of differences in gene expression calculate the null distribution of t

empirically using permutation and resampling based approaches. These techniques

attempt to simulate the null hypothesis by randomly assigning values to each class and

calculating t statistics for each random shuffling of the data. Since the values are divided

22

into groups randomly, there should be no difference in population parameters such as

means or standard deviations. By performing these random reshufflings many times and

calculating a value of t each time, a null distribution of t can be determined. The p-value

of the non-permuted tstatistic can be determined by finding its percentile in the derived

null distribution.

While the standard statistical approaches work well when the dimensionality of

the data is relatively small, they tend to fail on gene expression data due to the large

number of measurements given the small number of independent experimental samples.

This phenomenon is known as the multiple comparisons problem. The following

sections discuss the multiple comparisons problem in detail and present some strategies

for addressing it.

4.2. The Multiple Comparisons Problem

Microarray experiments pose particular statistical problems because of the sheer

amount of data generated. A single hybridization can generate tens of thousands of

measurements per sample, and when the ratio of the number of measurements to the

number of samples becomes very large, false relationships between variables can emerge.

Because so many statistical comparisons are made, strong correlations between variables

may be observed even under the null hypothesis, simply by chance. This “multiple

comparisons problem’ is one of the most challenging aspects of analyzing large

biological data sets.

For example, consider a case in which random class variables are assigned to a

publicly available mRNA gene expression data set, and signed t-statistics calculated for

the differences in expression values between the two classes (Figure 5). Because the

23

class assignments are made at random, the null hypothesis is in effect and none of the

resulting t-statistics can be considered significant. The distribution of the statistic values

is roughly normal, and because tens of thousands of statistics are calculated, some of

those statistics have very large magnitudes simply by chance. Although several of the

extreme values would be considered significant in other cases, here the sheer size of the

data set generates false positives. Keep in mind that the definition of p-0.05 for a given

value of the statistic is that in 5% of cases a statistic would be observed at the given value

or higher just by chance. If 10,000 statistics are to be calculated at an uncorrected p

value cutoff of p-0.05, then approximately 5% of 10000 or 500 false positives would be

expected, clearly too great a number.

Distribution of correlations over all genes

2.5

2 -

-0.6 -0.4 -O-2 O 0-2 0.4 0.6

Correlation Magnitude

121 1 22 11 222 12
Random class variable

Figure 5–Distribution of signed t-statistics using mRNA gene expression data assigned to random
classes

The multiple comparisons problem is a substantial issue in analyzing genomic

data, but not an insurmountable one. Several approaches have been developed to

calculate corrected significance cutoffs on even very high dimensional data sets (Westfall

and Young 1993; Jain, Chin et al. 2001; Tusher, Tibshirani et al. 2001; Olshen and Jain

24

2002; Segal, Dahlquist et al. 2003; Storey and Tibshirani 2003). Three of the more

commonly used techniques will be described in the following sections: Bonferroni, false

discovery rates, and maxT

4.2.1. Bonferroni Method

The Bonferroni method is conceptually the simplest technique to correct for

multiple comparisons. The Bonferroni method is performed by simply dividing the p

value cutoff by the number of comparisons made. Consider a case in which a gene

expression data set containing 10000 genes is to be tested for differential expression with

respect to two classes. If a significance cutoff of p-0.05 would be used in the single gene

case, then Bonferroni would adjust the p-value to 0.05/10000 or 5x10°. While this

concept is easy to understand, it tends to generate significance cutoffs that are far too

conservative. In most real world cases where there is genuine signal of moderate

strength, no observed statistics meet these stringent cutoffs.

4.2.2. False Discovery Rates

False discovery rate (FDR) is a technique that controls the number of type I errors

(false positives) when performing hypothesis tests on large data sets (Benjamini and

Hochberg 1995). FDR controls the fraction of type I errors, such that it predicts the

expected percent of false positives in the total set of predictions. For example, if an FDR

based algorithm predicts that 100 genes are differentially expressed at a false discovery

rate of 0.3, then one can expect roughly 70 of these predictions to be correct.

The significance analysis of microarrays (SAM) application is probably the most

commonly used tool to determine differential expression using false discovery rates

25

(Tusher, Tibshirani et al. 2001). SAM uses a statistic called the ‘relative difference’ or d

(which is similar to the t statistic) to rank genes based on differential expression across

two classes. SAM then employs a permutation based approach of randomly assigning

sample labels to determine the null distribution of the relative difference at each position

in the list of ranked genes. For a given threshold expression difference, the FDR is taken

as the fraction of permuted genes that were called significant to the total number of non

permuted genes that were called significant.

4.2.3. MaxT

The maxT method employs a resampling based approach to determine the null

distribution of maximum correlation values for a particular data set (Westfall and Young

1993). For each round of permutation, sample labels are assigned at random to ensure

the null hypothesis is in effect. A t-statistic is calculated for each gene, but only the

maximum value is saved to generate the null distribution of the statistic. This process is

repeated many times, and the value of the unpermuted statistic is compared to the

distribution of maximum observed statistics. Because the distribution was generated

from maximal observed statistics only, the p-value can be thought of as the likelihood

that any gene in a data set of the given size would have a statistic of the observed

magnitude or greater under the null. MaxT is therefore one measure of the so called

family wise error rates (FWER), because it estimates the probability of at least one false

positive over the collection of tests.

º
26

4.3. Correlation of CGH and mRNA Expression Data

While these techniques and others can provide a means of determine meaningful

significance cutoffs in the face of multiple comparisons, there are some situations that

overwhelm them as well. One of the unique opportunities made available by

collaborations within the UCSF Cancer Center is access to tumor data sets that contain

multiple types of genomic data, such as CGH and mRNA expression data. One of the

obvious questions to ask of data sets containing both of these data types is the degree to

which DNA copy number changes affect mRNA levels across the genome. For example,

the proto-oncogene myc is frequently amplified in certain cancers, leading to increased

myc mRNA and protein levels. Since myc is a transcription factor, however, amplifying

myc should lead to changes in the expression of many other genes. One could

reasonably expect, therefore, that amplification of the genomic locus containing myc

would affect the transcript levels of other genes in addition to myc itself.

One approach that can be used to detect these regulatory relationships is to

correlate the mRNA expression data for each gene with the amplification data from each

genomic region, and select those gene-BAC pairs that have high correlation values. To

perform one such correlation, two arrays of values are assembled that contain the sample

to sample behavior of one gene and one BAC. The Pearson’s correlation coefficient (r)

of the two arrays of numbers x and y is calculated as follows:

XCOx, -x)(y, -y)
r = i

|Xe-ºo-y
Pearson’s correlation coefficient is defined as the covariance of two variables, divided by

their standard deviations. In practical terms, r is a measure of the linearity of a

27

relationship between two continuous data types (except for perfectly horizontal or

vertical lines, for which r is undefined). The values of r vary from -1 (perfectly linear

relationship with negative slope) to 1 (perfectly linear relationship with positive slope).

Exhaustively calculating all possible correlations of genes and BACs presents a

multiple comparisons problem of extreme proportions, however, since the number of

comparisons performed is the product of the dimensionality of each data type. For

example, if 2500 BACs are analyzed for CGH and 10,000 genes for mRNA expression,

this totals 2.5x10' total correlations. Even when genuine correlations exist in these data

sets, they are difficult to detect against the backdrop of all the spurious high correlations

observed by chance.

To illustrate the magnitude of this problem, an all by all correlation of genes and

BACs in an ovarian tumor data set was performed, correcting for multiple comparisons

using the maxT method. No gene-BAC pair showed a significant correlation, even

though it has been established that gene copy number affects transcript levels for a

significant proportion of genes in the amplified or deleted regions.

Clearly, standard approaches do not fare well when faced with data sets of this

scale. This failure of existing methods led us to try alternative methods that lie outside of

the field of statistics. Our first attempt at finding quantitative relationships between CGH

and mRNA gene expression involved the use of techniques from machine learning and

optimization. This attempt is the topic of the next chapter.

28

Chapter 5

Optimization Methods to Determine

the Relationship between DNA Copy

Number and Gene Expression

5.1. Introduction

As stated in the previous section, the multiple comparisons problem often makes

it difficult to find all but very strong signals in high dimensional datasets. This is

particularly true when two genomic data types, such as mRNA gene expression and DNA

copy number are to be exhaustively compared, as in the case of the ovarian tumor data set

mentioned in the previous chapter. This data set first became available before the

completion of the human genome sequence, so precise genomic locations were frequently

not known for many BACs and genes. At the time, the genomic location of some BACs

could be inferred from the presence of STS markers whose location was experimentally

determined (at fairly low resolution) by techniques such as FISH or radiation hybrid

mapping, while the genomic position of many genes was unknown.

29

The existing statistical methods failed to find significant correlations in the

ovarian cancer dataset, but because there was significant interest in the genome-wide

relationship between DNA copy number and gene expression, we pursued the question

without the genomic mapping information. Lacking this information, however, required

an indirect approach to establish the relationship. Instead of looking for direct

correlations between variations in DNA copy number at particular loci with variation in

the mRNA expression of particular genes, we considered the extent to which the inferred

‘distances’ between samples based on CGH data and the ‘distance’ based on expression

data were related. Intuitively, this corresponds to the hypothesis that if there were a very

strong relationship between the two signals, independent hierarchical clusterings of the

samples based on the two data types would yield similar structures. Recall from Figure 4

that the dominant signal in expression data can be traced to tissue of origin or specific

cell type that gives rise to a particular tumor. It turns out that this is not the case with

DNA copy number data. So, direct comparison of the distance matrix among tumors from

CGH data to the distance matrix from expression data does not yield an obvious and

significant signal.

Because the existing statistical methods failed to find significant correlations in

the ovarian cancer dataset, two machine learning and optimization approaches were used

to select gene-BAC pairs that would enrich the relationship by reducing the effects of

measurements that did not contribute to the signal. These approaches were a hill climbing

method to select, in a binary sense, the genes and BACs to participate, and a gradient

descent method to derive real-valued weights for the genes and BACs. Both techniques

start with the entire mRNA expression and CGH data sets, and attempt to enrich for

º
*
sº~
*

5

30

genes and BACs that correlate with each other in a way that reveals itself by increasing

the similarity in the distance matrices based on mRNA expression and CGH.

In both approaches described here, an ovarian tumor data set containing CGH and

mRNA expression was separated into ‘training’ and “test' sets of equal size. The training

set was used to train parameters (such as which genes and BACs are selected, or the

values of weights). The test set was then used to confirm that the observation was not the

result of overfitting.

In both the hilllclimbing and gradient descent approaches, two arrays of sample to

sample distances are calculated, one using CGH data and one using mRNA expression

data. These arrays contain all pairwise sample to sample distances in mRNA expression

space and CGH space, respectively:

DCGH = [Da)(2)CGH, DO)(3)CGH, ...Dºn-1}(n)CGH]

DExp = [Da)(2)Exp. DG)(3)Exp. ...Don-D(n)Expl

Where D(1)(2)CGH = Distance from sample 1 to sample 2 using CGH data.

An attempt is then made to minimize the distance between DCGH and DExp by either

choosing different subsets of genes and BACs (hill climbing) to calculate the sample to

sample distances, or by assigning weights to each gene and BAC and allowing those

weights to fluctuate (gradient descent). The rationale for this approach is that is if CGH

loci and genes that correlate with each other are chosen, then distance vectors Dooh and

DExp will correlate with each other. Conversely, if the correlation distance between DCGH

and DExp is minimized, then genes and BACs that correlate with each other should be

selected for. If this result bears out in a clean validation test set, then a large-scale

31

relationship between DNA copy number and RNA expression has been shown, albeit

somewhat indirectly.

5.2. Hill Climbing

Hill climbing is a so called ‘greedy' method that is quite simple conceptually;

first, a small number of genes and BACs are chosen from the total (100 of each in this

case) and the distance arrays DCGH and DExp are calculated using the data from these

subsets of genes and BACs. With each iteration of hill climbing, a small proportion of

the genes and BACs are randomly replaced, and the sample to sample distance arrays

Dcoh and DExp are recalculated. If the distance between DCGH and DExp is lower with the

new set, then that set is kept for subsequent rounds, otherwise the new set is discarded

and the old set is kept (hence “greedy’). This process is repeated many times, and the

final set of selected genes and BACs is subjected to further examination.

1 201 401 601 801

iteration

L
- -

Figure 6 – The effect of hillclimbing on the training set (blue) and the test set (magenta).

32

The effect of hillclimbing on the training and test sets is shown in Figure 6.

While the distance between DCGH and DExp decreases using the training set data

(computed as 1 – Pearson’s correlation), it is unaffected by when using the test set. This

clearly indicates that the hill climbing approach is subject to overtraining on noise in the

training set. This suggests that it is easy to identify a small number of genes and BACs

that yield a nominally good distance matrix correlation, but that it does not generalize in a

meaningful way.

5.3. Gradient Descent

Gradient descent methods define an error function (such as the mean squared

error E in Figure 7) to be minimized by adjusting weight values (wº, for the k" gene or

BAC in the data set). Once again, two arrays of sample to sample distances are

separately calculated using CGH and mRNA expression data (D" and D",

respectively). The error function is differentiated with respect to each weight, and the

weights are allowed to descend iteratively along the gradient defined by the value of this

differential until they stabilize. Those genes and loci that are left with large weights are

then subjected to further analysis.

33

E=X (D,"-Dº)"
ij

-(CGH,-CGH,)? Exp -(Exp,-Exp,)*w"e GCGH X w. e o Exp
Exp kDº" ===== D; - Ex

-
p" X w.” X w.

k k

—(CGH, -CGH,)6E 2 (CGH,-CGH,
-

CGH DExp acGh DCGH
awº”.

-
CGH X (Dij Dij)(e Dij)

k W. ij

-(Exp. —Exp;)
6E 2 %

-
Exp CGH O Er Exp

Exp T Ex (D. –D.)(e p –D.)ôwº wº !/ l/ lyk k ij

W. =w, +a;.k

Figure 7 – The mean squared error and distance functions used in the gradient descent method

The effect of the gradient descent method was assessed using a cross validation

measure; a single tumor sample is held out and the remaining samples are used to train

the system by calculating weights. The correlation between the distance arrays of the

holdout to the remaining samples are compared before and after training and the process

is repeated with a different holdout each time. Figure 8 shows the results of a 20-fold

cross-validation, and in each case the correlation distances between the CGH and mRNA

gene expression distance vectors were lower after training than before, evidenced by the

lower right triangular enrichment of points. This indicates that training did have a

positive influence on the correlation between the two distance vectors. Although the

34

effect was not large, it was consistent, and it demonstrated a relationship between DNA

copy number and gene expression.

;

1.5

|-

Cross Validation on Ovarian Tumor Data

1.5

1–
-

->

* *
->

0.5 –
-

-
•

• º

º **
º

0 T T l

0 0.5 1

Initial sqist

Figure 8–Cross validation using the gradient descent method

5.4. Conclusions

Two approaches were taken to detect correlations between CGH and mRNA

expression data, with limited success. The hill climbing method showed evidence of

overtraining and did not yield usable results. In contrast, the gradient descent method

35

showed some indication of success on the test set, although the effect was modest.

Interpreting the results of the output is not straightforward, and the fact that these

methods are both difficult for most biologists to understand and use raise questions as to

their utility.

At this juncture in my thesis work, the analytical methods that had been used to

investigate the relationship between CGH and mRNA expression data had generated a

tangible result in the sense that a relationship was demonstrated. However, the approach

did not lead to the generation of specific new hypotheses. At roughly this time, the

human genome sequence was completed and algorithms made available for high

throughput mapping of genes and BACs to their positions in the genome based directly

on their sequence. This opened the door to an entirely new set of approaches. If, in the

analysis of multiple data types (such as DNA copy number and mRNA gene expression),

it was possible to relate the data based on annotation information such as genomic

position, a much more direct analysis would be possible.

Going forward from this point, an attempt would be made to explore analytical

methods that utilized biological data in an integrated context, making extensive use of

biological annotation information. However, integration of annotations for tens of

thousands of measurements over multiple data types and utilization of these annotations

in statistical computations is challenging, and certainly beyond the skill set of most

experimentalists. Consequently, these methods would be deployed within a

straightforward and intuitive system that experimentalists themselves could use. The

development of this system, Magellan, is the subject of the next chapter.

36

Chapter 6

Magellan: System Design

6.1. Introduction

The previous two chapters demonstrated how both standard statistical techniques

and sophisticated optimization approaches can fail to find significant relationships in very

high dimensional biological data sets or yield results with limited interpretability. Since

one of the aims of my work at the Cancer Center was to provide analytical tools for

experimentalists to use, the next portion of my thesis work was devoted to building an

analytical framework that would allow for a more intuitive approach to analyzing

biological data sets.

With this aim in mind, I developed a server based system that allows biologists to

perform analyses over the internet. Rather than creating a series of individual

applications that perform very specific functionalities, it was decided that our analytical

system would implement a framework such that different analytical methods could be

interfaced to the system as a whole. The purpose of such a system is to allow end users

to explore their own data sets and follow whatever direction of inquiry that they see fit.

37

Because of the exploratory nature of the system, it was named Magellan after the 16"

century explorer.

This chapter elucidates the reasoning behind several of the major design decisions

of Magellan, while the next chapter covers implementation issues. This chapter discusses

the various types of information that can be stored and analyzed, and the high level

representation of information.

6.2. Definitions and Examples of Terms

The terms “data’, ‘variables’, ‘identifiers’, and “annotations’ have been used to

this point without formal definitions, but it is important to clarify their meaning. The

following sections define each of these terms as they are used in the context of the

Magellan application.

6.2.1. Data Type

For the purposes of this discussion, a “data type' is defined as a category of

qualitative or quantitative information gathered from a biological sample. In the use

cases that follow, data types include mRNA expression intensity measurements, genomic

copy number measurements, and clinical data such as patient survival.

6.2.2. Variable

A variable’ is defined as a single measurement of a multivariate data type.

Variables would include mRNA intensity measurements for individual genes in mRNA

expression data, or genomic copy number measurements for individual genomic regions

from CGH data.

38

6.2.3. Identifier

An “identifier’ is a string that names one individual variable of a data type.

Examples of an identifiers would include genbank ID's, LocusLink ID's, and Affymetrix

gene chip ID’s.

6.2.4. Annotation

An ‘annotation’ is defined as a quantitative or qualitative description of the

variables of a data type. One of the key distinctions of the Magellan application is the

ability to utilize biological annotations, both in analytical methods and in data pre

processing. As they are used within Magellan, annotations can be divided into two

classes: curated and derived.

Curated annotations can consist of numerical information such as genomic

mapping data for genes, textual information derived from ontologies of gene function,

and formal descriptions of regulatory networks (Ashburner, Ball et al. 2000). Data and

curated annotations are linked together through the use of ‘identifiers’, which are user

defined names such as Genbank or RefSeq Ids (Figure 9).

Derived annotations are computed from the experimental measurements that

comprise a data set. These annotations are the results of a computation performed on the

data and are, therefore, derived from that data. Derived annotations are typically

quantitative and are linked to data directly rather than through identifiers (Figure 9).

Direct linkage is required since individual identifiers (representing one gene on a

microarray, for example) can be represented multiple times in a data set, with different

quantitative measurements in each physical instance yielding different annotation values.

39

For the analyses performed here, derived annotations of correlation to patient outcome

for gene expression and frequency of alteration of genomic copy number were used.

Curated Annotations

Identifier Type
Identifier Value

Annotation Type
Annotation Value

Identifiers

Experiment ID

Data Type
Ordinal Position

Identifier Type
Identifier Value

Data

Experiment ID

Data Type
Ordinal Position

Sample
Value

Derived Annotations

Experiment IDº

Data Type
Ordinal Position

Annotation Type
Annotation Value

Identifiers
Experiment: 15
Data Type: Expression
Ordinal Position: 3.162
Identifier Type: Genbank ID
Identifier Value: U40369

<

Expression data for SSAT gene
Experiment: 15
Data Type: Expression
Ordinal Position : 3162
Sample: 1526
Value: 1459

F-statistic vs. Patient Survival
Experiment: 15
Data Type: Expression
Ordinal Position : 3162
Annotation Type: T-statistic
Annotation Value: 5.498

Genomic Mapping
Identifier Type: Genbank ID
Identifier Value: U40369
Annotation Type: Chromosome
Annotation Value: X

Identifier Type: Genbank ID
Identifier Value: U40369
Annotation Type: bp
Annotation Value: 22196023

Figure 9 - Linking data to curated and derived annotation information. Variables of a data type
(such as genes or genomic loci) are referenced by their ordinal position. The ordinal position can be
directly linked to derived statistics (such as t-test against patient survival) or to named identifiers
(such as a Genbank IDs). Identifiers are then used to link data to curated annotations (such as
genomic mapping information).

6.3. Abstract Representation of Data and Annotations

The primary feature that enables Magellan to be used as a general purpose

analytical tool is its ability to store information abstractly. Under this scenario, there is

no assumption made as to the type of data or annotations that a user stores in the system.

Rather than being specifically designed for microarray gene expression, CGH,

40

proteomics, or some other data type, Magellan’s abstracted means of storing data is

designed to accommodate these and other data types as they arise. Rather than requiring

particular data types, Magellan stores the data and annotation type designation that the

user defines. In other words, the system does not tell users what kind of data they can

store; the end users specify what kind of information they wish to store.

The only requirement placed on information to be stored in Magellan is that it can

be represented as a two dimensional table. In the case of data, such an abstracted table

would represent a data type with m samples and n variables collected per sample. In the

case of annotations, the abstracted table would contain m annotation types (such as

chromosome and distance from p-telomere designations that collectively make up

genomic position annotations) and n variables to be annotated.

While this arrangement does provide extensibility such that new data types can be

stored as they emerge, it does not have the advantage of some custom databases that are

designed to work with particular data types. Such custom databases generally do a more

comprehensive job of representing data and metadata for the data type for which they

were designed, but have to be extensively modified to accommodate other data types.

For our purposes, a decision was made to make Magellan an extensible system because

of the heterogeneity of data currently available, and the strong likelihood that new data

types would emerge that would benefit from Magellan’s analytical framework.

While the storage and representation aspects of Magellan are generalized, the

analytical functions deployed within the system require varying degrees of specificity

with respect to the types of information that they utilize. While some analytical methods

may be generalized enough to work with large numbers of data types, others will require

41

specific types and representations of data and annotations. For example, resampling

adjusted correlation analysis can be applied to many different tabular quantitative data

sets, while methods that seek to explore the relationship between CGH and mRNA

expression data with respect to genomic position annotations are very specific in their

requirements. Such specificity is allowed within the Magellan application, but only at the

level of the analytical method. In summary, the Magellan database can store

heterogeneous data and annotations in an abstracted fashion, but analyze this information

along a continuum of specificities depending on the application chosen.

6.4. Use of Biological Annotations within Magellan

Given a series of tumor samples of known outcome, with experimental data

comprising both DNA copy number and mRNA expression measurements, natural

questions tend to span data types or require data annotation. Does genomic copy number

directly account for some of the variation in gene expression across samples? Are the

genes that map to loci that are frequently found to be of aberrant copy number more

likely to show an association with outcome than other genes? Are genes that have

functional annotations for processes involved in cancer (for example, adhesion,

apoptosis, invasion, ...) more likely to be associated with tumor aggressiveness?

Because of the importance of biological annotations in answering these types of

questions, Magellan has been designed to store and retrieve annotations for analyses that

utilize them. In addition to the use of annotation information during analysis, Magellan

provides two means of utilizing annotations prior to analysis: variable selection and

variable projection.

42

6.4.1. Variable Selection

As has been previously discussed, a large number of variables collected from a

relatively small number of biological samples can present statistical challenges. One

particularly straightforward method to reduce dimensionality is to select only those

variables (such as genes from mRNA expression data or genomic loci from CGH data)

that meet criteria that are orthogonal to the property being investigated. Biological

annotations can provide such a means of variable selection. By restricting a data set to

only those variables whose annotations meet certain criteria, the dimensionality of the

data set may be reduced such that multiple comparisons do not predominate.

In addition to statistical considerations, experimentalists are frequently interested

in focusing on variable subsets of biological interest. For example, a user may wish to

focus on a specific gene family that is described by a biological pathway designation such

as ‘G protein coupled receptor’ or “cyclin dependent kinase’. By providing a generalized

means of selecting variables based upon categorical textual annotations, Magellan allows

end users to select for virtually any text based annotation they choose.

Magellan also allows users to select variables based on quantitative biological

annotations. By specifying the annotation to be used and the quantitative operator to

apply, a user can perform any number of variable selections, such as retrieval of all BACs

in a CGH data set that strongly correlate with a clinical outcome. By combining variable

selections, a user can create compound queries such as choosing genes in a particular

genomic region, which involves a text based selection for the chromosome name

followed by a quantitative selection for the distance from the p-telomere.

.
t
º

º

43

6.4.2. Variable Projection

The term projection is used to describe the process of finding ‘equivalent’

variables between two data types by examining the relationship between the annotations

associated with those variables. There are many cases in which experimentalists would

use projection to look for effects across data types or data sets. For example, if a user has

identified an interesting subset of genes in mRNA expression data and wishes to find an

equivalent set BACs from CGH data, projection would involve finding BACs that are in

close genomic proximity to the genes in question. Alternatively, an end user may wish to

determine if a biological effect is consistently observed over multiple data sets by

projecting variables that meet certain criteria in one experimental data set onto a second

data set.

Projection can be used to find equivalent variables over a number of different

variable equivalencies, both quantitative and qualitative. In order to project variables

between data types, an end user must specify which annotations to use and what

constitutes equivalency. In the case of projection over identifier names, projection would

use a simple string equivalency over that namespace. In the case of projection over

genomic position, the equivalence criteria would include both string equivalence of

chromosome name and a difference threshold for the distance from the p-telomere.

Variable projection is performed by comparing annotations associated with the

variables of two data types. By moving from variables, through identifiers, into a

common annotation space, comparisons can be performed that are not possible to make

on the variables themselves. In the case of projection from CGH space to gene space, for

example, there is no direct way to compare genes and BACs. By projecting these

44

individual variables into a common annotation space of genomic position, however, these

comparisons can be made, and user defined criteria of equivalence can be established.

6.5. Other Analytical Applications

Biological data analysis has been the subject of intense research in many groups,

and there are a number of systems available that are geared toward a similar user

community. These range from single-use packages (such as clustering) to integrated

packages for performing multiple types of analysis (such as univariate analyses and

classification for multiple data types). Examples of the former include methods such as

SAM and PAM, which address permutation-corrected statistics and pattern classification,

respectively (Tusher, Tibshirani et al. 2001; Tibshirani, Hastie et al. 2002), and Cluster

and TreeView (Eisen), which address clustering. Magellan differs from these in that it is

a platform for offering multiple types of analysis. Examples of the latter include MeV

(TIGR), caworkBench (Columbia Genome Center), GeneCluster (Broad Institute),

GeneSifter (VizX Labs LLC), and mAdb (NCI).

In terms of functionality, Magellan’s primary distinguishing characteristics are its

generality and its use of biological annotation information as a means of constraining

analyses to variable subsets. Magellan is general in two respects. First, the internal

schema for storing information supports any type of data that can exist in a table (either

numerical or textual). Second, Magellan does not impose complex format requirements

on data, which is frequently a hurdle in making use of other systems, where local

procedures for data preparation may be at variance with expectations and requirements

for data formatting.

<-->

45

6.6. Conclusions

Magellan was designed with generality and extensibility in mind, such that many

data and annotation types can be stored and analyzed. As such, Magellan employs an

abstract representation of both data and annotations. While the generality of the

Magellan database means that certain information will not be represented in as much

detail as a specialized database, this is a reasonable tradeoff for versatility. Magellan is

designed to make extensive use of annotation information, which describes the variables

of data types. The specificity of Magellan is contained at the level of a subset of

analytical methods which require certain data and annotation types.

º
tºº

46

Chapter 7

Magellan: System Implementation

7.1. Introduction

The previous chapter detailed the design features of Magellan in general terms.

This chapter describes the details of Magellan’s implementation. The following sections

cover the specific software design decisions that were made in the implementation of

Magellan.

7.2. Magellan System Architecture

Magellan is composed of several different components. Figure 10 is a Unified

Modeling Language (UML) diagram that shows the various components of the Magellan

system, including the presentation logic, business logic, database layer, and application

layer. All of these components will be discussed in the following sections, while

connectivity to the data sources at the National Cancer Institute will be covered in

Chapter 9.

º

- *.

47

out -w-tºrowser

Jappages |

Database
Access ration

ºnformation Analysis

NJ Database |

Jews ºusiness Logic |

oracies.

waristº- variate ºre's
Preechen selection ...~"

ºxes

2^ N
Analytcal methods

ºsted. ºriº AE, cluster-ng viºuslizations Correlation and
Permutation

Cºlºmetºli ----fication Pºthº.

ºciº-º-º-c- | ºrthods - analysis
|

calºo Giºrsy Ethiº.

Figure 10–UML component diagram of the Magellan system.

7.2.1. Server Sided Application Using JSP Technology

It was decided early on in the development process that Magellan should be a

server sided application. As such, Magellan is installed on a centralized server that can

be accessed by end users over the internet. The choice of a server side web application

was made for several reasons: First, a server sided application overcomes many of the

compatibility issues associated with the many different desktop platforms (PC, Mac,

Unix) currently used by researchers, since interaction with the system is achieved through

* \;
* --

* - - a

48

a web browser. Server sided applications typically have a lower barrier of entry for end

users, since little or no software has to be installed on their own client computers. The

centralized nature of server sided applications allows for all user data and annotation

information to be stored in one location, rather than scattered over many decentralized

computers. Updates to the application are also much more easily managed, since they

need only be installed on a small number of servers, rather than a large number of clients.

After building prototype systems using Active Server Pages and Perl CGI, Java

Server Pages (JSP) technology (http://java.sun.com/) was chosen for the development of

Magellan. The primary reason for this choice is that JSP allows for the creation of server

side applications using the full power of the Java programming language. Java has the

advantage of being a true object oriented language, which allows for efficient code

development and reuse. In moderate to large sized projects, Java provides a

straightforward means of dividing the different pieces of a large application into a series

of separate Java Classes. The functionality of these Java classes can be accessed through

abstracted application programming interfaces (API's), which allow for easy utilization

of the underlying programmatic logic without knowledge of their implementation.

Magellan is designed to be deployed on a server that is running the Windows

2000 or XP Operating System (http://www.microsoft.com/), and the Apache Tomcat web

server and servlet container (http://tomcat.apache.org/). In addition, the Java component

of Magellan was developed using the Eclipse IDE (http://www.eclipse.org/) and the

Sysdeo Tomcat plugin (http://www.sysdeo.com/eclipse/tomcatplugin).

49

7.2.2. Centralized Oracle Database Utilizing an Open Architecture

All information uploaded by the end user to Magellan is stored in a relational

database rather than in flat text files. While incorporation of a database component added

complexity to the project, storage in a relational database provides for sophisticated

querying of data and annotations using Structured Query Language (SQL). Magellan

was prototyped on the Oracle database platform (http://www.oracle.com/index.html),

although a port to the open source database MySQL (http://www.mysql.com/) has been

initiated with collaborators at UPENN.

The use of a server sided Oracle relational database allows for centralization of all

data and annotation information into one physical location. This allows for easy sharing

of information between different users, with a security layer to ensure that the owner of

said information has granted permission for access.

Because the data types generated by biological researchers are heterogeneous and

likely to change over time, it was decided to represent both data and annotations as

generally as possible. Rather than hard coding the database schema to store only certain

data types, data and annotations are represented as type-value pairs. As seen in a

simplified representation of the Magellan database schema (Figure 11), separate tables

are utilized to store data types and annotation types as user defined strings. This method

of representation is analogous to the Entity-Value-Relationship model, which also

employs type-value representation of data.

50

Sample
F---------------- Upload ID
! Hºuse Sample Number; Uplo

-
Sample Name

: Experiment
; Data Type Number …

| Ordinal Position
: Type Data Upload User
; Value Upload ID Upload ID User Name
!------------------- Data Type Number Experiment Password
------------------- Ordinal Position User Name Lab Name

: Identifier Sample Number Content Email address
! Upload ID Value Description
t - - - -

File Delimiter; Ordinal Position - A

; Data Type Number º Entry Date
: Identifier Type w At - ccess

! Identifier Value Data Type Upload ID

* - - - - - - - -
-■

Upload ID User Name

1-------------------, Data Type Number Read Access
! Annotation : Data TypeName Write Access
! Upload IDT ! Number Entries
: Identifier Type :
: Identifier Value !
! Annotation Type ;
: Annotation Value ;

t

: t

Figure 11 — A simplified representation of the table structure of the Magellan database schema.
Tables with hatched outlines are used to store annotation information.

7.2.3. Analytical Applications

Although Java is a very powerful language for building server sided applications,

it is not necessarily the best solution for developing the analytical applications that

perform computations on data once it has been retrieved from the database. Several of

the analytical applications, particularly those that make use of resampling and

permutation, are extremely computationally intensive and are best suited for development

using the C programming language. Compiled C programs tend to run faster than their

Java based counterparts by a factor of at least two or three, a difference that becomes

51

particularly significant with large genomic data sets. Other applications deployed in

Magellan that make extensive use of statistical functions and/or graphical output have

been developed using the R statistical package (http://www.r-project.org/). R is an open

source application used extensively by the statistics community, and is useful because its

many publicly available code libraries allow for rapid development and deployment of

algorithms that make heavy use of statistical functions

External applications written in C or Java are executed from within the JSP pages

by making use of Java's Runtime.exec() method. This method executes the appropriate

analytical program on the server, and monitors the termination of the process. If the

process terminates without error, then the user is provided with a hyperlink to all result

files. If the process terminates abnormally, then the user is provided with a list of the

program output and error messages, which can be provided to the system administrator

for remedy.

7.3. Documentation

In an application such as Magellan, it is important that the analytical functions not

be regarded as a black box by end users. To this end, several web pages have been

developed to document both the core functionality of the system as well as the analytical

functions deployed within. This documentation serves to explain the basic purpose of

each analysis method, descriptions of the parameters that the user must specify, and

definitions of statistics and distance metrics used by the algorithm. In addition, the

documentation for analytical functions includes an example use case and output.

52

t- tº re- ºr - took - ** tº re- w - 1- ºrt

º •º “… -- ~~~~~~~~~~~~~~~. c - ■ º- - º * | *r----------------------- o - K.
** * * w tº ºvº

Sample Chustering -

Thai arabºral methºd wachuster samples based ºn a singe data type ºrgherarcheral ºne-tive charterº Hierarchita
tº terms ºst-: ****** ***** **n the chºra i-type and a stance men ºrd ******* ***** ***** The
rtºrs cºastergº is a gº-tº-r-º-º-º-º-n ºf tº relatiºn t-r-‘en sarºes, sºmeºnºrs reve-ºre ºrpºrtara swºr
classrs. The ength ºf the tranch ºf the 4-roºm that cºnnects ºr we samples refects the ºst-- between ºpies

distance Metrºt
chºose the ºpprºpriate instance metrº to quantitatively cºrpse samples for clusterº For the follºwing metrics, as ºne we
have two arrays we wish to cº-e-ºr. -- *a, and twi-ya - yºu

i Pearsen's terrelation distant--Pearsºn's cºrrelanºn cº-fºrm ºn tº 4-tºed as the towarance ºf two varia■ ºrt, irnied by
“ ºr “a tº a “******** *** ******* ***** * * * *
types ruth as mºrta -ºr-tºn P---on's correlsºn cº-fºrt: is a measure ºf *****, of a relat-tº-between twº data
tº ■ ex-rººt-ºu-al. a “nº- ºr fºr “...his rººf-3 The ºr ºf vºw tº rºtects re
rtist-nºt-war-gº-º-º-tº lººrfratºr ºr rar relatiºnship was remºve step

------ - - - nº ºn-º-º-º-º-º- ~

N- that the charter-sº-sº-cated-tº-tº-rea of the reºpºse ºf the ºr kººks tº try sºrcing 4

In ºrder techuster samplex, the felow-r-ºn-ters matte specified
Sº, -ºx, -y,

Data type te rºaster ---—
arries ºf “ thºstered ºng ºne ºf the tatatºes gathered tº each tarpie Select - ºne-ºat-type ºries the chart- r º, -r, R º, -y)

field ºf the iata table and ºpies -t-cºater-4 together uses that data ºr |-- y

Data Types te Display The intanze metre ºrd tº tarust- sample tº sample intrºe is d = 1-r
Althºº ºy cº-iata type will be used to chaster the war---, ** data types can be + played ºn the chasterºs output

heck the tº under the Laºir, field ºf the dataº tº each 4ata type tº te ºutpºned in the ºut sle
Eurkdean distant--The square rºot ºf the ºwn ºf squared iferences tºrtween each compouent of the two arrays

Leg Transferm

Data can tº kºs: trauteruri prº to chantºmº ºr display Check the tex ander the Lºs Transform field ºf the data table fºr R.,
each data type tº be lºg-tº-ruformed Distance º”
Range of values to celer in Graphical output
Each iata tºte wºn tº cºlºred - tº-suru se unre a green-red her map artºries tº its ºwn tº scale in each case, the
cºlºr acade a sºrºrº bººs º-º-º-y ºr abºut-va-ºf the ºur-lary tre+to++ º-tº-d
Fºr exampir. tº specify a tºwer to cº-of---- mºst esses the value. * * *ext bºa -4-values of that 4-tº--be
cekeed from-2-reeate 2-red

Kendall's T--- rank t-as-isºns- that measures wºrther the relatiºnshºt-et-reat-van-4--a mºnºtºv retreamº
• *treasus (a perfectiv wººt-ºut-ºw axt-assº relatºº rºstra that **** *** war-tº-acreases, so dºes the ºthers)
The war ºf the ºr vanes tº en ºf tº mºnº-acaº secreams tº 1 perfºrty mºnº rºrestrº To

sample selection cariº- a 4 tº ºff-sea tº wandº, º are “astºred where kes tº “ºu, Pai frau are placed **
Selects wºre tamºr -t-rºd-date analyms ºf Select a samples a checked them -------b-cum-red featy tº-sº-sº
****et ºf the e-less to be castered the -heck "Select al. sarºes and check thºse samples tº t-taster-d Cºrixa- -tºnrº, ºwner whenxº wº,

Lucasiaº-when ºn mºnº when x** ***
Dºt-ce Metrºr- ** **
-

* +-----a -------------------- ******* *** --4---- ------------fºr-4-

- -
– “

Figure 12 – Example documentation of analytical methods in Magellan

7.4. System Security

All data and annotations stored in Magellan are password protected. Each user

chooses a login and password when they register to use Magellan online and must enter

the login and password each time they use the system. All information uploaded by a

user belongs to that individual, and is only accessible by other users with the permission

of the researcher who uploaded it. Magellan was not designed to store any identifiable

patient data, so additional system security measures besides the password protection

described above have not been employed.

