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Abstract

Integrated Web-Based Analysis of High-Dimensional Biological Information

Christopher B. Kingsley

Recent advances in high throughput biological methods allow researchers to
generate enormous amounts of data from a single experiment. In order to extract
meaningful conclusions from this tidal wave of data, it will be necessary to develop
analytical methods of sufficient power and utility. It is particularly important that
biologists themselves perform many of these analyses, such that their background
knowledge of the experimental system under study can be used to interpret results and
direct further inquiries.

This dissertation describes the development of a web-based system, Magellan,
which allows the upload, storage, and analysis of multivariate data and textual or numeric
annotations. Data and annotations are treated as abstract entities, to maximize the
different types of information the system can store and analyze. Annotations can be used
in analyses/visualizations, as a means of sub setting data to reduce dimensionality, or as a
means of projecting variables from one data type or data set to another. Analytical
methods are deployed within Magellan such that new functionalities can be added in a
straightforward fashion.

The Magellan system has been used to analyze a number of cancer genomics data

sets. These analyses have involved the development and deployment of a number of
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analytical methods that relate different types of genomic variables, typically comparative
genomic hybridization (CGH), mRNA expression and clinical information. In addition, I
have worked with the National Cancer Institute on the Cancer Bioinformatics Grid

(caBIG) initiative, to develop and deliver the functionality of Magellan as an open source

project available to any researcher.
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Chapter 1

Introduction

The field of molecular biology was born just over half a century ago as an attempt
by researchers in biology, chemistry and physics to understand the molecular basis of
biological systems. The result of this collaboration has been fifty years of extraordinary
advances toward the realization of this goal. In a single lifetime, we have gone from
possessing merely abstract notions of the physical nature of genes to sequencing and
characterizing entire mammalian genomes. This transformation of biology was driven by
the application of the quantitative molecular techniques of chemistry and physics to the
experimental systems of biology and genetics. Although our knowledge of biological
systems is still very far from complete, this hybrid approach of studying living systems at
the molecular level has revolutionized biology and fundamentally altered our |
understanding of biological systems, in both the normal and disease state.

As molecular biology enters the 21 century, a new transformation is taking place,
this one driven by technological advances that have dramatically increased the magnitude
of data available to researchers. Recent developments in high-throughput genomic
techniques are generating unprecedented amounts of quantitative biological data.

Experimental approaches that only a few years ago required many days of painstaking
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work and high cost to generate a small amount of information have been supplanted by
techniques that can generate tens of thousands of data points in a matter of hours. Large-
scale biological data sets containing protein structure, whole genome sequences,
proteomics data, microarray based mRNA expression data, and comparative genomic
hybridization (to name but a few) have been curated and assembled into publicly
available datasets for analysis.

These technical advances and the data arising from them have the potential to
affect biology just as profoundly as did the impact of physics and chemistry fifty years
ago. The scale of the resulting data, however, makes it virtually impossible for biological
researchers to identify trends and patterns through direct examination. In order to extract
biologically significant conclusions from the emerging large-scale data, a new field of
study has emerged. Just as molecular biology was born of a hybrid of biology, physics,
and chemistry, the field of bioinformatics has emerged as a hybrid of molecular biology,
computer science, and mathematics. As a discipline, bioinformatics represents an attempt
to utilize the techniques of information technology to mine biological data as a means of
characterizing and modeling biological systems.

For bioinformatics to fully realize its promise, advances in analytical algorithms
must be translated into applications that can be used by the research community.
Furthermore, there is a great need for these applications to be usable by the
experimentalists who understand the system under study and who generate the data.
Unfortunately, there is still a fairly wide gulf between the biological researchers who
perform experiments and the computational researchers who analyze the resulting data.

This situation is problematic for two reasons. First, there are not enough good



bioinformaticists and statisticians to be shared among all of the biological research
community. Second, even if a bioinformaticist is available, the interaction between
experimentalist and analyst sometimes resembles a game of baseball; data is thrown at
the quantitative analysts and the results are hit back to the biologists. It is frequently (and
sadly) the case that the biologists do not understand the methods that are applied to the
data sets that they generate, while the quantitative analysts do not understand the
biological system from which the data was generated nor the questions that motivated the
experiments in the first place.

My graduate research has centered on the analysis of heterogeneous biological
data in cancer. The major accomplishment of this research has been the development of
analytical tools that can be used by biological researchers to analyze their data over the
internet. The motivation for building these tools was to provide researchers at the UCSF
Cancer Center with the ability to analyze and understand the relationship between the
different types of data they generate from tumors and tumor models.

This document begins with a brief introduction to cancer and the various types of
genomic data currently generated in the study of cancer. It then covers some of the
statistical issues associated with analyzing high dimensional cancer genomic data, and
several of the analytical methods that are employed to deal with these issues. Several of
the existing analytical applications are then discussed, and how the Magellan system
differs from them. The Magellan application itself is then covered, including its
development, functionality and use cases. I conclude with a discussion of my

collaboration with the NCI on the cancer bioinformatics grid (caBIG) project.



Chapter 2
The Biology of Cancer

2.1. Introduction

Cancer is a disease that directly or indirectly affects almost everyone in the
developed world. In the United States, cancer is second only to heart disease as a cause
of death, responsible for roughly twenty percent of all mortalities. For much of the
twentieth century, cancer death rates increased every year as a result of a growing
incidence of smoking, greater exposure to environmental carcinogens, dietary changes
and the gradual aging of the population. Over the last several years, however, there has
been a slight reversal in this trend. From 1993 through 2002, the overall death rate from
cancer has declined by 1.1% per year in the United States (Edwards, Brown et al. 2005).
While much of this drop can be accounted for by a decline in smoking among males,
other factors such as improved screening, early detection, and improved treatments also
played a significant role. The goal of the cancer research community is to further this
decreasing trend in cancer-associated mortality through the identification of better
diagnostic and prognostic biomarkers, the discovery of better therapeutic targets and the

development of new classes of drugs.