7.5. User Interfaces to Magellan Features

7.5.1. File Format Independent Method of Data Entry

One of the difficulties in using existing analytical applications is their dependence

on particular file formats. For this reason, it was decided that Magellan would provide a

generalized means of uploading data from the user to the system. Rather than forcing end

*

:
f º sº

--º

:

53

users to reformat their data, the user can specify the content and location of the

information to be stored. This is achieved by generating a representation of the uploaded

data file in the browser complete with hyperlinks along the rows and columns. When a

particular hyperlink is activated, a web page pops up that contains fields into which a user

can specify the content contained within that region of the file (Figure 13). By repeating

the process for the sample names, data types, identifiers and annotations, the user tells the

system exactly what information to extract from the uploaded file, and how it should be

represented in the database. ~

º
-

■ *-

*

54

--- * ..p.A., sºrrºr-cºrrºr-º -irº
* tº re- ºr troºrººs toº ºr ** tº re- ºr tearººs inos ºr

- - & ºf renº -- ~~~~~~~~~~~-lo - d. T | * : £º º f * * ~ *~~~~~~~~~~~~ o 2 ■ º.
* * * * * * * *

File Centrut- - File description -
Row 2

The hyperiaks at the tap and left sides are used tº define the rements a■ the uplºaded file
select the type ºf aformation that this rewrontains:

Use the kaks tº indicate the location ºf the sample names, data types, and identifiers (in that order) st: Refer back to the ºxºtre+ hyperbak■ ºr the table tº determine rew and rearmarasat-ers
**aiti

* This rºw remains sample Names
Displaying the first 25 lines a■ the spleaded file Sample rºamer began in cºhns, and end r, cºbara

- - - * * * * * * * u ka w it * Sarnºt manart are cºus attu■ rºw
a cº- tiº as- - - - - -º- ºr use as- as ºr a- ºr Saeºle narrºts are is: as c s) tº saºr taatsa wºm. M total_* * * * * * * *** *** * *ars e tº a lºss azºº, a 1-> * * * * * * ºt-tº- chaºs) between º
a wº. r.s ºr vºns irrn ºur * -ºss ****** e - ------- -- -

+ ºri-sate rºw arts ! ---------- This Fae centains data from a single sample, mained
- wa■ ex-i ºr tºta i-tº a sº

4 ***** *** *** ---as 4-3-º-º-º-º: six-in-a-sta ---ni -º-º-º-º-º-º-º-º- is al-º-º-º-ºne e-zi- * This rºw determines the b ºf a data type:
* * *** **, ** a riºt- -t-t- oundary ---
- ºn ºn- *-i-º-º-º-º-º-º-º-º-º-ax *-*** ***- : ***. Data tº a rºws and ºr is a rºw <>{}
+ k2 i■ ºes c. **** -i-º- a servas a ---, Entry the name ºf the data type (each name can be used ºnly once)
a wry, saxºn *** * *-t- - - - -...--> a lºa- *cºh
is sº asse easºn a pºliºs a -i- a -- cºe a cºva; * * * ^ Fºrtsmºn
a *, *-is a sizes sº-, * ***** * **** ***** - ess-a sexes: tº ºther■ T.
u rºi, zºº tº 234, it ------ a -i-, -, -i- a -i- tº 4 -- a--

a sºlºis- * --------wºº a ºx-º-º-º-º-º: ººº-º-º-º-º-º-º-º-º-º: * The ims to each ºr fºes data Mº a nºt same tº sº tº isºlº ºne
u rºis swº- --------s ----------------ºr, a six-, -e ºxy --> -- a saxº~ + -agº a 1--> --> * Sºvie, c. 4- tº twº tº a cºrn and end a tº hair,
ºf ºurist- ****** * ****** * ***** * ***** **---a - asses º ºs-- a -sººt *-** a -sº a steals a t-s: * Sºrºries ºf this data tyre are continuºus in this rºw
it ºf anxtº ºtt zust is ecºnºw a sº-rº s sº tº sº-sui º ax- see-s a sº a sista é awas a sº a sº- - - -- -

is ºwn tº ºria ºs • *b* a utº a seº -----, * *** **** **** * ***, * *** **** *** c ºr satiº ºut a ºne = *.*.*, **■ tº between cºrn, ºf de
a creasºns rºtºzººsas ecºzza e is is a rºw a “tº a zarº a wºn a saw a sº-º-º-º-º: s intº a “*, ****

* ******* ****** * --> ------ a -º- a -º- a sº-, -º- a -ºpi tº rºommon Rese
u ºf is sºon Rºnsºrs …tº gº.-----, ----------ºx

is ºf a-in ºra, ºwns a 2-ºº: -...-a, ----- a-- - ------i-

u ºr nº an º- a *-* a sºlº e ------ ta.º., a i- a 4-sº

a wr-ºrsºs" vºwires • *** a -- - -slava - ºr

a creatºil crºzºna -----------as a- 4-fºur Cumulative Upload Information:
sample Names: lºcated in rºw i, using cºunts, 3 tº 22

The last 25 kines ºf the uploaded file Number of samples 20 –
---> f - 1-4 34. -ºid -34 - º -- -- -- --> --- ** *

—— • •
-

tº a rº- º ºxº~. Leº gº

* : * ** Treirº-º-º-º-º-º-º-º-º-º-º- o - ■ º.
... * * * *

Upload Preview
-

You have spºtified the fellºwing infºrmatisafer the current upload.
Sample sames are miscated in red
Identifiers are headed a green
Anºtatºes are headed in that º

Data Type C3H
Number of data pºts per sample 2463
Inspºng the first 10 met ºf iata type CºH
º ~ * r tº ºr tº: *** **, *.* tº it?
tºtal ºrna w 4-spam exºss; an ext; nºnna arºurs eixº extes arºssº a 2xx s ºwns' six-wn exases a wax, crers
wºrris ºpt-º-º: 4-ºx - **-u a un-e liºs

-in--- a six-ºt e ºs-i: -------->

--it-tº-in 1 -º- ºr- 4 arºsta - nººn

ºn tºni -----------is a sºlº e axis axxari -º-º-º-º-º-º-º-º-º-º-axºnº ac-----e-ºs º zººi

-i il-º-3 a li-i- a law- erºes

ºriº sº- -->4 - - -------e-ºn ear--- -º-º-º-º-º-ax---------, * 1414… --- *-**

-º-, -, --> -ss-a- ex-ray - assays tº 1-rais gº-sº a sº- + arsii º ºx-º- ------ a tºº e sea. e. ---sº a ºsti

Frºm six-tº 4-iºn a wins, exsmis; -º-º-exil- a tºti - ºr- ºr-- tº 12tta e -º- ºut--- * **-----i-º-aux

-*** *** --sºme sºax-assº a ºn tº sex-a -sºº -ºix- * *** *-s e ax-a--- * ur-east-e 2-5-1

Displaying the last 10 hºrs of data type CºH
crt-º- -----tº-saxºst - ºr- - - - --sas ----ºf a *-** a sº-º-º-º-º-º-º-º- ºr--a -º- + --

ºrt ---na- - -º- + º-º-º-º-º-º-º-º cº-rº c -i- - - - - exixe 4 unay
r-e-r- - -º-; e -wise ex--------- -et-tº-e arrº e -2 = z*** * **** - nºt-sº a sº-º-º-º-tº a start a maxe

crº-º-º- + -ti- e iisa, a 1-tº a sa-ºxº-a-e'-a's 4 arosa gaswº" -- a--- tº tex- d -**** * * *-*.*.*.x-

cr: a-gº ºu • *** * * * * * *** **** *** *** *** * * * * * * * * * **
rt---as-a- - *-* -- ea-º-º-exº-at-a-wºn a 1-alk- e -- exaºxi º ºstin exºes g º ºs estats a wet---as-º

*******:- - - - -e same a rºta a sº-caº a rºtta º intº a sº- cº-º-º-º-º-º-º-º-tºn a lºw a sº->

ty-º----- ** *** *** *** *** **u-. * * * * * * * * * * * * * * * * |
|wºrrº stri tº a tºrs -ºs.ºr six-i e ºssºss tº rein -a-rºa º ºs e rººt tº ºsºt - irºvº e º ºr e ºs-- a re----- isºsts

was sº-na eras” sassº cººls sººn says sasa; six-s arºse was as a sausa e-ass: a*a* **** **wu

- *- t------- •
•l — ºn

Figure 13–Web pages used to upload unformatted biological data to the Magellan database. The
file contents, content specification, and upload preview pages are shown.

7.5.2. Variable Selection

The user interface used to perform a variable selection is detailed in Figure 14. A

user chooses a data type, and a set of annotations to use in performing variable selection.

The user then specifies whether to perform a quantitative or qualitative (i.e. categorical)

:
º

55

selection on the annotations. Figure 15 illustrates an instance in which CGH data is

variable selected for only those loci whose F statistics against patient survival exceed the

numerical value 5. As a result of navigation through these pages, a new data type

becomes available to the user in which only the variables whose annotations satisfy the

selection criteria are returned for analysis.

Magellan utilizes this information at the level of the interaction between the

business logic (residing in compiled Java classes) and the Oracle database. When the

user chooses to perform an analysis on the selected data type, the system first performs a

query to determine which annotations satisfy the user specified criteria, and links those

annotations to specific rows of data through identifiers. Only those rows of data are

returned to the system for analysis.

- * ...ax, Lºrrºr-ºws - - - prº
tº ta º ºs º- iº tº tº gº tºe- * * * *

* - * - -N■ -aº -- ~~~~-e--------, o – ■ º. | 4 - & -* f *-º-º-º-º--------------, -} o – ■ º.
*-i- *** * *

subselect data Types Subselect Data

select a data type tº subselect subselert data type coh by amaswatian set. Fists: vs Survival
survival

* Cºh sessier arms “an ºn-■ cº
^ Expresmºn * Quantasively. Air tea a■ - tº “men” was Fo

* Qualitatively. Asotabºº has the value(s)
$eiert subseterties ºriteriafer the data type: -

s ***** * ***** * * ***** - *** *** *** ****
*** - 5 --> —:

^ Remºve a subselected data type frºm the List ºf available data types *** *** fºr the new data type. Kºº

sº-Jae- sºme J. Rese: ;

Figure 14 – User interface to perform variable selection on a data type.

7.5.3. Variable Projection

As stated in the previous chapter ‘projection’ is a term used to describe the

process of finding equivalent variables between data types or data sets. The user

56

interface for performing projections is illustrated in Figure 15. A user selects a data type

that serves as the source of the projected variables, a second data type onto which the

variables will be projected, and the annotations that will be used to determine

equivalence. In the succeeding web page, the user defines the criteria for equivalence of

annotations; in the example shown, projection by genomic position has been chosen such

that only those BACs within 1Mb of the genes will be retrieved to make up the new data

type.

- ..nix, ºr--ºr-º-º-º-º: - Ex!
tº tº º 'º ºne- tº ºw tº “ - * *-* - -
* - º ** f * > --~~~~~~~~~~~~~~~~...~ o . C. T. & . º ºf ~~~~~~~~~~~~~<------------ o - ■ º. T

*** *.* ** ~ *

Project Data Types Select Prejection Parameter. -

Wire Rºsarnº Prºject free Data type: Expressºn
Project use annºtatºrs Matºg ºf Afrº HºrrePL against Aug 2001 freeze-types (chrem tºp)

Prºject variables sate data type (the variables ºf the newly created data type will be derived from this ºne):
$tress. Prºject eate Data Type: Cºh

* cºn Prºject usins annºtatºrs Magºg of Hazaaray 1 14 against Aug 2001 geºme freeze-types (chres tº
* Expressee

--- -

Prorº Urs ■ ºon user-garººns, Tººwº-crºsses - *** *** fºr the new lºss type. Kºrºsºft-risºn

Cheese the sºurce ºf the mermatism te prºject ontº the data type selected above º Project sºme ºn annotace values * Prºject by gener rººtsºn
- - -"------------- Expressies coh www.le, we errºrs fºr Red tºp ºf each

tº cºn thrºn chrºtra ºther
* Expression b; t;

-
Data Type Expresnºen - -

Preject Tang [**on Mapprºaerrºreflagarºa-3:tº seers *-*-i-º-º-o- Amºza Mººrs ºf Aff Hwºrºfl against Aug 2001 fleer
- tº equality Cºncºs' ºr a “**** *** twº ■ cººr -

* Prºject metations sets the data type. * Sºrºs -quary case serºve *::::::::::::::::…”
Enterarºtatiºns yºu wish to onse the data tº dehºrsed table. ºrst me toºsans ºnotation types) hºusaenza equality tº -

Star ºf smoºn. Attºre■ tº -

^ = Data Type Cºh
- º

rwee■ T ºf each :-----º-º-º: against Aug 2001 geºme
often ºr merce. Numºr a represented by ** twº ■ ºnºr -

Dºnncº sºme ºr a represented by ******
■ ºr -
Star ºf rººm, insece■ tº -

sº-J re

Figure 15 – User interface to perform variable projection between two data types.

The concepts of projection and annotation comparison are implemented as Java

classes. The projection class stores pointers to the data types that serve as the source and

destination of variable projection, as well as the annotations to be used in determining

variable equivalence. The annotation comparison object stores the information the user

has specified in determining equivalence, i.e. whether the comparison is to be based on

string equality or quantitative relationships, and the comparison operator and threshold

involved. By stringing together multiple annotations with multiple annotation

:

57

comparison objects, complex projection events involving multiple annotation types can

be made. For example, comparison of genomic position involves a two part comparison

including string equality of chromosome name and a thresholded difference in distance

from p-telomere. The overall comparison can be made by instantiating multiple

annotation comparison objects, one for each annotation type to be used in the

determination of equivalence (Figure 16).

Annotation Comparison 1 – String Equality

! !
Chromosome bp Chromosome bp

1 5x10e6 1 4.2x10eff

5 6.3x10e? 7 6.3x10e?

X 9x10e6 22 9x10e6

t !
Annotation Comparison 2 – Difference Threshold

~

:º

f
ºuis

Figure 16 - Projection involving multiple annotation comparisons

7.6. Analytical Processes

7.6.1. UML Representation of the Analytical Process

The process by which an analysis on data and annotations is performed within

Magellan is depicted in the Unified Modeling Language sequence diagram in Figure 17.

Briefly, the user selects a data set in her browser, and a list of data types are retrieved

58

from the database and displayed in the browser window. The user then chooses an

analytical method and parameters for that method including the data and annotations (if

needed) to be analyzed. The analysis is initiated, which consists of retrieving the data as

a flat file from the database, forking off the analytical process that operates on the data,

and informing the user when the results are ready to be viewed and/or downloaded.

sq Analysis /

§ Magellan Gul Magellan racl Command Line
/\ LJSP Pages Business Logic ication

[Java Classes]
End User va Classe

Select Data Set : :
:
+

get■) stafypes(experiment)

List of Data Type Objects

getAnnotation(upload)

Returned Annotation Object
º

Associate Annotation with Data ;

Specify Analytical Paramters : :
-

- t
i -

Analysis setAnalyticalParameterO ! . :
Analysis.makeDataFileO - -

Flat Text Data File
*:------------------------ l

Analysis.makeannotation File() !

Flat Text Annotation File

runtime.execC

: Return value from Process

[Processe utes ssfully]

Return Hyperlink to Results

r

[Process terrºinates with error]

Return Error Messages from Stdout:

Figure 17 – UML sequence diagram of the execution of an analytical method on data and annotations
within Magellan.

*
pºss

g".
--

***:
=

:

59

7.6.2. User Interface to the Analytical Functions Deployed in Magellan

The analytical processes deployed in Magellan to date utilize a similar user

interface and flow of operation (Figure 18). Briefly, the user selects a data set from the

list of data sets to which she has access. The subsequent page allows the user to select a

method of analysis, while the page after that provides an HTML form into which the user

specifies analysis parameters. Once the analysis parameters have been provided, the data

is retrieved, the application executed, and the user is presented with a hyperlink to the

results, which can be viewed in a web browser.

ºrrºr-rrºr-rrºr- .a. Errrrrrm- - nº
* tº tº gº tºo-ºº: tº• ** tº re- ºr ºs fore tºrt

* - ºf º■ ºr --~~~~~~~~~~~~~- o º ■ º. T - - * * * * * * ~~~~~~~~~~~~~~~~~~~ o a ■ º
* * * * * * * *

-

select an Experimental data set for Analysis select a Method of Analysis
t

Cheese from see ºf the following data sets: Data types currently available far malysis:
*** a st-teatºr sisti is a ret
■ E.I.T.T. Data type: Survival

Experiment 1
fºre era º Bertrºx * xener Cats
Espers art 1 Berthºcºaº CMºrter Gaºs
Experfºrt 3 Berchuck Mála ovarian■ late- p-ºr-ch
expersees 4 are gets on 22 periºrset: center ceabres -º-drug ■ cº-104th and 3 normats ar, Hº-J131a_2 chip Experiment:
fºres º Aºy ºut 31a_n arº Cº- ºurnarºº gº data on 22 pºrtreet terre cea area and 3 normal parºresecºurse ept Annetarian Frtar vs Survival
Experiºrses 2 es: Anastatism. Prop massºs
Exter-era º testeg dese upload-tº arranºrs * -

Experrerº taugadºle ºries sººn isºe set, Amºstatisa. Mappus ºf Haanay I 14 agawat A*s 2001 genome freeze
Expºrters tº rºugher cººperºr ºxeasºn

ºrrºw, ºr severs ºr rºs Data type: Expreseen
Experiment :Anastation: Fitat vs Survival
Amºnstation. Prº assus
Annotatiºn. Mapping of Affy HuºrºeFL against Ass 2001 freeze

_damore son. Amºute. Subielect Project ºr Error a Data Tyre Wºwºsºrºrº

select as methºd ºf amalysis:

rººfrea rerº, aye-si > ******Feason * *r-rº
Deeterºn Expressiºn by Tºes. ºf tº ur-erºtºr of c-fºr
Pºrt-stºrers fºur-anºe Cºsºntºns

*—
- - -

s * Caru■ ºe ºrgwakes
tº- tore Cacºsts frequency otherascº, across serpes

º sº º

60

--nº ºrmºrrºr--ax.
- - - - - - - - - - - - - -

-- - -> ------------------------- – -º■ ------º-º-º-º-º-ºr T- or ■ º.
-

---- ----

*-ºs- Pre- * ae - ºr a , " " - ra: tºs e - - - than e-2
1 sperºy Para-ars - -

---------ºn *** *** - Cº-º-º-º-º-º-º-º-º:
* *-ºs---
-- ---

c----------------- :
- - - ----
-
**- ---------------

re-------º-º-º-º-º-º-º-º-º-º-º-º-º-º-º: --------------------
Use the --- -----------ºf- –

º-º-º-º-º-º-º-º-
------ - -----

cº-------- -----------
- - - - **-------- - --

-------- -
--- -------- -------

-- ------------ *-------
ºrn --------------- - -

wº- *-*-*------------- --- - ------ - ------ -

-- *-*-■ -■
- -

- i.e. ----- ----- -----

--- -------- -
—

- in- * - -

• * - - -

--- - - -

--- - - - --

-- L--------- - -

-º- -

wº- - - - -
f a' --

--- -
- * - - - - - - - -

-
- - - - - - -

–
- -

Figure 18– User interface for execution of an analytical function in Magellan. The data selection,
analytical method selection, parameter specification and results pages are shown.

7.7. Conclusions

Magellan was designed as a client-server based web application with a centralized

Oracle database, Java business logic, and JSP based presentation logic. The executables

that comprise the analytical layer of the system are separate programs that are modularly

deployed within Magellan and run as multithreaded applications. The design choices

made in the development of Magellan reflect a desire for generality and extensibility.

The abstract, type-value based method of representing data and annotations allows for

multiple, arbitrary types of information to be stored and retrieved for analysis. The use of

the Java programming language in the implementation of Magellan insures an ease of

extensibility of the application, such that developers can add new functionality to the

application by utilizing and extending the Java API.

61

Chapter 8

Magellan Use Case: Analysis of
Genomic Data in Ovarian Cancer

8.1. Introduction

The previous two chapters covered design and implementation decisions in the

development of Magellan. This chapter discusses in detail an example of the use of

Magellan on genomic and clinical data derived from ovarian tumors (Kingsley, Kuo et al.

2005).

8.2. Description of the Data Set

Twenty primary human ovarian tumor samples were analyzed in this study. Ten

were tumors from patients that survived more than 7 years (long survivors), and 10 were

from patients that survived less than 3 years (short survivors).

The tumors were analyzed by array CGH using experimental procedures

previously described (Hodgson, Hager et al. 2001; Snijders, Nowak et al. 2001). Briefly,

DNA samples from the tumors and from normal tissues were labeled with CY3 and CY5,

respectively, and hybridized to an array comprised of replicate BAC clones distributed at

y º

:

62

~ megabase intervals along the genome. Hybridized arrays were counterstained with

DAPI to facilitate array element segmentation. CY3/CY5/DAPI images were analyzed to

determine CY3/CY5 intensity ratios for each element in the array using custom software

(Jain, Tokuyasu et al. 2002). Measurements of individual array elements were discarded

if the within-spot Cy3:Cy5 pixel intensity correlation was -0.81, or if the number of

pixels per array element was “25 (the average spot size was 65 pixels) or if the CY3:CY5

ratio was >20% from the mean of 4 replicate measurements). This resulted in CGH

measurements from 2309 genomic loci after quality control and elimination of loci where

more than 50% of samples had missing values. Note that missing values are typically

caused by rejection of spots based on statistical concerns such as high replicate spot

variance. Regions of the genome that have been deleted in the tumors should still be

represented in the data set.

Expression data was collected as reported (Lancaster, Dressman et al. 2004),

using the Affymetrix HuGeneFLGeneChip and Microarray Analysis Suite

(http://www.affymetrix.com). This resulted in 7129 gene expression values for each

sample.

As described above, CGH and mRNA expression data were obtained from twenty

ovarian tumors, comprising ten long and ten short survivors. Magellan was used to

explore the relationship between these two types of genomic data, and between the

genomic data and accompanying clinical information. Several standard analyses were

performed, which made use of a single data type at a time, with no use of annotation

information. I also performed multiple analyses that required annotation information,

multiple data types, or both.

63

8.3. Single-Mode Analysis

Figure 19 shows the frequency of genomic copy number alteration for the twenty

tumor samples. Gains and losses previously shown to be common in ovarian tumors

using chromosomal CGH (Shayesteh, Lu et al. 1999) are present. The resolution of array

based CGH further sharpens the structure of the abnormalities.

Frequency Plot of Genome
2 4. 6 8 10 12 14 16 18 20 22 Y

s

- - - - -

----- - ---------
- - - -

3. - - - - - -

+---S

§

3.

----:
+-----|--|-- ----:

- - - - - - - - - - -

- - - - - - - - - - - - - -- - - - - - - - - - - - - - - -s
1 3. 5 7 9 11 13 15 17 19 21 x

chromosome number

Figure 19 - Graphical representation of the frequency of chromosomal gains/losses in 20 ovarian
tumors

Correlation analysis was used to determine the relationship between genomic and

clinical data, that is whether the behavior of any single gene or genomic locus

significantly correlated with patient survival class by t-test. The significance threshold for
64

the t-statistic was determined by a maxT permutation-based approach, as described

previously (Jain, Chin et al. 2001) using the 95" percentile of the max permutation

distribution as a significance cutoff. A significant correlation between the expression of

the spermidine/spermine N1-acetyltransferase (SSAT) gene and patient survival at

p-0.05 was observed. This is a conservative approach, since the null distribution is

calculated from the maximum observed t-statistic from each round of permutation. The

SSAT gene has been previously observed to be elevated in human prostate cancer, where

it may have a role in maintaining polyamine homeostasis (Bettuzzi, Davalli et al. 2000).

While the biological and clinical interpretation of the correlation between SSAT and

patient survival in ovarian cancer is unclear at this point, the result demonstrates use of

Magellan to identify a correlation between gene expression and clinical outcome under a

stringent test of significance.

An identical analysis of the CGH data revealed no single locus with significant

association to clinical outcome. However, clustering samples using CGH loci that

correlated with outcome showed a good segregation of samples based on class,

suggesting possible success of outcome classification by CGH data (Figure 20). K

nearest neighbors classification with variable selection (Olshen and Jain 2002) yielded

reasonable classification performance using a leave one out cross-validation. Variable

selection was performed for each round of cross validation, using the t-statistic vs.

outcome to select the top 50 variables for each sample holdout. Using the Euclidean

distance metric, I consistently observed a better than random fraction of correctly

classified tumors using a number of different values for parameters such as the number of

holdouts and number of neighbors (Figure 21A). Due to the very small sample size,

65

cross-validation estimates of classification success were better for leave-one-out testing

than for tests run with larger holdout sets. For the single-holdout cases, classification

performance was as high as 80 to 85%. Figure 21B shows the effect of varying the

number of selected variables under different values of K, using a single holdout. With a

very small number of variables, performance was poor, but there is a broad peak of

performance from 25 to 100 variables, centered at 50. Classifiers based on mRNA

expression data underperformed classifiers based on CGH data, despite the converse

result in the univariate analyses. **

n- runsº

N-1

nº ■
567 -

Figure 20- Hierarchical clustering of samples based on loci whose CGH profile correlated strongly A
with outcome .

ºse

ºut.-

A.

K

1 3 5 7

1 .85 .85 .80 .80

2 .75 .70 .65 .50

Holdouts 3 .80 .75 .70 .60

4 .60 | .80 .70 .70

5 .55 .70 .55 .55

66

K

1 3 5 7

5 50 | .45 40 65

10 .70 | .50 .55 .60

Loci 25 .70 | .80 .70 .60

50 .85 .85 .80 .80

100 | .70 | .75 .65 .55

Figure 21 - Fraction of tumors correctly classified using CGH data under cross validation. A –
Fraction of tumors correctly classified using 50 genomic loci but varying the number of holdouts and
the value of K. B - Fraction of tumors correctly classified using one holdout but varying the number
of genomic loci and the value of K

Given the very small number of samples, these results are encouraging to a

degree, but require prospective validation on larger sample sets. The signal within the

data is not overwhelmingly strong, and the single-mode analyses do not reveal

compelling results with respect to patient outcome.

8.4. Annotation Based Correlation Methods

The preceding analyses were performed independently on the mRNA expression

and CGH data sets. In order to relate the two data sets, annotations associated with the

data were utilized. In particular, genomic mapping data to relate genes to genomic loci

was used. Two types of analysis are presented here: 1) where a statistical question relies

directly upon annotation information, and 2) where a statistical computation is used as an

annotation of genes in order to constrain a question about genomic loci. As previously

discussed, the term ‘projection’ is used to describe the process of finding equivalent

67

variables between two data types by examining the relationship between the annotations

associated with those variables.

8.4.1. Gene Dosage Effect

The presence of frequent alterations in copy number across the genome in this

collection of ovarian tumors (Figure 19) suggests that many genes could potentially be

affected by gains or losses of genomic DNA. In order to determine the relationship

between CGH and expression data (whether the sample-to-sample copy number of any

genomic locus was correlated with the mRNA expression of any gene), a correlation

analysis similar to that between genomic data and clinical variables was performed.

Correlation coefficients were calculated for each pairwise combination of loci and genes,

and significance was determined by maxT based permutation analysis. No gene-locus

correlations exceeded the 95th percentile cutoff of the permutation analysis, indicating

the inherent difficulty of finding relationships between high-dimensional data types with

a relatively small number of samples.

We considered a more direct relationship between gene copy number and gene

expression by incorporating biological annotations that used the genomic mapping of the

BACs of the CGH array and the genes on the Affymetrix chip. The annotations were

used to create bins of genes and loci based on common values. In this analysis, the

genome was divided into 100 bins of equal length. Each bin of a two-dimensional matrix

contained the genes (X-axis) and loci (y-axis) that mapped to those genomic regions

indicated on the respective axes. The color of each bin was the average of all cross

correlations of the CGH data for each genomic locus vs. the mRNA expression of each

gene within the bin.

68

-S$

º

Figure 22 shows a graphical depiction of the result computed and rendered from

Magellan. An area of higher than background correlation is apparent along the diagonal

of the graph, suggesting that expression of genes correlated with the amplification or

deletion of loci that map nearby in the genome (Figure 22A). The significance of off

diagonal correlation values is uncertain, but the correlation values for genes and loci that

map to within 1 Mb is significantly different from the correlation values for genes and loci

that are separated by at least 50Mb (p << 0.001 by t-test). This is evidenced by the right

shift of the cumulative histogram of correlation values in the close-mapping case (Figure

22B).

CGH vs Expression Correlation

s

: 3.g:
Š

3
i i i

-0.5 0.0 0.5

Pearson's correlation

Figure 22 - Correlation of CGH and mRNA expression data, binned by genomic position. A - All by
all Pearson's correlation of CGH and expression data, binned by genomic position as described in the
text. B - Cumulative distributions of gene/locus correlations for pairs that are within 1Mb of each
other (green) or at least 50Mb away from each other (black).

Genome-wide, on average, amplification of a genomic region tends to up-regulate

the expression of genes in that region while genomic deletion tends to down-regulate

gene expression, a result that has also been observed in breast cancer (Pollack, Sorlie et

º

69

$

**as

iHº!

f.! {}

al. 2002). The result confirms expectations, but there are two aspects of this analysis with

respect to the Magellan platform that are important. First, the explicit use of annotation

information (genomic mapping data) was required to make the correspondence between

data types. Second, integration of the annotations with the data for the analysis was

accomplished using a procedure easily accessible to a naïve user.

8.4.2. Gene Annotations

Gene ontology annotations were available for most of the genes represented in the

mRNA expression data. These were loaded in Magellan as curated annotations of the

expression data type. As a demonstration of textual annotation use, 394 genes were

selected with any of 13 cell cycle related gene annotations (features such as cell cycle,

regulation of cell cycle, ...). The distributions of gene correlations with survival for all

genes versus those of the cell cycle were compared, resulting in a rightward shift of the

latter set. The shift was not quite significant (p = 0.07 by Wilcoxon rank sum) and is

presented here as an illustration, but the following results using derived annotations

exhibited significant enrichment of extreme statistics.

8.4.3. Derived Annotations

In addition to curated annotations such as genomic position or gene ontologies,

data can be selected based upon quantitative annotations that are derived from the data

itself (such as correlation with a clinical outcome) prior to analysis. Combining selections

such as these with data projection can be useful in moving among data subsets within an

experiment as well as moving between different experiments.

70

We computed the t-test for the mRNA expression data with respect to patient

survival for each gene and selected the option within Magellan to store the values as a

derived annotation for the expression data type. The gene expression data set was then

variable selected such that only those genes with statistic values in the top 1% were

considered. Using the genomic mapping of the genes, those loci in the CGH data set that

were in close physical proximity to the selected genes were selected. The cumulative

histograms from the distribution of t-statistics for the 95 selected loci and the

corresponding distribution for all loci are shown in Figure 23. The cumulative histogram

for the selected loci is shifted to the right of that of the unselected loci, indicating that

genomic aberrations that are located near genes whose expression correlates with

outcome are themselves more strongly correlated with outcome (p<0.05 by Wilcoxon

rank-sum test).

Selected CGH Loci vs Survival

s

g

g

i All loci

/* Selected loci - - - - - - -3.

§

3
I I I I T- I i

0.0 0.5 1.0 1.5 2.0 2.5 3.0

T statistic

:--

º

sº

71

$

s

g *

Figure 23 – Projection of variables from mRNA expression to CGH. Cumulative distribution of t
statistics of CGH loci vs. survival for all loci (solid line) or loci that are within 1MB of one of the top
1% of genes that correlated with survival (dashed line).

In data sets with limited numbers of samples, such as the one presented here, it is

often easier to observe significant differences in distributions than in individual genes or

loci. In the example just presented, variables were projected from gene expression to

gene copy number, but outcome information was used in the process. Since a direct

relationship between genome copy number and expression has been shown, the effect

may be a simple manifestation of the same process.

However, since genome copy number has an expected normal value (a relative

log ratio of 0 compared with normal), genomic loci that are involved with the disease

process can be identified without reference to outcome. Genomic loci were identified

that met progressively more stringent tests of frequency of aberration, and the

relationship to patient outcome of the genes that mapped close by was examined. Figure

24 shows cumulative histograms of the t-statistics of gene expression for multiple subsets

of genes. The leftmost distribution in black was from all genes. Each succeeding

distribution was computed from progressively more stringent criteria. The shift in

distributions is monotonic, and the difference between the distributions for all genes

compared with those genes that map to loci that are most frequently altered is significant

(p < 0.05 by Wilcoxon rank-sum test).

º º º

rº
**

was.”

º *
**-
gusº

72

º

º

*** * *

... :: * *

º****

f,
!.
ºn 24

!..
**º

Selected Genes vs Survival

C
v- T

co
O

CO
QD c T
F
5 All genes
9 Projected from loci altered 20% -------
& St Projected from loci altered 25% -------

co Projected from loci altered 30% -------

CN
c

CP
c

I I I I I I

0.0 0.5 1.0 1.5 2.0 2.5 3.0

T statistic

Figure 24 - Projection of Frequently Aberrant CGH loci onto mRNA Expression Data. Cumulative
distributions of t-statistics of mRNA expression vs. survival for all genes (solid black line) or genes
that are within 1MB of CGH loci whose log2 deviation from normal is at least 0.5 at a frequency of at
least 20% (dashed green line), 25% (dashed blue line), or 30% (dashed red line) of samples.

8.5. Conclusions

We demonstrated Magellan's application on a specific genomic data set

containing CGH, mRNA gene expression, and clinical outcome data from ovarian

tumors. Using this system, I was able to identify a significant correlation between

expression of the SSAT gene and patient survival, and was able to build a CGH based

classifier that correctly predicts survival up to 85% of the time in cross validation. It is

important to note that these results are derived from a small data set comprising a

Selected group of patients, and any conclusions need to be reproduced on larger data sets.

i
º
A

º:

73

S

s

tº

3.

:

By making use of curated annotations, stronger conclusions about the relationship

between genome copy number and gene expression could be made. In particular, on

average, genome-wide, there is a significant component of gene expression variation that

is explained by changes in genomic copy number. Using combinations of curated and

derived annotations, I showed enrichment for relationship to survival in moving from

gene expression data to genome copy number data and vice versa. The power of

integrated analysis with the combination of annotations, both curated and derived, is a

key distinguishing feature of Magellan.

74

Chapter 9

Integration of Magellan with the

caBIG Project

9.1. Introduction

While Magellan was under development, a multi site cancer bioinformatics

project was initiated which shared some of the same goals as Magellan. This project was

sponsored by the National Cancer Institute’s Center for Bioinformatics, and was known

as the cancer bioinformatics grid, or caBIG initiative (http://cabig.nci.nih.gov). The

stated goal of caBIG is to create a “grid’ or network that enables individuals at different

institutions to easily share data and analysis tools. caBIG is designed to provide a ‘world

wide web' to the cancer research community, to facilitate the delivery of new analytical

approaches, and speed the pace of discovery. Magellan became a funded development

project within the caBIG initiative.

The caBIG initiative currently includes nearly 500 participants from roughly 50

Cancer Centers and other organizations. Approximately 70 projects are being funded in a

three year pilot project, with about 10 development projects within the Integrative Cancer

Research Workspace, of which Magellan is a part. Our funding was initiated during the

,” º

º:
isº sº

*****º

75

º

s
* *

*

º

*

~ *

*** * an
**

* *

º
...: u. tº

º
#3 ºn

f **... sº

as

!. º

tº ºn

** ***

f **

º
* : *

…”
* *
*** *

*g, *

second year of the caBIG pilot project (Figure 25), and the specifics of the project

centered on the integration of Magellan with the standards and tools within caBIG to

facilitate its broad adoption by the cancer research community. One of the unique aspects

of caBIG participation is that developers are matched with adopters who are funded to

collaborate in testing and using tools. Magellan’s adopters were chosen from David

Fenstermacher’s group at the University of Pennsylvania. This chapter describes progress

in integrating Magellan with the tools and information stores made public by caBIG.

*

**
H- H- --
-- -> **t
****§ º º

3 ... a tº £ *
- :**

g & # # 3 : 3 % a 3 & º
*- º % tº: # 5 º Cl § { 2 ºº Cº. º (l) º º ~. T-5 º gº# , 3 & # # 6 ºf £ tº a 8. § 3 ; #3 2
º § 3 ; 5 5 § 3 ; ; ; 3 : # # # 5§ 2 # 3 ; # 33 É 8 & 3 & # 5 & 5 §
§ 5 = 5. 3 # 1 = 3 . . . ; # 3 + 3 # rº
cº g: g : E & 5 : * * * *; F : 3 Im.3 * : * : * : # O Gº O Old 5 5 # =2 : ; # 3 || 5 § a # = # 2 £ tº 3 3 £

- *- ■ º ºn :- + tº ºr§ 3 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
it■ ºf A, 3 & 2 & 3 <I - I -I Cº ºf § 3. 3 #5 --

º Year 3 º
*— ■ º

rewrº"

Figure 25–The project milestones for the three year caBIG pilot project ***

9.2. Goals of cab■ (3

The head of the National Cancer Institute, Andrew von Eschenbach, recently

stated that the goal of the NCI should be to eliminate the suffering and death associated

with cancer by the year 2015. Whether this timetable is feasible or not has been the

subject of debate, but certainly the goal is a worthy one and the caBIG project is designed

to be one instrument in achieving that goal.

76

***** **

** sº

f
. . , -u

**ºf "ºn
* *

*# -
1.

The current paradigm of cancer genomics data analysis has been one in which

scientists at remote institutions generate data, perform analyses using publicly available

or homegrown analytical methods, and share their data and results through publications,

meetings, and web sites. caBIG hopes to change this paradigm by centrally storing large

numbers of queryable data sets and providing a large suite of analytical tools that can be

accessed over a grid. In addition, caBIG proposes to make these tools interoperable, such

that the functionality of one analytical tool can be accessed by another analytical tool

through simple API's.

A workflow supported by caBIG could, therefore, include one in which multiple

applications can be sequentially called upon to perform operations on biological

information. As such, a workflow could consist of several steps: retrieval of several data

sets from the database, normalization of the different data sets and subsequent merging,

feature selection of variables, followed by the application of an analytical function or

visualization (Figure 26). In order for this interoperability to be achieved, each of the

applications must communicate with each other through well documented API's. In

addition, a standard for the representation of data and for preliminary analytical results

will be required.

**

****º

77

s

º

**
**

º
º

is .

***** **

º sº**

—" {
* * * * * +1

*** * *
a

* * *
º

* *
* *

() f. sº

.*.***
*

º *** *
*

* #, "a
\ **

* {{ º
º **, *

, ºn
L tº

* , ava

*** *

are "

*
º
t

ad Microarray Workflow /

« datastorex

caarray (Gene
Expression Mao E

« datastorex
_T

Magellan (Gene
Expression

MAGE

(feature selection)
Magellan

• datastorex

c3 BIO cac ORE Gene
Ontology XML(Gene Ortology)

visDA
(Clustering) .

Cluster hierarchy 7

(Normalization)G--)

Gene Pattern
. HeatMap Image

Figure 26 – A workflow example showing interoperability of applications in cabiG

9.3. Compatibility Standards Imposed by caBIG

One of the goals of caBIG is to assemble tools that are interoperable with one

another, such that one application can access and use the components of another

application. In this case, ‘access’ refers to programmatic access to data and tools from

within other software applications, not just interactive access from user interfaces. Such

interoperability requires a common standard for the information to be shared between

applications. In the absence of such standards, a bioinformatics “Tower of Babel' will

exist in which each application provides information using its own data representation.

In order for any two applications to communicate under such circumstances a ‘translator’

must be written for each application pair, an untenable situation as the number of

applications becomes large.

78

*** - a *

ºns. ***
• *#

* * * * * *-a

* * **::

f.
fl.
* ****

*** ***

|* *

º “
* *-
**

**

*** *

tº ºw

For the immediate future, caBIG has adopted an approach where every data type

to be exposed by public API's available over the grid will be registered in a repository

known as the cal)SR (cancer data standards repository). Under this scenario, developers

who intend to programmatically access the functionality of other grid-enabled

applications will at least have a means of determining the representation of information

that particular applications require. While it is hoped that future caBIG developers will

adopt data types already curated in the ca■)SR, this is not a formal requirement for

current projects funded by caBIG.

While the imposition of standards is important for the exchange of information

between applications, such standards can place limits on the types of information that can

be represented. The planning committees of caBIG have mandated that new types of data

that emerge from the experimental community must be registered in the ca■)SR, and it is

expected that standards will be adopted in conjunction with the vocabulary and common

data element workgroup of caBIG. To some extent, there is a tradeoff between ease of

exchange vs. extensibility in the adoption of standards, such that the appropriate level of

specificity becomes very important. While these standards will be useful for exchange

between applications, it will be important to make these standards flexible enough that

their adoption does not place an undue burden on application developers.

9.4. NCI Data Sources Accessible through cablG

The caBIG project is not simply a grid framework under which applications can

communicate. The NCI has also assembled a large amount of bioinformatics information

to be accessed by the various applications developed under the caBIG umbrella.

79

~
s

*

9.4. I. cablo

Cancer Bioinformatics Infrastructure Objects (caBIO) is an object model that

allows for programmatic access to a series of clinical and genomic data sources. As such,

caBIO provides a Java API that allows software applications to access sources of

information that are aggregated and stored at the NCI. The data sources currently

available through the caBIO API include:

SAGE Data (CGAP) – NCI and Duke university SAGE experiment data

Expression Measurements (NCICB GEDP) - Probe sets

Sequence Trace Files (GAI) - EST traces and full-length mRNA clone traces

Genetic Annotation Initiative (GAI) - SNPs

Sequence Verified Clones - Human and mouse sequence-verified clone information

Cancer Clinical Trials (NCICTEP and PDQ) - Trials and drug agent information

CMAP Annotation Data (CMAP)- Drug targets, anomalies

Cancer Vocabulary (NCI) - Cancer related terminology and concepts

Unigene (NCBI) - Human and mouse genes, sequences, map locations, clones, proteins

Homologene (NCBI) - Human and mouse gene homologs

LocusLink (NCBI) - Genes, gene ontologies, gene aliases, taxons

RefSeq (NCBI) - Reference sequences

EST Data (NCICB)-Tissue-specific expression level ESTs

cDNA library information (NCICB) - cDNA libraries for disease and tissue

Human Genome via UCSC - Genomic sequences, annotations, and map coordinates

BioCarta (BioCarta) - Pathways

Gene Ontology - Hierarchy of gene functions

The interaction of Magellan with caBIO is designed to facilitate the transfer of

curated annotation information from these NCI data sources for local storage in the

Magellan database. For example, gene ontology terms that annotate the genes in a

80

*** - - a
as a

anº

is , -º

rººrh■ .º.º. a
* *

f# , º a
a. *, *

º, sº
ºr º

is tº

particular mRNA expression data set can be downloaded via caBIO and used for variable

selection to focus on user specified gene subsets.

9.4.2. ca.Array

ca/Array is an open source, standards based repository for storing and retrieving

microarray data. ca.Array is compliant with the MIAME 1.1 standard (Brazma, Hingamp

et al. 2001) for experimental annotation, such that metadata including array design,

experimental protocols, and biomaterials can be stored in association with the data itself.

In addition, ca/Array is designed to be compliant with a number of different file/exhange

formats for the input and output of microarray data, including MAGE-ML (Spellman,

Miller et al. 2002), Affymetrix.cel files (http://www.affymetrix.com), and GenePix

(http://www.moleculardevices.com). For the software development community, ca.Array

provides APIs for programmatic access to microarray data, such that entire microarray

data sets can be retrieved from within applications.

While it is hoped that Magellan will be able to retrieve data from caArray, this is

currently a secondary objective in the Magellan-caBIG collaboration. caArray is

currently under development and the performance of data downloads is still somewhat

slow. Application developers have cited times of 30 minutes to an hour to retrieve

moderate sized data sets, which are not currently practical for on the fly analysis in

Magellan. Because of the current performance issues with caArray, it is anticipated that

Magellan will mirror individual data sets that are selected for download by end users.

Once a data set is downloaded from ca.Array and stored locally in the Magellan database,

it will be available for analysis by Magellan’s analytical applications.

* >

■ º

*
Iº

sense

81

*** - ***
* *

si.º.

#
r → ****

* ***Hºº is
* *

-
... * *

ºr *-*

tº sº

! --
i.
** ***

sº
** **
*** **

tº "º

9.5. Interaction of Magellan with caBIO

The consumption of annotation information from caBIO is the first

implementation of an interaction between Magellan and the data sources at caBIG. The

model for this interaction is one in which large numbers of identifiers will be passed to

the a public API, and identifier-annotation pairs will be returned and stored locally in the

Magellan database. The various data sources curated by caBIG are accessible through an

application programming interface called the caCORE API. The following two sections

illustrate how users would use Magellan to incorporate caBIO based annotations into an

analysis of data. The first section provides a high level illustration of how a user would

use Magellan to retrieve annotations from caBIO and then use those annotations for

variable selection. The second section provides a more detailed examination of how

Magellan interacts with the caCORE API to retrieve annotation information.

9.5. I. UML Use Case Model

The means by which an end user would incorporate caBIO based annotations into

a specific analysis in Magellan are illustrated in a UML use case diagram in Figure 27.

This diagram details the steps an end user would take to perform an annotation based

variable selection on mRNA expression data, followed by a correlation analysis on the

resulting data set. The user chooses a particular mRNA expression data set for analysis,

and selects gene ontology biochemical pathway terms to annotate the genes. The GO

annotations are retrieved from caBIO and merged with the mRNA expression data based

on common identifiers. The user then selects a particular GO term (or terms) to select

variables from the data set; for example, ‘GPCR” to select only those genes that are

annotated as G-protein coupled receptors. Once this selection has been made, the user

82

|
-*

~-->
&

- *

-

Y.,

º

Y.

º
r
º

| tº

-

cº
_*:

-

- *- : *º
º

* L

.

1)

º

, -ºa--
****, - -º

... --rººt

*** *-

a * --

{ ...
- * *

- ****

Y_*-

can choose an analytical method such as correlating the variable selected data type

against a clinical variable such as patient outcome. The user specifies the parameters for

this analysis and retrieves the results.

Merge Data and
Annotations using

annotation values

(i.e. "GPCR)

User Admin
(from general)

(from general)

correlate gene
expression with
patient outco

Figure 27–UML use case diagram of cabiO derived annotation based analysis in Magellan

9.5.2. UML Sequence Diagram

The mechanism by which Magellan will interact with the caCORE API to retrieve

annotations from caBIO is detailed in a UML sequence diagram in Figure 28. This

=
sº
****º

º

83

*** - a

ºr “ ”
- * *-

º -
* * * ****

********".

f .
* , sº

-** *

** ***
-** ******

gºs --ºs-a-

* * *

diagram illustrates the steps taken by the Magellan Java business logic to retrieve the

gene ontology annotations used in the use case diagram of Figure 27. The caCORE API

allows LocusLink or OMIM identifiers to be queried against the caBIO annotation

sources, so that collections of identifiers can be passed to Java objects representing

different annotation classes, such as the gene ontology example below.

ApplicationService.getRemotelmstance(URL)

º: ********----------------------- |
new GeneCntology|mpl()

Gene Ontolo eneCnt
º: Ogy.9

geneCollection = new java. util...A■ rayList()

geneCnt.setGeneCollection■ ava.util.Collection geneCollection)

appServ.search(URL. geneOnt)

List resultList
º:

F
Iterator i = resultlist_iterator

Figure 28 – Access of gene ontology terms by Magellan using the caCORE API

9.5.3. Performance

Currently, the caCORE API does not provide for batch queries in which several

thousand identifiers-annotation pairs can be retrieved. As such, only one identifer can be

84

passed to the caCORE API at a time, and one annotation set retrieved. While this does

allow for retrieval of annotation information, the amount of time required to access

several thousand annotations would be measured in hours, a time frame that is

impractical at present. Fortunately, the caCORE API is being updated with respect to its

querying capabilities and it is anticipated that the performance will improve shortly.

9.6. Conclusions

The caBIG project has the stated goal of linking together information sources and

analytical tools in one web portal. The centralization of large amounts of cancer

genomics information and large numbers of applications that operate on that information

has great potential to improve the productivity of cancer researchers around the world.

For this promise to be realized however, several criteria must be met. First, reasonable

exchange standards for data, annotations, and the results of computations must be

defined. These standards must be sufficiently detailed such that information can be

exchanged across applications deployed on the grid. At the same time, they must be

flexible enough to accommodate new types of information as they arise. In addition, the

performance of querying and retrieval for the information stores at caBIG (ca.Array and

caBIO) must be improved such that both data and annotations can be accessed by

analytical applications in a timely fashion.

Magellan’s role in the caBIG project is to serve as a test case for integration of an

analysis tool within the larger analytical grid. Because Magellan is currently deployed as

a web-based application as opposed to a grid enabled API, Magellan does not have to

meet as many stringent data and vocabulary standards as some other analytical methods.

Our primary responsibility in the integration of Magellan with caBIG is to create an

85

**** * * *
a sº

**
. . .” -

■ º *
ºr , tº º

- ****
******'. - as

* -a-

{ …
* * *s

-

1.
º *** **

-* sº

* ****

s|. **-*

**

** a
** **
*** ***

* * * *

interface to caBIO and caArray. While neither API currently has a high enough

performance to allow smooth and timely access of data and annotations, it is expected

that this will occur in the future.

Since caBIG is structured as an open-source and highly collaborative project,

many of Magellan’s future improvements will occur with the effort of other groups

within the caBIG consortium. In particular, the caBIG group at UPenn directed by David

Fenstenmacher is actively porting Magellan’s database layer to MySQL, an open-source

database management system. The UPenn group has a large set of users within their

cancer research community who have expressed interest in making use of Magellan, and

it appears that UPenn will represent a major center of further development of the system.

86

1)

~
sº

*

--

\ ºs tº
*

1
º

º,

-

()

cº
.*

º

º
º L

**** --- º
* * *a--

-
*-f º

ºr a riº &
----At" -- .

, a -

- *** ---

* * *!---.
* *****

* nº-nº

!. ****

Chapter 10
Conclusions

This dissertation covered both the development and use of the Magellan

application. As discussed in the second chapter of this thesis document, cancer is a

disease of alterations in DNA, and these alterations are increasingly measurable using the

microarray technology discussed in Chapter 3. While this technology has greatly

increased the productivity of researchers with respect to the amount of information

generated per experiment, it presents statistical challenges that are detailed in Chapter 4.

Chapters 4 and 5 discussed a series of statistical and machine learning techniques that

were used to explore the relationship between genomic data types, and their limitations.

The remainder of this dissertation was devoted to the development and use of the

Magellan application.

Magellan was developed to allow researchers at the UCSF Cancer Center and

elsewhere to analyze the varied data types that they are currently generating. As

discussed in Chapter 6, the Magellan application was designed to store and analyze

heterogeneous biological data and annotations. The generalized means of representing

data and annotations allows for a broad utility, while the modular deployment of the

analytical methods insures extensibility of the system. Chapter 7 covered the

87

*** * * *.

** *
* ****

º

• * * * * * *

sº
** *

; : * ,
* -e, ,

... * * *!. * * * *

** *** -w

* * *-*-

I * * * *

*

implementation of the Magellan application as a server sided web application using JSP

technology to generated dynamic web content, an Oracle database to store all

information, and varied analytical applications to perform the actual computation.

Chapter 8 provided an example of the use of Magellan on an ovarian tumor data set

containing comparative genomic hybridization, mRNA gene expression, and clinical

outcomes. This dissertation concluded with a discussion on the integration of Magellan

with the Cancer Bioinformatic Grid (caBIG) project at the National Cancer Institute.

The technological advances discussed in this document have made the field of

molecular biology much more quantitative over the last ten years, and this trend is

expected to continue. It is clear that the human brain quickly becomes overwhelmed by

the amount of information currently being generated, so applications such as Magellan

will be increasingly important in order for users to draw meaningful conclusions from

their data. It is hoped that such advances in data generation and analysis will not only

increase our understanding of biological systems, but also help to alleviate the suffering

caused by diseases such as cancer.

Because of the integration of Magellan within the caBIG project, its future

development and impact on cancer research is reasonably well assured. The dissertation

work reported here has delivered a functional, scalable, documented, and demonstrably

useful system for the analysis of complex, very high-dimensional data of multiple types

that represent the future of cancer research and broader biomedical inquiry.

88

Bibliography
Alberts, B., A. Johnson, et al. (2002). Molecular Biology of the Cell. New York, Garland

Science.
Albertson, D. G., C. Collins, et al. (2003). "Chromosome aberrations in solid tumors."

Nat Genet 34(4): 369-76.
Ashburner, M., C. A. Ball, et al. (2000). "Gene ontology: tool for the unification of

biology. The Gene Ontology Consortium." Nat Genet 25(1): 25-9.
Baggerly, K. and K. Coombes (2004). Introduction to Microarrays.
Benjamini, Y. and Y. Hochberg (1995). "Controlling the false discovery rate - a practical

and powerful approach to multiple testing." J.R. Stat. Soc. Ser. B 57:289-300.
Bettuzzi, S., P. Davalli, et al. (2000). "Tumor progression is accompanied by significant

changes in the levels of expression of polyamine metabolism regulatory genes and
clusterin (sulfated glycoprotein 2) in human prostate cancer specimens." Cancer
Res 60(1):28-34.

Brazma, A., P. Hingamp, et al. (2001). "Minimum information about a microarray
experiment (MIAME)-toward standards for microarray data." Nat Genet 29(4):
365-71.

Buck, M. J. and J. D. Lieb (2004). "ChIP-chip: considerations for the design, analysis,
and application of genome-wide chromatin immunoprecipitation experiments."
Genomics 83(3): 349-60.

Cahill, D. P., C. Lengauer, et al. (1998). "Mutations of mitotic checkpoint genes in
human cancers." Nature 392(6673): 300-3.

Ciardiello, F., R. Caputo, et al. (2000). "Antitumor effect and potentiation of cytotoxic
drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth
factor receptor-selective tyrosine kinase inhibitor." Clin Cancer Res 6(5): 2053
63.

DeRisi, J. L., V. R. Iyer, et al. (1997). "Exploring the metabolic and genetic control of
gene expression on a genomic scale." Science 278(5338): 680-6.

Edwards, B. K., M. L. Brown, et al. (2005). "Annual report to the nation on the status of
cancer, 1975-2002, featuring population-based trends in cancer treatment." J Natl
Cancer Inst 97(19): 1407-27.

Goldenberg, M. M. (1999). "Trastuzumab, a recombinant DNA-derived humanized
monoclonal antibody, a novel agent for the treatment of metastatic breast cancer."
Clin Ther 21(2): 309-18.

Golub, T. R., D. K. Slonim, et al. (1999). "Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring." Science
286(5439): 531-7.

Hahn, W. C., C. M. Counter, et al. (1999). "Creation of human tumour cells with defined
genetic elements." Nature 400(6743): 464–8.

Hanahan, D. and R. A. Weinberg (2000). "The hallmarks of cancer." Cell 100(1): 57-70.

89

| *.
, ºnº
|-

º
º

**** * *
º

sº a st

º -" º **,
-

º, ºr tº
*** * *

• H!" - a
g sº

º f
*H - ºr 4...

-
... • * *

1) f. nº - ºf

-

... *
. " ** *****

W. !. ****
* * * ** .4***** --

L sº - **

º, * * *
º, *** ***

*** * *****

Harris, C. C. (1996). "p53 tumor suppressor gene: from the basic research laboratory to
the clinic--an abridged historical perspective." Carcinogenesis 17(6): 1187-98.

Hartwell, L. H., J. Culotti, et al. (1974). "Genetic control of the cell division cycle in
yeast." Science 183(120): 46-51.

Hodgson, G., J. H. Hager, et al. (2001). "Genome scanning with array CGH delineates
regional alterations in mouse islet carcinomas." Nat Genet 29(4): 459-64.

Jain, A. N., K. Chin, et al. (2001). "Quantitative analysis of chromosomal CGH in human
breast tumors associates copy number abnormalities with p53 status and patient
survival." Proc Natl Acad Sci U S A 98(14): 7952-7.

Jain, A. N., T. A. Tokuyasu, et al. (2002). "Fully automatic quantification of microarray
image data." Genome Res 12(2): 325–32.

Kingsley, C. B., W. L. Kuo, et al. (2005). "Magellan: A Web Based System for the
Integrated Analysis of Heterogeneous Biological Data and Annotations;
Application to DNA Copy Number and Expression Data in Ovarian Cancer."
Cancer Informatics In Press.

Kinzler, K. W. and B. Vogelstein (1996). "Lessons from hereditary colorectal cancer."
Cell 87(2): 159-70.

Knudson, A. G., Jr., H. W. Hethcote, et al. (1975). "Mutation and childhood cancer: a
probabilistic model for the incidence of retinoblastoma." Proc Natl Acad Sci U S
A 72(12): 5116-20.

Lancaster, J. M., H. K. Dressman, et al. (2004). "Gene expression patterns that
characterize advanced stage serous ovarian cancers." J Soc Gynecol Investig
11(1): 51-9.

Lengauer, C., K. W. Kinzler, et al. (1997). "Genetic instability in colorectal cancers."
Nature 386(6625): 623-7.

LLC, V. L. (2005). GeneSifter, VizX Labs LLC.
Miki, Y., J. Swensen, et al. (1994). "A strong candidate for the breast and ovarian cancer

susceptibility gene BRCA1." Science 266(5182): 66-71.
Morgan, D.O. (1997). "Cyclin-dependent kinases: engines, clocks, and

microprocessors." Annu Rev Cell Dev Biol 13:261-91.
Nadkarni, P. M., L. Marenco, et al. (1999). "Organization of heterogeneous scientific

data using the EAV/CR representation." J Am Med Inform Assoc 6(6): 478-93.
Nannya, Y., M. Sanada, et al. (2005). "A robust algorithm for copy number detection

using high-density oligonucleotide single nucleotide polymorphism genotyping
arrays." Cancer Res 65(14): 6071-9.

Nowell, P. C. (1976). "The clonal evolution of tumor cell populations." Science
194(4260): 23-8.

Olshen, A. B. and A. N. Jain (2002). "Deriving quantitative conclusions from microarray
expression data." Bioinformatics 18(7): 961-70.

Parada, L. F., C. J. Tabin, et al. (1982). "Human EJ bladder carcinoma oncogene is
homologue of Harvey sarcoma virus ras gene." Nature 297(5866): 474-8.

Pinkel, D., R. Segraves, et al. (1998). "High resolution analysis of DNA copy number
variation using comparative genomic hybridization to microarrays." Nat Genet
2002): 207-11.

*
ºkes

90

()

ºny

*-

**** * * º
ºr " *

f ~ *
. . , -a º º

*** *
#!". ***

.#º * ** '*.■ * * * * *

a • *| ** d
ºr sº-wº

gº." ****

Pollack, J. R., T. Sorlie, et al. (2002). "Microarray analysis reveals a major direct role of
DNA copy number alteration in the transcriptional program of human breast
tumors." Proc Natl Acad Sci U S A 99(20): 1296.3-8.

Rajagopalan, H. and C. Lengauer (2004). "Aneuploidy and cancer." Nature 432(7015):
338-41.

Ross, D. T., U. Scherf, et al. (2000). "Systematic variation in gene expression patterns in
human cancer cell lines." Nat Genet 24(3): 227–35.

Segal, M. R., K. D. Dahlquist, et al. (2003). "Regression approaches for microarray data
analysis." J. Comput Biol 10(6): 961-80.

Shayesteh, L., Y. Lu, et al. (1999). "PIK3CA is implicated as an oncogene in ovarian
cancer." Nat Genet 21(1): 99-102.

Shen-Ong, G. L., E. J. Keath, et al. (1982). "Novel myc oncogene RNA from abortive
immunoglobulin-gene recombination in mouse plasmacytomas." Cell 31(2 Pt 1):
443–52.

Snijders, A. M., N. Nowak, et al. (2001). "Assembly of microarrays for genome-wide
measurement of DNA copy number." Nat Genet 29(3): 263-4.

Spector, D. H., K. Smith, et al. (1978). "Uninfected avian cells contain RNA related to
the transforming gene of avian sarcoma viruses." Cell 13(2): 371-9.

Spellman, P. T., M. Miller, et al. (2002). "Design and implementation of microarray gene
expression markup language (MAGE-ML)." Genome Biol 3(9):
RESEARCH0046.

Storey, J. D. and R. Tibshirani (2003). "Statistical significance for genomewide studies."
Proc Natl Acad Sci U S A 100(16): 9440-5.

Tibshirani, R., T. Hastie, et al. (2002). "Diagnosis of multiple cancer types by shrunken
centroids of gene expression." Proc Natl Acad Sci U S A 99(10): 6567-72.

Tusher, V. G., R. Tibshirani, et al. (2001). "Significance analysis of microarrays applied
to the ionizing radiation response." Proc Natl Acad Sci U S A 98(9): 5116-21.

van 't Veer, L. J., H. Dai, et al. (2002). "Gene expression profiling predicts clinical
outcome of breast cancer." Nature 415(6871): 530-6.

Wang, W. L., M. E. Healy, et al. (2000). "Growth inhibition and modulation of kinase
pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor
STI 571." Oncogene 19(31): 3521-8.

Westfall, P. H. and S. S. Young (1993). Resampling-based Multiple Testing, Wiley, New
York.

º**
º -º-º:

*

91

***-- a--,
-

*
*** **

**
.*.*

º
*** * *

ºf "lºº a
* *

{ . . .
a

-f. *** .
tº sº sº

."

; º \

*-

* ****

1. *** * !

- tº-ºº-ºº:

*** * * *

*** *** **

Appendix
10.1. Distribution of Data and Source Code

The distribution of the Magellan application contains several parts:

1. The Magellan source code as an Eclipse project

2. The ovarian tumor data set described in this thesis

3. Installation instructions

In the Magellan archive to be publicly distributed, these three components are

located in the ‘magellan’, ‘data”, and ‘intallation’ directories, respectively.

10.2. Javadocs

The following javadocs document the Java business logic contained in the

compiled Java classes of the Magellan system. The API described in these javadocs

should be sufficient to allow external developers to add analytical components to the

Magellan system.

92

º

- * ~ *
-{ ...

sº." -, *
He set sº
ir *** ***** * *

* Fºº ºn

!---
sº

gº* -
-

..sº
a tº

º* * *
*** * * * *

**** *** **

edu.ucsf.Magellan
Class Analysisinfo

java.lang. Object
edu.ucsf. Magellan. Analysis.Info

public class Analysis.Info
extends java.lang. Object

The Analysisinfo object provides the functionality for the analytical portion of Magellan. The object stores a number of parameters
neccessary for analysis, including pointers to the data Type objects that are available for analysis from the currently selected
experiment, as well as pointers to the data Type objects that have been selected and are to be outputted to a text file prior to analysis. It
also provides methods to output the flat files containing the data and annotations needed for a particular analysis. Two important
vectors of data Type objects are stored: availableData Types - data types that are available to be analyzed. For example, if a user selects
a particular experiment for analysis, this vector would contain pointers to all the dataType objects that make up that experiment.
outputData Types - the data types to be outputted for the current analysis. For example, if two data types are to be correlated then this
vector would contain pointers to only those two data Type objects.

Field Summary
r—

private availableData Types
java. util. Vector

private | dataFileAppendstring
java.lang. String

private execstatements
java. util. Vector

private int experimentMumber

private outputpatatypes
java. util. Vector

private parameters
java. util. Hashtable

private | resultFiles
java. util. Vector

private sampleList
java. util. Vector

private startTime
java. util. Date

T

Constructor Summary

Analysis.Info ()
Contructor

Method Summary

■ void laddexperimentToavailableDatatypes (int experiment)
Adds data types from a specified experiment to the list of data types availble for analysis

void addResultFile (java. lang. String fileName)
Adds a file name to the vector containing the file names that will hold the results of the current

analysis.

|

T

void addsamples.From ExperimentTollist (int experiment)
Adds Sample objects for all samples in the passed experiment number to the list of samples for the

current analysis

void addsamplesFromupload.Tolist (int upload.ID)
Adds Sample objects for all samples in the passed upload number to the list of samples for the

current analysis

º

*}
revº

ºfº

93

º

--"

º

º \

*** = a -
... ºº

sº

-tt , ºr ºl.
-*...***alº- *.

, a -
■ * -i-. §

***** -f. * * * **

irº - ***

* ****

!---
{...,'

-- a**
* * *
*** * * * *

*** ******

void addtoavailableData Types (DataType dt)
Adds a data type object to the list of data types available for analysis.

t

void addtooutputIData'Types (Data Type dt)
-

Adds a data type object to the list of data types to be outputted for analysis.
i

void addtooutputpatatypes (java. lang. String [] indices)
Adds the data Type objects from the list of indices to the list of data types to be outputted for

analysis.

boolean annotations'Tooutput ()
Returns true if any annotations associated with any of the data types to be outputted are to be

outputted themselves.

void clearannotationoutput ()
No annotations associated with any data type will be outputted as part of the current analysis.

void clearavailablepatatypes ()
Clears the list of data Type objects available for analysis.

void clearoutputDatatypes ()
Clears the list of data Type objects to be outputted for analysis.

void clear ResultFiles ()
Clears the vector containing the file names that will hold the results of the current analysis.

void clearSampleList ()
Removes all the sample objects from the list of samples for the current analysis

void clearSampleOutput.ToDataFile ()
No Sample objects in the list of samples for the current analysis will be outputted.

java.lang. Object clone ()
Clones an Analysisinfo object (deep copy).

java. util. Vector data TypeNames ()
Returns a vector of data type names of the data Type objects available for analysis

java.lang. String data TypeNumberstring ()
Returns a string containing a comma delimited list of data type numbers of the data Type objects to

be outputted for the current analysis.

java.lang. String data TypeNumberstring (int experimentNumber)
Returns a string containing a comma delimited list of data type numbers of the data Type objects to

be outputted from the specified experiment number.

boolean data Types FromSameExperiment ()
Returns a true if all data types to be outputted are from the same experiment.

void deleteOldFesultFiles (java. lang. String file Path)
Deletes the result files from the previous round of analysis.

DataType getAvailableDatatype (int position)
Returns a data type object at a particular position in the list of available data types.

■

Data Type getAvailableData Type (java. lang. String position)
Returns a data type object at a particular position in the list of available data types.

Data Type getAvailablepatatypeFromExperiment (java. lang. String name,
int experiment)

Returns a data type object with the name and experiment number specified

Data Type I getAvailableDatatypeFromupload (java. lang. String name, int uploadid)
Returns a data type object with the name and upload number specified

java. util. Vector getAvailablepatatypes ()
Returns a vector of data Type objects that are currently available for analysis.

int getBºxperiment.Number ()
Returns the experiment number of the data set currently chosen for analysis.

DataType I getOutputpatatype (int position)
Returns a data Type object at the position in the list of data Type objects to be outputted for the

current analysis.
T

DataType getOutputpatatype (java.lang. String position)
Returns a data Type object at the position in the list of data Type objects to be outputted for the

2:

s
3

94

current analysis.

java. util. Vector getOutputpatatypes ()
Returns a vector of data Type objects that are to be outputted to a flat text file for the current analysis.

java.lang. String getParametervalue (java. lang. String parameter)
Returns the analytical parameter whose value has been previously set.

java. util. Vector getResultFiles ()
Returns the vector containing the file names that will hold the results of the current analysis.

Sample getSampleFrom Upload.InList (java. lang. String sampleName, int upload.ID)
Returns a Sample object from the list of samples for the current analysis with the passed name and

upload number

java. util. Vector getsamplelist ()
Returns a vector of sample objects corresponding to those samples used in the current analysis

java. util. Date getStartTime ()
Gets the Date object corresponding to the time at which the current analysis started.

java.lang. String javascriptAnnotationArray ()
Returns a string containing javascript commands that define a 2D array containing annotation

information associated with the data types that are currently available for analysis.

java. lang. String javascriptSubselectionArray ()
Returns a string containing javascript commands that define a 2D array containing subselection

information associated with the data types that are currently available for analysis.
void makeannotationFile (Data Type dt, java. io. FileWriter annot File)

Makes a flat text file containing the annotations for the passed data type.

void makeannotationFile (java. io. FileWriter annot File)
Makes a flat text file containing the annotations for all the data types of the current analysis.

makeCumannotationFile (java. io. FileWriter annot File)
Makes a flat text file containing annotations in cm file formate for the current analysis.

makeCimbataFile (java.lang. String path, java.lang. String sessionlD)
Makes a flat text file containing the data for the current analysis.

makeDataFile (java. lang. String path, java. lang. String sessionID)
Makes a flat text file containing the data for the current analysis.

makeDataFile (java. lang. String path, java.lang. String sessionID,
java. lang. String dataFileAppendString)

Makes a flat text file containing the data for the current analysis.

private void makeDataFile (java. lang. String path, java. lang. String sessionID,
java. lang. String dataFileAppendString, boolean cm Flag)

Makes a flat text file containing the data for the current analysis.

private void makeDataFileWithSameExpts (java. io. FileWriter dataFile)
Makes a flat text file containing the data for the current analysis.

int numsamplestoouput ()
Returns the number of samples to be outputted for the current analysis

void outputall.Samples ToDataFile ()
All Sample objects in the list of samples for the current analysis will be outputted.

void outputSamplesToDataFile (java. lang. String [] indices)
Selected Sample objects in the list of samples for the current analysis will be outputted.

private void printannotinfo (DataType dt, Annotation annot,
java. io. FileWriter annot File)

Makes a flat text file containing the passed annotations for the passed data type.

private void printStats.Info (Data'Type dt, Annotation annot,
java. io. FileWriter annot File)

Makes a flat text file containing the passed derived annotations for the passed data type.

java.lang. String RfileHeader (java. lang. String path, java. lang. String sessionID)
Returns a string that contains the R commands to specify the location of data types and annotations

in the data files.

java.lang. String sampleNameString ()
Returns a tab delimited list of the names of samples to be outputted for the current analysis

95

*** -- a -
-

*-- "
-º-º:

, is is . * * *

*"...
* * *

f **... º. º. ºn

-

1. * *
* *-* = -

* * ****

º
; a. *** º
º º

■ º .** ****
strº a
*

* **** *

*** *****

tº riº. --

int [] sampleNumberàrray ()
Returns an array of integers corresponding to the indices of samples to be outputted for the current

analysis

java.lang. String sampleNumberstring ()
Returns a comma delimited list of the integers corresponding to the indices of samples to be

outputted for the current analysis

java.lang. String
|

sampleNumberstring (int experimentNum)
Returns a comma delimited list of the integers corresponding to the indices of samples from the

passed experiment number to be outputted for the current analysis

java. util. Vector sampleNumberVector ()
Returns a vector of integers corresponding to the indices of samples to be outputted for the current

analysis

java. util. Vector sampleNumbervector (int experiment Num)
Returns a vector of integers corresponding to the indices of samples from the passed experiment

number to be outputted for the current analysis
void setDataFileAppendstring (java. lang. String appendstring)

Sets a string whose contents will be appended to the data file of the current analysis.

void setBxperiment Number (int experimentNum)
Sets the experiment number for the current analysis.

void setParameterValue (java. lang. String parameter, java. lang. String value)
Sets an analytical parameter for the current round of analysis.

void setStartTime ()
Creates and stores a Date object corresponding to the time at which the current analysis started.

Methods inherited from class java.lang. Object
f

equals, finalize, get Class, hashCode, notify, notifyAll, toString, wait, wait, wait

Field detail

experimentNumber

private int experimentMumber

dataFileAppendString

private java.lang. String dataFileAppends tring

availabledata Types

private java. util. Vector availableData Types

outputdata Types

private java. util. Vector outputdata Types

sampleList

private java. util. Vector sampleList

resultFiles

96

**-* - .
... " "

s
---sº

#" "…s
..s... * * * * *

*** **
-**" ºr -,

º --
■

H. as a ------

***** * *

* ******

!---"º, ºr **
** e?º**- -* *

...sº

" *** ***
** *** *

* *** ***

private java. util. Vector resultFiles

execStatements

private java. util. Vector execstatements

parameters

private java. util. Hashtable parameters

startTime

private java. util. Date startTime
T

Constructor Detail

Analysisinfo

public Analysis.Info ()
Contructor

Method detail

clone

public java.lang. Object clone ()
Clones an Analysisinfo object (deep copy).
Overrides:
clone in class java. lang. Object
Returns:
a deep copy of an Analysisinfo object

setFXperimentNumber

public void set ExperimentNumber (int experiment Num)
Sets the experiment number for the current analysis.

getFXperimentNumber

public int get ExperimentNumber ()
Returns the experiment number of the data set currently chosen for analysis.
Returns:

the experiment number of the current analysis

getResultFiles

public java. util. Vector getResultFiles ()
Returns the vector containing the file names that will hold the results of the current analysis.
Returns:
a vector of strings, each containing the name of a results file for the current analysis.

clear Result Files

public void clear ResultFiles ()

**

º

º

ºuais
*

*
*** º

** *h
.***
*

97

***** * "- ºr
** º

***** * *

, ºr ºr * * *
sº*****it".,

* *
s

... ºr -e-, a

*** - 1!---
ºr ºr * *

* * ****

Clears the vector containing the file names that will hold the results of the current analysis.

addResultFile

public void addResultFile (java.lang. String fileName)
Adds a file name to the vector containing the file names that will hold the results of the current analysis.
Parameters:

fileName - a string containing the name of a results file (not file path) for the current analysis

setDataFileAppendString

public void setDataFileAppendString (java. lang. String appendstring)
Sets a string whose contents will be appended to the data file of the current analysis. This is useful is a user creates some
data dynamically through the web pages of an analysis session - this dynamically generated data would be appended to the
end of the data file prior to its analysis.
Parameters:
appendString - the string to be appended to the data file for the current analysis.

getStartTime

public java. util. Date getStartTime ()
Gets the Date object corresponding to the time at which the current analysis started.
Returns:
a Date object corresponding to the time the analysis started.

setStartTime

public void setStartTime ()
Creates and stores a Date object corresponding to the time at which the current analysis started. The start time is set to the
time when the method is called.

deleteOldPesult Files

public void deleteoldResultFiles (java.lang. String file Path)
throws java.lang. SecurityException

Deletes the result files from the previous round of analysis. This method should be called at the start of a new analysis such
that the prior results are not detected and shown to the user as the results of the current round.
Parameters:

file Path - the full path of the folder containing the result files to be deleted prior to the next round of analysis.
Throws:
java.lang. SecurityException

setParameterValue

public void setParameterValue (java.lang. String parameter,
java.lang. String value)

Sets an analytical parameter for the current round of analysis. This list of parameters and values can be used to store
information (such as a type of correlation statistic or a range of values to display in a graph) for a given analysis.
Parameters:

parameter - the type of parameter whose value will be set (example: distanceMetric)
value - the value of the parameter to be set (example: euclidean)

getParameterValue

public java. lang. String getParameterValue (java.lang. String parameter)

,--
sº
** is:

**ºtº

*

* º *

º*sº

98

º

". .

*** * * * º:is a sº. "
as tº sº

* * *
. tº a

*** * *
**** * * *

* ***.
º# .

** * *

, a "º - g

*s, *-**-

* *-* * -- *

** *****

| ºHe wºº a
a. **** ..?

* * *
- ***

gº
** ****
* -- * ~ *

** *** ***

Returns the analytical parameter whose value has been previously set.
Parameters:

parameter - the type of parameter whose value will be retrieved
Returns:
the value of the parameter

clearSampleList

public void clearSample List ()
Removes all the sample objects from the list of samples for the current analysis

getSampleList

public java. util. Vector getSample List ()
Returns a vector of sample objects corresponding to those samples used in the current analysis
Returns:
a vector of sample objects

getSampleFrom UploadinList

public Sample getsampleFromUploadinList (java. lang. String sampleName,
int upload.ID)

Returns a Sample object from the list of samples for the current analysis with the passed name and upload number
Returns:
a Sample object with the passed name from the passed upload■ D

addSamplesFrom ExperimentTolist

public void addSamples.From ExperimentTolist (int experiment)
throws java. sql. SQLException

Adds Sample objects for all samples in the passed experiment number to the list of samples for the current analysis
Parameters:

experiment - the experiment number
Throws:
java. sql. SQLException

addSamplesFrom UploadToList

public void addSamples FromUpload.To List (int upload.ID)
throws java. sql. SQLException

Adds Sample objects for all samples in the passed upload number to the list of samples for the current analysis
Parameters:

upload.ID - the experiment number
Throws:
java. sql. SQLException

clearSampleOutput ToDataFile

public void clearSampleOutput ToDataFile ()
No Sample objects in the list of samples for the current analysis will be outputted.

outputallSamplesToDataFile

public void output.All Samples ToDataFile ()
All Sample objects in the list of samples for the current analysis will be outputted.

99

-º-º:

, ºr , ºr sº a

... --- **
ºt" -- * º

, sº ºr .
º{ .

*** **

* * * *

1. * * * *
.****** ****

* *******

!-- ".
ºf " ...?º ***

is ■ º
!* * * *
*** *****

* * * * *

outputSamples.ToDataFile

public void outputSamples ToDataFile (java.lang. String [] indices)
Selected Sample objects in the list of samples for the current analysis will be outputted. The array of strings is typically
produced the the request.getParameter() method.
Parameters:

indices - an array of Strings whose values contain integers corresponding to the indices of those samples to be
outputted.

numSamplesToGuput

public int numsamples ToQuput ()
Returns the number of samples to be outputted for the current analysis
Returns:
the number of samples that will be outputted

sampleNumberArray

public int [] sampleNumberArray ()
Returns an array of integers corresponding to the indices of samples to be outputted for the current analysis
Returns:
an array of integers containing sample indices to be outputted

sampleNumberVector

public java. util. Vector sampleNumberVector ()
Returns a vector of integers corresponding to the indices of samples to be outputted for the current analysis
Returns:
a vector of integers containing sample indices to be outputted

sampleNumberVector

public java. util. Vector sampleNumberVector (int experimentNum)
Returns a vector of integers corresponding to the indices of samples from the passed experiment number to be outputted for
the current analysis
Parameters:
experiment Num - the experiment number the samples must be from to be included in the list
Returns:
a vector of integers containing sample indices to be outputted

sampleNumberString

public java.lang. String sampleNumberstring ()
Returns a comma delimited list of the integers corresponding to the indices of samples to be outputted for the current
analysis
Returns:
a comma delimited string containing the sample numbers

sampleNumberString

public java.lang. String sampleNumberstring (int experiment Num)
Returns a comma delimited list of the integers corresponding to the indices of samples from the passed experiment number
to be outputted for the current analysis
Parameters:

experimentNum - the experiment number from which the sample numbers are selected.
Returns:
a comma delimited string containing the sample numbers from the specified experiment

100

s

je.* r *
*** **::: ...
* *s º

-. -la.

a * * * *

†- ºr " 4
ºr -º-º-º º

annºta

* * * * *
are -- " " *

sampleNameString

public java. lang. String sampleNameString ()
Returns a tab delimited list of the names of samples to be outputted for the current analysis
Returns:
a tab delimited string containing the sample names

addToAvailableData Types

public void addtoavailableData Types (Data Type dt)
Adds a data type object to the list of data types available for analysis.
Parameters:

dt - a data type object to be made available for analysis

clearavailabledata Types

public void clear AvailableData Types ()
Clears the list of data Type objects available for analysis.

getAvailabledataTypes

public java. util. Vector getAvailableData Types ()
Returns a vector of data Type objects that are currently available for analysis.
Returns:
a vector of data Type objects

getAvailabledataType

public DataType getAvailableData Type (int position)
Returns a data type object at a particular position in the list of available data types.
Parameters:
position - the position in the list of the data type to be returned
Returns:
the data type object at the specified position in the list

getAvailableData Type

public DataType getAvailableData Type (java.lang. String position)
Returns a data type object at a particular position in the list of available data types.
Parameters:
position - a string containing the integer position in the list of the data type to be returned
Returns:
the data type object at the specified position in the list

getAvailabledataTypeFrom Upload

public DataType getAvailabledata TypeFrom Upload (java.lang. String name,
int upload.ID)

Returns a data type object with the name and upload number specified
Parameters:

name - the name of the data type
upload.ID - the uploadlD of the data type
Returns:
a data type object with the passed name and uploadlD

sº

C.
**

gºu

**

--

*

Tº
wº

->
*

101

• *sº

#!". * > *
* -- .

i■ . .
f :
-- **** * *

** *******

| ºi * * * * *

tº ºr

getAvailableData TypeFromExperiment

public Data Type getAvailableData TypeFrom Experiment (java.lang. String name,
int experiment)

Returns a data type object with the name and experiment number specified
Parameters:

name - the name of the data type
experiment - the experiment number of the data type
Returns:
a data type object with the passed name and experiment number

addexperimentToavailableData Types

public void addexperimentTokvailableData Types (int experiment)
throws java. sql. SQLException

Adds data types from a specified experiment to the list of data types availble for analysis sº
Parameters:

experiment - the experiment number **
Throws: sº

java. sql. SQLException [...
*ºtºgi

sº
javascriptAnnotationArray ****

**
public java.lang. String javascriptAnnotation Array () **

Returns a string containing javascript commands that define a 2D array containing annotation information associated with sº

the data types that are currently available for analysis. The array is called 'annotations' in javascript - the first subscript º
corresponds to the position of the data type in the list of available data types, and the second corresponds to the position of erºd:
the annotation in the list of annotations associated with the data type. The defined array is useful for filling drop down
menus/lists of annotations when a user selects a data type in a web page.
Returns: ****

a string containing the javascript commands that specify the array of annotation information. 2:...}
º *

javascriptSubselectionArray ****

public java.lang. String javascriptSubselectionArray () *
Returns a string containing javascript commands that define a 2D array containing subselection information associated wº

with the data types that are currently available for analysis. The array is called 'subselections' in javascript - the first
subscript corresponds to the position of the data type in the list of available data types, and the second corresponds to the
position of the subselection in the list of subselections associated with the data type. The defined array is useful for filling
drop down menus/lists of subselections when a user selects a data type in a web page.
Returns:
a string containing the javascript commands that specify the array of subselection information.

clearOutputIData Types

public void clearoutputIData Types ()
Clears the list of data Type objects to be outputted for analysis.

addToQutputBatatypes

public void addtooutputdata Types (Data Type dt)
Adds a data type object to the list of data types to be outputted for analysis.
Parameters:
dt - a data type object to be outputted for analysis

102

***** *, .
tº sº."

**
*** - sº

Is... tº tº

... * *ºf "..
* *

i■ ... :
* -- ■ º

fl-
- * *

+ º- sº

* * *

ar
*** ****

** *º ****

* ----
are nº ºr

tº "ºº-ºº: º

addTooutputdataTypes

public void add tooutputIData Types (java. lang. String [] indices)
Adds the data Type objects from the list of indices to the list of data types to be outputted for analysis. The indices are
stringified integers present in an array, such as the arrays returned by the request.getParameter() method. The integer value
is the position of the data type in the list of available data types.
Parameters:

indices - an array of strings, each of contains an integer.

getOutputdata Types

public java. util. Vector getOutputData Types ()
Returns a vector of data Type objects that are to be outputted to a flat text file for the current analysis.
Returns:
a vector of data Type objects to be outputted.

getOutputIData Type

public Data Type getOutputdata Type (int position)
Returns a data Type object at the position in the list of data Type objects to be outputted for the current analysis.
Parameters:
position - an integer corresponding to the position in the list of outputted data types
Returns:
a data Type object at the specified position

getOutputIData Type

public DataType getOutputdata Type (java.lang. String position)
Returns a data Type object at the position in the list of data Type objects to be outputted for the current analysis.
Parameters:
position - a stringified integer corresponding to the position in the list of outputted data types
Returns:
a data Type object at the specified position

clearannotationOutput

public void clear Annotationoutput ()
No annotations associated with any data type will be outputted as part of the current analysis.

annotationsToGutput

public boolean annotations Tooutput ()
Returns true if any annotations associated with any of the data types to be outputted are to be outputted themselves.
Returns:
a boolean variable set to true if any annotations are to be outputted.

data TypeNames

public java. util. Vector data TypeNames ()
Returns a vector of data type names of the data Type objects available for analysis
Returns:

a vector a strings containing data type names.

data TypeNumberString

-º-º:

º

...”
**

:

tºgº

*

103

**** * *

º …tº
a-f

ºf ' ". . . .
ºr ºt... tº 1. “

*** * *
***** -.,

■ * * . º# , ºr -, -º-
sº. --> *

... *s-, --
* **** --º

a. ****

º º! *** ****
**** ...?"tº. :* - º

.***
º
* *****
are ººº- -*

**** ****

public java.lang. String data TypeNumberstring ()
Returns a string containing a comma delimited list of data type numbers of the data Type objects to be outputted for the
current analysis.
Returns:
a string of comma delimited data type numbers.

dataTypeNumberString

public java.lang. String data TypeNumberstring (int experiment Number)
Returns a string containing a comma delimited list of data type numbers of the data Type objects to be outputted from the
specified experiment number.
Parameters:

experiment Number - the experiment number of the data types whose data type numbers are to be returned in the string.
Returns:

a string of comma delimited data type numbers.

dataTypesfromSameExperiment

public boolean data Types FromSameExperiment ()
Returns a true if all data types to be outputted are from the same experiment.
Returns:
a boolean variable that is true if all data types to be outputted are from the same experiment.