Cancer is, fundamentally, a disease of excess cellular proliferation. Tumors arise
when cells no longer respond to the normal signals that regulate cell division and cell
death, and grow unchecked. This situation becomes life threatening when these
unregulated cells spread to surrounding tissues, and disrupt the normal functions of the
organs they invade. The underlying cause of cancer has been debated for centuries, but
over the last fifty or so years a number of lines of evidence have suggested that normal
cells become tumors due to alterations in their DNA. First, a majority of the chemical
carcinogens whose exposure leads to cancer are mutagens that chemically modify DNA.
Second, many cancers run in families, indicating that they are caused by inherited
mutations in DNA. Third, several well characterized cancers are associated with specific
alterations in the chromosomes, such as microscopically visible translocations. These
and other observations have led to the paradigm that cancer is a disease of genetic

alterations.

2.2. Cellular Changes in Cancer

For most cancers, incidence increases dramatically with age as shown in Figure 1
(Alberts, Johnson et al. 2002). This observation is best explained by a model in which
tumors arise from normal cells through a series of specific changes that accumulate over
time, a theory that has been condensed to the mantra ‘cancer is a multistep process’
(Knudson, Hethcote et al. 1975). This theory hypothesizes that each step in tumor
formation occurs in a single cell in a population, causing that cell to acquire a growth
advantage. Cancer development can therefore be viewed as a series of bursts of clonal
expansions, in which one cell overcomes a bottleneck to growth (Nowell 1976). Leading

credence to this theory, experiments using various animal models have shown that a
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relatively small number of engineered mutant genes can confer abnormal growth

phenotypes, though no single gene has been shown do so (Hahn, Counter et al. 1999).

180
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60
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40
20
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Figure 1- The effect of age on the incidence of ovarian cancer

It has been hypothesized that six different cellular changes must occur to
transform a normal cell to a cancerous one: self-sufficiency in growth signals,
insensitivity to antigrowth signals, evasion of programmed cell death, limitless replicative
potential, angiogenesis, and tissue invasion and metastasis (Hanahan and Weinberg
2000). Although it is believed that most if not all cancers must acquire these properties,
each individual tumor may accomplish these changes through different genetic
alterations. Thus, tumors that resemble each other histologically may result from
alterations in different sets of genes, and those genes can be affected by point mutations,
copy number changes, and epigenetic phenomena such as altered chromatin structure.

One characteristic observed in almost all cancers is DNA copy number
abnormalities (Albertson, Collins et al. 2003; Rajagopalan and Lengauer 2004). When
19" century researchers first examined cancerous tissues using newly invented and more

powerful microscopes, one of the first things they noticed was that cancerous cells



frequently had excess chromosomes as well as structural aberrations such as deletions
and translocations. It is widely believed that chromosomal instability arises as a result of
errors in mitosis, in particular a defect in the mitotic spindle checkpoint. Normal cells do
not divide until their chromosomes have fully replicated and are properly aligned in the
metaphase plate. Cells that are defective in this checkpoint can divide asymmetrically,
such that daughter cells receive less or more than the normal complement of genomic
DNA. In support of this theory, numerous mutations in components of the spindle
checkpoint have been found in tumor DNA (Cahill, Lengauer et al. 1998).

Some researchers have suggested that copy number abnormalities may be a
consequence of tumorigenesis rather than a cause, but several experimental observations
argue against this. One such observation is the existence of certain tumors that show very
little chromosomal aberration, but instead have defects in DNA repair processes such as
mismatch repair (Lengauer, Kinzler et al. 1997). The implication of this finding is that
the two classes of tumors have found different mechanisms to generate the genetic
alterations that cause cancer. Mismatch repair deficient cells have a high rate of point
mutations and small scale genetic instability while other cancers can also acquire

genomic changes through amplifications, deletions and translocations.

2.3. The Molecular Basis of Cancer

Many of the early studies into the cellular and molecular events that cause cancer
involved transmissible models, such as the retrovirus identified by Peyton Rous as the
cause of certain avian sarcomas. This and other tumor viruses gave researchers an
experimental toehold into cancer and led to the identification of viral oncogenes that

promote growth, and cellular tumor suppressors (as the targets of transforming viral
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proteins) that inhibit growth. The seminal discovery by Bishop and Varmus that viral
oncogenes were, in fact, mutated versions of normal cellular genes linked the discoveries
from tumor virus models to cancer biology as a whole (Spector, Smith et al. 1978).
Many of these cellular proto-oncogenes were subsequently shown to be mutated in a
variety of sporadic human cancers. This finding indicated that even though the vast
majority of cancers are not caused by infectious agents, the process of altered gene
function is to blame for tumor formation in both sporadic and transmissible cases. In the
case of tumor retroviruses, cellular genes are hijacked by the virus and mutated such that
the host cells are programmed to proliferate. In the much more common case of non-
infectious cancer, normal cellular genes are mutated into forms that promote unregulated
cellular growth. The vast majority of cancers are, therefore, caused by alterations in
normal genes (Hanahan and Weinberg 2000).

A great deal of the cancer research performed over the last 20 years has been an
attempt at determining exactly which mutations in which genes are responsible for the
different steps in tumorigenesis. This research has involved many experimental
approaches, and has identified many different genes that can contribute to abnormal
cellular proliferation when mutated. Cellular oncogenes such as myc (Shen-Ong, Keath
et al. 1982), src (Spector, Smith et al. 1978) and ras (Parada, Tabin et al. 1982) have been
found as homologues of the genes of tumor viruses. Identification of the cellular targets
of viral oncoproteins has led to the discovery of tumor suppressors such as p53 (Harris
1996). Characterization of the cell cycle regulatory machinery in model genetic systems
such as yeast has identified homologous mammalian genes such as the cyclins and cyclin

dependent kinases that act as key players in cell division (Hartwell, Culotti et al. 1974;



Morgan 1997). Genetic studies in families that show inherited susceptibility to cancer
have led to the identification of genes such as APC in colon cancer (Kinzler and
Vogelstein 1996), and the BRCA genes in breast cancer (Miki, Swensen et al. 1994).
The identification of individual genes that play a role in cancer has been used as
experimental entry points into the pathways in which the genes function. By using the
techniques of biochemistry, cell biology and genetics, entire pathways have been

elucidated starting with the identification of a single pathway member.