RfileHeader

public java. lang. String RifileHeader (java. lang. String path,
java. lang. String sessionID)

Returns a string that contains the R commands to specify the location of data types and annotations in the data files. These
R command load the contents of the data file into R objects such that these objects can be analyzed by an R application.
Parameters:

path - the full path of the folder in which the data file is stored.
sessionID - the session ID of the current web session.
Returns:
a string of R commands that partition data types and annotations in the data file into R objects.

makeDataFile

public void makeDataFile (java.lang. String path,
java.lang. String sessionID)

throws java. io. IOException,
java. sql. SQLException

Makes a flat text file containing the data for the current analysis. The first row contains a tab delimited list of sample
names. Subsequent rows contain the data for the variables of each data type. The first column contains the identifiers for
each data type. If annotations are to be utilized for this analysis, a flat text file containing annotations will also be
generated.
Parameters:
path - the full path of the folder in which the data file is stored.
sessionID - the session ID of the current web session.
Throws:
java. io. IOException
java. sql. SQLException

makeCnm0atar'ile

public void makeCimDataFile (java.lang. String path,
java.lang. String session ID)

throws java. io. IOException,
java. sql. SQLException

Makes a flat text file containing the data for the current analysis. The first row contains a tab delimited list of sample
names. Subsequent rows contain the data for the variables of each data type. The first column contains the identifiers for

**
sº

104

car,mºsº
*****f ** ºf"ºº-ra'
****-*.

*-ºs.º

********* º******º,Jº

wºntººraº",""
**º

**
***.

stant."-**

each data type. If annotations are to be utilized for this analysis, a flat text file containing annotations will also be generated
in the format used by the crim application.
Parameters:

path - the full path of the folder in which the data file is stored.
sessionID - the session ID of the current web session.
Throws:
java.io. IOException
java. sql. SQLException

makeDataFile

public void makeDataFile (java.lang. String path,
java.lang. String sessionID,
java.lang. String dataFileAppendString)

throws java. io. IOException,
java. sql. SQLException

Makes a flat text file containing the data for the current analysis. The first row contains a tab delimited list of sample
names. Subsequent rows contain the data for the variables of each data type. The first column contains the identifiers for
each data type. If annotations are to be utilized for this analysis, a flat text file containing annotations will also be
generated. The string 'dataFileAppendString' is added to the end of the data file, in case custom data is to be added to the
file based upon user input during the analysis.
Parameters:
path - the full path of the folder in which the data file is stored.
sessionID - the session ID of the current web session.

dataFileAppendString - a string to be added at the end of the data file
Throws:
java. io. IOException
java. sql. SQLException

makeDataFile

private void makeDataFile (java. lang. String path,
java.lang. String sessionID,
java.lang. String dataFileAppendString,
boolean cm Flag)

throws java. io. IOException,
java. sql. SQLException

Makes a flat text file containing the data for the current analysis. The first row contains a tab delimited list of sample
names. Subsequent rows contain the data for the variables of each data type. The first column contains the identifiers for
each data type. If annotations are to be utilized for this analysis, a flat text file containing annotations will also be
generated. The string 'dataFileAppendString' is added to the end of the data file, in case custom data is to be added to the
file based upon user input during the analysis.
Parameters:
path - the full path of the folder in which the data file is stored.
sessionID - the session ID of the current web session.
dataFileAppendString - a string to be added at the end of the data file
cm Flag - true if the cm format is to be used for the annotation file
Throws:
java. io. IOException
java. sql. SQLException

makeDataFileWithSameExpts

private void makeDataFileWithSameExpts (java. io. FileWriter dataFile)
throws java. io. IOException,

java. sql. SQLException
Makes a flat text file containing the data for the current analysis. The first row contains a tab delimited list of sample
names. Subsequent rows contain the data for the variables of each data type. The first column contains the identifiers for
each data type.
Parameters:
dataFile - the FileWriter object to which the data is written
Throws:
java. io. IOException

105

*** ** –,
º ºria

* *

f ºa sº
ºr ... ºn tº º

sº .*.*.ºn

#!". * * *

* *s º
... * *- : **

sº-º-, *
***** as

java.sql.S.
-"

mºunoutionFilt

;:::: void makekn

Makes a flatley
delimited hsi o'
column contal■
Parameters:
annotfile
Throws:
java.io. IC:
java.sql. S

multannotationFile

prlic void makek:

Makes a flatte
announon typ
identifiers oft
Parameters:
dt - the data
annotfile
Throws:
Java. lo I
jawa.sql,
T

Pitannotin■ o

Rivate void pr

Makes a fl
* annota
containst
Paramet.
dt - the
annot -
annot F

-
rows

lava.
java -

*Statute
Fivate .

º º l º

Mak
delir
Whe
Par
ºt

java. sql. SQLException

makeAnnotationFile

public void make AnnotationFile (java. io. FileWriter annot File)
throws java. io. IOException,

java. sql. SQLException
Makes a flat text file containing the annotations for all the data types of the current analysis. The first row contains a tab
delimited list of annotation types. Subsequent rows contain the annotations for the variables of each data type. The first
column contains the identifiers for each data type.
Parameters:

annot File - the FileWriter object to which the annotation information is written
Throws:
java. io. IOException
java. sql. SQLException

make Annotation File

public void make Annotation File (Data Type dt,
java. io. FileWriter annot File)

throws java. io. IOException,
java. sql. SQLException

Makes a flat text file containing the annotations for the passed data type. The first row contains a tab delimited list of
annotation types. Subsequent rows contain the annotations for the variables of the data type. The first column contains the
identifiers of the data type.
Parameters:
dt - the data type object whose annotations are to be outputted
annot File - the FileWriter object to which the annotation information is written
Throws:
java. io. IOException
java. sql. SQLException

printAnnotinfo

private void print Annotinfo (Data Type dt,
Annotation annot,
java. io. FileWriter annot File)

throws java. io. IOException,
java. sql. SQLException

Makes a flat text file containing the passed annotations for the passed data type. The first row contains a tab delimited list
of annotation types. Subsequent rows contain the specified annotations for the variables of the data type. The first column
contains the identifiers of the data type.
Parameters:

dt - the data type object whose annotations are to be outputted
annot - the annotation object specifying the annotations to be outputted to the flat file
annot File - the FileWriter object to which the annotation information is written
Throws:
java. io. IOException
java. sql. SQLException

printStats.Info

private void printStats.Info (Data Type dt,
Annotation annot,
java. io. FileWriter annot File)

throws java. io. IOException,
java. sql. SQLException

Makes a flat text file containing the passed derived annotations for the passed data type. The first row contains a tab
delimited list of annotation types. Subsequent rows contain the specified derived annotations for the variables of the data
type. The first column contains the identifiers of the data type.
Parameters:
dt - the data type object whose annotations are to be outputted

s
3

106

º

*

-

*** -- .
... arº

**

; * …sº
i.e., sº tº nº

*** * *
********* * * *

f * * * ºH. tº -- a
, sº *-*. º

1. *.*.*.*.*
sºa-rºw tº

annººrºº

annot - the annotation object specifying the annotations to be outputted to the flat file
annot File - the FileWriter object to which the annotation information is written
Throws:
java. io. IOException
java. sql. SQLException

make Cimannotation File

public void make CimannotationFile (java . io. FileWriter annot File)
throws java. io. IOException,

java. sql. SQLException
Makes a flat text file containing annotations in cm file formate for the current analysis. Annotations are written to the flat
file for each data type that is to be analyzed. Each row contains a tab delimited list containing the data type name, ordinal
position, annotation type number, and annotation value.
Parameters:

annot File - the FileWriter object to which the annotation information is written
Throws:
java. io. IOException
java. sql. SQLException

edu.ucsf.Magellan
Class Analysis.Thread

java.lang. Object
edu.ucsf. Magellan. Analysis.Thread

All Implemented Interfaces:
java.lang.Runnable

public class Analysis.Thread
extends java. lang. Object
implements java.lang. Runnable

The Analysis.Thread object allows users to create and run threads for the analysis of data and annotations. Users can create subclasses
of Analysis.Thread in their web pages such that all the different parts of an analysis (creating data and annotation files, running
analytical methods, file cleanup, etc.) can be put in a single thread and run.

Fieldsummary
protected Analysis Info Analysis

javax. servlet. ServletContext
protected application

protected boolean running■

protected java. lang. String sessionID

T

Constructor Summary
I

Analysis.Thread ()

Method Summary

boolean is Running ()

107

void run ()

void setRunning (boolean running)
*-

T

Methods inherited from class java.lang.Object
T

| clone, equals, finalize, get Class, hashCode, notify, notify All, toString, wait, wait,
wait

field detail

Analysis

protected Analysis Info Analysis

application

protected javax. servlet. Servlet Context application

session|D

protected java.lang. String sessionID

running

protected boolean running
r—

-

Constructor Detail

Analysis.Thread

public Analysis.Thread ()

Method detail

setRunning

public void setRunning (boolean running)

isRunning

public boolean is Running ()

run

public void run ()
Specified by:
run in interface java.lang. Runnable

108

edu.ucsf.Magellan
Class Annotation

java.lang. Object
edu.ucsf. Magellan. Annotation

All Implemented Interfaces:
java. util.EventListener, javax.servlet.http. HttpSessionBindinglistener

public class Annotation
extends java.lang. Object
implements javax. servlet. http. HttpSession BindingListener

The Annotation object provides properties and methods for the analysis of curated or derived biological annotation information.
Annotations can be generally defined as quantitative or qualitative that describe the variables of a data type. For example, the variables
of a data set of mRNA expression data are the genes themselves and annotations would describe those genes (chromosomal position,
pathway designation, enzymatic activity, correlation with a clinical parameter, etc). Annotation objects are linked to the Data Type
objects they describe. Annotations are linked to individual variables of a data type via 'identifiers'. Identifiers are names that are used
to label data type variables. Identifiers include names such as genbank Id's, Unigene Id's, etc.

-

Field Summary

private int annotClass

private annot es

java. util. Vector

static int |CURATED

static int | DATABASE

static int | DERIVED

private description
java.lang. String

private filePath
java. lang. String

private |name
java. lang. String

private boolean output ToannotationEile

static int | PASTED

private pasted Values
java.lang. String [] []

private int upload.ID

private int | valueSource

T

Constructor Summary

Annotation ()

|annotation (int upload.ID)

Method Summary

2
sº

tºº.

*
sº

=

3

109

void addannotationType (java. lang. String annotType)
Adds a string to the vector of annotation types for the current annotation set.

java. lang. Object clone ()
Performs a deep copy of an Annotation object.

boolean equals (java. lang. Object obj)

int getAnnotationClass ()
Returns the annotation class.

java. util. Vector getAnnotationTypes ()
Returns a vector containing strings of the annotation types for the annotation set.

java. lang. String getDescription ()
Returns the annotation description

I

java. lang. String getGenomicBistanceSelectLists ()
º

Returns a string containing an HTML select list which allows user to specify which
annotation type of the current annotation set contains chromosome information and distance from
p telomere information, as well as the scale of the distance (bp or kb).

java. lang. String getGenomicBistanceSelectLists (java. lang. String chromName,
java.lang. String distname, java.lang. String scaleMame)

Returns a string containing an HTML select list which allows user to specify which
annotation type of the current annotation set contains chromosome information and distance from
p telomere information, as well as the scale of the distance (bp or kb).

static java . util. Vector getIdentifierTypes (int uploadip)
Returns a vector containing strings of the annotation types for the annotation set of the

passed upload ID number.| java. lang. String getName ()
Returns the name of the annotation

java. lang. String [] [] getPasted Values ()
Returns annotation values that the user has pasted into a web page.

int getUpload ID ()
Returns the upload ID number for this annotation set.

int getValueSource ()
Returns a coded integer corresponding to the source of the annotation values.

java.lang. String infoString ()
Returns a string containing HTML code containing a list of properties of the current

annotation information.
I

boolean output.ToAnnotation File ()
Returns true if annotations are to be outputted to a flat text file for analysis.

| void setAnnotationClass (int annot Class)Sets the class of the annotation.
T - - - -void setDescription (java. lang. String description)

Sets the description of the annotation
T

-
void setName (java.lang. String annotationName)

Sets the name of the annotation
■

void setOutput ToannotationFile (boolean output)
Sets whether or not annotations are to be outputted to a flat text file for analysis.

■

void setPastedValues (java.lang. String [] [] annot Values)
Sets the description of the annotation

void setUpload.ID (int uploadid)
Sets the upload ID number for this annotation set.

t

void setValueSource (int source)
Sets a coded integer corresponding to the source of the annotation values.

void valueBound (javax. servlet. http. HttpSession Binding Event event)
Implements the valueBound method of javax.servlet.http.HttpSessionBindinglistener

interface

**

110

º

º

!,

º

- -tº
arºº *

º nº. se **
:* - tº e- ***

sº
*** º *;

*** * *. ***

gº • * **
, , º, ºr sº

** **- *
as a " a sº

.* sº-sº

a nº

—

_-

_-
Ma■ ºds inherited from
—-
finalize, getClas
-

-

Fºld Detail

DATABASE

pºlic static fin
St Also:

Constant Fiel

PASTED

Filic static fin
*Also:

Constant Fie

(URATED

Pºlic static fir
* Also:

Constant Fie.
T

DRIVED

pitlic static fit

Cºnstan. He

time

Private java.lan.

*iptiºn

Private java lar:

void valueUnbound (javax. servlet. http. HttpSession Binding Event event)
Implements the valueBound method of javax servlet.http. HttpSessionBindingListener

interface

Methods inherited from class java.lang. Object

finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

field detail

DATABASE

public static final int DATABASE
See Also:

Constant Field Values

PASTED

public static final int PASTED
See Also:

Constant Field Values

CURATED

public static final int CURATED
See Also:

Constant Field Values

DERIVED

public static final int DERIVED
See Also:

Constant Field Values

name

private java.lang. String name

description

private java.lang. String description

filePath

private java. lang. String file Path

pasted Values

private java. lang. String [] [] pastedValues

output.ToAnnotationFile

*

111

private boolean output ToknmotationFile

upload■ D

private int uploadlD

valueSource

private int valueSource

annotClass

private int annotClass

annot'Types

private java. util. Vector annot'Types
I
Constructor Detail

Annotation

public Annotation ()

Annotation

public Annotation (int upload ID)
throws java. sql. SQLException

Throws:
java. sql. SQLException

t

Method Detail

getName

public java. lang. String getName ()
Returns the name of the annotation
Returns:
the annotation name

setName

public void setName (java.lang. String annotationName)
Sets the name of the annotation
Parameters:
annotationName - name the annotation name

getAnnotationClass

public int getAnnotationClass ()
Returns the annotation class. Allowable values are 'curated' and 'derived' for the two classes of annotations.
Returns:
the annotation class

112

setAnnotationClass

public void setAnnotationClass (int annotClass)
Sets the class of the annotation. Allowable values are the constants CURATED and DERIVED
Parameters:
annotClass - class the annotation class

getDescription

public java. lang. String getDescription ()
Returns the annotation description
Returns:
the annotation description

setDescription

public void setDescription (java. lang. String description)
Sets the description of the annotation
Parameters:

description - the annotation description

getPastedValues

public java.lang. String [] [] getPastedValues ()
Returns annotation values that the user has pasted into a web page. These values are stored in a 2D String table.
Returns:
a String table of annotation values.

set Pasted Values

public void setPasted Values (java.lang. String [] [] annotValues)
Sets the description of the annotation
Parameters:

annotValues - description the annotation description

output ToAnnotationFile

public boolean output ToànnotationFile ()
Returns true if annotations are to be outputted to a flat text file for analysis.
Returns:
true if annotations are to be outputted

setOutput ToAnnotationFile

public void setOutput ToànnotationFile (boolean output)
Sets whether or not annotations are to be outputted to a flat text file for analysis.
Parameters:

output - true if annotations are to be outputted

getUpload.ID

public int getUploadlD ()
Returns the upload ID number for this annotation set.
Returns:
the annotation upload ID

113

**** *- ******sº º
nº sº* * * *

- º
...i.e. shººt ---

- *

- *** * *:
* * * * *

* * * * *f * - -º

... sº- ***
-
** -a a

ar, ºrº-ºº

* *******

ºr

#. **-** º:
T., .***
mass *

º
*...**** *
*** **** -it- tº

*** ****

diplºad■)

Fr.: void *
Scts the uplo
Parameters:

upload.It

—l
fºllutSource

prlic int getva
Retums aco
PASTED
Returns:

an integerco

*\alueSource

Piºlic void setw
Sets a codex
Default valu
Parameter
source -

"-

*notation types

** - -*-ic java. ut
Retums a

for chrom
would be
Returns:
a vector

*ution■ ,

Public void g

A■ s a
Param
annot

T

*inert,
*lic seas

Retu
Para

Fºslie ja

setUploadid

public void setUpload.I.D (int upload.ID)
Sets the upload ID number for this annotation set.
Parameters:

upload.ID - output true if annotations are to be outputted

getValueSource

public int getValueSource ()
Returns a coded integer corresponding to the source of the annotation values. Allowed values are DATABASE or
PASTED. Default value for a newly instantiated Annotation object is DATABASE.
Returns:

an integer corresponding to the source of the annotation values.

setValueSource

public void setValueSource (int source)
Sets a coded integer corresponding to the source of the annotation values. Allowed values are DATABASE or PASTED.
Default value for a newly instantiated Annotation object is DATABASE.
Parameters:

source - an integer corresponding to the source of the annotation values.

getAnnotationTypes

public java. util. Vector getAnnotationTypes ()
Returns a vector containing strings of the annotation types for the annotation set. For example, if annotations are uploaded
for chromosomal position with the annotation types 'chromosome' and bp', then a vector containing 'chromosome' and bp'
would be returned.
Returns:
a vector containing the annotation types that exist in the annotation set.

addAnnotationType

public void addannotationType (java. lang. String annot Type)
Adds a string to the vector of annotation types for the current annotation set.
Parameters:

annot Type - the annotation type to be added to the vector of annotation sets.

getIdentifierTypes

public static java. util. Vector getIdentifierTypes (int uploadlD)
throws java. sql. SQLException

Returns a vector containing strings of the annotation types for the annotation set of the passed upload ID number.
Parameters:
upload.ID - the upload ID number of the annotation set whose annotation types are to be returned.
Returns:
a vector containing the annotation types that exist in the annotation set of the passed upload ID.
Throws:
java. sql. SQLException

clone

public java. lang. Object clone ()

i
3.

114

***** .
...ºr

Fº **** .***
!rºws, ºn

*** * º*** * * * * *
* * * *****
... *s-, ****

*** ***
tº -
s

-*****º

annºu-ºº-ºº:

!. wº- --

Performs a deep copy of an Annotation object.
Overrides:
clone in class java.lang. Object
Returns:
a cloned Annotation object.

equals

public boolean equals (java.lang. Object obj)
Overrides:

equals in class java. lang. Object

getGenomicBistanceSelectlists

public java.lang. String getGenomic DistanceSelectLists (java. lang. String chromName,
java.lang. String distName,
java.lang. String scaleMame)

Returns a string containing an HTML select list which allows user to specify which annotation type of the current
annotation set contains chromosome information and distance from p telomere information, as well as the scale of the
distance (bp or kb). These select lists are useful for web pages of analytical methods where genomic position information is
used.
Parameters:
chromName - the HTML select name for the chromosome information
distName - the HTML select name for the distance from p telomere information
scaleMame - the HTML select name for the distance scale information information
Returns:
HTML code for a SELECT list

getGenomicidistanceSelectlists

public java.lang. String getGenomicBistanceSelectLists ()
Returns a string containing an HTML select list which allows user to specify which annotation type of the current
annotation set contains chromosome information and distance from p telomere information, as well as the scale of the
distance (bp or kb). These select lists are useful for web pages of analytical methods where genomic position information is
used. The HTML select names 'chrom', 'distance', 'scale' are used in the HTML code.
Returns:
HTML code for a SELECT list

infoString

public java. lang. String infoString ()
Returns a string containing HTML code containing a list of properties of the current annotation information. The upload ID
number, description, and a comma delimited list of annotation types are listed.
Returns:
HTML code listing information for the current annotation set.

valueBound

public void valueBound (javax. servlet. http. HttpSessionBinding Event event)
Implements the valueBound method of javax.servlet.http.HttpSessionBindingListener interface
Specified by:
valueBound in interface javax. servlet. http. HttpSessionBinding Listener
Parameters:
event - the HttpSessionBindingEvent passed by the expired session to the method

valueunbound

à2

*
º

gº
sº

…”

º
*

115

*** *-
ºf ºrs sº

-

º *...***
******, ***

sº

stºº". ********** *

gº " "… º. *
º, sº º wº
rººs. ***

* * * * * * *
...-****

4. **** "- gº

*

º s

**** *‘. º, & **** *
es º

*
* , ******
** *** * *

** ****

public void value Unbound (javax. servlet. http. HttpSessionBindingEvent event)
Implements the valueBound method of javax.servlet.http.HttpSessionBindingListener interface
Specified by:
valueunbound in interface javax. servlet. http. HttpSessionBinding Listener
Parameters:

event - the HttpSessionBindingEvent passed by the expired session to the method

edu.ucsf.Magellan
Class AnnotationComparison

java.lang. Object
edu.ucsf. Magellan. AnnotationComparison

public class AnnotationComparison
extends java.lang. Object

The AnnotationComparison object provides properties and methods for the comparison of annotations or identifiers as part of
projecting one data type onto another. Annotations/Identifiers can be compared in a number of quantitative and qualitative ways
(string comparisons, numerical comparisons, etc.). AnnotationComparison objects store what kind of information is to be compared
(identifiers vs annotations as well as the annotation type), and the type of comparison to be made. The comparison itself is performed
by the compare() method.

Fieldsummary
private annotations

Annotation []
static int | ANNOTATIONS

private annottypeNumbers
int []

static int | CASE INS STRING EQUALITY

private int comparison Type

static int | EQUALS

static int | GREATER

static int |GREATER OR EQUAL

static int | IDENTIFIERs

private | infoSource
int []

static int LESS

static int |LESS OR EQUAL

static int | STRING EQUALITY

private threshold
double

static int | WITHIN THRESHOLD

**
tº

wº
º
r; º

**

116

*** *- .
…tº

.
º *...***

| rºws sº-ºº:
*********** * *

* * * *
H., sº … ºur ºn

... sº. ººº
He massº -- *
irº

*. --"***
• * *ºl. * º

** º
sº
º, *** *
star in a ~ * *

T

|Constructor Summary
■

| AnnotationComparison ()

Method Summary
I

java.lang. Object clone ()
Returns a clone of the AnnotationComparison object.

boolean compare (java. lang. String valuel, java.lang. String value2)
Returns true if the passed string values meet the comparison criteria established by the

AnnotationComparison object.

boolean equals (java. lang. Object obj)
Returns true if the two AnnotationComparison objects are equal.

Annotation []

■
getAnnotations ()

Returns the array of Annotation objects that are used for the annotation comparison.
I

int [] getAnnotationTypeNumbers ()
Returns the array of annotation type numbers that are used for the annotation comparison.

java. lang. String getComparisonString ()
Returns a brief string explanation of the comparison type

int getComparison'type ()
Returns the integer value corresponding to the comparison type

getInfosource (int index)
Returns the information type for the comparison at the specified index - 'annotations' or 'identifiers'

int

java. lang. String getInfosourcestring (int index)
Returns a string for the type of information to be compared.

double getThreshold ()
Returns the threshold for 'within' comparisons.

|

void setComparison Type (int type)
Sets the integer value corresponding to the comparison type: STRING_EQUALITY: string equality

CASE INS STRING_EQUALITY: case insensitive string equality EQUALS: = GREATER: -
GREATER OR EQUAL; -- LESS: < LESS OR EQUAL: <= WITHIN_THRESHOLD: within a
threshold of each other - abs(a-b) <=threshold

I void setInfoSource (int index, int source Type)
Sets the information source (ANNOTATIONS or IDENTIFIERS) for the comparison at the

specified index.

t void set InfoType (Data Type dt, java.lang. String infoTypeNumber, int index)
Sets the type of information that is to be used to compare annotations or identifiers at the specified

index.

void setThreshold (double threshold)
Sets the double value corresponding the threshold used for 'within' comparisons.

Methods inherited from class java.lang. Object
T

finalize, get Class, hashCode, notify, notifyAll, toString, wait, wait, wait

field detail

STRING_EQUALITY

public static final int STRING_EQUALITY
See Also:

Constant Field Values

CASE_INS_STRING_EQUALITY

117

º

***** .
*** ****

**
* **, **

."rººt **
ra- ****

Hº: *** *-ºs : *
* *fl. 2.*... trº. ºur ºn

***** - *º

■ . assº a “*

a nºw-tº

!. sº "--
&:...”**** * s

*

º
* * * * * *

arr ºn-a-, -º- **

*** *****

public static final int CASE_Ins_STRING_EQUALITY
See Also:

Constant Field Values

EQUALS

public static final int EQUALS
See Also:

Constant Field Values

GREATER

public static final int GREATER
See Also:

Constant Field Values

GREATER OR EQUAL

public static final int GREATER OR EQUAL
See Also:

Constant Field Values

LESS

public static final int LESS
See Also:

LESS OR EQUAL

public static final int LESS OR EQUAL
See Also:

WITHIN_THRESHOLD

public static final int WITHIN THRESHOLD
See Also:

Constant Field Values

IDENTIFIERS

public static final int IDENTIFIERS
See Also:

Constant Field Values

ANNOTATIONS

public static final int ANNOTATIONS
See Also:

Constant Field Values

118

, a. sun tº anº
. assedº is* * * *

..*.*
-** -º-º-º:

ºne ****
* - **

**

º ******* .

***** assº

comparisonType

private int comparison Type

threshold

private double threshold

infoSource

private int [] infoSource

annotations

private Annotation [] annotations

annot'TypeNumbers

private int [] annot'TypeNumbers

!Constructor Detail

AnnotationComparison

public AnnotationComparison ()

Method detail

setComparisonType

public void setComparison'type (int type)
Sets the integer value corresponding to the comparison type: STRING_EQUALITY: string equality
CASE_INS_STRING_EQUALITY: case insensitive string equality EQUALS: = GREATER: P GREATER OR EQUAL:
>= LESS: < LESS_OR_EQUAL: <= WITHIN_THRESHOLD: within a threshold of each other - abs(a-b) <=threshold
Parameters:

type - the type number of the comparison

getComparisonType

public int getComparison Type ()
Returns the integer value corresponding to the comparison type
Returns:

the type number of the comparison operator

getComparisonString

public java.lang. String getComparisonString ()
Returns a brief string explanation of the comparison type
Returns:
a brief string explanation of the comparison type

setThreshold

119

s

º

y : * :

**,
*

::: *** * ****

*** gº *

*** *-*. *: *

*...***

public void setThreshold (double threshold)
Sets the double value corresponding the threshold used for 'within' comparisons. In this type of comparison, numbers are
tested to be within a threshold level of each other
Parameters:

threshold - the threshold for 'within' comparisons.

getThreshold

public double getThreshold ()
Returns the threshold for 'within' comparisons.
Returns:
the threshold for 'within' comparisons.

setInfoType

public void setInfoType (Data Type dt,
java.lang. String infoTypeNumber,
int index)

Sets the type of information that is to be used to compare annotations or identifiers at the specified index.
Parameters:
dt - the data Type object that is to be projected from or onto
infoTypeNumber - a string containing the value "-1" if identifiers are to be compared, or two tab delimited numbers - the
first is the index of the annotation object in the list of annotations associated with the data type and the second is the index
of the annotation type in the list of types associated with the annotation object.
index - the array index at which to set the type (0 or 1)

getInfoSourceString

public java.lang. String getInfoSourceString (int index)
Returns a string for the type of information to be compared. Possible results would be 'Identifiers' if identifiers are to be
compared, or 'Annotations' followed by the identifier type at the specified index in the list of identifier types.
Parameters:
index - the array index in the annotation types array (0 or 1)

getAnnotations

public Annotation [] getAnnotations ()
Returns the array of Annotation objects that are used for the annotation comparison. This array is of length 2 - the first is
the annotations projected from, the second is the annotations projected onto.

getAnnotationTypeNumbers

public int [] getAnnotationTypeNumbers ()
Returns the array of annotation type numbers that are used for the annotation comparison. This array is of length 2 - the
first is the type number of the annotations projected from, the second is the type number of the annotations projected onto.

getInfoSource

public int getInfoSource (int index)
Returns the information type for the comparison at the specified index - 'annotations' or 'identifiers'
Parameters:

index - the array index in the annotation types array (0 or 1)

set infoSource

120

()

*****..º.º.
site

**
º **** ****

...s.º.º is nº
- suº

Hº". *** ** º*** * * * * *
a twº sº* ºt
re... .º. --º

* * *- ***
ses.” ...--"

..*.*.*

º r!. sº sº"
**

º."**** sº

<-----º-º-º-º"
* ******

*** --sº

public void setInfoSource (int index,
int sourceType)

Sets the information source (ANNOTATIONS or IDENTIFIERS) for the comparison at the specified index.
Parameters:

index - the array index in the annotation types array (0 or 1)
sourceType - the type of infomation to be compared (ANNOTATIONS or IDENTIFIERS)

clone

public java. lang. Object clone ()
Returns a clone of the AnnotationComparison object.
Overrides:
clone in class java.lang. Object

equals

public boolean equals (java.lang. Object obj)
Returns true if the two AnnotationComparison objects are equal. Their comparisonTypes must be the same, and their
thresholds the same if a 'within' comparison is to be performed.
Overrides:

equals in class java. lang. Object
Parameters:

obj- the AnnotationComparison object to be compared with the receiver.
Returns:
true if the two AnnotationComparison objects are equal.

compare

public boolean compare (java.lang. String value1,
java.lang. String value2)

Returns true if the passed string values meet the comparison criteria established by the AnnotationComparison object.
Parameters:
value1 - the first string value to be compared
value2 - the second string value to be compared

edu.ucsf.Magellan
Class DataProjection

java.lang. Object

edu.ucsf. Magellan. DataProjection

public class DataProjection
extends java.lang. Object

The DataProjection object allows one data type to be projected onto another, subject to user defined parameters. Projection refers to
the process of determining 'equivalent' variables between two data types, where 'equivalence' is determined by the user. The
DataProjection stores as properties pointers to the data type to project from and onto, as well as a vector of AnnotationComparison
objects that determine how variables of a data type are to be compared to determine equivalence. To project, the relevant identifiers or
annotations are queried from the database and stored in 2D arrays (making the procedure somewhat memory intensive). The rows of
these arrays are compared in a pairwise fashion, and those rows of the data type projected onto which satisfy the criteria are returned
as a HashSet of stringified integer ordinal positions.

Field Summary

private annot
Annotation

121

º:

******* ºr-º-
sº grº

-
*...***

Hsu ºn alsº
... --"

sº *:*** ***.* * -* whº ºn

ºf tº*... --> *
... nº sº... .º-haº
a sº... sº
assº a “*”

rººt º'

private annotComparisons
java. util. Vector

T

static int | DATA ASSOCIATED

private Data Type dtProjectee

private Data Type dtprojector

static int | PASTED ANNOTATION

private int projectionsource

t

Constructor Summary
I

|DataProjection ()

F

Method Summary

void add annotationComparison (AnnotationComparison annotComp)
Adds an AnnotationComparison object to the vector of objects to be used to compare variables

of data types.

clone ()
Returns a clone of an AnnotationComparison objects

■ java.lang. Object

I- -private boolean compare (java. lang. String [] tuple1, java.lang. String [] tuple2)
Compares two string arrays containing identifiers/annotations, and returns true if they satisfy

the comparison criteria in the AnnotationComparison objects associated with this DataProjection
object.

boolean equals (java.lang. Object obj)
Overrides the equals method to perform a deep comparison between the receiver and the

passed object.

Annotation getAnnotation ()
Gets the Annotation object to be projected from

AnnotationComparison getAnnotationComparison (int position)
Returns an AnnotationComparison object from the vector of objects at the specified position

java. util. Vector getAnnotationComparisons ()
Returns the vector of AnnotationComparison objects associated with the data projection

private
java.lang. String [] []

getAnnotationTable (int tableNum)
Queries the database for the necessary identifiers/annotations for the data projection, and

returns them in a 2D array.

Data Type getDataProjectee ()
Gets the data type to be projected onto

Data Type getbataprojector ()
Gets the data type to be projected from

java. util. HashSet getProjectedOrdinal Positions ()
Performs a variable projection from one data type to another, returning the ordinal positions in

the data projectee that satisfied the projection criteria in a HashSet.

int■ getProjectionsource ()
Returns the source of the information that is to projected onto a data type.

java.lang. String infoString ()
Returns a string containing HTML code printing out the projection information associated with

the DataProjection object.

removeannotationComparison (int position)
Removes an AnnotationComparison object from the vector of objects at the specified position

void

void setAnnotation (Annotation annot)

.
*

*

º:
º

;

122

s

*****- *

-
ºr--"

** º
“e, ****

*** * ****

assass- …”
º: **** *****

…”
H... º.º. -- ****

a sº- **

, ºr ºn

*** * * * *
..*.*.*

*-****

!. ºfsº.-- *****

º ** .* º
-** sºº

º *** * * *** sº

* * *-*.*.**

Sets the Annotation object to be projected from

void setDataProjectee (Data Type dt)
Sets the data type to be projected onto

void setDataProjector (Data Type dt)
Sets the data type to be projected from

void setProjectionsource (int source)
Sets the source of the information that is to projected onto a data type.

t Methods inherited from class java.lang. Object
T

| finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

field detail

DATA ASSOCIATED

public static final int DATA Associated
See Also:

Constant Field Values

PASTED_ANNOTATION

public static final int PASTED_ANNOTATION
See Also:

Constant Field Values

dtprojector

private Data Type dtprojector

dtprojectee

private DataType dtprojectee

annot

private Annotation annot

annotComparisons

private java. util. Vector annotComparisons

projectionSource

private int projectionsource
T

| Constructor Detail

DataProjection

public DataProjection ()

i
º

;

123

ºr, assº anº

tº: "": * ***** *** ****

gº." ... --"#. -- in-ºf

: *-*. ****
º ***** * * ****

*** *

º gº, -º- ºr sº

ºl. ...” º

º
* * * * *

** *** * *

, -º
*

ºt

**** --~~~~"

Method detail

setDataProjector

public void setDataProjector (Data Type dt)
Sets the data type to be projected from
Parameters:
dt - the DataType object to project from

getDataProjector

public DataType getDataProjector ()
Gets the data type to be projected from
Returns:
the Data Type object to project from

setDataProjectee

public void setDataProjectee (Data Type dt)
Sets the data type to be projected onto
Parameters:

dt - the Data Type object to project onto

getDataProjectee

public DataType getDataProjectee ()
Gets the data type to be projected onto
Returns:
the DataType object to project onto

setAnnotation

public void set Annotation (Annotation annot)
Sets the Annotation object to be projected from
Parameters:

annot - the Annotation object to be projected from

getAnnotation

public Annotation getAnnotation ()
Gets the Annotation object to be projected from
Returns:
the Annotation object to be projected from

addAnnotationComparison

public void add annotationComparison (AnnotationComparison annotComp)
Adds an AnnotationComparison object to the vector of objects to be used to compare variables of data types.
Parameters:

annotComp - the AnnotationComparison object to add.

removeAnnotationComparison

public void remove AnnotationComparison (int position)

.
º

º

:

º2
*

*

124

! * * º

.*.*.*** *****
- ***

sº." **,*** * **** º: tº

f **, *, ****** - sº **-**

a *- ****
1. asº." …sº
**** ****

annºu--"

!------
º * ***ºº *
*** sº

†* --~~~"
* *** ***"

** --~~~"

Removes an AnnotationComparison object from the vector of objects at the specified position
Parameters:
position - the position of the AnnotationComparison object to remove.

getAnnotationComparison

public AnnotationComparison getAnnotationComparison (int position)
Returns an AnnotationComparison object from the vector of objects at the specified position
Parameters:

position - the position of the AnnotationComparison object to return.

getAnnotationComparisons

public java. util. Vector getAnnotationComparisons ()
Returns the vector of AnnotationComparison objects associated with the data projection
Returns:
the vector of AnnotationComparison objects.

getProjectionSource

public int getProjectionsource ()
Returns the source of the information that is to projected onto a data type. Allowable values are the constants
DATA ASSOCIATED or PASTED ANNOTATION
Returns:

an integer corresponding to the source of the information projected onto data.

setProjectionSource

public void setProjectionsource (int source)
Sets the source of the information that is to projected onto a data type. Allowable values are the constants
DATA ASSOCIATED or PASTED ANNOTATION
Parameters:
source - an integer corresponding to the source of the information projected onto data.

clone

public java.lang. Object clone ()
Returns a clone of an AnnotationComparison objects
Overrides:
clone in class java.lang. Object
Returns:

the cloned AnnotationComparison object.

equals

public boolean equals (java.lang. Object obj)
Overrides the equals method to perform a deep comparison between the receiver and the passed object. The two projector
data types and projectee data types must be the same, and the AnnotationComparison objects must be equal.
Overrides:
equals in class java.lang. Object
Parameters:

obj- the DataProjection object to be compared with the receiver.
Returns:
true if the two DataProjection objects are equal.

getProjected OrdinalPositions

i
5
;

125

s

.*.*.*.*.*.*.***
a "

public java. util. HashSet getProjected Ordinal Positions ()
throws java. sql. SQLException

Performs a variable projection from one data type to another, returning the ordinal positions in the data projectee that
satisfied the projection criteria in a HashSet.
Returns:
a HashSet of ordinal positions in the data type projected onto that satisfied the projection criteria.
Throws:
java. sql. SQLException

compare

private boolean compare (java. lang. String [] tuplel,
java. lang. String [] tuple2)

Compares two string arrays containing identifiers/annotations, and returns true if they satisfy the comparison criteria in the
AnnotationComparison objects associated with this DataProjection object.
Returns:
true if the contents of the passed arrays meet the comparison criteria.

getAnnotationTable

private java.lang. String [] [] getAnnotationTable (int tableNum)
throws java. sql. SQLException

Queries the database for the necessary identifiers/annotations for the data projection, and returns them in a 2D array. Each
row of the table is an ordinal position's worth of information. Each column is a different class of information (such as a
different annotation).
Returns:
a 2D string array of identifiers/annotations for the data projection.
Throws:
java. sql. SQLException

infoString

public java. lang. String infoString ()
Returns a string containing HTML code printing out the projection information associated with the DataProjection object.
The two data type names are listed, as well as the characteristics of the annotation comparisons to be performed.
Returns:
an HTML string containing the characteristics of the data projection.

edu.ucsf.Magellan
Class DataType

java.lang. Object
edu.ucsf. Magellan. Data'Type

Direct Known Subclasses:
DisplayLata Type

public class Data Type
extends java.lang. Object

Data Type objects represent the data types that are analyzed in Magellan. Data can be thought of as any quantitative or qualitative
information that is gathered from samples. Data types represent the different types of information that can be gathered from each
sample, such as mRNA expression, clinical characteristics and patient data that could be gathered from a tumor. For each sample
analyzed, each data type contains a vector of information of arbitrary length. Each component of a this vector is a separate variable,
such as a gene's worth of data in the case of mRNA expression. These variables are often named with a textual label called an
'identifier', such as a genbank ID. Identifiers are used to label variables of a data type, and to link data to curated annotations.
Data Type objects can be linked to both curated and derived annotations. Curated annotations are linked to the variables of a data type
through identifiers. Derived annotations are only applicable to a particular data set, and are linked to the variables of a data type
through the ordinal position (row number). Data types can be subselected based on curated or derived annotations, and the Data Type

**

126

....*.*, ****
a ..., a

". **** * *** *****
** º-...sºf *", - ... --"

- ºsº-, * n

assº.--"

object provides methods to do this. Data Type objects contain a vector of Subselection objects that define the criteria by which a the
variables of a data type are to be restricted to a subset of the total.

r—

Field Summary
T

protected
java. util. Vector

annotation List

protected int dataPointsPromouery

protected int datapointsperSample

protected int dataTypeNumber

protected int experiment

protected boolean isstoredIn IDatabase

protected
java.lang. String

protected
java. util. Hashtable

parameters

protected
DataProjection

projection

selected OrdinalPositions
T

protected int []

t

protected
java. util. Vector

subselectionlist

protected
java. util. Vector

uploadLDs

T

!Constructor Summary

Data Type ()

Method Summary

void laddAnnotation (Annotation annot)
Adds an annotation object to the list of annotations of a data type.

void laddAnnotation (Annotation annot, int index)
Adds an annotation object to the list of annotations of a data type at the specified position.

void laddannotationFromupload (int upload.ID)
Adds an annotation object from the specified upload to the list of annotations of a data type.

void laddsubSelection (SubSelection select)
Adds a SubSelection object to the list of SubSelections associated with a data type.

void laddSubSelection (SubSelection select, int index)
Adds a SubSelection object to the list of SubSelections associated with a data type, at the

specified position.

void addûploadll) (int upload.ID)
Adds an upload ID to the vector of upload ID's associated with the data type.

void addlploadlps (java. util. Vector upload.IDs)
Adds a vector of upload ID's to the existing vector of upload ID's associated with the data

type.

java.lang. String annotationInfoString ()
Returns an HTMLized string listing the properties of the annotations associated with a data

;
2

127

º

*** *- *

**** *****
Fº

ºn --ºld*... ***
ºr resus' assº"

*** *
ºf: ***. -** * *** *****

f 4- ºr-.. *= º ***...tº_a -º-º-º:

* -*...***
* * * * ***

* **"

m
a sº. viº"
º ****

{
ºº ***** *

º sº ****-***** º
** *** * ****

ºgº.º.º. -*.*.*

type.

java.lang. String annotationInfoString (boolean print/All)
Returns an HTMLized string listing the properties of the annotations associated with a data

type.

java.lang. String annotationSelectlist (java. lang. String name)
Returns a string containing an HTML SELECT list with the specified name containing the

annotations associated with a data type.

java.lang. String annotationSelectList (java.lang. String name, int numselections Displayed)
Returns a string containing an HTML SELECT list with the specified name and number of

rows, containing the annotations associated with a data type.

boolean annotationsSpecified ()
Returns true if there are annotation objects associated with a data type.

boolean annotations.ToQutput ()
Returns true if there are annotations to output to a flat file for analysis.

void clearallAnnotations ()
Clears the list of annotations associated with a data type.

void clearallSubSelections ()
Clears the list of SubSelection objects associated with a data type.

void clear Output ToAnnotationFile ()
No annotations associated with a data type will be outputted to a file.

void clear Output ToAnnotationFile (int index)
The annotation object at the specified position in the list of annotations will not be

outputted to a file.

java.lang. Object clone ()
Performs a deep copy of a DataType object.

boolean equals (java.lang. Object obj)
Overrides the equals method to perform a deep comparison between the receiver and the

passed object.

java. util. Vector getAnnotationlist ()
Returns a vector of Annotation objects associated with a data type.

int getDataPointsperSample ()
Gets the number of data points per sample that is stored in the database for the data type.

int getDataPointsReturnedFromCuery ()
Gets the number of data points per sample that is returned from the database after any

subselections on the data type are performed

DataProjection get■)ataProjection ()
Returns the DataProjection object associated with a data type.

java.lang. String getIDataSq|Statement (java.lang. String sampleNumberString)
Returns a SQL statement that returns ordinal positions, sample numbers, and data values for

a data type.

static Data Type getData TypeFromExperiment (int dtNumber, int experiment)
Returns a Data Type object from a given experiment with a given data type number.

static Data Type getData TypeFromFixperiment (java. lang. String name, int experiment)
Returns a Data Type object from a given experiment with a given name.

int get■)ata IypeNumber ()
Gets the data type number of the data type in its experiment.

static java. util. Vector getIData TypesPromFixperiment (int experiment)
Returns a vector of DataType objects from a given experiment.

static java. util. Vector getIData TypesFromupload (int upload.ID)
Returns a vector of Data Type objects from a given upload.

int getFXperiment Number ()
Returns the experiment number of a data type.

128

stºº. ..sº** *** ***. * gº

■ ** = law”sº. ------"
- **sus- **** an

Hassº a “*
*****"

******"

1. sº- ".…"
***gº...” *

** as-era

* --~~~
* * * * ...arºº

**** ****

java.lang. String getName ()
Returns the name of a data type.

java.lang. String getNameWithSubselections ()
Returns the name of a data type and a list of its subselections, if any.

int [] getOrdinalPositions ()
Returns an integer array containing the ordinal positions of a data type after subselection

and projection.

java. util. Hashtable getParameters ()
Returns a hash containing key:value pairs associated with a data type.

java.lang. String getParameterValue (java.lang. String parameter)
Returns a value for a key that is associated with a data type.

java. util. HashSet getSubselectedOrdinalPositions ()
Takes all the subselection information for a data type, and returns a HashSet of stringified

integers containing the ordinal positions of the data that satisfy the selection criteria.

java. util. Vector getSubselectionlist ()
Returns a vector of SubSelection objects associated with a data type.

java. util. Vector getuploadlps ()
Returns a vector of uploadlDs of a data type.

java.lang. String [] identifiers ()
Returns a string array containing the identifiers of a data type.

boolean isstoredInDatabase ()
Returns true if this data type is physically stored in the database.

void loadBerivedStatistics ()
Queries the database for all derived annotations that belongs to this data Type, and adds

each one as an annotation Object.

void loadStored Annotations ()
Queries the database to see if users have associated annotations with a data type.

void outputannotations (java. lang. String [] selectionNumbers)
Allows the user to set the annotations to be outputted.

void output.ToAnnotationFile (int index)
The annotation object at the specified position in the list of annotations will be outputted to

a file.

void setDataPointsPerSample (int dataPoints PerSample)
Sets the number of data points per sample that was uploaded and stored in the database for a

data type.

void setDataPoints|ReturnedFrom Query (int dataPoints PerSample)
Sets the number of data points per sample that is returned from the database after any

subselections on the data type are performed

void setDataProjection (DataProjection project)
Associates a DataProjection object with a data type.

void setFXperiment Number (int experiment)
Sets the experiment number of a data type.

void setName (java.lang. String name)
Sets the name of a data type.

void setParameterValue (java.lang. String parameter, java. lang. String value)
Sets a key:value pair that is associated with a data type.

boolean statisticliploaded (java.lang. String statName)
Returns true if a statistic named 'statName' belonging to the data type has already been

uploaded to the database.

java.lang. String subSelectionInfoString ()
Returns an HTML string listing the subselection information for a data type.

Methods inherited from class java.lang. Object

º

;

129

s

º ****

** * .* *****

*...** ******
****erº.**** *****

:* *** . -*...***
rº, ºr “”

***** ****
*** *****

....***

****** nº

!. sºn T-

{. g .* *...**.* ****
-

*:

-

***** * * .*.***

tº *** --~~~"

finalize, get Class, hashCode, notify, notify All, toString, wait, wait, wait

Field Detail

protected java.lang. String name

isStoredInDatabase

protected boolean is StoredInDatabase

experiment

protected int experiment

data TypeNumber

protected int data TypeNumber

dataPointsPerSample

protected int dataPoints PerSample

dataPointsFrom Query

protected int dataPoints.From Query

selected OrdinalPositions

protected int [] selectedOrdinalPositions

uploadlDs

protected java. util. Vector uploadids

annotationlist

protected java. util. Vector annotationList

subSelectionlist

protected java. util. Vector subselection List

projection

protected DataProjection projection

!

}:

130

º

***-
...-a--- pass

**
- **** - mºs****

, sº tº ºr ****:
º

* * *

*** ** **.***** *** *****
** º

* . º º
* * * * *-* rata

*****º
... -- **

irº º' º
* *****

ºf
-!. -º-º-º-º"

tº:
** * t

‘… º .* ...”
- sº-sº

*
* ***** *

-zºn

*
* * * *

* * * * ****

parameters

protected java. util. Hashtable parameters
T

Constructor Detail

Data Type

public Data Type ()

Method detail

getName

public java.lang. String getName ()
Returns the name of a data type.
Returns:

the data type name

setName

public void setName (java.lang. String name)
Sets the name of a data type.
Parameters:

name - the name of the data type

getNameWithSubselections

public java. lang. String getNameWithSubselections ()
Returns the name of a data type and a list of its subselections, if any. The results are in HTML format.
Returns:

data type name and subselections

isStoredInDatabase

public boolean is StoredInDatabase ()
Returns true if this data type is physically stored in the database. Returns false if the data type is derived by subselection or
projection.
Returns:
true if data type is stored in the database.

getFXperimentNumber

public int getFXperimentNumber ()
Returns the experiment number of a data type.
Returns:
experiment number of the data type.

setFXperimentNumber

public void set Experiment Number (int experiment)
Sets the experiment number of a data type.
Parameters:

experiment - the experiment number of the data type

|
º

|

131

** . .

■ .

º
-

- º

-

*** ******
sº

sº is
º *** gº

--" # * * * ##

, is a mºrº ------
- ****

*** ***
º ****** ***.***
'-º', *. ***

º º■ *** - sº *****

(? tº raº- ...]
º ... º.º. -º º

*******".
*

*- d
** * ****"

*
!. -º-º-º-"

º º ** *
* * tº "...,'* -º º

l *** -----
-

* --~~~~
- ** **** --- --"

º

******"
- *-

*

~
*-

A,

* *

-

* ,

º

\, . "

* v

º

*
-"
Cº.

º
*-

getUploadlDs

public java. util. Vector getUpload.IDs ()
Returns a vector of uploadlDs of a data type. A data type may have more than one upload ID number if different samples
are loaded to the database at different times.
Returns:

a vector of uploadlDs of a data type.

adduploadid

public void addupload.I.D (int upload.ID)
Adds an upload ID to the vector of upload ID's associated with the data type.
Parameters:

upload.ID - the upload ID to add to the vector of upload ID's

adduploadids

public void adduploadids (java. util. Vector upload.IDs)
Adds a vector of upload ID's to the existing vector of upload ID's associated with the data type.
Parameters:

_upload.IDs - the vector of upload ID's to add to the existing vector of upload ID's

getDataPointsPerSample

public int getDataPoints PerSample ()
Gets the number of data points per sample that is stored in the database for the data type.
Returns:
the number of data points per sample for a data type.

setDataPointsPerSample

public void setDataPoints PerSample (int dataPoints PerSample)
Sets the number of data points per sample that was uploaded and stored in the database for a data type. This method is
generally passed the results of a SQL query.
Parameters:

dataPoints PerSample - the number of data points per sample for the data type in question.

getDataPointsReturned From Query

public int getDataPoints Returned From Query ()
Gets the number of data points per sample that is returned from the database after any subselections on the data type are
performed
Returns:

the number of data points per sample after subselections/projections

setDataPointsReturned From Query

public void setDataPoints.Returned From Query (int dataPoints PerSample)
Sets the number of data points per sample that is returned from the database after any subselections on the data type are
performed
Parameters:

dataPoints PerSample - the number of data points per sample returned from the database after subselections.

getdataTypeNumber

132

º

s

f
*

public int getData TypeNumber ()
Gets the data type number of the data type in its experiment.
Returns:

the data type number

getAnnotationlist

public java. util. Vector getAnnotation List ()
Returns a vector of Annotation objects associated with a data type.
Returns:
a vector of Annotation objects associated with a data type.

getSubselectionList

public java. util. Vector getSubselection List ()
Returns a vector of SubSelection objects associated with a data type.
Returns:
a vector of SubSelection objects associated with a data type.

getParameters

public java. util. Hashtable getParameters ()
Returns a hash containing key:value pairs associated with a data type. This hash is generally used to store analysis
parameters for a data type.
Returns:
a HashTable of key:value pairs used in an analysis.

setParameterValue

public void setParameterValue (java.lang. String parameter,
java.lang. String value)

Sets a key:value pair that is associated with a data type. This is generally used to store an analysis parameter for a data
type.
Parameters:

parameter - the key
value - the value

getParameterValue

public java.lang. String getParameterValue (java.lang. String parameter)
Returns a value for a key that is associated with a data type. This is generally used to store analysis parameters for a data
type.
Returns:
the key whose value is to be looked up

getDataProjection

public DataProjection getDataProjection ()
Returns the DataProjection object associated with a data type.
Returns:

a DataProjection object associated with a data type.

setDataProjection

public void setDataProjection (DataProjection project)
Associates a DataProjection object with a data type.

133

º

W.

º
*

-*.

******:-------
º **

º' º "º ses” gº

s:" º
- **** ****

-

- **----,
º ; his sº tºº

*.

-

{I ******* * * , sº
sº... sº *

() - * }*** * *-***"

- º *******
º *-

X ******"

- !---"
* sº *********

. . . &.” ***

i- º ---,
s wº

- *** ****

T; * * * --J

º

*

Parameters:

project - the DataProjection object to associate with a data type.

equals

public boolean equals (java.lang. Object obj)
Overrides the equals method to perform a deep comparison between the receiver and the passed object. Tests by comparing
such properties as name, experiment, subselections, and projections.
Overrides:

equals in class java.lang. Object
Parameters:

obj- the Data Type object to compare.
Returns:

true if the two Data Type objects are equal.

clone

public java.lang. Object clone ()
Performs a deep copy of a Data Type object.
Overrides:
clone in class java. lang. Object
Returns:
a Data Type object with deep copies of annotation and subselection lists

getData TypesfromExperiment

public static java. util. Vector getData Types FromExperiment (int experiment)
throws java. sql. SQLException

Returns a vector of Data Type objects from a given experiment. The database is queried to fill the properties of each object.
Parameters:

experiment - the number of the experiment in the database
Returns:
a vector of Data Type objects
Throws:
java. sql. SQLException

getData TypeFromExperiment

public static Data Type getData TypeFromExperiment (java.lang. String name,
int experiment)

throws java. sql. SQLException
Returns a Data Type object from a given experiment with a given name. The database is queried to fill the properties the
object.
Parameters:

experiment - the number of the experiment in the database
name - the name of the data type to be returned
Returns:

a Data Type object with the specified name from the specified experiment
Throws:
java. sql. SQLException

getdataTypeFrom Experiment

public static Data Type getData TypeFromExperiment (int dtnumber,
int experiment)

throws java. sql. SQLException
Returns a Data Type object from a given experiment with a given data type number. The database is queried to fill the
properties the object.
Parameters:

134

º

***** pha...ºr---
sº

**** ****
-

- is sº****** *****
- ***sºEtº'º. **,**** *** *** ***

* * sº ""
- * - sº

-
at ºf... sº. -ºn-"

a*** *****
- -- º

*** **-*" º
* * * ****

a sº--"

ºt **
- *******

*.**
** * j

-
**** .**

*** ---,
{ ...”- **** * ***

* * * * -j*~~~~~"

dtnumber - the data type number of the data type to be returned
experiment - the number of the experiment in the database
Returns:

a Data Type object with the specified name from the specified experiment
Throws:
java. sql. SQLException

getData TypesFromupload

public static java. util. Vector getData Types FromUpload (int upload.ID)
throws java. sql. SQLException

Returns a vector of Data Type objects from a given upload. The database is queried to fill the properties of each object.
Parameters:
upload.ID - the number of the upload in the database
Returns:

a vector of Data Type objects from the specified upload.
Throws:
java. sql. SQLException

loadStored Annotations

public void loadStored Annotations ()
throws java. sql. SQLException

Queries the database to see if users have associated annotations with a data type. If so, Annotation objects are instantiated
and added to the list of annotations of the data type.
Throws:
java. sql. SQLException

annotationsToGutput

public boolean annotations ToQutput ()
Returns true if there are annotations to output to a flat file for analysis.
Returns:
true if there are annotations to be outputted.

outputannotations

public void output.Annotations (java. lang. String [] selectionNumbers)
Allows the user to set the annotations to be outputted. The passed parameter selectionNumbers is usually an array returned
by the request.getParameterValues() method.
Parameters:

selectionNumbers - an array of Strings corresponding to the annotations to be outputted.

addAnnotation

public void add/Annotation (Annotation annot)
Adds an annotation object to the list of annotations of a data type.
Parameters:
annot - the annotation object to be added.

addAnnotation

public void add Annotation (Annotation annot,
int index)

Adds an annotation object to the list of annotations of a data type at the specified position.
Parameters:

annot - the annotation object to be added.

135

º

i. *

***-
*- mºs... air-º-

** gº
**** * *

-

trºup sº-anamº" .
- **!"

Art:- ºº sº

f : …
s .*-º*…*.***

!
Lºº º* Hººtºw

!. **** "-- ****

** ** jº ** ***

-** * --)º *** * ** **

º 2

index - the position in the list of annotations where the annotation object should be added.

addAnnotation.From Upload

public void addannotation From Upload (int upload.ID)
throws java. sql. SQLException

Adds an annotation object from the specified upload to the list of annotations of a data type.
Parameters:

upload.ID - the upload ID of the annotation object to be added.
Throws:
java. sql. SQLException

load DerivedStatistics

public void loadderivedStatistics ()
throws java. sql. SQLException

Queries the database for all derived annotations that belongs to this data Type, and adds each one as an annotation Object.
Throws:
java. sql. SQLException

statisticUploaded

public boolean statisticUploaded (java. lang. String statName)
throws java. sql. SQLException

Returns true if a statistic named 'statName' belonging to the data type has already been uploaded to the database.
Parameters:
statName - the name of the statistic whose existence will be checked in the database
Returns:

true if a statistic named 'statName' belonging to the data type is in the database.
Throws:
java. sql. SQLException

clear AllAnnotations

public void clear AllAnnotations ()
Clears the list of annotations associated with a data type.

clearOutput.ToAnnotationFile

public void clearoutput ToknnotationFile ()
No annotations associated with a data type will be outputted to a file.

clearOutput ToAnnotationFile

public void clearOutput TohnnotationFile (int index)
The annotation object at the specified position in the list of annotations will not be outputted to a file.
Parameters:
index - the index in the vector of annotations which will not be outputted.

output ToAnnotationFile

public void output ToànnotationFile (int index)
The annotation object at the specified position in the list of annotations will be outputted to a file.
Parameters:

index - the index in the vector of annotations which will be outputted.

136

sº ****-
-***. -* * * ***

gº
tºº.

- sº ****
- ****** *** , ºr "

tº ******* ***** *
****** sº■ º

... -----"

tº . . .”
ºwn as ** º

annotationsSpecified

public boolean annotations Specified ()
Returns true if there are annotation objects associated with a data type.
Returns:
true if there are annotation objects associated with a data type.

annotationInfoString

public java.lang. String annotationInfoString ()
Returns an HTMLized string listing the properties of the annotations associated with a data type.
Returns:
HTML code listing annotation properties

annotationInfoString

public java.lang. String annotationInfoString (boolean print/All)
Returns an HTMLized string listing the properties of the annotations associated with a data type.
Parameters:

print/All - if false, print out information only for annotations that are to be outputted for the current analysis
Returns:

HTML code listing annotation properties

annotationSelectlist

public java. lang. String annotations electList (java. lang. String name)
Returns a string containing an HTML SELECT list with the specified name containing the annotations associated with a
data type. The SELECT list displays the description of each annotation, and the value for each annotation passed to the
next web page is its position in the list of annotations associated with a data type.
Parameters:
name - the NAME property of the SELECT list
Returns:
a string containing an HTML SELECT list with the specified name containing the annotations associated with a data type.

annotationSelectlist

public java.lang. String annotations electList (java.lang. String name,
int numselections Displayed)

Returns a string containing an HTML SELECT list with the specified name and number of rows, containing the
annotations associated with a data type. The SELECT list displays the description of each annotation, and the value for
each annotation passed to the next web page is its position in the list of annotations associated with a data type.
Parameters:

name - the NAME property of the SELECT list
numSelectionsDisplayed - the SIZE property of the MULTIPLE SELECT drop down list.
Returns:

a string containing an HTML SELECT list with the specified name and number of rows, containing the annotations
associated with a data type.

addSubSelection

public void addsubselection (SubSelection select)
Adds a SubSelection object to the list of SubSelections associated with a data type.
Parameters:

select - the SubSelection object to associate with the data type.

137

****…~"
** - nº*...*** º

- as tº
******* *****

º

anº ******
*: H,
******* *** ****

** **** t
• *- : * * * * *

*- ****
...”

º:

º *!. **** **** ***
= * = ºrg-- *** *º -º-,

º **K *** * ***
** *** ** *****

**
*** --~~~"

addSubSelection

public void addSubSelection (SubSelection select,
int index)

Adds a SubSelection object to the list of SubSelections associated with a data type, at the specified position.
Parameters:

select - the SubSelection object to associate with the data type.
index - the position in the list of subselections where the SubSelection object should be added.

clear AllSubSelections

public void clear All SubSelections ()
Clears the list of SubSelection objects associated with a data type.

subSelectionInfoString

public java.lang. String subselectionInfoString ()
Returns an HTML string listing the subselection information for a data type. Prints out information for all subselections
associated with a data type, whether they are to be applied or not.
Returns:
an HTML string listing the subselection information for a data type.

identifiers

public java.lang. String [] identifiers ()
throws java. sql. SQLException

Returns a string array containing the identifiers of a data type.
Returns:
a string array containing the identifiers of a data type.
Throws:
java. sql. SQLException

getOrdinalPositions

public int [] getOrdinal Positions ()
throws java. sql. SQLException

Returns an integer array containing the ordinal positions of a data type after subselection and projection. Subselection is
performed prior to projection.
Returns:

an integer array containing the ordinal positions of a data type after subselection and projection.
Throws:
java. sql. SQLException

getSubselected OrdinalPositions

public java. util. HashSet getSubselectedOrdinal Positions ()
throws java. sql. SQLException

Takes all the subselection information for a data type, and returns a HashSet of stringified integers containing the ordinal
positions of the data that satisfy the selection criteria.
Returns:
A HashSet of ordinal positions that satify the subselection criteria for a data type.
Throws:
java. sql. SQLException

getDataSqlStatement

public java.lang. String getDataSqlStatement (java.lang. String sampleNumberString)

138

º

** ºf ºrs”-º-º-º-º-º: *****
rerº";"

* * *** *** * *
… ..."

... *** -º , ºr "

sº, ~rº

--~~~".
r

****** º

***!. -----
K. .* ºasº

* * *

º ******* **" s

***** *****

**** **** ****

Returns a SQL statement that returns ordinal positions, sample numbers, and data values for a data type. If a developer is
overriding methods to produce flat data files in novel file formats, this method will return a SQL statement to retrieve the
data first.
Returns:

a SQL statement that returns ordinal positions, sample numbers, and data values for a data type.

edu.ucsf.Magellan
Class DisplayLataType

java.lang. Object
|- edu.ucsf. Magellan. Data Type

L- edu.ucsf. Magellan. Displaydata Type

public class Displaydata Type
extends Data Type

DisplayLata Type is a subclass of the Data Type class that contains properties and methods specifically for the display of data in the
web browser.

Field Summary

protected | data TypeList
static java. util. Vector

protected boolean displayAllRows

protected identifierType
java. lang. String

protected int numkowsToDisplay

protected sampleNames
java. util. Vector

Fields inherited from class edu.ucsf.Magellan.Data Type

annotationlist, dataPointsfrom Query, dataPointsPerSample, data TypeNumber, experiment, isstoredInDatabase, name,
parameters, projection, selectedOrdinalPositions, subselectionlist, uploadlDs

Constructor Summary

DisplayLata Type ()

|Displaydata Type (boolean addtoList)

Method Summary

static void laddbatatypes.fromExperimentTolist (int experiment)
Returns a DisplayLata Type object with the specified name and experiment number.

Removes all elements from the vector of DisplayLata Type objects that are to be displayed
in the output.

■

static void cleardata TypeList ()

■

boolean displayAllRows ()
If true, then all the rows of the data type will be displayed in the output.

java. util. Vector getAllAnnotationTypes()
Returns a vector containing strings of the annotation types associated with the

139

º

****- sº

...” º
gº*** *****

-- tarº tº *****
-a º "****

ºn- " ->
º *** *** ****

*
a wº. ****

is *** * * , ºr "
sº. ººººº.

..*.*.*.*.***
assº

********* lº

DisplayLata Type object.

java.lang. String [] [] getData Table ()
Returns a 2D string array containing the data from the experiment and data type stored in

the DisplayLata Type object's properties.

static DisplayLata Type getData TypeFrom Experimentinlist (java. lang. String name, int experiment)
Returns a DisplayData Type object with the specified name and experiment number.

static DisplayLata Type getData TypeFrom(ploadinlist (java. lang. String name, int upload.ID)
Returns a DisplayL)ataType object with the specified name and upload ID number.

static java. util. Vector getData TypeList ()
| Returns the vector of Display■)ata Type objects that are to be displayed in the output.

static DisplayLata Type getDisplay Data TypeFromExperiment (int dtNumber, int experiment)
Returns a Data Type object from a given experiment with a given data type number.

java.lang. String [] getIdentifiers ()
Returns a string array containing the identifiers from the experiment and data type stored in

the DisplayL)ataType object's properties.

java.lang. String getIdentifierType ()
Returns the user defined type of the identifiers associated with the data type (genbank ID

for example).

int getNumkowsToDisplay ()
Returns the number of rows of the data type to display in the output.

java. util. Vector getSampleNames ()
Returns the vector of sample names associated with this data type.

void setDisplayAllRows (boolean displayAll)
Sets whether all the rows of the data type will be displayed in the output.

void setNumkowsToDisplay (int numRows)
Sets the number of rows of the data type to display in the output.

Methods inherited from class edu.ucsf.Magellan. Data Type

addAnnotation, add/Annotation, addAnnotationFromDpload, addSubSelection, addSubSelection, addupload|D,
adduploadll)s, annotationinfoString, annotationInfoString, annotationSelectlist, annotationSelectList, annotationsSpecified,
annotations ToQutput, clearall Annotations, clearallSubSelections, clearOutput.ToAnnotationPile,
clearCutput ToAnnotationFile, clone, equals, getAnnotationList, getDataPointsPerSample,
getDataPointsReturnedFromCuery, getDataProjection, getDataSqlStatement, getData TypeFromExperiment,
getData TypeFromExperiment, getLata TypeNumber, getData TypesPromExperiment, get■)ata Types.Promupload,
getFXperimentMumber, getName, getNameWithSubselections, getOrdinalPositions, getParameters, getParameterValue,
getSubselectedOrdinalPositions, getSubselectionlist, getOploadlDs, identifiers, isstoredInDatabase, loadLerivedStatistics,

| loadStored Annotations, outputannotations, output ToAnnotationFile, setDataPointsPerSample,
|setDataPointsRetumed FromCuery, setDataProjection, setBxperimentNumber, setName, setParameterValue,
statisticuploaded, SubSelectionInfoString

Methods inherited from class java.lang. Object

| finalize, get Class, hashCode, notify, notify All, toString, wait, wait, wait

field detail

displayAllRows

protected boolean displayAllRows

numkowsToDisplay

protected int numRows ToDisplay

140

**ºr--- pass

º *...** sº
g■

assº *****

er: "";
-*.* ***
....***f
**** ... ºr "

* *--~~~}}
*- **** *

º*******
****** arºº

!---"
** - taxis *º .* a"º

-** a-ºº:

* --~~~
******* -***

º~~~~~~~"

identifierType

protected java. lang. String identifierType

sampleNames

protected java. util. Vector sampleNames

data Typelist

protected static java. util. Vector data Type List
Constructor Detail

DisplayLata Type

public Displaydata Type ()

DisplayLata Type

public Displaydata Type (boolean add'ToList)
Method Detail

getIdentifierType

public java.lang. String getIdentifierType ()
Returns the user defined type of the identifiers associated with the data type (genbank ID for example).
Returns:
the type of identifier

getNumkowsToDisplay

public int getNumkows ToDisplay ()
Returns the number of rows of the data type to display in the output.
Returns:
the number of rows of the data type to display.

setNumkowsToDisplay

public void setNumkows ToDisplay (int numRows)
Sets the number of rows of the data type to display in the output. If the number 10 is passed to this method, then the first
and last 10 rows of data will be displayed
Parameters:

numRows - the number of rows of the data type to display.

displayAllRows

public boolean displayAllRows ()
If true, then all the rows of the data type will be displayed in the output.
Returns:

true if all rows of the data type are to be displayed.

setDisplayAllRows

141

****,

*** ...ºr-- **
- sº gº**** #

issº- *****º
**sº-ºº:

**** * * ºsºº"

***... ...º
** -º-º-º-

sºn.º
-º-º-º-º: -*

--~~~~":
-.

****** nº'd

º!. -sº *...****
*a*b*

º *iº -ºº º
* *.**

*** --- ** .*
** ***** .****

wevº -- tºº" gºº."

public void setDisplayAllRows (boolean displayAll)
Sets whether all the rows of the data type will be displayed in the output.
Parameters:

displayAll - true if all rows of the data type are to be displayed.

getData Typelist

public static java. util. Vector getData Type List ()
Returns the vector of DisplayL)ataType objects that are to be displayed in the output. This is a static variable that contains a
list of all instantiated objects to be displayed.
Returns:

a vector of DisplayL)ata Type objects that are to be displayed in the output.

cleardataTypelist

public static void cleardata Type List ()
Removes all elements from the vector of DisplayLata Type objects that are to be displayed in the output. This is a static
variable that contains a list of all instantiated objects to be displayed.

getSampleNames

public java. util. Vector getSampleNames ()
Returns the vector of sample names associated with this data type.
Returns:

the vector of sample names associated with this data type.

getData TypeFromupload.InList

public static DisplayLata Type getData TypeFrom UploadinList (java. lang. String name,
int upload.ID)

Returns a DisplayOataType object with the specified name and upload ID number. If no data type in the database meets the
passed criteria, null is returned.
Parameters:
name - the name of the data type to be searched for in the database
upload.ID - the uploadlD of the data type to be searched for in the database
Returns:
the DisplayLata Type object with the specified name and upload ID number.

getDataTypeFrom Experimentinlist

public static DisplayLata Type getData TypeFrom Experimentinlist (java.lang. String name,
int experiment)

Returns a DisplayLata Type object with the specified name and experiment number. If no data type in the database meets
the passed criteria, null is returned.
Parameters:

name - the name of the data type to be searched for in the database
experiment - the experiment of the data type to be searched for in the database
Returns:

the DisplayData Type object with the specified name and experiment number.

add■)ataTypesfromExperimentTolist

public static void add■)ata Types From ExperimentTollist (int experiment)
throws java. sql. SQLException

Returns a DisplayLata Type object with the specified name and experiment number. If no data type in the database meets
the passed criteria, null is returned.
Parameters:

142

*
-

****** ** #

** :-----"
f *...*** sº
-
**** ******º

sº-º'
*:::: i*** *** **!

;4
º

f * - e.”- *** *** ****

experiment - the experiment number of the data types to be added
Throws:
java. sql. SQLException

getDisplayOataTypeFrom Experiment

public static DisplayLataType getDisplaydata TypeFromExperiment (int dtnumber,
int experiment)

throws java. sql. SQLException
Returns a Data Type object from a given experiment with a given data type number. The database is queried to fill the
properties the object.
Parameters:

experiment - the number of the experiment in the database
dtNumber - the data type number of the data type to be returned
Returns:

a Data Type object with the specified name from the specified experiment
Throws:
java. sql. SQLException

getDataTable

public java.lang. String [] [] getData Table ()
throws java. sql. SQLException

Returns a 2D string array containing the data from the experiment and data type stored in the DisplayLata Type object's
properties. If the data types has more than twice the number of rows specified by the numRowsToDisplay property, then
the first and last numrowsToDisplay rows of data will be returned.
Returns:
a 2D string array of data.
Throws:
java. sql. SQLException

getIdentifiers

public java. lang. String [] getIdentifiers ()
throws java. sql. SQLException

Returns a string array containing the identifiers from the experiment and data type stored in the DisplayLata Type object's
properties. If the data types has more than twice the number of rows specified by the numRowsToDisplay property, then
the first and last numRowsToDisplay rows of identifiers will be returned.
Returns:
a string array of identifiers.
Throws:
java. sql. SQLException

getAllAnnotationTypes

public java. util. Vector getAllAnnotationTypes ()
Returns a vector containing strings of the annotation types associated with the DisplayLata Type object.
Returns:
a vector containing strings of annotation types

edu.ucsf.Magellan
Class execProcess

java.lang. Object
edu.ucsf. Magellan. execProcess

public class execProcess

143

*-

\ ,
a f

!

º

º,

ºn
-

|

- ,

*** *******
** assº

- #
--" º

***** ha■
**** *****

**** **;

º " *** ****
... , 4tº. ****

... ******
-

() ~~~ }:

ass-era ºº'

* º
- *- º

* * *****

º !----.
4 Ç..." º
l as-easº

º * --~~~
, * * * * ****

~~~~~~"
*

º



extends java.lang. Object

The execProcess class allows the execution of one or more command line statements as separate processes. execProcess extends the
Thread class, and uses the runtime.exec() method to fork off the command line processes. The StreamCobbler class is used to capture
the stdout and stderr streams associated with the process (if the streams are not captured, the processes will usually hang). The
execProcess object is generally used to execute command line arguments such as those necessary to execute various analytical
applications.

I

Constructor Summary
execProcess ()

Method Summary
static int exec (java. lang. String cmd)

static int exec (java. lang. String cmd, boolean output Flag)

■

- -

| Executes a single command line argument.
t

Executes a single command line argument.
i

static int exec (java. lang. String cmd, boolean output Flag, java. io. FileWriter out File)
Executes a single command line argument.

static int exec (java.lang. String cmd., java. io. FileWriter out File)
Executes a single command line argument.

Executes a series of command line arguments contained in the passed vector.

static void exec (java. util. Vector execStatements, boolean out)

■

r - - w -| static void exec (java. util. Vector execstatements)

Executes a series of command line arguments contained in the passed vector.
t

static void exec (java. util. Vector execStatements, java. io. FileWriter out File)
Executes a series of command line arguments contained in the passed vector.

i

Methods inherited from class java.lang. Object
■

clone, equals, finalize, getClass, hashCode, notify, notify All, toString, wait, wait,
wait

Constructor Detail

execProcess

public execProcess ()

Method detail

exec

public static void exec (java. util. Vector execStatements)
Executes a series of command line arguments contained in the passed vector.
Parameters:

execStatements - a vector containing strings of command line arguments to be executed.

exec

public static void exec (java. util. Vector execStatements,
java. io. FileWriter out File)

Executes a series of command line arguments contained in the passed vector. The passed FileWriter object is used to print
any output generated by the forked process to a text file (in development).
Parameters:
execStatements - a vector containing strings of command line arguments to be executed.

144



**** *…--"
-
*...***

-swººs. annº"

errº".
-* * * r ****

a sº fºil ***
*** ******
.*, ****
--------"

**** ****
º:

* ---.”

! sº !------



out File - the FileWriter object to which any process output will be printed.

exec

public static void exec (java. util. Vector execStatements,
boolean out)

Executes a series of command line arguments contained in the passed vector. If the passed boolean flag is true, then any
output generated by the forked process with be printed to stdout.
Parameters:

execstatements - a vector containing strings of command line arguments to be executed.
out - if true, any process output will be printed to stdout.

exec

public static int exec (java. lang. String cind)
Executes a single command line argument.
Parameters:

cmd - the command line argument to be executed.
Returns:

the return value of the process (typically 0 if no errors occurred, otherwise 1).

exec

public static int exec (java. lang. String cmd,
java. io. FileWriter out File)

Executes a single command line argument. If the passed boolean flag is true, then any output generated by the forked
process with be printed to stdout.
Parameters:

cmd - the command line argument to be executed.
out File - the FileWriter object to which any process output will be printed.
Returns:
the return value of the process (typically 0 if no errors occurred, otherwise 1).

exec

public static int exec (java.lang. String cmd,
boolean output Flag)

Executes a single command line argument. If the passed boolean flag is true, then any output generated by the forked
process with be printed to stdout.
Parameters:
cmd - the command line argument to be executed.
output Flag - if true, any process output will be printed to stdout.
Returns:
the return value of the process (typically 0 if no errors occurred, otherwise 1).

exec

public static int exec (java.lang. String cmd,
boolean output Flag,
java. io. FileWriter out File)

Executes a single command line argument. If the passed boolean flag is true, then any output generated by the forked
process with be printed to stdout. If the passed FileWriter object is not null, then any output generated by the forked
process will be printed to a file (in development).
Parameters:

cmd - the command line argument to be executed.
output Flag - if true, any process output will be printed to stdout.
out File - the FileWriter object to which any process output will be printed.
Returns:
the return value of the process (typically 0 if no errors occurred, otherwise 1).

145



- * **** …”
**** ******
*** *...****"

*-****
----.”

&: ..rº** .***
º sº. ºº.



edu.ucsf.Magellan
Class execThread

java. lang. Object
java.lang. Thread

edu.ucsf. Magellan. execThread
All Implemented Interfaces:

java.lang.Runnable

class execThread

extends java.lang. Thread

Nested Class Summary

Nested classes/interfaces inherited from class java.lang.Thread
java.lang. Thread. State, java. lang. Thread. Uncaught ExceptionHandler

Fieldsummary
(package private) | execStatements
java. util. Vector

(package private) out File
java. io. FileWriter

boolean

t
(package private) outputflag

Fields inherited from class java.lang.Thread
■

t

MAx_PRIORITY, MIN_PRIORITY, NORM_PRIORITY

Constructor Summary
execThreaggava util vector execStatements, boolean output Flag)

T

execThread (java. util. Vector execStatements, java. io. FileWriter out File)

Method Summary
void run ()

Methods inherited from class java.lang.Thread
i

activeCount, checkAccess, count StackFrames, current Thread, destroy, dumpStack, enumerate,
getAllStackTraces, get ContextClass Loader, getDefault Uncaught ExceptionHandler, getId,
getName, get Priority, get StackTrace, get State, get Threadgroup,
getUncaughtexceptionHandler, holdsLock, interrupt, interrupted, is Alive, isDaemon,
is Interrupted, join, join, join, resume, setContextClass Loader, setDaemon,
setDefaultuncaught ExceptionHandler, setName, set Priority, setuncaught ExceptionHandler,

| sleep, sleep, start, stop, stop, suspend, toString, yield

Methods inherited from class java.lang. Object
■ - - - - - - -| clone, equals, finalize, get Class, hashCode, notify, notifyAll, wait, wait, wait

field detail

146



*** ******
* ******

º: º -******
a. ***** º

- *****
* * *****
**** ------
---------"

********
ºf

*****

}. º*** ******
** * *-ºnº .* *sº**

& sº as:-agº *
*** * * * wº

*.*.*.*.******

*** -------"



execStatements

java. util. Vector execStatements

outrile

java. io. FileWriter outfile

outputflag

boolean outputflag
constructor Detail

execThread

public execThread (java. util. Vector execStatements,
java. io. FileWriter out File)

execThread

public execThread (java. util. Vector execStatements,
boolean output Flag)

Method detail

run

public void run ()
Specified by:
run in interface java.lang. Runnable
Overrides:

run in class java. lang. Thread

edu.ucsf.Magellan
Class Sample

java.lang. Object
|- edu.ucsf. Magellan. Sample

public class Sample
extends java.lang. Object

The Sample class captures the functionality of samples (biological or otherwise) from which data is gathered.

Field Summary

protected int experiment

protected output.ToDataFile
boolean

protected sampleName
java.lang. String

147



***-:------
-

º****** º
*** *******

*** *



protected int sampleNumber

t

protected
java. util. Vector

upload.IDs

Constructor Summary

servis ()

'Method Summary
I

- void addupload.ID (int upload.ID)
Adds the passed uploadlD number to the vector of upload ID's associated with a sample.

boolean equals (java.lang. Object obj)
Overrides the equals method to perform a deep comparison between the receiver and the

passed object.

int getBºxperimentMumber ()
Returns the experiment number for a given sample

java. lang. String getName ()
Returns the name of a given sample

static java. util. Vector getsampleNames (int experiment)
Returns a vector containing the sample names for a given experiment.

int getSampleNumber ()
Returns the sample number for a given sample.

static java. util. Vector getsamples From Experiment (int experiment)
Returns a vector populated with Sample objects from the passed experiment number

java. util. Vector

|

getsamplesFromupload (int upload)
Returns a vector populated with Sample objects from the passed upload number

I

Methods inherited from class java.lang. Object

| clone, finalize, get Class, hashCode, notify, notifyAll, toString, wait, wait, wait

field detail

experiment

protected int experiment

sampleNumber

protected int sampleNumber

upload.IDs

protected java. util. Vector uploadlDs

sampleName

protected java.lang. String sampleName

output ToDataFile

148



º

***- - º**tearºa"-- **
** **** wº

**** *******
sº

assº *****
*** --..."*** * * * * * *

asf * .. *...***- **-- ... nº
**** **** **-------"
*******

º

----.”

!. *** *…***
********& " …*** .***

-- ****

{ º******
* * * ***** h
--~~~~~"

r 2



protected boolean output ToDataFile

constructor Detail

Sample

public Sample ()
Method detail

getName

public java. lang. String getName ()
Returns the name of a given sample
Returns:
the sample name

getFXperimentNumber

public int get ExperimentNumber ()
Returns the experiment number for a given sample
Returns:
the sample experiment number

getSampleNumber

public int getSampleNumber ()

equals

Returns the sample number for a given sample. The sample number is an integer ranging from 1 to the total number of
samples in a given experiment.
Returns:
the sample number

public boolean equals (java. lang. Object obj)
Overrides the equals method to perform a deep comparison between the receiver and the passed object. The equals method
for samples returns true if the sample number and experiment number of two samples are the same.
Overrides:

equals in class java.lang. Object
Parameters:

obj- the Sample object to compare.
Returns:
true if the two Sample objects are equal.

getSamplesFrom Experiment

public static java. util. Vector getSamples From Experiment (int experiment)
throws java. sql. SQLException

Returns a vector populated with Sample objects from the passed experiment number
Parameters:
experiment - the experiment number
Returns:
a vector of Sample objects
Throws:
java. sql. SQLException

getSamplesFrom Upload

149



º

* *

** rest-ºn
*** * * *sus sº

-º-º: sº ºne ºutsº
sº ..,a_******e º”****** **

-- º
4ºz ****º

- **, *-******

sºns, ****
***--------

*** *****

~~~~~~

º!. **** ****** º

***** *<. .* º* ****
º º-ºº:

* ---- rº-"

* * * ****** h
********".

public java. util. Vector getSamples From Upload (int upload)
throws java. sql. SQLException

Returns a vector populated with Sample objects from the passed upload number
Parameters:

upload - the upload ID number
Returns:
a vector of Sample objects
Throws:
java. sql. SQLException

getSampleNames

public static java. util. Vector getSampleNames (int experiment)
throws java. sql. SQLException

Returns a vector containing the sample names for a given experiment.
Parameters:
experiment - the experiment number
Throws:
java. sql. SQLException

adduploadll)

public void addUpload.I.D (int upload.ID)
Adds the passed uploadlD number to the vector of upload ID's associated with a sample. This vector may contain multiple
upload ID's if different data types are loaded for a common sample in different data uploads.
Parameters:

upload.ID - the upload ID number

edu.ucsf.Magellan
Class Stream Gobbler

java. lang. Object
java.lang. Thread

edu.ucsf. Magellan. Stream.Gobbler
All Implemented Interfaces:

java.lang.Runnable

class StreamCobbler

extends java.lang. Thread

The StreamGobbler class is used to capture streams associated with command line processes that have been forked off by execProcess
objects.