2.4. The Future of Cancer Research

It has been over 30 years and hundreds of billions of federal dollars since
President Nixon declared a ‘war on cancer’, and this war has had several notable
successes. Not so long ago, the only treatment options available to cancer patients were
brute force approaches that targeted dividing cells in general, such as radiation and drugs
that inhibit key steps in DNA synthesis. While these drugs were often successful (and are
still in use in many cases), they are relatively non-specific and have a number of
undesirable side effects. Indeed, some of the harsher chemotherapy regimens are the
equivalent of walking a tightrope between killing the tumor and killing the patient.

The identification of key molecular players in cancer development has created a
potential for much more specific diagnostics and therapeutics. The past several decades
have witnessed the adoption of screening methods such as mammography and PSA that,
while far from ideal, have enabled doctors to detect many cancers at much earlier stages
than previously possible. Gradually, there has been an increase in the availability of so-
called ‘magic bullet’ therapeutics such as Gleevec (Wang, Healy et al. 2000), Herceptin

(Goldenberg 1999), and Iressa (Ciardiello, Caputo et al. 2000) that were designed to
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target known gene products expressed in tumors and have fewer side effects as a result.
While the war on cancer has witnessed prominent successes such as these, there is still
much to learn about the molecular origin of cancer and a long way to go in developing
better biomarkers and therapies. For example, there have not been nearly as many
advances in understanding the later steps in tumorigenesis such as invasion, metastasis
and angiogenesis. These later steps may be the most clinically relevant, since it is the
acquisition of invasive properties by tumors that make them life threatening and resistant
to surgical intervention.

In reflecting on the last 30 years of progress in cancer research, the conceptual
breakthroughs in identifying the molecular causes of cancer have been impressive, but
their translation into useful diagnostics and treatments has been somewhat
underwhelming. Rather than waiting decades for further clinical advances, many patient
advocates (including Andy Grove of Intel) have suggested a shift toward an engineering
approach in cancer research. This would involve fewer attempts at broad conceptual
understanding of the disease and a greater emphasis on translational research such as
biomarker discovery. While reasonable people can disagree on this point, most would
accept that accelerating the pace of discoveries that positively impact patient’s lives is
crucial.

A key step in increasing the fate of discovery is increasing the productivity of the
researcher. For most of its history, molecular biology has been a ‘cottage industry’ in
which individual laboratories containing small numbers of researchers perform very
laborious studies to generate a relatively small amount of data. Until fairly recently,

researchers have been limited by the technologies available to them; most experimental
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protocols were labor intensive and focused on a small number of genes or proteins at a
time. Over the past decade or so, several technological advances have been made that
allow experimental biologists to generate very large data sets in a relatively short amount
of time. These technological innovations include high throughput proteomics, whole
genome sequencing, and high throughput chemical screening. Arguably the most
important advance, however, has been the development of DNA microarrays. The
statistical challenges presented by the scale of microarray data, primarily the volume of
data in relation to the number of independent samples in most experimental studies, is
what motivated the development of Magellan. Microarray technology is the focus of the
next chapter, while the statistical issues involved in analyzing microarray data will be

discussed in Chapter 4.
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Chapter 3
Microarray Technology in Cancer

Research

3.1. Introduction

DNA microarrays are based upon an experimental concept that has been in use for
several decades. The experimental technique known as the ‘dot blot’ involves
hybridization of heterogeneous radioactively labeled nucleic acids in solution to purified
homogenous DNA samples which have been spotted and immobilized onto nitrocellulose
membranes. Dot blots have been used to detect and quantify the amount of a particular
nucleic acid sequence in a heterogeneous mixture such as labeled genomic DNA or first
strand cDNA. Microarray technology has improved upon this approach using automated
techniques to apply each purified DNA sample onto a small solid surface, thereby
increasing the number of samples that can be spotted onto a given unit surface area
(DeRisi, Iyer et al. 1997). At first glance this may seem like a minor modification, but
the practical consequences are quite significant. The degree of miniaturization in
currently available microarrays allows for tens of thousands of targets to be placed in a
surface area of a few cm”. This small target size allows for nucleic acids purified from
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small amounts of biological material to be hybridized to arrays containing large numbers
of targets, such that information on the mRNA expression of every known human gene

can be obtained in a single hybridization experiment.

3.2, Microarray Platforms

There are currently two major microarray technologies in use: two color
hybridization onto spotted DNA arrays and single sample hybridization to
lithographically deposited oligonucleotides (Affymetrix arrays). The two-color method is
illustrated in Figure 2 (Baggerly and Coombes 2004). Briefly, mRNA is extracted from
two different biological samples (one of which is a common reference) and separately
used as a template for the synthesis of first strand cDNA labeled with Cy3 or Cy5
fluorescent dies. These cDNA mixtures are combined and hybridized to a glass slide
containing individual spots of purified DNA (typically cloned cDNA’s amplified by
PCR). The ratio of the fluorescence of the test to the reference is normalized and can be
used to measure the relative concentration of individual mRNA’s in the biological

sample.
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Figure 2 — Overview of two color spotted cDNA microarrays

The arrays commercialized by Affymetrix use ~20 bp long oligonucleotide targets
that are generated in situ using lithographic techniques similar to those used in the
semiconductor industry. Since the degree of specificity of hybridization of a 20mer oligo
is much less than cDNAs of several hundred base pairs, Affymetrix arrays use a
combination of several perfectly matched and mismatched targets to quantify each
mRNA. A single fluorescently labeled cDNA sample is applied to the array, washed, and
scanned, yielding an image such as Figure 3 (www.affymetrix.com). The hybridization
signals of all match and mismatch oligos are fed into a proprietary algorithm that

combines all data points into a single mRNA expression value for that gene.