Nested Class Summary

Nested classes/interfaces inherited from class java.lang.Thread

java. lang. Thread. State, java.lang. Thread. Uncaught ExceptionHandler

I Field Summary

(package private) is
java.io. InputStream

(package private) outPile
java. io. FileWriter

I
(package private) outputflag

150

ºr sº ºnessiºn º
*erºr"." '

** **** ****

f ***. ...”*** * ******
*...*****
--- …sº

º i

anºº nº'd

#. sºn- "-----
º rº** ºn”

ºr rºy
******** .***

* -ºº º- tºº

*** --~~~~"

boolean

(package private) | type
java. lang. String

Fields inherited from class java.lang.Thread
T

|MAx_PRIORITY, MIN_PRIORITY, NORM_PRIORITY

■

| Constructor Summary
■

Streamgobbler (java. io. InputStream is, java. lang. String type, boolean output Flag,
java.io. FileWriter outfile)

|

I Method Summary

void run ()

t

Methods inherited from class java.lang.Thread

activecount, check/Access, count Stack Frames, current Thread, destroy, dumpStack, enumerate,
getAllStackTraces, get ContextClass Loader, getDefaultuncaught Exception Handler, getId,
getName, get Priority, get StackTrace, get State, get Threadgroup,
get UncaughtException Handler, holds Lock, interrupt, interrupted, is Alive, isDaemon,
is Interrupted, join, join, join, resume, setContextClass Loader, setDaemon,
setDefault Uncaught ExceptionHandler, setName, set Priority, set Uncaught ExceptionHandler,
sleep, sleep, start, stop, stop, suspend, toString, yield

|

Methods inherited from class java.lang. Object
I

| clone, equals, finalize, get Class, hashCode, notify, notify All, wait, wait, wait

field detail

java. io. InputStream is

type

java.lang. String type

outKile

java. io. FileWriter out File

outputflag

boolean outputflag

Constructor Detail

StreamGobbler

Streamgobbler (java. io. InputStream is,
java.lang. String type,
boolean output Flag,

151

******::::…**Hºuse isºs. A

*. *...***
--- ºr mºnº"
**** ******

º -:

------.”

*º
~~~"

!. -º-º: "…----
** *a*b*&: ..r.º.º.
º

* * * *********
*...*** * ***** h
--------"



java. io. FileWriter out File)

Method detail

public void run ()
Specified by:
run in interface java.lang. Runnable
Overrides:

run in class java.lang. Thread

edu.ucsf.Magellan
Class SubSelection

java.lang. Object
|- edu.ucsf. Magellan. SubSelection

public class SubSelection
extends java.lang. Object

SubSelection objects provide the functionality to select variables from a data type based on user defined criteria. Variable sub
selection allows a user to focus on a subset of the variables of a data type. Subselection can be performed using identifers or
annotations. If annotations are used, selection can be performed based on qualitative or quantitative criteria.

T

| Field Summary
protected annot

Annotation

protected annotationType
java.lang. String

protected int annottypeNumber

protected comparisonoperator
java. lang. String

protected comparisonType
java.lang. String

protected boolean selectByAnnotation

protected boolean selectByldentifier

protected stringSelections
java.lang. String []

protected double threshold

T

| Constructor Summary

SubSelection ()

f

Method Summary
T

java.lang. Object clone ()
Implements the clone method to allow a deep copy of a subselection item.

152



***-

** …”

f *...***is nº ºne-hºº”
-****

º:
- **

**** ******

f **…********* *** *******
*...***
-*** -----wº

*********

-! wº- ºaºuau" º

Ç. rº- tasiº º*** .***
º -º-esº

& ºf*******

l : : \

* * * *****

** --tºº"



boolean equals (java. lang. Object obj)
Overrides the equals method to perform a deep comparison between the receiver and the passed

object.

Annotation getAnnotation ()
Returns the Annotation object that is to be used in an annotation based subselection.

java.lang. String getAnnotationType ()
Returns the type of the annotation that is to be used for subselection.

getAnnottypeNumber ()
Returns the number of the annotation type that is to be used for subselection.

int

java.lang. String getComparisonoperator ()
Returns the comparison operator (>, <, -, etc) that is to be used for a quantitative subselection.

java. lang. String getComparison Type ()
Returns the comparison type ('qualitative' or 'quantitative') that is to be used in the subselection.

java.lang. String getDescription ()
Returns a string description of the subselection criteria.

■
-

java.lang. String [] getStringSelections ()
Returns an array of the strings that are to be selected for.

double getThreshold ()
Returns the threshold that is to be used for a quantitative subselection.

java.lang. String infoString ()
Returns a string containing the subselection criteria specified by the object properties.

boolean selectBYAnnotation ()
Returns true if a subselection is to be made based on annotations.

boolean selectBYIdentifier ()
Returns true if a subselection is to be made based on identifier names.

private void setAll SelectTo False ()
Sets all selection flags to false.

void setAnnotation (Annotation annotation)
Sets the Annotation object that is to be used in an annotation based subselection.

void setAnnotationType (java. lang. String annotationType)
Sets the type of the annotation that is to be used for subselection.

T

void setAnnot.TypeNumber (int annot TypeNumber)
Sets the number of the annotation type that is to be used for subselection.

T

void setComparisonoperator (java. lang. String comparisonoperator)
Sets the comparison operator (>, <, -, etc) that is to be used for a quantitative subselection.

t

void setComparison Type (java. lang. String comparison Type)
Sets the comparison type ('qualitative' or 'quantitative') that is to be used in the subselection.

void setSelectBYAnnotation ()
Specifies that a subselection shall be made based on annotations.

t -

void setSelectBYIdentifier ()
Specifies that a subselection shall be made based on identifier names.

I

void setStringSelections (java. lang. String [] stringSelections)
Sets the array of the strings that are to be selected for.

void setThreshold (double threshold)
Sets the threshold that is to be used for a quantitative subselection.

■ Methods inherited from class java.lang. Object
■

finalize, get Class, hashCode, notify, notify All, toString, wait, wait, wait

Field Detail

selectByldentifier

153



***--------
º gº*...***

.***** ****
- * *

sº ***********kuºtaº"

**** *****
****** *** *******
* -- ******** ****
---------"

*******
ºf

-------

º!. *ºns ******
- .***&:...r.º.** ****
* *-** :

*---- ***
* *- : * *****

--------"



protected boolean selectByldentifier

selectByAnnotation

protected boolean selectByAnnotation

stringSelections

protected java.lang. String [] stringSelections

annot'TypeNumber

protected int annot'TypeNumber

annotationType

protected java.lang. String annotationType

comparisonType

protected java. lang. String comparison Type

comparison Operator

protected java. lang. String comparisonoperator

threshold

protected double threshold

annot

protected Annotation annot

constructor Detail

SubSelection

public SubSelection ()

Method detail

setSelectByldentifier

public void setSelectByldentifier ()
Specifies that a subselection shall be made based on identifier names.

selectByldentifier

public boolean selectByldentifier ()

154



º

** ******
****, ******

- #
-sa- ----sº

*********
T.

------"

1. sº ---- *

** ******&I...” ...”
* are ºf

º ****** arº
* * * *****

***** *****



Returns true if a subselection is to be made based on identifier names.
Returns:
true if subselection is to be based on identifiers

setSelectByAnnotation

public void setSelectByAnnotation ()
Specifies that a subselection shall be made based on annotations.

selectByAnnotation

public boolean selectByAnnotation ()
Returns true if a subselection is to be made based on annotations.
Returns:
true if subselection is to be based on annotations

setAllSelectToralse

private void setAllSelectTofalse ()
Sets all selection flags to false.

getStringSelections

public java.lang. String [] getStringSelections ()
Returns an array of the strings that are to be selected for. Used for qualitative selections by annotation or identifier.
Returns:
an array of the strings that are to be used for subselection.

setStringSelections

public void setStringSelections (java.lang. String [] stringSelections)
Sets the array of the strings that are to be selected for. Used for qualitative selections by annotation or identifier.
Parameters:

stringSelections - the array of the strings that are to be selected for

getAnnotationType

public java.lang. String getAnnotationType ()
Returns the type of the annotation that is to be used for subselection.
Returns:
the type of the annotation that is to be used for subselection.

setAnnotationType

public void setAnnotationType (java.lang. String annotationType)
Sets the type of the annotation that is to be used for subselection.
Parameters:
annotationType - the type of the annotation that is to be used for subselection.

getAnnottypeNumber

public int getAnnot TypeNumber ()
Returns the number of the annotation type that is to be used for subselection.
Returns:

155



N

>

***-
ºr--r"

> -
*** **** gº

ºss tº massº"

º:- ****** º**********
assº. -----"

--- ~ *-****
*... rººms
--------"

******
º

~~~~"

!. *** ******

Ç.

the number of the annotation type that is to be used for subselection.

setAnnot TypeNumber

public void setAnnot'TypeNumber (int annot TypeNumber)
Sets the number of the annotation type that is to be used for subselection.
Parameters:

annot TypeNumber - the number of the annotation type that is to be used for subselection.

getComparisonType

public java.lang. String getComparison Type ()
Returns the comparison type ('qualitative' or 'quantitative') that is to be used in the subselection.
Returns:
the comparison type that is to be used in the subselection.

setComparisonType

public void setComparison Type (java. lang. String comparison Type)
Sets the comparison type ('qualitative' or 'quantitative') that is to be used in the subselection.
Parameters:

comparison Type - the comparison type that is to be used in the subselection.

getComparisonCperator

public java.lang. String getComparisonoperator ()
Returns the comparison operator (>, <, -, etc) that is to be used for a quantitative subselection.
Returns:
the comparison operator that is to be used for a quantitative subselection.

setComparison Operator

public void setComparisonoperator (java.lang. String comparisonCperator)
Sets the comparison operator (>, <, -, etc.) that is to be used for a quantitative subselection.
Parameters:

comparisonoperator - the comparison operator that is to be used for a quantitative subselection.

getThreshold

public double getThreshold ()
Returns the threshold that is to be used for a quantitative subselection.
Returns:

the threshold that is to be used for a quantitative subselection.

setThreshold

public void setThreshold (double threshold)
Sets the threshold that is to be used for a quantitative subselection.
Parameters:
threshold - the threshold that is to be used for a quantitative subselection.

getAnnotation

156

**** * *****
***** sº*****

** *:::
arº, sº

*

*** - ******

--------"
--~~~~":ºr
----"

- ■■ *** ******
º *...***& rº*** , a.º.

º ---,
******** ***

* * * *****

--------"

public Annotation getAnnotation ()
Returns the Annotation object that is to be used in an annotation based subselection.
Returns:
the Annotation object that is to be used in an annotation based subselection.

setAnnotation

public void setAnnotation (Annotation annotation)
Sets the Annotation object that is to be used in an annotation based subselection.
Parameters:

annotation - the Annotation object that is to be used in an annotation based subselection.

getDescription

public java.lang. String getDescription ()
Returns a string description of the subselection criteria. This string is in HTML format, ready to be printed in a web
browser.
Returns:
a string description of the subselection criteria.

clone

public java.lang. Object clone ()
Implements the clone method to allow a deep copy of a subselection item.
Overrides:
clone in class java.lang. Object
Returns:
the cloned SubSelection object.

equals

public boolean equals (java. lang. Object obj)
Overrides the equals method to perform a deep comparison between the receiver and the passed object. Returns true if two
SubSelection objects are selecting for the same criteria. The comparison information (identifiers vs annotations), type
(quantitive vs qualitative), and comparison type (=, P, etc - if used) must be the same.
Overrides:
equals in class java. lang. Object
Parameters:
obj- the SubSelection object to compare.
Returns:
true if the two SubSelection objects are equal.

infoString

public java. lang. String infoString ()
Returns a string containing the subselection criteria specified by the object properties. The string is in HTML format, and is
ready to be printed in a web browser.
Returns:
a string containing the subselection criteria

edu.ucsf.Magellan
Class System.Info

java. lang. Object
edu.ucsf. Magellan. System.Info

157

*s- an*****e-º"
*...***

is asswºmanº"
º

º ****
***** ******

f **** *...****** * ******

- *** ****
- -****

reasºn assº"
*

!. sºns "-----
º * * * *-■ º º‘.… ...”
*** ****

*~ ** sº
*** * *****

~~~~~~~~"



public class System.Info
extends java.lang. Object

System.Info objects store information about the current system implementation of Magellan, such as database connection information,
paths to necessary applications, etc.

T- - - -

Field Summary
I

- - - -

private adminemail
static java. lang. String

|

private static boolean connected

f
private dbConnectionstring

static java.lang. String

private |pageFooter
static java.lang. String

private Rpath
static java.lang. String

Constructor Summary

System.Info ()

Method Summary
r

static void closepbconnections (java. sql. Connection conn,
java. sql. Statement stimt, java. sql. ResultSet rs)

Closes the Connection, Statement, and ResultSet objects associated with a pooled
database connection.

static boolean | DBconnected ()
Returns true if a successful connection was made to the Oracle database.

T

static java. lang. String getAdminemail ()
Returns the email address of the Magellan administrator

T

static java. sql. Connection getDBconnection ()
Returns the database Connection object from the DBCP connection pool.

static java. lang. String getDBconnectionstring ()
Returns the database connection string used for applications like sqlldr

static java. lang. String getPageFooter ()
Returns a string containing HTML for a footer to appear at the bottom of web pages.

Returns the path to the R application

static void setAdminemail (java. lang. String email)
Sets the email address of the Magellan administrator

|

static java. lang. String getRpath ()

static void setDBconnectionstring (java. lang. String dbConnectionString)
Sets the database connection string used for applications like sqlldr

static void setPageFooter (java. lang. String footer)
Sets a string containing HTML for a footer to appear at the bottom of web pages.

static void setRpath (java. lang. String path)
Sets the path to the R application

Methods inherited from class java.lang. Object

| clone, equals, finalize, get Class, hashCode, notify, notifyAll, toString, wait, wait,
wait

158



* sººrs--"
**

* * * **** º*.*
tº c. *****

• **** º*** **,
*** * * * *

arº sº
--

*****
*** -s;

**** .*.*.*****

1. T. º*...**-**** *
********

*

- ------

!-- *-----
K. …~~ º**** º

{ º ****--~~~~ *
* -ºº-ºº-ººººº. h
º ~~~~~~"



Field Detail

connected

private static boolean connected

Rpath

private static java.lang. String Rpath

dbConnectionString

private static java.lang. String db.connectionString

pageFooter

private static java.lang. String page Footer

adminemail

private static java. lang. String adminemail
T
Constructor Detail

System.Info

public System.Info ()
Method Detail

getDBconnection

public static java. sql. Connection getDBconnection ()
throws java. sql. SQLException

Returns the database Connection object from the DBCP connection pool.
Returns:
the database Connection object
Throws:
java. sql. SQLException

close■ )bconnections

public static void closepbConnections (java. sql. Connection conn,
java. sql. Statement stint,
java. sql. ResultSet rs)

Closes the Connection, Statement, and ResultSet objects associated with a pooled database connection. If the objects are
not null, then close() method is executed for each and then each one is set to null so that the connection can be returned to
the pool.
Parameters:
conn - the database Connection object to be closed
stmt - the database Statement object to be closed
rs - the database ResultSet object to be closed

getDBconnectionString

159



º
* ,

*.
*

\, tº

º

º

*:: *** ****

*... ****
• *- : ********
*...***
*…*...*****

**** ---":|
* ------

!. -------
&. …~~ º**** ear”

-* gº-ºº:

#

*~~
** º:*

** *** * **** h
*~~~~~~"



public static java.lang. String getDBconnectionString ()
Returns the database connection string used for applications like sqlldr
Returns:

the database connection string

setDBconnectionString

public static void setDBconnections tring (java.lang. String dbConnectionString)
Sets the database connection string used for applications like sqlldr
Parameters:

_dbConnectionstring - the database connection string

DBconnected

public static boolean DBconnected ()
Returns true if a successful connection was made to the Oracle database.
Returns:
true if a successful connection was made to the Oracle database.

getPageFooter

public static java.lang. String getPage Footer ()
Returns a string containing HTML for a footer to appear at the bottom of web pages.
Returns:
an HTML string containing a footer for web pages.

setPageFooter

public static void setPage Footer (java.lang. String footer)
Sets a string containing HTML for a footer to appear at the bottom of web pages.
Parameters:

footer - an HTML string containing a footer for web pages.

setRpath

public static void setRpath (java.lang. String path)
Sets the path to the R application
Parameters:

path - the path to the R application

getRpath

public static java.lang. String getRpath ()
Returns the path to the R application
Returns:
the path to the R application

setAdminemail

public static void setAdminemail (java.lang. String email)
Sets the email address of the Magellan administrator
Parameters:

email - the email address of the Magellan administrator

160



º

2.

***-
*- sºmeºsº

** gº*****
iraº tº mºsºs"

º*** * *
º: "º ** sº** **, a■ ******

**, *, ***fl. .*******
*...*****
**-----"

--------!

--------

º#. ************
--- rººtº º º*** **
* aº-ºº-ºº:

* * *

*a*--- ****
* *** * ****

**** *****
-



getAdminemail

public static java.lang. String getAdminemail ()
Returns the email address of the Magellan administrator
Returns:
the email address of the Magellan administrator

edu.ucsf.Magellan
Class System.Infohandler

java.lang. Object

org. xml. sax. helpers. DefaultHandler
—eau.ucsf.nagellan.system.infohandler

All Implemented Interfaces:
org.xml.sax. Contenthandler, org.xml.sax.DTDHandler, org.xml.sax.EntityResolver, org.xml.sax.ErrorHandler

public class System.Infohandler
extends org. xml. sax. helpers. DefaultHandler

The System.Infohandler class extends DefaultHandler to parse the XML file 'magellan.xml containing database and other parameters
for Magellan.

fieldsummary

java.
private

lang. String
admin Email

T
-

private
java.lang. String Buffer

chardata Buffer

java.
private

lang. String
contextPath

java.
private

lang. String
dbhost

java.
private

lang. String
dbinstance

java.
private

lang. String
dblogin

java.
private

lang. String
dbPassword

Java.
private

lang. String
dbService

java.
private

lang. String

java.
private

lang. String

pageFooter

rpath

constructor Summary

System.Infohandler ()

f Method Summary

void characters (char [] text, int start, int length)

■

void endelement (java.lang. String namespaceURI, java. lang. String localName,

161



*...*

** ------ #**

****** sº
****** ******

ass-air º*::: ***.
*** * * * *
**- *****

*** * ******

*** ****
**********

**asasauna”
*
#

- *-***

!----
º

******K.* -arº
º

*~ *** * **
* -ºs-tº-ººººº.

**...*****



java.lang. String qName)

java. lang. String getAdminemail ()
Returns the email address of the magellan administrator specified in magellan.xml

java. lang. String getContextPath ()
Returns the context path of the magellan instance.

java. lang. String getDbHost()
Returns the oracle database host specified in magellan.xml

java. lang. String getDbLnstance ()
Returns the oracle database instance specified in magellan.xml

java.lang. String getDbLogin ()
Returns the oracle database login specified in magellan.xml

java. lang. String getDbPassword ()
Returns the oracle database password specified in magellan.xml

java. lang. String getDbService ()
Returns the oracle database service name specified in magellan.xml

java. lang. String getPageFooter ()
Returns the web page footer specified in magellan.xml

java.lang. String getRpath ()
Returns the path of the application 'rterm.exe' specified in magellan.xml

void startelement (java. lang. String namespaceURI, java.lang. String localName,
java.lang. String qName, org. xml. sax. Attributes atts)

Methods inherited from class org.xml.sax.helpers.DefaultHandler
■

end Document, end PrefixMapping, error, fatal Error, ignorableWhitespace, notationDecl,
processinglnstruction, resolve Entity, setDocument Locator, skipped Entity, startIDocument,
start PrefixMapping, unparsed EntityDecl, warning

T

Methods inherited from class java.lang. Object
r

clone, equals, finalize, get Class, hashCode, notify, notifyAll, toString, wait, wait,
wait

field detail

chardatabuffer

private java.lang. StringBuffer charDataBuffer

dbPHost

private java. lang. String dbHost

dbinstance

private java.lang. String dbinstance

dbService

private java.lang. String dbService

162



**** *... cº-----
**

º ºf *****ºsme. ******
***** *** º***

**.
-f *... → *****

****_ ****...* *
lº

-***** --sº
*******

º

-------

ar
*** ******

****<. ** º ***** .***
--sº ****

& *wrºs ****
****** ******

** --~~~"



dblogin

private java.lang. String db Login

dbPassword

private java. lang. String dbPassword

rPath

private java.lang. String rpath

pageFooter

private java. lang. String page Footer

adminemail

private java.lang. String adminemail

contextPath

private java. lang. String contextPath
Constructor Detail

System.Infohandler

public System.Infohandler ()

Method Detail
getDbHost

public java. lang. String getDbHost ()
Returns the oracle database host specified in magellan.xml
Returns:
the oracle database host specified in magellan.xml

getDbinstance

public java.lang. String getDbLnstance ()
Returns the oracle database instance specified in magellan.xml
Returns:
the oracle database instance specified in magellan.xml

getDbService

public java.lang. String getDbService ()
Returns the oracle database service name specified in magellan.xml
Returns:
the oracle database service name specified in magellan.xml

163



***-
- sººs--"as ºf

* ---tºº"f. assº
as'*** ****

- *::::... º
º ºf ºur gºs

-
**. ºut ºmeº"

**** *******
- *

. . .*.*. º º *:
º

- * -------sº
********

º Hº
º a

x ********

*.. !--- *-----
*- º rº-

**** ****

1– º sº-sº~. ********

Tº * -º- -tt- as sº h
*~~~~< **



getDbLogin

public java.lang. String getDbLogin ()
Returns the oracle database login specified in magellan.xml
Returns:
the oracle database login specified in magellan.xml

getDbPassword

public java.lang. String getDbPassword ()
Returns the oracle database password specified in magellan.xml
Returns:
the oracle database password specified in magellan.xml

getRpath

public java.lang. String getRpath ()
Returns the path of the application 'rterm.exe" specified in magellan.xml
Returns:
the path of the application 'rterm.exe' specified in magellan.xml

getContextPath

public java.lang. String getContextPath ()
Returns the context path of the magellan instance. This is the path of the magellan web application instance provided when
the web app was installed in the Tomcat manager. All names of installed web applications can be viewed in the Tomcat
manager web app.
Returns:

the context path of the magellan instance

getPageFooter

public java.lang. String getPage Footer ()
Returns the web page footer specified in magellan.xml
Returns:
the web page footer specified in magellan.xml

getAdminemail

public java.lang. String getAdminemail ()
Returns the email address of the magellan administrator specified in magellan.xml
Returns:
the email address of the magellan administrator specified in magellan.xml

startelement

public void startelement (java.lang. String namespaceURI,
java.lang. String localName,
java.lang. String qName,
org. xml. sax. Attributes atts)

throws org. xml. sax. SAXException
Specified by:
start Element in interface org. xml. sax. ContentHandler
Overrides:

startelement in class org. xml. sax. helpers. DefaultHandler
Throws:
org. xml. sax. SAXException

164



**-
…------
*…***

tºº-- mºnºsº
º-****

sº **** *a*** *** ** gº a
****. *"****

arººs ********

º:
*** -a -uºsº

**********
º

****** * º

!-------1. º.º. ºººººººº."
**a*&: ..r".5**** ****

** *** *** *& º****** *
* -º-º-º-º:

*...*.*.*.***



r - -

T

end Element

public void end Element (java. lang. String namespaceURI,
java. lang. String localName,
java.lang. String qiname)

throws org. xml. sax. SAXException
Specified by:
end Element in interface org. xml. sax. ContentHandler
Overrides:

end Element in class org. xml. sax. helpers. DefaultHandler
Throws:
org. xml. sax. SAXException

characters

public void characters (char [] text,
int start,
int length)

throws org. xml. sax. SAXException
Specified by:
characters in interface org. xml. sax. ContentHandler
Overrides:

characters in class org. xml. sax. helpers. DefaultHandler
Throws:
org. xml. sax. SAXException

edu.ucsf.Magellan
Class Uploadinfo

java.lang. Object
|- edu.ucsf. Magellan. Uploadinfo

public class Upload.Info
extends java.lang. Object

Uploadlnfo objects implement the core functionality for uploads of data and annotations to the database. Each session involving an
upload has one instantiated Uploadinfo object associated with it. Uploadlnfo objects store user information as well as other
information relevant to the upload of information to the database. Uploadinfo methods are used to extract information from data files
uploaded from client to server, prepare sqlldrupload files, and load/delete information to the database.

Field Summary

private int annotidentifierBnd

private annotidentifierPormat
java.lang. String

T

private int annotidentifierLocation

private int annotidentifierstart

private annotidentifierType
java.lang. String

private int | data TypeNumber

-
-

*

165



**-

** …cº-----

f *...***isºrs ºutwº
*** *
**** ***::::

*** * ******
***** g

*... ****
*** - sº ******

-
---. grººms
**---sº

********
t

-----"

!-------
º r”;** erº

º
sº-saº******* as: *::

* ****** ******

*** -----"



private
java.lang. String

delimiter
■

T- -

| private
java.lang. String

description

private int experiment

private
java.lang. String

lab

T
private boolean new eriment

private int numPilecols

private int numrileRows

private int numsamples

private
java. util. Vector

prevuploaded Data Types

r—

private int

-T

private boolean |prevuploaded Format

i

private
java.lang. String

sampleNamesFormat

private int

private int sampleNamesskip

r—
private int

sampleNames Location

sampleNames Start

t

private boolean saveRileFormat

private boolean singlesample

private
java.lang. String

singlesampleName

private int upload

private
java. util. Vector

|ºriesalias
-T

private boolean uploadPublic

private
java.lang. String

upload.TYPe

private
java.lang. String

user

constructor Summary

Upload.Info ()

Method Summary

-- º

-*

º--º
|

-T

2 :
166



s

**-
, crºwn"** *
º ******

****** ******

º:
-

**** ****
areer. *****
rº-, ********

*...***
**** *...***

******

- tºass** **:

-------

!-----*** ******

Ç. r”**** .*

º --->
*** * * º

* -ºs--- *****

**-*******"



void addToUploadList (Upload Item uploi)
Adds an Upload■ tem object to the vector of those objects that make up the current

upload.
I

private java.lang. String annotationInfoString ()
Returns a string of HTML code that prints out the current information about the

annotations to be uploaded to the database.

void calculateNumsamples ()
Calculates the number of samples in the upload file based on the location information

entered by the user.

void clearallupload.Info ()
Clears all the information about the current upload.

void clearuploadList()
Clears the vector of Upload■ tem objects corresponding to those objects that make up the

current upload.

private java. lang. String data TypeAnnotationstring (Upload Item dt, int dtnum)
Returns a string of HTML code that prints out the current information about annotations

associated with one data type to be uploaded.

private java.lang. String datatyperdentifier Infostring (Upload.Item dt, int i)
Returns a string of HTML code that prints out the current information about one data

type to be uploaded.

private java.lang. String data Type InfoString ()
Returns a string of HTML code that prints out the current information about the data

types to be uploaded to the database.

boolean data TypePrevuploaded (java.lang. String dataTypeName)
Returns true if the passed data type name has already been used in the current

experiment.
static void delete Experiment (int experiment Num)

Deletes the experiment with the specified experiment number from the database.
static void deleteupload (int uploadid)

Deletes information with the specified upload ID number from the database.

boolean experimentExists (int experiment)
Returns true if the passed experiment number exists in the database.

boolean experimentExists (java.lang. String experimentString)
Returns true if the passed string contains an integer corresponding to an experiment

number that exists in the database.

int getAnnotidentifierÉnd ()
Returns the ending row or column of the identifiers in an annotation upload.

java. lang. String getAnnotidentifierPormat ()
Returns the format of identifiers for an upload of annotations (row' or 'column').

int getAnnotidentifierLocation ()
Returns the row or column number where identifiers are located in an annotation upload.

int getAnnotidentifierstart ()
Returns the starting row or column of the identifiers in an annotation upload.

java.lang. String getAnnotidentifierType()
Returns the type of identifiers for an upload of annotations.

static java. lang. String [] getArray FromFile (java. lang. String file Path,
java.lang. String delimiter, java. lang. String line Format,
int location, int start, int end, int skip)

Returns a string array from a file given the position or the row or column specified in the
parameters.

static java.lang. String [] getArray FromLine (java. lang. String line,
java.lang. String delimiter, int start, int end, int skip)

Takes an input string, splits it using the passed delimiter and returns a subset of the
resulting elements as a string array.

int getData TypeNumber ()
Returns the data type number for an upload of derived annotations.

º

167



*

vº

~ºs-ºn
sº

*. asf *** º-º-, *****
*...* *

sº ** º

*** -s; Hºubriº
-- *

*. ******
** ********

*** “º
**.*.*.*.******

!-----*** ********
º *******.*

-<-- ...A
**

º *************
*** *** * ******

**.*.*.*.***



java. util. HashMap getData Types From Experiment (int experiment)
Returns a HashMap object in which the keys are the names of the data types from the

passed experiment number and the values are the number of variables per sample of each data
type.

java.lang. String getDelimiter ()
Returns the file delimiter of the current upload ("t', ',', or ''

java.lang. String getDescription ()
Returns the description of the current upload

int getBºxperiment Number ()
Returns the experiment number for the current upload of data or derived annotations.

void getFileDimensions (java. lang. String file Path)
Gets the number of rows and columns of information of the file whose full path is passed

as a paramter.

void getFileDimensions (java. lang. String file Path, int first Rows,
int last Rows)

Gets the number of rows and columns of information of the file whose full path is passed
as a paramter, skipping the firstRows number of rows at the beginning of the file and lastRows
number of rows at the end of the file.

static java. lang. String getItemPromline (java. lang. String line,
java.lang. String delimiter, int index)

Takes an input string, splits it using the passed delimiter and returns a single element of
the resulting array at the specified index.

java.lang. String getLab ()
Returns the lab name for the current user

static int getNextAvailableRxperiment Number ()
Returns the next available experiment number that can be used to store information in the

database.

static int getNextAvailableUploadMumber ()
Returns the next available upload ID number that can be used to store information in the

database.

int getNumPilecols ()
Returns the number of columns in the uploaded file.

int getNumPileRows ()
Returns the number of rows in the uploaded file.

int getNumsamples ()
Returns the number of samples in the upload file.

java. util. Vector getPrevuploadedbatatypes ()
Returns a vector containing the Data Type objects that have been previously uploaded as

part of the current experiment.
int getsampleNamesEnd ()

Returns the ending row or column of the sample names in the upload file.

java.lang. String getSampleNamesFormat ()
Returns the format of the sample names in the data file uploaded by the user ('row' or

'column').

int getSampleNames Location ()
Returns the row or column number where the sample names are located in the upload

file.

int getSampleNames Skip ()
Returns the number of rows or columns to skip between sample names in the upload file.

int getSampleNamesStart ()
Returns the starting row or column of the sample names in the upload file.

java.lang. String getSinglesampleName ()
Returns the name of the sample for an upload of a single sample's worth of data.

Upload Item getUpload.InList (java. lang. String uploadname)
Returns an Uploadltem object of the passed upload Name from the list of items to upload,

or null if an Upload■ tem object of that name does not exist in the list.

168



**- ºr-teatºniº
sº sº

**** gºf ******iºusº a memºmº
º*******sº

-
*s

***********
ºf

t **, *, ******* * ****

**. **
**********

********
º

******

!. º ----
º

<. ºr- * *****

{ sº-shºg***** ****
* -º-º-º-º-º-º:

*~~< ****".



java. util. Vector getuploadList ()
Returns a vector of Uploadltem objects corresponding to those objects that make up the

current upload.

int getuploadMumber ()
Returns the upload number for the current upload.

java.lang. String getupload.TYpe ()
Returns the type of the current upload ('data', 'annotation', or 'statistics')

java. lang. String getUser ()
Returns the login (email address) for the current user

r

private java.lang. String identifier Infostring ()
Returns a string of HTML code that prints out the current information about the

identifiers to be uploaded to the database.

boolean inUploadList (java. lang. String uploadname)
Returns true if the passed upload item name has already been used in the list of uploaded

-
items.

boolean is Public ()
Returns true if the current upload is to be made publicly available, false otherwise.

■ static void LoadUpload.Tuple (int upload.ID, int experiment Number,
java. lang. String type, java. lang. String userName,
java.lang. String labName, java.lang. String delimiter,
java.lang. String access Type, java.lang. String description)

º Loads information about the current upload into the Upload table of the database.
static void LoadUpload Tuple (Upload.Info Upload, int upload.ID,

java. lang. String type)
Loads information about the current upload into the Upload table of the database.

T

boolean new8xperiment ()
Returns true if the current upload contains data for a new experiment, as opposed to an

addition to an old experiment.

boolean |prevuploaded Format ()
Returns true if the current upload uses a file format of a previous upload, false otherwise.

static void printuploadRileHeader (java. io. FileWriter DBfile)
Prints a header for sqlldr that specifies how information in upload files is loaded into the

database tables.

void removeFromUploadList (int position)
Removes an Uploadltem object at the specified position in the vector of those objects

that make up the current upload.

private java. lang. String sampleInfoString ()
Returns a string of HTML code that prints out the current information about the samples

to be uploaded to the database.
boolean sampleNamesSpecified ()

Returns true if the sample names for the current upload have been specified.

boolean save File:Format ()
Returns true if the file format of the current upload will be saved to the database, false

otherwise.

void setAnnotidentifier|End (int annot IdentifierEnd)
Sets the ending row or column of the identifiers in an annotation upload.

void setAnnotidentifierFormat (java. lang. String annot Identifier Format)
Sets the format of identifiers for an upload of annotations ('row' or 'column').

void setAnnotidentifierLocation (int annot Identifier Location)
Returns the row or column number where identifiers are located in an annotation upload.

void setAnnotidentifierStart (int annot IdentifierStart)
Sets the starting row or column of the identifiers in an annotation upload.

void setAnnotidentifierType (java. lang. String annot IdentifierType)
Sets the type of identifiers for an upload of annotations.

void setDatatypeNumber (int dataTypeNumber)
Sets the data type number of the data type that are associated with an upload of derived

169



s

ºr-tº-ºº-- ** º
*f º a...~"

ºss tº anº"
- **** his*** **::::";

*** ******
ºr

-f . …”*** ** ******
, sººn ****.*****
-º-º-º-º-º:

*********
s:

******* º

!. *ºne -----
K.’ -->
tº . . .”-******
- **** ** ---,
--------"



annotations.

void setDelimiter (java.lang. String delimiter)
Sets the file delimiter of the current upload.

void setDescription (java.lang. String description)
Sets the description of the current upload

void setBxperimentMumber (int experiment)
Sets the experiment number for the current upload of data or derived annotations.

void setLab (java. lang. String lab)
Sets the lab name for the current user

void setNewExperiment (boolean newExperiment)
Sets to true if the current upload contains data for a new experiment, as opposed to an

addition to an old experiment.

void setNumsamples (int numsamples)
Sets the number of samples in the upload file.

void setPrevuploaded Format (boolean prevuploaded)
Sets to true if the current upload uses a file format of a previous upload, false otherwise.

void setPublic (boolean uploadPublic)
Sets to true if the current upload is to be made publicly available, false otherwise.

void setSampleNamesEnd (int sampleNames End)
Returns the ending row or column of the sample names in the upload file.

void setsampleNamesFormat (java. lang. String sampleNamesFormat)
Sets the format of the sample names in the data file uploaded by the user (row' or

'column").

void setsampleNames Location (int sampleNames Location)
Sets the row or column number where the sample names are located in the upload file.

void setSampleNames Skip (int sampleNames Skip)
Sets the number of rows or columns to skip between sample names in the upload file.

void setSampleNamesStart (int sampleNames Start)
Sets the starting row or column of the sample names in the upload file.

void setSave File:Format (boolean save File Format)
Sets to true if the file format of the current upload will be saved to the database, false

otherwise.

void setSinglesample (boolean singlesample)
Sets a boolen flag to true if the current upload contains data from a single sample.

void setSinglesampleName (java. lang. String singlesampleName)
Sets the name of the sample for an upload of a single sample's worth of data.

void setuploadnumber (int upload)
Sets the upload number for the current upload.

void

void

setUpload.Type (java. lang. String type)
Sets the type of the current upload.

setUser (java.lang. String user)
Sets the login (email address) for the current user

boolean singlesample ()
Returns true if the current upload contains data from a single sample.

java.lang. String uploadButtonstring ()
Returns a string of HTML code that prints out the a message and HTML button the user

can click to upload information to the database.

boolean uploadexists (int upload.ID)
Returns true if the passed upload number exists in the database.

static boolean uploadBXists (int uploadid, java. lang. String content)
Returns true if an upload of the passed content (data, annotations, statistics, etc) and

upload number exists in the database.

boolean uploadBxists (java. lang. String upload.IDString)
Returns true if the passed string contains an integer corresponding to an upload number

170



* =

* *

**-
sº ... cº-º-

º g;

f *****.*.*.*.*.*.*.*****
- ***********

*** **, Hºnº

ºrºws ºne ******

**** grººms,
----------

**-aassºstº"
º

--------

º!----- #

º *******.*<l. .*
º *-autº

******* º
** ***** ******

**-*******



that exists in the database.

java.lang. String upload.InfoString ()
Returns a string of HTML code that prints out the current information about the items to

be uploaded to the database.

static void UploadStatisticsFile (java. lang. String statºile Path,
java.lang. String tempFile:Path, java.lang. String type,
java.lang. String description, java. lang. String userName,
java.lang. String labname, int experiment Number,
int data TypeNumber, int linesToSkip, int ord PosCol,
int resultsCol.)

Uploads the contents of a statistics file to the database as a derived annotation.

■ Methods inherited from class java.lang. Object
T

| clone, equals, finalize, get Class, hashCode, notify, notifyAll, toString, wait, wait,
wait

field Detail

user

private java.lang. String user

lab

private java.lang. String lab

description

private java.lang. String description

upload.Type

private java. lang. String upload Type

delimiter

private java.lang. String delimiter

sampleNamesFormat

private java. lang. String sampleNamesFormat

singleSampleName

private java.lang. String singlesampleName

annotidentifierType

private java. lang. String annotidentifierType

º

171



**-.
** ... ºenº-nº

sº- gº

f ****wºº reasºn tº
alsº gº

*** **: sºa5.
" *********

- #**, ***
---, -º-º-º-a"

tº "T.I.
******

--------

!. ~ *-----
º ** *& 4 .***
º ***

* --~~~
* * * ******

**.*.*.*.*.***



annotidentifierRormat

private java.lang. String annotidentifierFormat

experiment

private int experiment

upload

private int upload

sampleNamesStart

private int sampleNames Start

sampleNamesEnd

private int sampleNames End

sampleNamesSkip

private int sampleNames Skip

sampleNames Location

private int sampleNames Location

numsamples

private int numsamples

numkileRows

private int numkileRows

numkileCols

private int numkilecols

annotidentifierStart

private int annotidentifierStart

annotidentifier|End

private int annotidentifierEnd

-
* * *
//

-*. -

--

172



* !. * º

***-
ºasºrass

sº -*
sº- - sºf ** ****-º-ºº-ºººººººº

** *
º **** º

**-**** se *** *
- s

f **** *...****** * *******

**, r*****
s #.*****-*****

********
º

********

º!. *********

«. .rº º*-* ºn”
-*. ***

*~. ****
-es-º-º-º-º-º-º:

---------"



annotidentifierlocation

private int annotidentifierLocation

data TypeNumber

private int data TypeNumber

singleSample

private boolean singlesample

newExperiment

private boolean newExperiment

prevuploaded Format

private boolean prevUploaded Format

saveRileFormat

private boolean save File:Format

uploadpublic

private boolean uploadPublic

uploadList

private java. util. Vector uploadList

prevuploadedDataTypes

private java. util. Vector prevUploadedData Types
t

Constructor Detail

Uploadinfo

public Upload.Info ()

Method Detail

getUser

public java.lang. String getUser ()
Returns the login (email address) for the current user
Returns:

º

~ **-

173



**--
cº- mº

t
-

…**assº manº"
sº

s***".*** ****

**. ****
**** -º ******
º ******* * *
sess-ºr---º"

-**** **:
-----"

!. º*** *****"
º trate,&: ..r.º.º.** ****

tº º
****** *** º

* * * * *****

~~~~~~"


the login of the current user

setuser

public void setuser (java. lang. String user)
Sets the login (email address) for the current user
Parameters:
user - the login of the current user

getLab

public java.lang. String getLab ()
Returns the lab name for the current user
Returns:
the lab name of the current user

set[Lab

public void setLab (java.lang. String lab)
Sets the lab name for the current user
Parameters:
lab - the lab name of the current user

getDescription

public java.lang. String getDescription ()
Returns the description of the current upload
Returns:
the description of the current upload

setDescription

public void setDescription (java.lang. String description)
Sets the description of the current upload
Parameters:
description - the description of the current upload

getUpload.Type

public java.lang. String getUpload Type ()
Returns the type of the current upload ('data', 'annotation', or 'statistics')
Returns:
the type of the current upload

setUploadType

public void setupload Type (java.lang. String type)
Sets the type of the current upload. Should be one of 'data', 'annotation', or 'statistics'.
Parameters:
type - the type of the current upload.

getDelimiter

174

• * * *

ºn
* gº

-
*...****

isºtº ºne-ºn
* *****!"