Figure 3 — Scanned image of an Affymetrix microarray
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The fact that competing microarray platforms are available begs the question as to
which technology is superior. The two color array was the first method to become widely
available, and is still the method of choice for custom DNA arrays (i.e. organisms that are
not widely studied enough to justify commercial manufacture). Two color arrays have
historically been less expensive that Affymetrix arrays, although the cost differential has
come down in recent years. Because Affymetrix arrays are fabricated using lithography
for which the masks can be generated by an automated process, the design of new
Affymetrix arrays is much more rapid than two color arrays, for which new array targets
must be separately purified. In terms of quality measures of the normalized data such as
reproducibility and signal to noise ratio, Affymetrix technology typically outperforms
two color hybridization. Also, since two-color arrays depend on measurement of a
sample relative to a reference, it is difficult to compare mRNA expression data from two
samples that are measured relative to different references. Currently, many experimental
researchers who have the resources to do so are transitioning from two color microarrays
to Affymetrix chips because of better data quality, better reproducibility, and decreasing

costs.

3.3. Microarray Based Comparative Genomic Hybridization

DNA microarrays were originally developed in order to quantify the
concentration of mRNA in biological samples. The majority of microarrays are still used
for this purpose, but DNA arrays are increasingly used for other reasons as well. Arrays
containing hybridization targets corresponding to different single nucleotide

polymorphisms have been used in high throughput genotyping. Chromatin
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immunoprecipitation using antibodies against specific transcription factors followed by
hybridization to arrays containing genomic DNA sequences has been used to determine
binding sites for transcription factors in the genome (Buck and Lieb 2004). In cancer
biology, however, one of the most important uses of DNA microarrays is the
determination of sites of genomic aberration (amplifications and deletions) using the
technique of comparative genomic hybrization, or CGH (Pinkel, Segraves et al. 1998;
Snijders, Nowak et al. 2001).

CGH involves the hybridization of fluorescently labeled genomic DNA from
cancerous tissue and normal tissue to a common target. Briefly, genomic DNA samples
are separately purified from normal and cancerous tissue, separately labeled with
different fluorescent dies (typically Cy3 and CyS), mixed and hybridized to the target.
Initially, the target was a metaphase spread of chromosomes (FISH, or fluorescent in situ
hybridization), but over the last five years this has been supplanted by array based CGH
which offers a far superior resolution. For array based CGH, genomic DNA samples
from specific regions of the genome are purified and spotted onto the array. For each
spot on the array, the normalized ratio of signals from the tumor vs. normal DNA is a
direct measure of amplification or deletion of tumor DNA from that region of the genome
(Pinkel, Segraves et al. 1998).

Currently, two color arrays are used for the majority of comparative genomic
hybridization (CGH) studies. CGH arrays typically contain on the order of several
thousand spotted genomic DNA’s, although CGH arrays containing approximately
30,000 spots are in development. Recently, Affymetrix single nucleotide polymorphism

(SNP) genotyping chips have also been used for CGH. These arrays are capable of
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genotyping over 100,000 SNP’s in a single hybridization. Since Affymetrix genotyping
arrays can distinguish between different SNP alleles on the maternal vs. paternal
chromosomes, they also have the advantage of distinguishing between aberrations on the

two copies of each chromosome (Nannya, Sanada et al. 2005).

3.4. The Nature and Source of the Primary Signal in DNA Microarray
Experiments

The ability of Microarray experiments to comprehensively measure cellular
characteristics such as mRNA expression and DNA copy number have allowed
researchers to pursue several fundamental questions about cancer biology that were
unattainable prior to the advent of the technology. One such question is the degree to
which tumorigenesis leads to changes in mRNA gene expression, as compared to the
signature that was present in the normal parental cells. Several publications have
performed microarray analysis on cancers from different cell types of origin (lung,
kidney, ovary, colon, etc), and clustered the data together; in most cases, clusters derived
from a given cell type tend to group together (Ross, Scherf et al. 2000). This result
indicates that the primary signal in mRNA expression data in cancer does not reflect the
tumor state, but the cell type of origin. For example, one of the earliest published
attempts at performing molecular diagnosis on tumors using microarray gene expression
data involved the classification of AML (acute myeloid leukemia) from ALL (acute
lymphoblastic leukemia). The genes that were strongly differentially expressed between
these two classes were used to build a classifier that could discriminate between AML
and ALL (Golub, Slonim et al. 1999). These genes, however, are largely markers of

myeloid or lymphoid origin, as opposed to being directly related to cancer.
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This fact somewhat complicates the interpretation of analyses of differentially
expressed genes in collections of cancers. It is sometimes the case that cancers that were
thought to be a single disease are actually derived from fundamentally different cell
types. For example, a recent study of breast tumors using microarray based mRNA gene
expression data clustered tumors into two broad classes, indicating the presence of
samples derived from two distinct cell lineages (possibly of epithelial and mesenchymal
origin) in the collection of tumors (van 't Veer, Dai et al. 2002). While the genes that
distinguish these two classes may prove useful as diagnostic markers, it seems unlikely
that very many of them will be good therapeutic targets since they are more likely to be
markers of cell lineage than to be causative agents in cancer.

Figure 4 shows an agglomerative clustering of cell-lines based on mRNA
expression data. The cell-lines with common tissues of origin tend to cluster together.
This is particularly evident in the melanoma and colon cancer cases. A somewhat
contrasting case is presented by the cell-lines derived from breast tumors. The eight
samples representing these cell-lines are spread throughout the dendrogram, again

indicating a greater degree of heterogeneity among the collection of breast tumors.
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Figure 4 — Clustering of tumor samples of different cellular origin using Affymetrix mRNA
expression data from the NCI60 cell lines.

3.5. Conclusion

The advent of microarray technology has dramatically increased the amount of
information generated by cancer researchers. Prior to the use of microarrays, quantitation
of mRNA involved time consuming procedures such as Northern blots or RNase
protection which only measured a small number of genes at a time. Copy number
measurements using FISH were subject to fairly low resolution (~20Mb). Microarrays
have increased both the productivity and accuracy of both types of experiments, to the
point where a single researcher can comprehensively analyze mRNA expression and

CGH on a large sample of tumors in a matter of weeks.
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While these technological advances were the dream of cancer researchers two
decades ago, they do create some difficulties as well. Traditionally, biologists have
generated small enough amounts of data that examining simple visual representations of
their data allowed them to detect trends and patterns in it. With array technology, an
experimental data set may contain several million data points, far too many for the
pattern recognition machinery of the human brain to cope with. The challenges of

analyzing these large scale data sets are the subject of the next chapter.
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Chapter 4
Statistical Issues Associated With High

Dimensional Genomic Data

4.1. Introduction

When interpreting the quantitative results of a biological experiment, it is
essential to determine whether any observed effect could have occurred by chance. This
class of question falls into the domain of statistics, specifically the field of hypothesis
testing. Hypothesis tests seek to distinguish between the so called null and alternative
hypotheses, where the null hypothesis generally refers to a case in which there is no
difference between two observations. In order to perform a hypothesis test, a statistic to
measure the difference between the two entities must be defined, and the distribution of
that statistic under the null hypothesis must be theoretically determined or empirically
calculated. The percentile value of the calculated statistic in the null distribution is
defined as the p-value, which can be thought of as the likelihood that the observation

could have happened simply by chance. A p-value less than 0.05, therefore, indicates
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that in only 1 case out of 20 a statistic of the magnitude observed or greater would occur
by chance.

Different statistics are employed in different cases, but in most analyses of
differences in gene expression between two classes, the t-statistic is used. This statistic is
a quantitative description of the difference between two populations, and is defined as the
absolute value of the difference in their means divided by their standard deviations.
Consider a case with a series of mMRNA gene expression values from samples that fall
into two different classes (x1, x2, ..., xy) and (y1, y2, ..., yn). The t-statistic is

calculated as follows:

| x-y|

t =
Y =0" 2,
M ¥ N

Theoretical determinations of null distributions of t in gene expression data sets
are difficult, since they are susceptible to parameters such as signal to noise ratios. Also,
there is no reason, a priori, to presume that there are no systematic experimental biases
that might cause deviation from the assumed normal distribution. Furthermore, given
that one is frequently computing thousands of p-values from a gene expression data set,
the probability that some of the computed statistics will have extreme and nominally
significant values is very high, even in the case where the null hypothesis is true.

Most analyses of differences in gene expression calculate the null distribution of t
empirically using permutation and resampling based approaches. These techniques
attempt to simulate the null hypothesis by randomly assigning values to each class and

calculating t statistics for each random shuffling of the data. Since the values are divided
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into groups randomly, there should be no difference in population parameters such as
means or standard deviations. By performing these random reshufflings many times and
calculating a value of t each time, a null distribution of t can be determined. The p-value
of the non-permuted t statistic can be determined by finding its percentile in the derived
null distribution.

While the standard statistical approaches work well when the dimensionality of
the data is relatively small, they tend to fail on gene expression data due to the large
number of measurements given the small number of independent experimental samples.
This phenomenon is known as the multiple comparisons problem. The following
sections discuss the multiple comparisons problem in detail and present some strategies

for addressing it.

4.2. The Multiple Comparisons Problem

Microarray experiments pose particular statistical problems because of the sheer
amount of data generated. A single hybridization can generate tens of thousands of
measurements per sample, and when the ratio of the number of measurements to the
number of samples becomes very large, false relationships between variables can emerge.
Because so many statistical comparisons are made, strong correlations between variables
may be observed even under the null hypothesis, simply by chance. This ‘multiple
comparisons problem’ is one of the most challenging aspects of analyzing large
biological data sets.

For example, consider a case in which random class variables are assigned to a
publicly available mRNA gene expression data set, and signed t-statistics calculated for

the differences in expression values between the two classes (Figure 5). Because the
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class assignments are made at random, the null hypothesis is in effect and none of the
resulting t-statistics can be considered significant. The distribution of the statistic values
is roughly normal, and because tens of thousands of statistics are calculated, some of
those statistics have very large magnitudes simply by chance. Although several of the
extreme values would be considered significant in other cases, here the sheer size of the
data set generates false positives. Keep in mind that the definition of p<0.05 for a given
value of the statistic is that in 5% of cases a statistic would be observed at the given value
or higher just by chance. If 10,000 statistics are to be calculated at an uncorrected p-
value cutoff of p<0.05, then approximately 5% of 10000 or 500 false positives would be

expected, clearly too great a number.
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Figure 5 — Distribution of signed t-statistics using mRNA gene expression data assigned to random
classes

The multiple comparisons problem is a substantial issue in analyzing genomic
data, but not an insurmountable one. Several approaches have been developed to
calculate corrected significance cutoffs on even very high dimensional data sets (Westfall

and Young 1993; Jain, Chin et al. 2001; Tusher, Tibshirani et al. 2001; Olshen and Jain
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2002; Segal, Dahlquist et al. 2003; Storey and Tibshirani 2003). Three of the more
commonly used techniques will be described in the following sections: Bonferroni, false

discovery rates, and maxT

4.2.1. Bonferroni Method

The Bonferroni method is conceptually the simplest technique to correct for
multiple comparisons. The Bonferroni method is performed by simply dividing the p-
value cutoff by the number of comparisons made. Consider a case in which a gene
expression data set containing 10000 genes is to be tested for differential expression with
respect to two classes. If a significance cutoff of p<0.05 would be used in the single gene
case, then Bonferroni would adjust the p-value to 0.05/10000 or 5x10°. While this
concept is easy to understand, it tends to generate significance cutoffs that are far too
conservative. In most real world cases where there is genuine signal of moderate

strength, no observed statistics meet these stringent cutoffs.