**** ****
*

{ **., ******** .*******

f : ...".

º:

1. -------
& r".5

*~. **** º

*-** ** ---->

public java.lang. String getDelimiter ()
Returns the file delimiter of the current upload ('\t', ',', or '')
Returns:

the file delimiter of the current upload

setDelimiter

public void setDelimiter (java. lang. String delimiter)
Sets the file delimiter of the current upload. Should be one of \t', ',', or ''.
Parameters:

delimiter - the file delimiter of the current upload

getSampleNamesFormat

public java.lang. String getSampleNamesFormat ()
Returns the format of the sample names in the data file uploaded by the user (row' or 'column').
Returns:

the format of the sample names in the file (row' or 'column').

setSampleNamesFormat

public void setSampleNamesFormat (java.lang. String sampleNamesFormat)
Sets the format of the sample names in the data file uploaded by the user (row' or 'column').
Parameters:

sampleNames Format - the format of the sample names in the file

getSingleSampleName

public java. lang. String getsinglesampleName ()
Returns the name of the sample for an upload of a single sample's worth of data.
Returns:

the name of the sample for an upload of a single sample's worth of data

setSinglesampleName

public void setSinglesampleName (java.lang. String singlesampleName)
Sets the name of the sample for an upload of a single sample's worth of data.
Parameters:

singlesampleName - the name of the sample for an upload of a single sample's worth of data.

getAnnotidentifierType

public java. lang. String getAnnotidentifierType ()
Returns the type of identifiers for an upload of annotations.
Returns:
the type of identifiers for an upload of annotations.

setAnnotidentifierType

public void setAnnotidentifierType (java.lang. String annot IdentifierType)
Sets the type of identifiers for an upload of annotations.
Parameters:

annot IdentifierType - the type of identifiers for an upload of annotations.

175

* . ."

º
º

W.

º
*

* ,

**-
...ºtº-ºn

ºf *** gº
º ****

º *a*****
º

º ** ---
, *-***g: *****

* * * ºr ****t. * --ºntº"

| } **** *****--------"
** assuanº"

--> º
*- ºA sºunama"

* - ****
a

**
*---->

`, -------- ** -**-

-**** --~~~~"
*

*

--

* * -; : , ,

*

-

*

-

**

getAnnotidentifierFormat

public java.lang. String getAnnotidentifierFormat ()
Returns the format of identifiers for an upload of annotations (row' or 'column').
Returns:
the format of identifiers for an upload of annotations ('row' or 'column').

setAnnotidentifierRormat

public void setAnnotidentifier Format (java. lang. String annot IdentifierFormat)
Sets the format of identifiers for an upload of annotations ('row' or 'column').
Parameters:

annot Identifier Format - the format of identifiers for an upload of annotations ('row' or 'column').

getFXperimentNumber

public int get Experiment Number ()
Returns the experiment number for the current upload of data or derived annotations.
Returns:
the experiment number for the current upload of data or derived annotations.

setFXperimentNumber

public void set ExperimentNumber (int experiment)
Sets the experiment number for the current upload of data or derived annotations.
Parameters:

experiment - the experiment number for the current upload of data or derived annotations.

getUploadNumber

public int getUpload Number ()
Returns the upload number for the current upload.
Returns:

the upload number for the current upload.

setUploadNumber

public void setUpload Number (int upload)
Sets the upload number for the current upload.
Parameters:

upload - the upload number for the current upload.

getSampleNamesStart

public int getSampleNames Start ()
Returns the starting row or column of the sample names in the upload file.
Returns:

the starting row or column of the sample names in the upload file.

setSampleNamesStart

public void setSampleNames Start (int sampleNames Start)
Sets the starting row or column of the sample names in the upload file.
Parameters:

sampleNames Start - the starting row or column of the sample names in the upload file.

176

- * *

* ºranº****

f *-*...***is ºr ºnesºmº

-****
" *******
. **

* *** ** *******
*** ****
--------º

**-assº"
ºf

º

º
*** *******

& r".5** .*
cº- --->*** ****
* * * *****

*~~~~~~"

getSampleNamesEnd

public int getSampleNames End ()
Returns the ending row or column of the sample names in the upload file.
Returns:
the ending row or column of the sample names in the upload file.

setSampleNamesEnd

public void setSampleNames End (int sampleNames End)
Returns the ending row or column of the sample names in the upload file.
Parameters:
sampleNames End - the ending row or column of the sample names in the upload file.

getSampleNamesSkip

public int getSampleNames Skip ()
Returns the number of rows or columns to skip between sample names in the upload file.
Returns:
the number of rows or columns to skip between sample names in the upload file.

setSampleNamesSkip

public void setSampleNames Skip (int sampleNames Skip)
Sets the number of rows or columns to skip between sample names in the upload file.
Parameters:

sampleNames Skip - the number of rows or columns to skip between sample names in the upload file.

getSampleNameslocation

public int getSampleNames Location ()
Returns the row or column number where the sample names are located in the upload file.
Returns:
the row or column number where the sample names are located in the upload file.

setSampleNameslocation

public void setSampleNames Location (int sampleNames Location)
Sets the row or column number where the sample names are located in the upload file.
Parameters:
sampleNames Location - the row or column number where the sample names are located in the upload file.

getNumSamples

public int getNumsamples ()
Returns the number of samples in the upload file.
Returns:
the number of samples in the upload file.

setNumsamples

public void setNumsamples (int numsamples)

*---

ºf .

-:
Z.A.

177

**-
*- anºmas

as “º:
assº ansassº

º -*-***** ***.er:
*** * * *******

t *...********** *******

º *** ****
***** *…***

**-assº"
º

!-------
** ****...rº
**** ****
sº a-sº

* -- *** **

* * * ---,
-***

Sets the number of samples in the upload file.
Parameters:

numSamples - the number of samples in the upload file.

calculateNumsamples

public void calculateNumsamples ()
Calculates the number of samples in the upload file based on the location information entered by the user. The number of
samples is stored as a property of the Uploadinfo object.

getAnnotidentifierStart

public int getAnnotidentifierStart ()
Returns the starting row or column of the identifiers in an annotation upload.
Returns:
the starting row or column of the identifiers in an annotation upload.

setAnnotidentifierStart

public void setAnnotidentifierStart (int annot IdentifierStart)
Sets the starting row or column of the identifiers in an annotation upload.
Parameters:

annot IdentifierStart - the starting row or column of the identifiers in an annotation upload.

getAnnotidentifier|End

public int getAnnotidentifierEnd ()
Returns the ending row or column of the identifiers in an annotation upload.
Returns:
the ending row or column of the identifiers in an annotation upload.

setAnnotidentifierEnd

public void setAnnotidentifierEnd (int annot IdentifierÉnd)
Sets the ending row or column of the identifiers in an annotation upload.
Parameters:

annot IdentifierEnd - the ending row or column of the identifiers in an annotation upload.

getAnnotidentifierlocation

public int getAnnotidentifierLocation ()
Returns the row or column number where identifiers are located in an annotation upload.
Returns:

the row or column number where identifiers are located in an annotation upload.

setAnnotidentifierlocation

public void set AnnotidentifierLocation (int annot Identifier Location)
Returns the row or column number where identifiers are located in an annotation upload.
Parameters:

annot IdentifierLocation - the row or column number where identifiers are located in an annotation upload.

getData TypeNumber

178

º,

***-
ººwn

f ** ****
-º-º-º-º- ºn assº

erº.
**** *sºn:

*

*... -----ºnta"

**** ºr”
-

**-assº

º
º

º º
a*****

º **sage

<-- ºr ...}
tº º*******
** *** ******

--------"

public int getData TypeNumber ()
Returns the data type number for an upload of derived annotations. The annotations will be associated with this data type in
the database.
Returns:
the data type number for an upload of derived annotations.

setDataTypeNumber

public void setData TypeNumber (int data TypeNumber)
Sets the data type number of the data type that are associated with an upload of derived annotations.
Parameters:

data TypeNumber - the data type number for an upload of derived annotations.

getNumPileRows

public int getNumPileRows ()
Returns the number of rows in the uploaded file.
Returns:
the number of rows in the uploaded file.

getNumPileCols

public int getNumPileCols ()
Returns the number of columns in the uploaded file.
Returns:
the number of columns in the uploaded file.

singleSample

public boolean single Sample ()
Returns true if the current upload contains data from a single sample.
Returns:
true if the current upload contains data from a single sample.

setSingleSample

public void setSinglesample (boolean singlesample)
Sets a boolen flag to true if the current upload contains data from a single sample.
Parameters:
singlesample - true if the current upload contains data from a single sample.

newFxperiment

public boolean newExperiment ()
Returns true if the current upload contains data for a new experiment, as opposed to an addition to an old experiment.
Returns:
true if upload is part of a new experiment, false otherwise

setNewExperiment

public void setNewExperiment (boolean newExperiment)
Sets to true if the current upload contains data for a new experiment, as opposed to an addition to an old experiment.
Parameters:

newExperiment - true if upload is part of a new experiment, false otherwise

179

º

ºrge tº ºnesºº

º ------"
_ º

*** *****
*** *-, ****

*** * ******
*** ****

º *:***-*****
**-assessmº"

º:

******** º

1. -------
< * *
* -->

* *******
*-ºs--- sº

-*** *******

prevuploaded Format

public boolean prevUploaded Format ()
Returns true if the current upload uses a file format of a previous upload, false otherwise.
Returns:
true if the current upload uses a file format of a previous upload.

setPrevuploadedFormat

public void setPrevuploaded Format (boolean prevuploaded)
Sets to true if the current upload uses a file format of a previous upload, false otherwise..
Parameters:
prevuploaded - true if the current upload uses a file format of a previous upload

saveRileFormat

public boolean save File:Format ()
Returns true if the file format of the current upload will be saved to the database, false otherwise.
Returns:

true if the file format of the current upload will be saved to the database.

setSaveRileFormat

public void setSave File Format (boolean save File:Format)
Sets to true if the file format of the current upload will be saved to the database, false otherwise.
Parameters:
save File:Format - true if the file format of the current upload will be saved to the database

is Public

public boolean is Public ()
Returns true if the current upload is to be made publicly available, false otherwise.
Returns:
true if the current upload is to be made publicly available.

set Public

public void setPublic (boolean uploadPublic)
Sets to true if the current upload is to be made publicly available, false otherwise.
Parameters:

upload Public - true if the current upload is to be made publicly available.

getUploadList

public java. util. Vector getUpload List ()
Returns a vector of Uploadltem objects corresponding to those objects that make up the current upload. These objects
correspond to data types (with or without associated annotations), annotations, statistics, etc.
Returns:
a vector of Upload.Item objects to be uploaded.

addToUploadList

public void addtouploadList (Upload.Item upla)
Adds an Uploadltem object to the vector of those objects that make up the current upload.
Parameters:

180

º

. ."

... * * ,

**

º gº
º ****

ºf aerºs”
ºassau****sº

sº ****
wº. ****

*** * ******
s gºanº

*...***

****** i.

!. sº- *-----

<i> .."
* --~~~
- - -º-º-º-º-º:

*~~~~~~"

upla - the Uploadltem object to be added to the vector of objects to be uploaded.

removeFrom UploadList

public void remove FromUploadList (int position)
Removes an Upload■ tem object at the specified position in the vector of those objects that make up the current upload.
Parameters:

position - the position to be removed in the vector of Upload■ tem objects

clearuploadList

public void clearuploadList ()
Clears the vector of Upload.Item objects corresponding to those objects that make up the current upload.

clear Allupload.Info

public void clear All Uploadlnfo ()
Clears all the information about the current upload. Items to be cleared include the list of Uploaditems to be uploaded, and
all sample information.

dataTypePrevuploaded

public boolean data TypePrevuploaded (java.lang. String data TypeName)
Returns true if the passed data type name has already been used in the current experiment. The name is checked against
those data types that have been previously loaded in the database.
Parameters:

data TypeName - the data type name to check in the list of previously uploaded data types.
Returns:
true if the passed data type name has already been used in the current experiment.

inUploadList

public boolean inuploadList (java. lang. String upload Name)
Returns true if the passed upload item name has already been used in the list of uploaded items.
Parameters:

uploadname - the name to search for in the list of upload items for the current upload.
Returns:
true if the passed upload item name has already been used in the list of uploaded items.

getUpload.InList

public Upload.Item getUpload.InList (java.lang. String upload Name)
Returns an Uploaditem object of the passed upload Name from the list of items to upload, or null if an Uploadltem object of
that name does not exist in the list.
Parameters:

uploadname - the name to search for in the current list of items to upload.
Returns:
an Uploadltem object of the passed upload Name from the list of items to upload

getPrevuploadedData Types

public java. util. Vector getPrevUploaded Data Types ()
Returns a vector containing the DataType objects that have been previously uploaded as part of the current experiment.
Returns:
a vector containing the Data Type objects that have been previously uploaded for the current experiment.

º º

181

***-
... ºn
* ºuts

f ******-ºr nº tº assismºs
******* sº

º* *****

t. *****... a masnºa"
*...**ins

º,

***** ---sºd”
****-assuranº"

º

!. --------
< ...r".5

*****<- *** -->

º

º

: : º:

* * * ***** h
-***

sampleNamesSpecified

public boolean sampleNames Specified ()
Returns true if the sample names for the current upload have been specified.
Returns:
true if the sample names for the current upload have been specified.

getFileDimensions

public void getFileDimensions (java.lang. String file Path)
Gets the number of rows and columns of information of the file whose full path is passed as a paramter. The delimiter is
used to determine column breaks, and the information can be retrieved by using the getNumPileRows() and
getNumPileCols() methods.
Parameters:

file Path - the full path to the file

getFileDimensions

public void getFileDimensions (java.lang. String file Path,
int first Rows,
int last Rows)

Gets the number of rows and columns of information of the file whose full path is passed as a paramter, skipping the
firstRows number of rows at the beginning of the file and lastRows number of rows at the end of the file. The delimiter is
used to determine column breaks, and the information can be retrieved by using the getNumPileRows() and
getNumPileCols() methods.
Parameters:

file Path - the full path to the file
firstRows - the number of rows to skip at the beginning of the file.
last Rows - the number of rows to skip at the end of the file.

uploadexists

public boolean uploadexists (java.lang. String upload.IDString)
throws java. sql. SQLException

Returns true if the passed string contains an integer corresponding to an upload number that exists in the database.
Parameters:

upload.IDString - a string containing an integer corresponding to the upload ID number.
Returns:
true if the passed upload ID exists in the database.
Throws:
java. sql. SQLException

uploadexists

public boolean uploadRxists (int upload ID)
throws java. sql. SQLException

Returns true if the passed upload number exists in the database.
Parameters:

upload.ID - an integer corresponding to the upload ID number.
Returns:

true if the passed upload ID exists in the database.
Throws:
java. sql. SQLException

uploadexists

182

º

sº sº****
ºx-º-º-º-º-º:

* Lºs
** *****

sº *-******

t. *...****** *******

s-, ***
-**

**-aatsº"
º:

!. º -----
& r".5
º ********* ****

-

* -º-º-º-º:

**** -*****

ºf Y

public static boolean uploadexists (int upload.ID, * - /
java.lang. String content) ºf M

throws java. sql. SQLException

Returns true if an upload of the passed content (data, annotations, statistics, etc) and upload number exists in the database. }/ º,Parameters: º

upload ID - the upload ID number to search for in the database ----
content - the content to search for in the database ('data', 'annotations', 'statistics') — — .
Returns:

true if an upload with the specified upload ID number and content exists in the database. º
Throws: 2.
java. sql. SQLException > º:

experimentExists -----

*~ *
public boolean experimentExists (java.lang. String experiment String)

-

throws java. sql. SQLException
Returns true if the passed string contains an integer corresponding to an experiment number that exists in the database.
Parameters:

experimentString - a string containing an integer corresponding to an experiment number
Returns:

true if the experiment number exists in the database * *-
Throws: ----
java. sql. SQLException

* >
- **.

experimentExists º
-º-,

public boolean experimentExists (int experiment) -- . .

throws java. sql. SQLException Zºº, ºReturns true if the passed experiment number exists in the database. 4-5

Parameters: * * *
experiment - an integer corresponding to an experiment number -//
Returns: -*

true if the experiment number exists in the database)/ *Throws: 4

java. sql. SQLException -*--

→ -

getDataTypesErom Experiment > -º
Sº,

public java. util. HashMap getData Types From Experiment (int experiment)
throws java. sql. SQLException ---

Returns a HashMap object in which the keys are the names of the data types from the passed experiment number and the
values are the number of variables per sample of each data type. ---
Parameters: º

experiment - the experiment number to query from the database ■ (
Returns: -

a HashMap with keys=data type names and values=variables per sample. i■ .”
Throws:
java. sql. SQLException

uploadinfoString

public java.lang. String uploadinfoString ()
Returns a string of HTML code that prints out the current information about the items to be uploaded to the database. This
string can be directly printed in the web browser. -*-
Returns: -

HTML code specifying current upload information. -*--

^: ;

identifierinfoString 1/ A-**

private java.lang. String identifier InfoString ()), n
º *

-*

183 -* –

s

***-
af-ºn-ºn

- *** *::: *-***
-******* *****

-

rsºn ºe:-";
"******
. **

*** *** ******

. ***~~~~

!. º *-----
* rite-ºw&I..." ...}

f *****--~~~~ *
- ºr--º-º-º-º: h
--------"

Returns a string of HTML code that prints out the current information about the identifiers to be uploaded to the database.
Returns:
HTML code specifying current identifier upload information.

annotationInfoString

private java.lang. String annotationInfoString ()
Returns a string of HTML code that prints out the current information about the annotations to be uploaded to the database.
Returns:
HTML code specifying current annotation upload information.

sampleinfoString

private java. lang. String sampleInfoString ()
Returns a string of HTML code that prints out the current information about the samples to be uploaded to the database.
Returns:
HTML code specifying current sample upload information.

data TypeinfoString

private java. lang. String data TypelnfoString ()
Returns a string of HTML code that prints out the current information about the data types to be uploaded to the database.
Returns:
HTML code specifying current data type upload information.

dataTypeidentifierinfoString

private java. lang. String data Typeidentifier InfoString (Upload.Item dt,
int i)

Returns a string of HTML code that prints out the current information about one data type to be uploaded.
Parameters:

dt - an Upload■ tem object corresponding to a data type to upload.
i - the position of the data type in the list of data types to be uploaded
Returns:
HTML code specifying upload information for the specified data type.

dataTypeAnnotationString

private java.lang. String data TypeAnnotations tring (Uploaditem dt,
int dtMum)

Returns a string of HTML code that prints out the current information about annotations associated with one data type to be
uploaded.
Parameters:

dt - an Uploadltem object corresponding to a data type to upload.
dtnum - the position of the data type in the list of data types to be uploaded
Returns:

HTML code specifying upload information for the annotations of the specified data type.

uploadButtonString

public java.lang. String uploadButtonString ()
Returns a string of HTML code that prints out the a message and HTML button the user can click to upload information to
the database.

deleteexperiment

184

º

*

º

- º

** ºtiºn

*** *********

*** *

*

*** *******
, ***

º º----------4-
***asuasarº

º
dassºu-guanº

!--"*...*ru****

Ç .* *** wº
- ** ***

*-
* ****

-

* * * * * *****

public static void delete Experiment (int experimentNum)
throws java. sql. SQLException

Deletes the experiment with the specified experiment number from the database.
Parameters:

experiment Num - the experiment number to be removed from the database.
Throws:
java. sql. SQLException

deleteupload

public static void deleteupload (int upload.ID)
throws java. sql. SQLException

Deletes information with the specified upload ID number from the database.
Parameters:
upload.ID - the upload ID number to be removed from the database.
Throws:
java. sql. SQLException

getNextAvailableExperimentNumber

public static int getNextAvailable ExperimentNumber ()
throws java. sql. SQLException

Returns the next available experiment number that can be used to store information in the database.
Returns:
the next available experiment number for database storage.
Throws:
java. sql. SQLException

getNextAvailableUploadNumber

public static int getNextAvailableUpload Number ()
throws java. sql. SQLException

Returns the next available upload ID number that can be used to store information in the database.
Returns:

the next available upload ID number for database storage.
Throws:
java. sql. SQLException

getArrayFromFile

public static java.lang. String [] getArrayFromFile (java. lang. String file Path,
java.lang. String delimiter,
java. lang. String line Format,
int location,
int start,
int end,
int skip)

Returns a string array from a file given the position or the row or column specified in the parameters. For example,
getArrayFromFile('results.txt, "t', 'column', 3, 1, 100, 0) would retrieve a 100 member array from the tab delimited file
'results.txt consisting of the contents of column 3, from row 1 to 100 with no rows skipped.
Parameters:
file Path - the path of the file from which the information will be retrieved
delimiter - the file delimiter that separates columns in the file
line Format - the format of the line to be retrieved (row' or 'column')
location - the row or column number containing the information
start - the start location of the information
end - the end location of the information

skip - the number of rows or columns to skip between items retrieved.
Returns:
the number of elements the list would contain

185

**-
...ºneº-"
sºf **. --tºº"

**** ******
* -****

*:::: **
-*** *****

.. *f = ***** *** asºns at
- * *

- º

**-aeseasº"

º

- ------

º!. *** ******

& ºr 5
&

* *}--~~~~ *
* * * ******

** …ºurs"

getArray Fromline -:■
—t

public static java.lang. String [] getArrayFromLine (java.lang. String line, / *java. lang. String delimiter, *
int start, _*-
int end, -
int skip) -* ---

Takes an input string, splits it using the passed delimiter and returns a subset of the resulting elements as a string array. The
-

split array's boundaries are determined by the specified start, end, and skip parameters. > -º
Parameters: ~"º.
line - the input string to be split and sampled to generate the returned array ".
delimiter - the file delimiter that separates elements in the passed string 'line' --- :
start - the starting index of the split array to be incorporated in the output array
end - the ending index of the split array to be incorporated in the output array ---

skip - the number of element to skip between items incorporated in the output array. A. l
Returns:

a string array that is a subset of the elements of the split string

getItem.Fromline

public static java.lang. String getItemPromline (java.lang. String line, ---
java.lang. String delimiter,

-

int index) º s
Takes an input string, splits it using the passed delimiter and returns a single element of the resulting array at the specified t- c.
index. If the index exceeds the number of elements of the array after splitting, an empty string ("") is returned. This method º,
does not use the String.split() method, as that is somewhat wasteful of memory when parsing large files.

Parameters: --line - the input string to be split and sampled to generate the returned array ~!

delimiter - the file delimiter that separates elements in the passed string 'line' 7) |index - the index of the element to be returned after splitting the input string *-*

Returns: .* f :
the string at the specified index after splitting the input string using the passed delimiter

--
/.

---4-

}/
LoadUploadTuple *

-*-

public static void LoadUpload.Tuple (Upload.Info Upload, –4 –

int upload.ID, º
java. lang. String type) 2 <

throws java. sql. SQLException S º,
Loads information about the current upload into the Upload table of the database. The loading of this information into the *

Upload table is performed immediately, rather than through sqlldr with the rest of the upload, such that the upload ID ––
number of this upload will not overlap an upload that comes soon after. –
Parameters: -r

Upload - the Uploadinfo object that contains the information about the current upload. * * *
upload.ID - the upload ID number for the current upload. /(
type - the content of the upload ('data', 'annotations', 'statistics') r
Throws: 777,
java. sql. SQLException

R^

LoadUploadTuple r

public static void LoadUpload Tuple (int upload.ID, º. º
int experimentNumber, º 2.
java. lang. String type, Nº 1
java.lang. String userName, -*-
java.lang. String labName,
java.lang. String delimiter, -* --

java.lang. String access Type, ºjava.lang. String description) *

throws java. sql. SQLException
Loads information about the current upload into the Upload table of the database. The loading of this information into the !" A
Upload table is performed immediately, rather than through sqlldr with the rest of the upload, such that the upload ID -º-

number of this upload will not overlap an upload that comes soon after.) ■ º
-*-

186 ––

2 S

* -

**- .
... ºn

**
*_-sº"

is arº seasº

errº"
**** *****
ºw- º

--

*** * ******

.*- ****
g*-*-*****

fa
- *****

!-------
& r".

*** ****

º
******* ****

- **** *** ******

**** --~~~~"

Parameters:
upload.ID - the upload ID number for the current upload.
experiment Number - the experiment number for the current upload.
type - the content of the upload ('data', 'annotations', 'statistics')
userName - the web user's name (first and last)
labname - the name of the web user's lab
delimiter - the file delimiter that was used in the upload file
accessType - the degree of access the user has specified for the upload ('pub', or 'prv')
description - a brief description of the upload provided by the user
Throws:
java. sql. SQLException

UploadStatisticsFile

public static void UploadStatistics File (java. lang. String statºile Path,
java. lang. String tempFile:Path,
java.lang. String type,
java.lang. String description,
java.lang. String userName,
java.lang. String labName,
int experimentNumber,
int data TypeNumber,
int linesToSkip,
int ord PosCol,
int results.Col.)

Uploads the contents of a statistics file to the database as a derived annotation. Statistics files are the result of analyses
performed on data in the database, and this method allows for the direct upload of analytical results into the database
without having to go through the upload pages. The statistics file must have a column that specifies ordinal position (row
number of data type) and one column containing the statistics themselves.
Parameters:
statºile:Path - the full path of the statistics results file
tempFile:Path - the full path of the temporary sqlldr file
type - the content of the upload ('data', 'annotations', 'statistics')
description - a brief description of the upload provided by the user
userName - the web user's name (first and last)
labname - the name of the web user's lab

experiment Number - the experiment number for the current upload.
data TypeNumber - the data type number of the data type from which the statistics were derived
linesToSkip - the number of lines in the statistics file to discard prior to extracting information to be stored
ordPosCol - the column number in the file that contains the ordinal position (zero based)
resultsCol - the column number in the file that contains the statistical results (zero based)

printuploadRileHeader

public static void printuploadfileHeader (java. io. FileWriter DB file)
Prints a header for sqlldr that specifies how information in upload files is loaded into the database tables. After the header
has been printed out, the information itself is included in the file and the sqlldr application is run on that file to upload the
information.
Parameters:
DBfile - the FileWriter object to which the header information will be printed.

edu.ucsf.Magellan
Class Upload■ tem

java.lang. Object
|- edu.ucsf. Magellan. Uploadltem

public class Uploadltem
extends java.lang. Object

1 87

º

**

** *
sº tºf *****-º-º-º-º-ºassº

-------"
*-** **** *****
***** sºf -*****, *******

**** º:1.
**assauna”

º:
-------"

º

**as---sºº

!. ----- *

& r".5
= ~ * -**

*~. ****
* age----sº

The Upload.Item class stores information about a single item to be uploaded, such as a single data type, a single set of identifiers or
annotations, etc.

Fieldsummary
■ private boolean annot LocatedWith Identifiers

private
java. util. Vector

associatedUpload.Items

private boolean dataunderSampleNames
T

■
private int identifier|End

private
java.lang. String

identifier Format

private int identifier Location

private boolean identifiers LocatedWith Data

private int identifierstart

private
java.lang. String

identifierType

private int infobºnd

private
java. lang. String

infoPormat

private int infoLocation

private int infoStart

private
java. lang. String

name

private int sampleEnd

private
java.lang. String

sampleFormat

■ private int sampleSkip

■

private int samplestart

T

Constructor Summary

Upload.Item ()

■

Method Summary
void addassociatedupload.Item (Upload.Item uploi)

Adds an Upload■ tem object to the list of objects associated with the current Uploadltem.
boolean JataunderSampleNames ()

Returns true if the data for each sample in the data file is directly underneath the sample name.

Uploadltem getAssociateduploaditem (java. lang. String name)
Returns the Uploaditem object with the specified name from the list of objects associated with the

188

~

***- ºrresnº_sº

** * º
f ******
ºss tº a sºlº"

---gºº."
*::::...;********

. **
**** *******

*. ºr-n:
---------"

**asutºsº"
º:
º*******

!-------
**** *<. .* .5

& "
**** *

***** **
** *** *******

-***

current Uploadltem.

java. util. Vector getAssociated Upload.Items ()
Returns the list of Upload■ tem objects associated with the current Upload■ tem.

int getDataPoints Persample ()
Returns the number of variables per sample that have been specified for the item to upload.

int getIdentifierºnd ()
Returns the row or column number where the identifiers of an item to upload end

java.lang. String getIdentifierPormat ()
Returns the format of the identifiers associated with the current item to be uploaded (row' or 'column').

int getIdentifierLocation ()
Returns the row or column number where the identifiers of an item to upload are located

int getIdentifierstart ()
Returns the row or column number where the identifiers of an item to upload start

java.lang. String getIdentifierType()
Returns the type of the identifiers associated with the current item to be uploaded.

int getInfoRnd ()
Returns the ending row or column number of the variables of an item to be uploaded

java. lang. String getInfoFormat ()
Returns the format of the information of the current item to be uploaded (row' or 'column').

int getInfoLocation ()
Returns the row or column number where information is located

int getInfoStart ()
Returns the starting row or column number of the variables of an item to be uploaded

java.lang. String getName ()
Returns the name of the item to be uploaded.

int getsampleEnd ()
Returns the row or column number where the samples of an item to be uploaded end

java.lang. String getsampleFormat ()
Returns the sample format of the item to be uploaded (row' or 'column').

int getsampleSkip ()
Returns the number of rows or columns to skip between samples

t

int getSampleStart ()
Returns the row or column number where the samples of an item to be uploaded start

boolean identifiers LocatedWith Data ()
Returns true if the identifiers of a data type start and stop in the same row/column as the data type.

boolean identifiersSpecified ()
Returns true if identifiers have been specified for the current item to upload

boolean inAssociateduploadList (java. lang. String name)
Returns true if there is an Uploadltem object with the specified name associated with the current

Upload■ tem.

-
boolean infoLocatedWithldentifiers ()

Returns true if the identifiers of an annotation set start and stop in the same row/column as the
annotation set.

t

void remove Associated upload.Item (int position)
Removes an Uploadltem object from the list of objects associated with the current Uploadltem, at the

specified position.
■

void setAnnotations LocatedWithldentifiers (boolean annot LocatedWith Identifiers)
Sets a flag indicating whether the identifiers of an annotation set start and stop in the same row/column

as the annotation set

void setDataunderSampleNames (boolean dataunderSampleNames)
Sets a flag indicating whether the data for each sample in the data file is directly underneath the

sample name.

void setIdentifier|End (int identifierEnd)
Sets the row or column number where the identifiers of an item to upload end

189

*

*, *
º

i

º

*
º

tº .

**-
... ºr ºn

-* *...***
ºsº º ºassº

#!
**. -assº

-
*:::::

r **whenºl
j

* * f *...****** * *****
***** ****

() * º
-**

**-aataansºm"
-> º

-
º

x * *******

º

! s
º

!. **** "--- º

…”&. ef º
gºesºe

****** ***
* * * ******

-***

void setIdentifierPormat (java. lang. String identifierFormat)
Sets the format of the identifiers associated with the current item to be uploaded ("row' or 'column').

void setIdentifier Location (int identifierLocation)
Sets the row or column number where the identifiers of an item to upload are located

void setIdentifiers LocatedWith Data (boolean identifiers Located With Data)

the data type
Sets a flag indicating whether the identifiers of a data type start and stop in the same row/column as

void setIdentifierStart (int identifierStart)
Sets the row or column number where the identifiers of an item to upload start

void setIdentifierType (java.lang. String identifierType)
Sets the type of the identifiers associated with the current item to be uploaded.

void setInfoFnd (int infoFnd)
Sets the ending row or column number of the variables of an item to be uploaded

void setInfoFormat (java.lang. String infoFormat)
Sets the format of the information of the current item to be uploaded ("row" or 'column').

void setInfoLocation (int infoLocation)
Sets the row or column number where information is located.

void setInfoStart (int infoStart)
Sets the starting row or column number of the variables of an item to be uploaded

void setName (java.lang. String name)
Sets the name of the item to be uploaded.

void setSampleEnd (int sampleEnd)
Sets the row or column number where the samples of an item to be uploaded end

void setSampleFormat (java. lang. String sampleFormat)
Sets the sample format of the item to be uploaded ("row" or 'column').

void setsampleSkip (int sampleSkip)
Sets the number of rows or columns to skip between samples

void setsampleStart (int sampleStart)
Sets the row or column number where the samples of an item to be uploaded start

Methods inherited from class java.lang. Object
t

clone, equals, finalize, get Class, hashCode, notify, notifyAll, toString, wait, wait,
wait

field detail

name

private java . lang. String name

sampleFormat

private java . lang. String sample.Format

infoPormat

private java . lang. String infoFormat

identifierType

private java . lang. String identifierType

190

*** ****
*::::… ** ****

f **. ****- ***** *******

**** **
****** ...-assº

**-aassanº"
º

!. ºne- ºsº assº"

…** *
-* .*

-** *** **~. ****

• *."
* - * *

º
* .

*
º

A

* *■ *-

* * * *****

**---ºn--"

identifierFormat

private java.lang. String identifierformat

sampleStart

private int sampleStart

sampleEnd

private int sampleEnd

sampleSkip

private int sampleSkip

infoStart

private int infoStart

infoRnd

private int infoend

infoLocation

private int infoLocation

identifierStart

private int identifierStart

identifier|End

private int identifier End

identifierLocation

private int identifierLocation

dataunderSampleNames

private boolean dataunderSampleNames

identifierslocated With Data

iº

191

s

"…

* -

**** *-aa-ºººº
… tº****

sº **:**********

- *-********

*... ****
gº------------

º

.*.*.

º******

!--********

º r”;*** ****

º --->
-*wº sº wº ***

* * * ---,
*** -*****

private boolean identifiers.LocatedWith Data

annotlocated With Identifiers

private boolean annotLocatedWithidentifiers

associated Upload.Items

private java. util. Vector associatedUpload.Items
Constructor Detail

Uploaditem

public Upload.Item ()
Method Detail

getName

public java.lang. String getName ()
Returns the name of the item to be uploaded.
Returns:
the name of the item to be uploaded.

setName

public void setName (java.lang. String name)
Sets the name of the item to be uploaded.
Parameters:
name - the name of the item to be uploaded.

getSampleFormat

public java.lang. String getSample.Format ()
Returns the sample format of the item to be uploaded (row' or 'column'). This string indicates whether the samples of an
item (usually a data type) are located in rows or in columns.
Returns:
the sample format of the item to be uploaded

setSampleFormat

public void setSampleFormat (java.lang. String sampleFormat)
Sets the sample format of the item to be uploaded ("row" or 'column').
Parameters:
sampleFormat - the sample format of the item to be uploaded

getInfoFormat

public java.lang. String getInfoFormat ()
Returns the format of the information of the current item to be uploaded (row' or 'column'). This string indicates whether
the information of an item to be uploaded (such as annotations or identifiers) is located in rows or in columns.
Returns:
the format of the information to be uploaded.

*-

ºf .

1//
–4

y)

192

A

*
-

>º

**-
…tºrº

** gº***...**
*** *****

*** ****
*** ****
*... ºnº"

º
.*.*, * ******
.*- geºtha[...' ...}}asses.”---assº"

**-assuºsº"
º:

* --~~~~

#. -------
-

******& ºr .*
-* **se.

*- --~~~"
*** * ******

*...*****

setinfoPormat

public void setInfoFormat (java.lang. String infoFormat)
Sets the format of the information of the current item to be uploaded (row' or 'column').
Parameters:
infoFormat - the format of the information to be uploaded.

getIdentifierType

public java.lang. String getIdentifierType ()
Returns the type of the identifiers associated with the current item to be uploaded.
Returns:
the type of the identifiers

setIdentifierType

public void setIdentifierType (java. lang. String identifierType)
Sets the type of the identifiers associated with the current item to be uploaded.
Parameters:
identifierType - the type of the identifiers

getIdentifierFormat

public java.lang. String getIdentifierformat ()
Returns the format of the identifiers associated with the current item to be uploaded (row' or 'column').
Returns:
the format of the identifiers

setidentifierRormat

public void setIdentifierFormat (java.lang. String identifierformat)
Sets the format of the identifiers associated with the current item to be uploaded (row' or 'column').
Parameters:
identifier Format - the format of the identifiers

getSampleStart

public int getSampleStart ()
Returns the row or column number where the samples of an item to be uploaded start
Returns:
the row or column number where the samples start

setSampleStart

public void setSampleStart (int sampleStart)
Sets the row or column number where the samples of an item to be uploaded start
Parameters:

sampleStart - the row or column number where the samples start

getSampleEnd

public int getSampleEnd ()
Returns the row or column number where the samples of an item to be uploaded end
Returns:
the row or column number where the samples end

193 -*-

2 -º
- 't

º

**-
ºne-ºn

**

---, *a*
ºs- ºneº

-- **** *
º " ********

**., **
-

*** *******
º ***** *
** * *

**asu annº"
º

sº***

!. ~!-----

*f
-** .#

== *****

* -- ****
- *- : *-*****

setSampleEnd

public void setSampleEnd (int sampleEnd)
Sets the row or column number where the samples of an item to be uploaded end
Parameters:

sampleEnd - the row or column number where the samples end

getSampleSkip

public int getSampleSkip ()
Returns the number of rows or columns to skip between samples
Returns:
the number of rows or columns to skip between samples

setSampleSkip

public void setSampleSkip (int sampleSkip)
Sets the number of rows or columns to skip between samples
Parameters:

sampleSkip - the number of rows or columns to skip between samples

getInfoStart

public int getInfoStart ()
Returns the starting row or column number of the variables of an item to be uploaded
Returns:
the row or column number where the information starts

set[nfoStart

public void setInfoStart (int infoStart)
Sets the starting row or column number of the variables of an item to be uploaded
Parameters:
infoStart - the row or column number where the information starts

getInfoFnd

public int getInfoFnd ()
Returns the ending row or column number of the variables of an item to be uploaded
Returns:
the row or column number where the information ends

setinfoFnd

public void setInfoFnd (int infoFnd)
Sets the ending row or column number of the variables of an item to be uploaded
Parameters:
infoFnd - the row or column number where the information ends

getInfoLocation

public int getInfoLocation ()

194

-s tº
** ****

******* *****

t. ******* * ******

**** ***
º------sº

**s-assassº”
º

!
-* * *******

** *****& r".5** ***
ºº

***** º******
** *** * *******

-**** -****

Returns the row or column number where information is located
Returns:
the row or column number where the information ends

setInfoLocation

public void setInfoLocation (int infoLocation)
Sets the row or column number where information is located.
Parameters:
infoLocation - the row or column number where information is located

getIdentifierStart

public int getIdentifierStart ()
Returns the row or column number where the identifiers of an item to upload start
Returns:
the row or column number where identifiers start

setlientifierStart

public void setIdentifierStart (int identifierStart)
Sets the row or column number where the identifiers of an item to upload start
Parameters:
identifierStart - the row or column number where identifiers start

getIdentifierEnd

public int getIdentifierEnd ()
Returns the row or column number where the identifiers of an item to upload end
Returns:
the row or column number where identifiers end

setldentifier|End

public void setIdentifierEnd (int identifierEnd)
Sets the row or column number where the identifiers of an item to upload end
Parameters:
identifierEnd - the row or column number where identifiers end

getIdentifierLocation

public int getIdentifier Location ()
Returns the row or column number where the identifiers of an item to upload are located
Returns:
the row or column number where the identifiers are located

setlientifierlocation

public void setIdentifier Location (int identifier Location)
Sets the row or column number where the identifiers of an item to upload are located
Parameters:
identifier Location - the row or column number where identifiers are located

dataunderSampleNames

A

º

;
.

º
º

195

º

º

º

**-
__*****

* **** º*****
ºaº-anºsis

** *****sº II,
*** *******

f *…****** * ******

**** ****
--º-º-º-º:

** assassº”
■ º

* ---nº º

! ------
&: ..rº
& Iy*****

********** -**
- * -- *****"

public boolean dataunderSampleNames ()
Returns true if the data for each sample in the data file is directly underneath the sample name.
Returns:
true if the data is located under sample names.

setDataunderSampleNames

public void setDataunderSampleNames (boolean dataunderSampleNames)
Sets a flag indicating whether the data for each sample in the data file is directly underneath the sample name.
Parameters:

dataunderSampleNames - true if the data is located under sample names.

identifierslocated With Data

public boolean identifiers.LocatedWith Data ()
Returns true if the identifiers of a data type start and stop in the same row/column as the data type.
Returns:

true if the identifiers start/stop in the same row/column as the data type

setlientifierslocated With Data

public void setIdentifiers LocatedWith Data (boolean identifiers LocatedWithData)
Sets a flag indicating whether the identifiers of a data type start and stop in the same row/column as the data type
Parameters:

identifiers LocatedWith Data - true if the identifiers start/stop in the same row/column as their associated data
type

infoLocated With Identifiers

public boolean infoLocatedWithidentifiers ()
Returns true if the identifiers of an annotation set start and stop in the same row/column as the annotation set.
Returns:
true if the identifiers start/stop in the same row/column as the annotation set

setAnnotations|Located With Identifiers

public void setAnnotationsLocatedwithidentifiers (boolean annot Locatedwith Identifiers)
Sets a flag indicating whether the identifiers of an annotation set start and stop in the same row/column as the annotation
Sct

Parameters:

annotLocatedWith Identifiers - true if the identifiers start/stop in the same row/column as their associated
annotation set

identifiersSpecified

public boolean identifiersSpecified ()
Returns true if identifiers have been specified for the current item to upload
Returns:

true if identifiers have been specified for the current item to upload

getDataPointsPerSample

public int getDataPoints Persample ()
Returns the number of variables per sample that have been specified for the item to upload. This calculation is based upon
the starting and ending position of the variables of the upload item.
Returns:

196

>

-- tºf *****

º -----"
*-ºs- * ******

**. -----"
---, -º
*** *****
-º-º-º-º:

-º- ---
-***** º

!. --- "...----
****& r".5**** **

º
-----------sº **

*~~~~~"

true if identifiers have been specified for the current item to upload

addAssociated Upload.Item

public void addassociatedUploaditem (Upload.Item upla)
Adds an Upload■ tem object to the list of objects associated with the current Upload■ tem. For example, a data type may
have Upload.Items associated with it corresponding to annotation sets.
Parameters:

upla - the Uploadltem to associate with the current item to upload.

removeAssociatedupload.Item

public void remove AssociatedUpload.Item (int position)
Removes an Upload.Item object from the list of objects associated with the current Upload■ tem, at the specified position.
Parameters:
position - the position in the list that will be removed.

getAssociateduploaditems

public java. util. Vector getAssociatedUploaditems ()
Returns the list of Upload.Item objects associated with the current Upload■ tem. This vector may contain annotations
associated with a data type, for example.
Returns:

a vector of Upload.Item objects associated with the current Uploadltem.

inAssociated UploadList

public boolean in AssociatedUploadList (java.lang. String name)
Returns true if there is an Upload■ tem object with the specified name associated with the current Upload.Item.
Parameters:

name - the name to be checked against the list of associated Uploadltem objects.

getAssociated Upload.Item

public Upload.Item getAssociatedUploaditem (java.lang. String name)
Returns the Upload■ tem object with the specified name from the list of objects associated with the current Uploaditem. If
no such Upload Item is found, null is returned.
Parameters:

name - the name to be checked against the list of associated Upload■ tem objects.

edu.ucsf.Magellan
Class User|Bean

java.lang. Object
edu.ucsf. Magellan. User|Bean

All Implemented Interfaces:
java.io.Serializable, java.util.EventListener, javax.servlet.http.HttpSessionBindinglistener

public class UserBean
extends java.lang. Object
implements java. io. Serializable, javax. servlet. http. HttpSessionBindingListener

The UserBean class conforms to the JavaBean standard, and stores as properties the information about the current user (login,
password, name, lab, etc). In addition, the UserBean class contains methods that return information as to which data and annotation
sets are available to the current user.

197

º

º,

-
- ºrnarºº***

** ** sº****
is esse tº ºne-ºn

------"
--- º

--- *****
r- **"

------ --> *-*****

~~~~
---------"

*****
sº------"

m!. *** ****
****& ºr 5** .*

-* --tº

& -***** º

----- -**
--~~~~"



See Also:
Serialized Form

fieldsummary
private boolean administrator

java.
private

util. Vector
files ToDelete

T

java.
private

lang. String
firstName

java
private

. lang. String
labhame

java.
private

lang. String
lastName

Java.
private

lang. String
login

java.
private

lang. String
password

I

|Constructor Summary
T

User|Bean ()
Constructor

I

Method Summary
I

void addPile:ToBedeleted (java.lang. String file Path)
Adds a file to the list of files to be deleted once a user's session has expired.

t

java.lang. String getAvailableAnnotationselectlist (java. lang. String listName)
Returns an HTML select list containing those annotation sets that are available for the current user to

view or analyze.
I

java.lang. String getAvailableExperimentSelectilist (java.lang. String listName)
Returns an HTML select list containing those experimental data sets that are available for the current

user to view or analyze.
i

java. lang. String getFirstName ()
Returns the first name of the current user

I- -java.lang. String getLab.Name ()
Returns the lab name of the current user

I

java.lang. String getLastName ()
Returns the last name of the current user

java.lang. String getLogin ()
-

Returns the login for the current user
i

java. lang. String getPassword ()
Returns the password for the current user

i

boolean is Administrator ()
Returns the administrator status of the current user.

F

boolean sessionExpired ()
Returns true if the current user's web session has expired.

void setAdministratorStatus (boolean status)
Sets the administrator status of the current user.

void setFirstName (java.lang. String firstName)
Sets the first name of the current user

void setLab.Name (java.lang. String labName)
Sets the lab name of the current user

t

void setLastName (java.lang. String lastName)

198



º'

º

*...***
**********

****º:
-***** ****

**** ***
*** *******
*** **** th *
~~~~ -**

**-assassº"
■ º

* --~~~~

!. ------ º

- ****ºl.” ...}
*---
* ------- **** h
--~~~~~~"

Sets the last name of the current user

void setLogin (java. lang. String login)
Sets the login for the current user

void setPassword (java.lang. String password)
Sets the password for the current user

void walueBound (javax. servlet. http. HttpSession Binding Event event)
Implements the valueBound method of javax.servlet.http.HttpSessionBindingListener interface

void valueunbound (javax. servlet. http. HttpSessionBinding Event event)
Implements the valueBound method of javax.servlet.http. HttpSessionBindingListener interface

Methods inherited from class java.lang. Object
I

clone, equals, finalize, get Class, hashCode, notify, notifyAll, toString, wait, wait,
wait

field detail

login

private java. lang. String login

password

private java. lang. String password

firstName

private java. lang. String firstName

lastName

private java. lang. String lastName

labMame

private java. lang. String lab Name

files ToDelete

private java. util. Vector files ToDelete

administrator

private boolean administrator

constructor Detail

User|Bean

public User|Bean ()
Constructor

199

º

Tºwns
** ***

f *-----wºº.
isºº assºsº

ºf*******:::::: *****
º 4}

*.. ****
is ººz -ºw *a*a*a*
sº ****º
sº-º-ºººººº"

r

------"

!--"*** ******
- *****

== a-assº

*---- º

* * * -**

Method detail

setLogin

public void setLogin (java. lang. String login)
Sets the login for the current user
Parameters:

login - the login for the current user

getLogin

public java. lang. String getLogin ()
Returns the login for the current user
Returns:
the login for the current user

set Password

public void setPassword (java.lang. String password)
Sets the password for the current user
Parameters:

password - the password for the current user

getPassword

public java.lang. String getPassword ()
Returns the password for the current user
Returns:
the password for the current user

setFirstName

public void setFirstName (java.lang. String firstName)
Sets the first name of the current user
Parameters:
firstName - the first name of the current user

getFirstName

public java. lang. String getFirstName ()
Returns the first name of the current user
Returns:
the first name of the current user

setLastName

public void setLastName (java. lang. String lastName)
Sets the last name of the current user
Parameters:
lastName - the last name of the current user

getLastName

public java.lang. String getLastName ()

200

**-
ºn-ºn** *

**** * --sº"
***** ****

****** º** **** ****
. **

sº-, * ******
-** ******1-º-º:

**-assians”

- -----

!-----
ºr ...”
*~~~~
eye sº-º-º-º-º:

-***

Returns the last name of the current user
Returns:
the last name of the current user

set LabName

public void setLab.Name (java. lang. String labName)
Sets the lab name of the current user
Parameters:
labname - the last name of the current user

getLabName

public java. lang. String getLab'Name ()
Returns the lab name of the current user
Returns:
the lab name of the current user

setAdministratorStatus

public void setAdministratorStatus (boolean status)
Sets the administrator status of the current user. If this flag is set to true, then the current user will have access to all data
and annotation sets in the database.
Parameters:
status - the administrator status to be set for the current user

is Administrator

public boolean is Administrator ()
Returns the administrator status of the current user. If this flag is set to true, then the current user will have access to all
data and annotation sets in the database.
Returns:
the administrator status of the current user

addRileTobedeleted

public void addPileToBedeleted (java. lang. String file Path)
Adds a file to the list of files to be deleted once a user's session has expired.
Parameters:

file Path - the full path of the file to be deleted.

sessionExpired

public boolean sessionExpired ()
Returns true if the current user's web session has expired.
Returns:
true if the current user's web session has expired.

getAvailableExperimentSelectlist

public java. lang. String getAvailable ExperimentSelectList (java.lang. String listName)
throws java. sql. SQLException

Returns an HTML select list containing those experimental data sets that are available for the current user to view or
analyze.
Parameters:

201

º

º

sº**********
**** *-sº
*** - sº=~"
*** * ******

**** *****
-------'dº

*****-assisasaº
■ º
º~~~~º

!- "---
<- ºr a

a-ºe

* -º-º-º-º:

*********"

listName - the name to be used for the HTML select list.
Returns:
an HTML select list of available data sets
Throws:
java. sql. SQLException

getAvailableAnnotationSelectlist

public java. lang. String getAvailableAnnotations electList (java.lang. String listName)
throws java. sql. SQLException

Returns an HTML select list containing those annotation sets that are available for the current user to view or analyze.
Parameters:
listName - the name to be used for the HTML select list.
Returns:
an HTML select list of available annotation sets
Throws:
java. sql. SQLException

valueBound

public void valueBound (javax. servlet. http. HttpSession Binding Event event)
Implements the valueBound method of javax.servlet.http.HttpSessionBindingListener interface
Specified by:
valueBound in interface javax. servlet. http. HttpSession Binding Listener
Parameters:

event - the HttpSessionBindingEvent passed by the expired session to the method

valueunbound

public void value Unbound (javax. servlet. http. HttpSessionBinding Event event)
Implements the valueBound method of javax.servlet.http.HttpSessionBindingListener interface
Specified by:
value Unbound in interface javax. servlet. http. HttpSession BindingListener
Parameters:

event - the HttpSessionBindingEvent passed by the expired session to the method

edu.ucsf.Magellan
Class UtilityFunctions

java.lang. Object
edu.ucsf. Magellan. Utility Functions

public class UtilityFunctions
extends java.lang. Object

The UtilityFunctions class provides a series of static methods for use in Magellan. These methods include operations on vectors and
integer arrays, as well as tests for proper user input (valid integers, real numbers, etc).

Constructor Summary

usiliezuneetonso

Method Summary
r— -- - -

static java. lang. String array Join (int [] intarray, java.lang. String sep)

202

º

*** * *******

*** ****
- º

*****-a-sassº

***-ºssuºmº"
º
t*******

!. ------
ºr "...]*

f *********

- *** ** --->
wº-sº"

#1-m

Takes an array of integers and joins them together, separated by the string sep.

static java.lang. String array Join (java. lang. String [] strarray, java. lang. String sep)
Takes an array of string objects and joins them together, separated by the string sep.

I

static java.lang. String array JoinsqlBscape (java. lang. String [] strarray,
java. lang. String sep)

Takes an array of string objects and joins them together, separated by the string sep and
escaping single quotes with double quotes for sql statements.

static void copyFile (java. io. File src, java. io. File dst)
Copies the src file to the dst file, for any fileType.

t
static java. lang. String getNewFileName (java. lang. String file Path)

i

static int [] HashSetTorntarray (java. util. HashSet set)
Converts a HashSet containing integers to a sorted integer array.

■
static int [] IntegerArray (int start, int end, int skip)

Returns an array of integers that starts at start, end at end, and has skip numbers skipped
between elements of the list.

static boolean is Percentile (java. lang. String num)
Returns true if the passed number contains a valid percentile value (integer between 0 and

100 inclusive).

static boolean is Positivelinteger (int num)
Returns true if the passed number contains a positive integer

static boolean isPositiveinteger (java.lang. String num)
Returns true if the passed string contains a positive integer

static boolean isPositiveRealNumber (java.lang. String num)
Returns true if the passed string contains a valid positive real number.

static boolean isRealNumber (java. lang. String num)
Returns true if the passed string contains a valid real number.

static int numberElements InList (int start, int end, int skip)
Determines how many elements a list of integers will have if it starts at start, end at end,

and has skip numbers skipped between elements of the list Example: (1,10,2) = list of numbers
from 1 to 10 with 2 numbers skipped = (1,4,7,10) There are four elements in the list, so 4 is
returned

static java. lang. String oppositeLineFormat (java. lang. String line Format)
Returns "column" if "row" is passed, otherwise returns "row".|-

static java.lang. String printelement.Inhtml Table (java. lang. String item, boolean wrapflag)
Prints an item in an HTML table as the printElementinHtmlTable function below, but uses

a default font size of 1.

static java.lang. String printelement.Inhtml Table (java.lang. String item, int fontsize,
boolean wrapFlag)

Returns an element in HTML table format with flanking tags, and with the font size and
NOWRAP properties determined by the passed paramters.

static java.lang. String spaces (int numspaces)
Returns the specified number of concatenated "" strings (for HTML pages).

static int [] string ArrayToInt (java. lang. String [] string/Array)
Takes an array of strings and converts them to an array of int's, which is returned.

static java. lang. String vector Join (java. util. Vector v, java. lang. String sep)
Takes a vector of string objects and joins them together, separated by the string sep.

Methods inherited from class java.lang. Object
T

| clone, equals, finalize, getClass, hashCode, notify, notify All, toString, wait, wait,
wait

!Constructor Detail

Utility Functions

*-

* >
-

203

***-
* agrees.

º

f
-

********** ****

------"
`-- *******
**** sº****
*** *******

*** ****
------sº

**assaussº."
■ º
º*****

!. -------

º

** ****

º
**---~~~~~"

** ***** -**
-***"

public UtilityFunctions ()
I
Method Detail

vector Join

public static java.lang. String vector Join (java. util. Vector v,

array.Join

java.lang. String sep)
Takes a vector of string objects and joins them together, separated by the string sep.
Parameters:

v - the vector of string objects to be joined
sep - the delimiter that is put between each string in the vector
Returns:
a string containing the joined vector components

public static java.lang. String array Join (java.lang. String [] strarray,
java.lang. String sep)

Takes an array of string objects and joins them together, separated by the string sep.
Parameters:

str■ rray - the array of string objects to be joined
sep - the delimiter that is put between each string in the array
Returns:

a string containing the joined array components

array.JoinSqlEscape

public static java.lang. String array.JoinSqlEscape (java. lang. String [] strarray,
java.lang. String sep)

Takes an array of string objects and joins them together, separated by the string sep and escaping single quotes with double
quotes for sql statements.
Parameters:

strarray - the array of string objects to be joined
sep - the delimiter that is put between each string in the array
Returns:
a string containing the joined array components

array Join

public static java.lang. String array Join (int[] intArray,
java.lang. String sep)

Takes an array of integers and joins them together, separated by the string sep.
Parameters:
int/Array - the array of integers to be joined
sep - the delimiter that is put between each integer in the array
Returns:
a string containing the joined array components

isPositiveinteger

public static boolean is Positivelnteger (java.lang. String num)
Returns true if the passed string contains a positive integer
Returns:
true if the passed string contains a positive integer

isPositiveinteger

204

tº :*** *******

*****ºº

!--"--> ºustº
-> *****.*º .5
sºtº ...}--~~~~"

*-*** * -**

public static boolean is Positivelnteger (int num)
Returns true if the passed number contains a positive integer
Returns:

true if the passed number contains a positive integer

is Percentile

public static boolean is Percentile (java.lang. String num)
Returns true if the passed number contains a valid percentile value (integer between 0 and 100 inclusive).
Returns:
true if the passed number contains a valid percentile

isrealNumber

public static boolean is RealNumber (java. lang. String num)
Returns true if the passed string contains a valid real number.
Returns:

true if the passed string contains a valid real number.

is Positive RealNumber

public static boolean is PositiveRealNumber (java. lang. String num)
Returns true if the passed string contains a valid positive real number.
Returns:
true if the passed string contains a valid positive real number.

stringArrayToInt

public static int [] string ArrayToInt (java.lang. String [] string Array)
Takes an array of strings and converts them to an array of int's, which is returned.
Returns:
an array of integers

spaces

public static java.lang. String spaces (int numspaces)
Returns the specified number of concatenated "" strings (for HTML pages).
Returns:
the specified number of concatenated "" strings

printelementinhtmltable

public static java. lang. String printelementinHtml?able (java.lang. String item,
boolean wrapFlag)

Prints an item in an HTML table as the printBlementinHtmlTable function below, but uses a default font size of 1.
Returns:
an item in an HTML table with a font size of 1.

printClementinHtmlTable

public static java.lang. String printelementinHtmltable (java.lang. String item,
int font Size,
boolean wrapFlag)

Returns an element in HTML table format with flanking tags, and with the font size and NOWRAP properties determined
by the passed paramters. Examples: printElementinHtmlTable("foo", 2, true) returns "foo",
printelementinHtmlTable("bar", 3, false) returns "bar"

205

.

**-
** ...ºn

f *.*.*.***-º-º-º- assº

** *****
" ******
**. …”
*** ********

**** ****

**s-ºssusº."
º:

* -----

! -- ********
* **sateQ ºf** *** -

---º ***********

- *** * ---,

Parameters:

item - the item to be printed in the cell of the HTML table
fontsize - the font size to be used to print the item
wrapFlag - if false, include the NOWRAP property in the cell
Returns:
an element in HTML table format

oppositeLineFormat

public static java. lang. String oppositeLine Format (java.lang. String line Format)
Returns "column" if "row" is passed, otherwise returns "row".
Returns:
"column" if "row" is passed, otherwise returns "row".

IntegerArray

public static int [] IntegerArray (int start,
int end,
int skip)

Returns an array of integers that starts at start, end at end, and has skip numbers skipped between elements of the list.
Example: IntegerArray(1,10,2) = list of numbers from 1 to 10 with 2 numbers skipped = (1,4,7,10)
Parameters:

start - the starting point of the list
end - the ending point of the list
skip - the number of integers to skip between elements of the list
Returns:
an integer array with the passed properties

numberElementsInList

public static int numberElements InList (int start,
int end,
int skip)

Determines how many elements a list of integers will have if it starts at start, end at end, and has skip numbers skipped
between elements of the list Example: (1,10,2) = list of numbers from 1 to 10 with 2 numbers skipped = (1,4,7,10) There
are four elements in the list, so 4 is returned
Parameters:

start - the starting point of the list
end - the ending point of the list
skip - the number of integers to skip between elements of the list
Returns:
the number of elements the list would contain

HashSetTointArray

public static int [] HashSetTolntarray (java. util. HashSet set)
Converts a HashSet containing integers to a sorted integer array.
Parameters:

set - a HashSet containing integers
Returns:

a sorted int array containing the HashSet contents

copyFile

public static void copyFile (java. io. File src,
java. io. File dst)

throws java. io. IOException
Copies the src file to the dst file, for any fileType. If the dst file does not exist, it is created.
Parameters:

* Sº
-

º,

-*.

º
*—s

206

-- *_***

º *******
-º-º-º-saaaaaassº

-

******wº-"
**** ***ut

*** * ******

*** *****
-º-º-º-º-º:

*** *****

º

!. º ----
º *.***‘.…”.”

º ******* ****

-º-º-e sº- -->********

#-

src - the source file
dst - the destination file
Throws:
java. io. IOException

getNewFileName

public static java.lang. String getNewFileName (java.lang. String file Path)

207

!,

-****
-

-
-******

* *
º -Tºss- º

*** *f - ******* *******

.º******* º
***s-assºsº."

!

!--"*** ******
****& r".5* *

-** *****

*~. ****
-------arº

-*** *"

* º "..., 4-7 -> *, *-*.*, * & A.
-

L B R A R Y → Q.) º cº º *—" º 'º, * -
-- - *- ~ - * ^, & º ~~~ ■ * * -

t- - º * , º' ' ' ' ...º […] º, L. BRARY Sº, º,) &sº [...] º, C’ ‘o. RA º *3 º / ~2 º
- * º s -ey y º sº o --- º •o ----- **(/(* ºvernº Lº sº M * [] sº e.

A * {Tº º, Nº * -
º s * * * * * 1. ºf t

º c).” /ºncºco tº*/º
*~ -> tºN 4.

º C *
-Y

º 2. ~s --- 2. 2 º'
- asº º, -> * :

cº, 777/7C■ , CO * - -- ****

º *_ ‘e. L 8 ■ º A Fº Y .* º, Dyn º º *~ sº ºfº *z, 3 tº K_* is *,
º * ** º º A tº & * .

[] …, L. Tºº "º
- -> C s & g- o--r-- - ---- º

~ * Kº■ vil $3 I * L. _º ,-r g º, ■ —l | sº * * * * * º, L. º
--

º, & t (C
** × ... ºf * ºf ‘… sº

()

º *-* y

} -* * S º, sº {j II ºv * t /C º,**** */A ºf f : , , , sº 2. ~~ * - º: º - * * - º s º

() ºfA /// \º º c) º/r 1//CIA." cº, º º, sº C■ .
--- Ž- º - -

ºf - º * - ºr ºf
yº * º º *** sº º --- *- º %, 17//, // al■ º ■ oº º *

* , * ~& […] º, L. B RAR sº "…))) ... sº º
_

-- º *- tº *z
-- - -

& Y º ---> * &º º, > * >

2. ...” º, & r *, £º ~ º [T] º, LIBRARY s’* , - *-->
- º -

Q

º, | `
- • * -º- º 'o -*— sº Cº.

--- S.ºn tº º 'º I ºvuginº [-º] sº
s

º,—º- * -... I » *
->- Sº [...] º *_*- - a- - »; * * º

sº cº-s / , , º, | < * L. sº '… [...] ºf
º- * / - –4. ~ - - - * - gº as * . sº * . .” r º CCrº. * I º º Aºº■ º ■ º º sº * º & -*

- * -*. 1. tº- a. º !
- º

º,'', a Aº■ ari º

* --- º * * º &
* * , * ~ º, sº (■ (°, sº º, sº

" * (O sº 0.0%ºº * * Nº. 7,
--

ºf gº■ ºro ºsº o
* sº º, } 4-2 sº *.

*
& hi■ /Cºco **, --~ *** **** f ; ºr 4. sº cº

- * * - ** * &- º * -
> ºr

Tº sº I - , , y) º º * - sº º ..) º "… *-) * * * ~ s ■ º º Leº L. Jº, /2 º LI ºº * t – & g- *- A

- —º
7- 2, …" , - '? ...Nº ºn

- - - º, -º- Cº.
*** -\

*** * * -- ---- * - 1.05% ºf Artº ºf ~ -\ ... ". tº Nº. tº a ■ º. s."

---> *- º //■ tººd is *4, U.J.), *// *\º * * c).” //wºo dºº/º■ ****
-

! I ■ º [..." º ** * > *~ ar * Sº tº -- -
ºus ºf º,

-

* A R Y º **

*N

sº * , º,) * s' * Lºs * * * * * º ^)/) ---
_º º *** --> º º ”, – "... *, r*. & ■ º r-, *2 A/ ~

x- L %)
-

& | --4-- 'o. º L. *3 º' ' --> * [.** * --
Cl "I º L.] s

º - -

--- º
r * * * - º so - A –3.

-y * º * w - - -- - *. *-T
~ * (■ º■ 2–1 º * R. vº■ g ■ º * - ls

* (/ * º, [I] º A. : \! * "a Nº. ~, ‘’. º'- (º .* *-*zº ^ -N º, sº º * ■ º T) ! ... sº * - * -s;
--

º, cºncº
º

0.0/J//?" / / / Q & , ºr . *> S a nº-5-
- sº º º ** {\ 0 sº *. \ º º º■ ºciºd ºl. cº

-

|-- ■ º tº Jº // sº tºº, L. BRARY sº . , º,
*,--- * - - - -

º * - º * , S ■ –4. j *.

.C. | *> **C. IX -- A. º vº J !. Lºl º * s *. | | º
-- º ºr- *a º **- º rº

*_ * f {} | || **. -> 4. Tº * * A. : v \
-

y º, *-*. • * º

-
-) ~ *, * (■ (* * * * v- w & H- cº, * L.

º t dº■ º tº sº * -
* * * * º, sº (º

** **** -*. * * * * * * ~ -\
- -- a-- -> --> (? yº / / ; , , , , ". * - ex- y .* * ***

-a-rº- - *- Sº ºf *- ºf f/ ºf Cºco sº -º-, 4- tº 4 - A **** * > º º, frºza 2: …- - -} º ■ º sº º * * **,
-

4. ...Nº ºn. Q_*** ºf 1 *Cºco
-

***** / / . sº
- - a

º 4. * º- º * s
* 32, [.. A sº . .” * * º º -

A. t * * º * * & Y Nº 4--,-- "2, M º * tº * * * *

y sº [...] o º [. J * , * * * ~ * […] º, | 13 RARY sº tº* º - * - -> 4– --

2 _*

t ', ■ |
- * , - * -- **º - - - º

º *

- r *-
* * - * -, -- -

º A. R. vº■ J in " [...] º cº- 2 * * is . . ºl. 1 sºº, sº ‘. . . .” (9. ºvº■ º | º! & cº
º -

* º º - y º º
-

2 Sº })^1)/º , , , , -, * º, Nº º ** i... * -- º º --> 4.

-
ºt () * * , U 1. 1 */ 1. /// y * . -) * * * yº as ºr “º * > > º Tºlº■ /ºr º º, sº * --

- º ',
- º 4. º º, *- º * ºf Cº () sº " *,

- -■ - -

Sº s & c) º /ºw- * , *" -- -- º -> V ºf 's
& - * p

- -
º º º º * .

s

* - L| | *, * /*- sº tºº tº | | * Pºlº sº
º º -ºr- º º sº --4 | ºr.

--- -
sº ..] 9. * . *º- _º ■ º | | 5

-
* - cº- * * . ■ -- <

- º l
* º º , ■ * - º - A - *9.

-

> º
- *~ * * * * * * * * * * º

- -e y e ~. º

*/
% ºvºi º º■ º! sº an º

-
*2. --" ~ º * * * º, -> * ---\

º - - *2 -º *** * * * /. , , , , * * - - - * - 1. º.
-

º,
1/// * W/ ■ () º

Jººl■ ////
º

ºf S. -\
-

2 º' * * * * *- : º
º * -

* - ~"C /C/5((—º ** 4- º ºr 4. C), ■ º, ■ /, / Cºyº cº 0.0% j9 *". (■ ºzº
-

º L ■ [3 RA R_Y sº º, º Dy) º º, *-
-

sº *. * ; ->‘’A. º A. is r-º-, *, Li tº ■ º. A ■ º º º * - º

'. L sº Ll º, *… -º- A-2 ** ■ A.
º, tº ºf Y sº | | º, …' j 5 º |- - - ---- - - -- - *

. . ºf . - * º r * - *... [. . º *** •o
- ~& -

a T ‘… º º * , º º ■ sº * ºf wº *... |- | * * -> º, º &
- -‘º ** º º, 3.

-
M & II º, -- s * 7 / º ** ºf ºv

*Q ºf \,, ■ º º, sº * * * /) * [O º, sº- - * - º
-

- - f * † A ºf - º - - w - ~~ .* -

- * * S 4 Q), tº //w/º. () * * 0.14% ºf 1/ ■ º - * * * * -
tº S º, "...'

sº %. *- * } *** º, ~ 4-? sº & º/, / 11/1(■ ºld s' º, -tº 4.
- -> º -

-> * * --> 1 . -sº re-º- 'º. 1-1 (3 RA1 * * / - º -º- º, , ,-

■ º º Sºº L. lº * - Lisº, sº Jº º
º ** * - º | | | & sº- º, | *-n sº ■ º | º, Cº. L º• * * = - * - - ºr-- * ty

*--- * - • % ----. § * - 2 º' ”, * *** * * * * * * o Ll º -r [
I º, º * C /(º, sº A. ºf vº * I I %, º cº ■ 7 º!. º -y -* 72. --> º * º * * * º

ºf S *z, N. -- * * * , , , , º, 12 º' .*

_*** Nº sº.

* / - --------- Sºº, - */ sº º, ~ Cy - ---------- s’ º --- */ ~ *º* * * * * ~~~ > O º O º -

L ºf Ajº Y ºr r-, º O) S$ tº Li G RARY & º // sºSºº' sº […]” * > ºn tº Enº. 2 * [I]n --- - -
o - w &

> - So [...] & º º s O C. vº º + * C. | | º *º | | +. ---/ L- * º * - ~7 º *

… •
| ^. C ■ /C º, * Mºves in º & C /C º, tº º A-Tºv ºf .** * * - -

-
Sº

--- º º º º
- - 42 - -

* * Sº gº. A/
- —t

■ º

- Zºº
7486908

*
|||||||||||||||||| ". º 4,

3 1378 OO748 6908

%2.5
-

* *
~ ■ º

* -

. . º * A tº -- < * º, Q- º º

º [...] º, L■ ºf ºf Y cº _j º, L! B RA R_Y º L. *, * // 2.––– Cº. º vo
-

O
-

*

9 º' * Sº
- *** -yO ºf S ** -- - - * -

sº cº 7777■ º
-- *~ º--- C. º fºcíºo

-> -

- Cº > ze -- - º -- Lºlº * [I] sº sº * L. sº - *... I u.ºvºid in º.º.º. º 3. s ºvº an º- t (C º
-

** ºf . Sº tº sº
-

º, sº
ºf ºf ■ º o * Sº * > -S

- * * -- 2.--
------, º * & tºº. Not to be taken sº, Qº■ ºcºco sº.

- ** rº - º - -N -ºn º "… *- from the room. 5 ºz. * º “º L■ D R A R Y ºf r
A- sº [...]

cº
- ~ ºtº . E-jºº" • Tº º

-

º -*. - º -
9. --- º,

-
ºº * -- ~~ -*. - º & cº*.*.*.* ºvugin º. svº■ g in º º I/O

`-y. - ‘º ~, º º

°s cºn■ º º A', ■ º º cº■ º. *4 sº cy f- *... ºviº -f- "■ º - .* ---, -º cº- - * - / º 'º --ºf sº - * A 7 ºf, fºg- > *a sº, “’ "Sº º cºncisco º, Sº a cº■ º.
:- º

-
..º ■ º -8- *º º *

º ~)/
jº Co O O

O
º º

º -> * > **- º º +, - * .

º ■ º- | * º/ } 2 sº º, L. BRARY cº [...] º, / le sº [...] %. L15 RA
º *-i- g- vo sº Q- -r- & wo sº Q- ---

-
cº-7 , 27 º [T] sº -- º | | | Sº ■ /* % [...] & Aºivº■ Q 17 *2. [...](/C * – ºvºgn º' T.C º, sº º, s

** --
º, cº- %. Sº º, º

-
* -->

. º sº ■ º *.S ** *-*-----ºr- 2 º' cººl■ ■ º *.S.
º * / ?º Sº, cº, º * º 17/■ , 777/7■ ■ º sº *4.

- … * * Nº &
* ..." S 3.

-
º 42, *S* *º

-
-º-, *

º () */ C & º o
O &-

- - - - - ºb º º * - -> º wtº ■ º. Ole tº tºº sº, Cºle sº
-

& Qe *
-

■ º - > so o °o sº
* .30 f I ~ -- * L J o cº -f […] , S..

-

sº º ■ C º, º AQ■ ºf G IT «% -§ /C º, º AQ■ vº■ ºº -- * */ Sº -) º,
- -

- - - - º, sº * * * *** -
12

- - tº- • * *

7~ : * cº■ º º C■ . ----...-: 2. Sº dº /º// ºf Cººd sº º
-

º S 4. 4/7′■ cºco sº º, * -º
... º. *-- sº tº ^j} * * *- gº C o/ -,

- * * * - &’
- º

T º, 113 RARY & [...] º, º/A-2 sº […] %, L1B RARY º [...] º * *
- - - - *. -- -

º * º O -- < -

-

º, [[] sº º [| º "o, L. º º [...]
* , ; ºf , ; ; ; 17 ºz. is cº,” Z- S Kºvºº gº º º º/C

ºr ---º -

-- i■ a * - * * cº Sº
* º, º t *~ º -) º: º

-

º {

M º º -y ■ *** º * ~ - - **... jº º■ ºf ` - Z ----- º ºf 1////? ºf S --~~~~ ºº Cºuncisco º, º/* sº Cº■ ºcºco sº.
- -- • * - ºb * & º º

.." --> º I º Llº R ARY sº *3 / º º, LIBRARY sº|| | | | | | * tº e L
* - ** ** * * * *. º º º *

* -- ºrvºgii º º (/C º & ºvugin º-' s º/C! -->
■

º º- -

ºf . º -* ■ º º, sº º- * -

- -- .- -- 2. º. º, º 42 sº
º “S cºlº■■ º () 4 º' 2.

* 2.S cºlº■ ?
f º

… º. “o sº, coº/rºcºco sº. “ *Sº gº º■ º,
- -

Z * N ºf . *~~
º sº- º Sº t

º Lºlº º//
-

sº [...] º, L13 RARY º [] º, O/ le sº […] º, LIBRA
º º o, º 9 QºC. —r- º wo*/ […] º OcC. ---º º [...] wºgnºl's *T/C * sº sºan º'º, sº ºf º **, *

s

º

; º

-
-->

º
-

º
- 2 -º º ** *

** * * * * * * * * * * **** - -
nº!/? / / //"C) *.

º!//º3. (CQ º _S : º !/?" A £ 2// y º

--, *
ºf 71/1//º *.S.

-
- * ~ * N

ºl º/ºr s & dº/7′■ ic ■ co 4. -
- &- º -

~ : - º O.
-

© º º D C.

1 ■ 5 ºf Y sº ºr- ”, 0/19 & […] %, LIBRARY Sº [...] °, /). 2 sº Tº —-*- - ----- C º & o C **

- - I S C [...] C º —r- > O ** a -r * & sº -f […]
-

º * - /C º, * Mººg in "…, s - (C º ºvºi.
- º

-

O -

-- º, sº *... .sº * * * * * * *º/,
■ 4 º' ---- - - - º 0.2% lº■■

- Ž § 4, O■■ ºf 77://c■ . CJ sº
-

* -- º L13 RARY sº-º. Ole sº-º. Liness sº O).sº [...] º * […]” sº tºº tº Ljº (-
-> ºr »- * Qe-

- --- & -> & Vo

Alºjº■ S 17 * -- sº º/C * [I] sººn * -- º/ º, I
* --> --- %. -- º Sº* , ■ ººn ºr S. (Y -- - º, -º a nºr ºf ■ /º (T) %, sº (Y r-

- |

w sº dº/777/7Cºco sº
-

º &- ºf

-