4.2.2. False Discovery Rates

False discovery rate (FDR) is a technique that controls the number of type I errors
(false positives) when performing hypothesis tests on large data sets (Benjamini and
Hochberg 1995). FDR controls the fraction of type I errors, such that it predicts the
expected percent of false positives in the total set of predictions. For example, if an FDR
based algorithm predicts that 100 genes are differentially expressed at a false discovery
rate of 0.3, then one can expect roughly 70 of these predictions to be correct.

The significance analysis of microarrays (SAM) application is probably the most

commonly used tool to determine differential expression using false discovery rates
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(Tusher, Tibshirani et al. 2001). SAM uses a statistic called the ‘relative difference’ or d
(which is similar to the t statistic) to rank genes based on differential expression across
two classes. SAM then employs a permutation based approach of randomly assigning
sample labels to determine the null distribution of the relative difference at each position
in the list of ranked genes. For a given threshold expression difference, the FDR is taken

as the fraction of permuted genes that were called significant to the total number of non-

permuted genes that were called significant.

4.2.3. MaxT

The maxT method employs a resampling based approach to determine the null
distribution of maximum correlation values for a particular data set (Westfall and Young
1993). For each round of permutation, sample labels are assigned at random to ensure
the null hypothesis is in effect. A t-statistic is calculated for each gene, but only the
maximum value is saved to generate the null distribution of the statistic. This process is
repeated many times, and the value of the unpermuted statistic is compared to the
distribution of maximum observed statistics. Because the distribution was generated
from maximal observed statistics only, the p-value can be thought of as the likelihood
that any gene in a data set of the given size would have a statistic of the observed
magnitude or greater under the null. MaxT is therefore one measure of the so called

family wise error rates (FWER), because it estimates the probability of at least one false

positive over the collection of tests.
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43. Correlation of CGH and mRNA Expression Data

While these techniques and others can provide a means of determine meaningful
significance cutoffs in the face of multiple comparisons, there are some situations that
overwhelm them as well. One of the unique opportunities made available by
collaborations within the UCSF Cancer Center is access to tumor data sets that contain
multiple types of genomic data, such as CGH and mRNA expression data. One of the
obvious questions to ask of data sets containing both of these data types is the degree to
which DNA copy number changes affect mRNA levels across the genome. For example,
the proto-oncogene myc is frequently amplified in certain cancers, leading to increased
myc mRNA and protein levels. Since myc is a transcription factor, however, amplifying
myc should lead to changes in the expression of many other genes. One could
reasonably expect, therefore, that amplification of the genomic locus containing myc
would affect the transcript levels of other genes in addition to myc itself.

One approach that can be used to detect these regulatory relationships is to
correlate the mRNA expression data for each gene with the amplification data from each
genomic region, and select those gene-BAC pairs that have high correlation values. To
perform one such correlation, two arrays of values are assembled that contain the sample
to sample behavior of one gene and one BAC. The Pearson’s correlation coefficient (r)

of the two arrays of numbers x and y is calculated as follows:
2 (x =D -)
r= L
CEIEERS

Pearson’s correlation coefficient is defined as the covariance of two variables, divided by

their standard deviations. In practical terms, r is a measure of the linearity of a
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relationship between two continuous data types (except for perfectly horizontal or
vertical lines, for which r is undefined). The values of r vary from -1 (perfectly linear
relationship with negative slope) to 1 (perfectly linear relationship with positive slope).

Exhaustively calculating all possible correlations of genes and BACs presents a
multiple comparisons problem of extreme proportions, however, since the number of
comparisons performed is the product of the dimensionality of each data type. For
example, if 2500 BACs are analyzed for CGH and 10,000 genes for mRNA expression,
this totals 2.5x10’ total correlations. Even when genuine correlations exist in these data
sets, they are difficult to detect against the backdrop of all the spurious high correlations
observed by chance.

To illustrate the magnitude of this problem, an all by all correlation of genes and
BAC:s in an ovarian tumor data set was performed, correcting for multiple comparisons
using the maxT method. No gene-BAC pair showed a significant correlation, even
though it has been established that gene copy number affects transcript levels for a
significant proportion of genes in the amplified or deleted regions.

Clearly, standard approaches do not fare well when faced with data sets of this
scale. This failure of existing methods led us to try alternative methods that lie outside of
the field of statistics. Our first attempt at finding quantitative relationships between CGH
and mRNA gene expression involved the use of techniques from machine learning and

optimization. This attempt is the topic of the next chapter.
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Chapter 5
Optimization Methods to Determine
the Relationship between DNA Copy

Number and Gene Expression

5.1. Introduction

As stated in the previous section, the multiple comparisons problem often makes
it difficult to find all but very strong signals in high dimensional datasets. This is
particularly true when two genomic data types, such as mRNA gene expression and DNA
copy number are to be exhaustively compared, as in the case of the ovarian tumor data set
mentioned in the previous chapter. This data set first became available before the
completion of the human genome sequence, so precise genomic locations were frequently
not known for many BACs and genes. At the time, the genomic location of some BACs
could be inferred from the presence of STS markers whose location was experimentally
determined (at fairly low resolution) by techniques such as FISH or radiation hybrid

mapping, while the genomic position of many genes was unknown.
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The existing statistical methods failed to find significant correlations in the
ovarian cancer dataset, but because there was significant interest in the genome-wide
relationship between DNA copy number and gene expression, we pursued the question
without the genomic mapping information. Lacking this information, however, required
an indirect approach to establish the relationship. Instead of looking for direct
correlations between variations in DNA copy number at particular loci with variation in
the mRNA expression of particular genes, we considered the extent to which the inferred
‘distances’ between samples based on CGH data and the ‘distance’ based on expression
data were related. Intuitively, this corresponds to the hypothesis that if there were a very
strong relationship between the two signals, independent hierarchical clusterings of the
samples based on the two data types would yield similar structures. Recall from Figure 4
that the dominant signal in expression data can be traced to tissue of origin or specific
cell type that gives rise to a particular tumor. It turns out that this is not the case with
DNA copy number data. So, direct comparison of the distance matrix among tumors from
CGH data to the distance matrix from expression data does not yield an obvious and
significant signal.

Because the existing statistical methods failed to find significant correlations in
the ovarian cancer dataset, two machine learning and optimization approaches were used
to select gene-BAC pairs that would enrich the relationship by reducing the effects of
measurements that did not contribute to the signal. These approaches were a hill climbing
method to select, in a binary sense, the genes and BACs to participate, and a gradient
descent method to derive real-valued weights for the genes and BACs. Both techniques

start with the entire mRNA expression and CGH data sets, and attempt to enrich for
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genes and BACs that correlate with each other in a way that reveals itself by increasing
the similarity in the distance matrices based on mRNA expression and CGH.

In both approaches described here, an ovarian tumor data set containing CGH and
mRNA expression was separated into ‘training’ and ‘test’ sets of equal size. The training
set was used to train parameters (such as which genes and BACs are selected, or the
values of weights). The test set was then used to confirm that the observation was not the
result of overfitting.

In both the hilllclimbing and gradient descent approaches, two arrays of sample to
sample distances are calculated, one using CGH data and one using mRNA expression
data. These arrays conta_in all pairwise sample to sample distances in mRNA expression
space and CGH space, respectively:

Dccu = [Day2ycau, Dayayccts - -De-1)nycaH]

Dexp = [Dax2exps Daxaiexps - - Din-1ympexp)

Where D(;y2)cou = Distance from sample 1 to sample 2 using CGH data.
An attempt is then made to minimize the distance between D¢y and Dy by either
choosing different subsets of genes and BACs (hill climbing) to calculate the sample to
sample distances, or by assigning weights to each gene and BAC and allowing those
weights to fluctuate (gradient descent). The rationale for this approach is that is if CGH
loci and genes that correlate with each other are chosen, then distance vectors Dcgy and
Dgxp Will correlate with each other. Conversely, if the correlation distance between Dcgy
and Dg,, is minimized, then genes and BACs that correlate with each other should be

selected for. If this result bears out in a clean validation test set, then a large-scale
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relationship between DNA copy number and RNA expression has been shown, albeit

somewhat indirectly.

5l Hill Climbing

Hill climbing is a so called ‘greedy’ method that is quite simple conceptually;
first, a small number of genes and BACs are chosen from the total (100 of each in this
case) and the distance arrays Dcgn and Dg,p are calculated using the data from these
subsets of genes and BACs. With each iteration of hill climbing, a small proportion of
the genes and BACs are randomly replaced, and the sample to sample distance arrays
Dcch and Dgyp are recalculated. If the distance between Dcgh and Dgyp is lower with the
new set, then that set is kept for subsequent rounds, otherwise the new set is discarded
and the old set is kept (hence ‘greedy’). This process is repeated many times, and the

final set of selected genes and BACs is subjected to further examination.

—

Hillclimbing - 100genes/100loci selected ‘

1 201 401 601 801

iteration

Figure 6 — The effect of hillclimbing on the training set (blue) and the test set (magenta).
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The effect of hillclimbing on the training and test sets is shown in Figure 6.
While the distance between Dcgn and Dy, decreases using the training set data
(computed as 1 — Pearson’s correlation), it is unaffected by when using the test set. This
clearly indicates that the hill climbing approach is subject to overtraining on noise in the
training set. This suggests that it is easy to identify a small number of genes and BACs
that yield a nominally good distance matrix correlation, but that it does not generalize in a

meaningful way.

5.3. Gradient Descent

Gradient descent methods define an error function (such as the mean squared
error E in Figure 7) to be minimized by adjusting weight values (wy, for the k™ gene or
BAC in the data set). Once again, two arrays of sample to sample distances are
separately calculated using CGH and mRNA expression data (D" and D**,
respectively). The error function is differentiated with respect to each weight, and the
weights are allowed to descend iteratively along the gradient defined by the value of this
differential until they stabilize. Those genes and loci that are left with large weights are

then subjected to further analysis.
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Figure 7 — The mean squared error and distance functions used in the gradient descent method

The effect of the gradient descent method was assessed using a cross validation
measure; a single tumor sample is held out and the remaining samples are used to train
the system by calculating weights. The correlation between the distance arrays of the
holdout to the remaining samples are compared before and after training and the process
is repeated with a different holdout each time. Figure 8 shows the results of a 20-fold
cross-validation, and in each case the correlation distances between the CGH and mRNA
gene expression distance vectors were lower after training than before, evidenced by the
lower right triangular enrichment of points. This indicates that training did have a

positive influence on the correlation between the two distance vectors. Although the
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effect was not large, it was consistent, and it demonstrated a relationship between DNA

copy number and gene expression.

Cross Validation on Ovarian Tumor Data

Final sdist

0 0.5 1 1.5
Initial sdist

Figure 8 — Cross validation using the gradient descent method

5.4. Conclusions

Two approaches were taken to detect correlations between CGH and mRNA
expression data, with limited success. The hill climbing method showed evidence of

overtraining and did not yield usable results. In contrast, the gradient descent method
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showed some indication of success on the test set, although the effect was modest.
Interpreting the results of the output is not straightforward, and the fact that these
methods are both difficult for most biologists to understand and use raise questions as to
their utility.

At this juncture in my thesis work, the analytical methods that had been used to
investigate the relationship between CGH and mRNA expression data had generated a
tangible result in the sense that a relationship was demonstrated. However, the approach
did not lead to the generation of specific new hypotheses. At roughly this time, the
human genome sequence was completed and algorithms made available for high-
throughput mapping of genes and BACs to their positions in the genome based directly
on their sequence. This opened the door to an entirely new set of approaches. If, in the
analysis of multiple data types (such as DNA copy number and mRNA gene expression),
it was possible to relate the data based on annotation information such as genomic
position, a much more direct analysis would be possible.

Going forward from this point, an attempt would be made to explore analytical
methods that utilized biological data in an integrated context, making extensive use of
biological annotation information. However, integration of annotations for tens of
thousands of measurements over multiple data types and utilization of these annotations
in statistical computations is challenging, and certainly beyond the skill set of most
experimentalists. Consequently, these methods would be deployed within a
straightforward and intuitive system that experimentalists themselves could use. The

development of this system, Magellan, is the subject of the next chapter.
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Chapter 6
Magellan: System Design

6.1. Introduction

The previous two chapters demonstrated how both standard statistical techniques
and sophisticated optimization approaches can fail to find significant relationships in very
high dimensional biological data sets or yield results with limited interpretability. Since
one of the aims of my work at the Cancer Center was to provide analytical tools for
experimentalists to use, the next portion of my thesis work was devoted to building an
analytical framework that would allow for a more intuitive approach to analyzing
biological data sets.

With this aim in mind, I developed a server based system that allows biologists to
perform analyses over the internet. Rather than creating a series of individual
applications that perform very specific functionalities, it was decided that our analytical
system would implement a framework such that different analytical methods could be
interfaced to the system as a whole. The purpose of such a system is to allow end users

to explore their own data sets and follow whatever direction of inquiry that they see fit.
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Because of the exploratory nature of the system, it was named Magellan after the 16"
century explorer.

This chapter elucidates the reasoning behind several of the major design decisions
of Magellan, while the next chapter covers implementation issues. This chapter discusses

the various types of information that can be stored and analyzed, and the high level

representation of information.

6.2. Definitions and Examples of Terms

The terms ‘data’, ‘variables’, ‘identifiers’, and ‘annotations’ have been used to
this point without formal definitions, but it is important to clarify their meaning. The
following sections define each of these terms as they are used in the context of the

Magellan application.

6.2.1. DataType

For the purposes of this discussion, a ‘data type’ is defined as a category of
qualitative or quantitative information gathered from a biological sample. In the use
cases that follow, data types include mRNA expression intensity measurements, genomic

copy number measurements, and clinical data such as patient survival.

6.2.2. Variable

A ‘variable’ is defined as a single measurement of a multivariate data type.
Variables would include mRNA intensity measurements for individual genes in mRNA

expression data, or genomic copy number measurements for individual genomic regions

from CGH data.
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6.2.3. Identifier

An ‘identifier’ is a string that names one individual variable of a data type.

Examples of an identifiers would include genbank ID’s, LocusLink ID’s, and Affymetrix

gene chip ID’s.

6.2.4. Annotation

An ‘annotation’ is defined as a quantitative or qualitative description of the
variables of a data type. One of the key distinctions of the Magellan application is the
ability to utilize biological annotations, both in analytical methods and in data pre-
processing. As they are used within Magellan, annotations can be divided into two

classes: curated and derived.

Curated annotations can consist of numerical information such as genomic
mapping data for genes, textual information derived from ontologies of gene function,
and formal descriptions of regulatory networks (Ashburner, Ball et al. 2000). Data and
curated annotations are linked together through the use of ‘identifiers’, which are user-

defined names such as Genbank or RefSeq Ids (Figure 9).

Derived annotations are computed from the experimental measurements that

comprise a data set. These annotations are the results of a computation performed on the

data and are, therefore, derived from that data. Derived annotations are typically
quantitative and are linked to data directly rather than through identifiers (Figure 9).
Direct linkage is required since individual identifiers (representing one gene on a

microarray, for example) can be represented multiple times in a data set, with different

quantitative measurements in each physical instance yielding different annotation values.
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For the analyses performed here, derived annotations of correlation to patient outcome

for gene expression and frequency of alteration of genomic copy number were used.

Curated Annotations
Identifier Type

Identifier Value
Annotation Type
Annotation Value

Identifiers
Experiment ID
Data Type
Ordinal Position
Identifier Type

Identifier Value

Data
Experiment ID
Data Type
Ordinal Position
Sample

Value

Derived Annotations

Experiment ID

Y

Data Type

Ordinal Position
Annotation Type

Annotation Value

Identifiers

Experiment: 15

Data Type: Expression
Ordinal Position : 3162
Identifier Type: Genbank ID
Identifier Value: U40369

A

Expression data for SSAT gene
Experiment: 15

Data Type: Expression

Ordinal Position : 3162

Sample: 1526

Value: 1459

F-statistic vs. Patient Survival
Experiment: 15

Data Type: Expression

Ordinal Position : 3162
Annotation Type: T-statistic
Annotation Value: 5.498

Genomic Mapping
Identifier Type: Genbank ID

Identifier Value: U40369
Annotation Type: Chromosome
Annotation Value: X

Identifier Type: Genbank ID
Identifier Value: U40369
Annotation Type: bp
Annotation Value: 22196023

Figure 9 - Linking data to curated and derived annotation information. Variables of a data type

(such as genes or genomic loci) are referenced by their ordinal position. The ordinal position can be

directly linked to derived statistics (such as t-test against patient survival) or to named identifiers
(such as a Genbank IDs). Identifiers are then used to link data to curated annotations (such as

genomic mapping information).

6.3. Abstract Representation of Data and Annotations

The primary feature that enables Magellan to be used as a general purpose

analytical tool is its ability to store information abstractly. Under this scenario, there is
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no assumption made as to the type of data or annotations that a user stores in the system.

Rather than being specifically designed for microarray gene expression, CGH,
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proteomics, or some other data type, Magellan’s abstracted means of storing data is
designed to accommodate these and other data types as they arise. Rather than requiring
particular data types, Magellan stores the data and annotation type designation that the
user defines. In other words, the system does not tell users what kind of data they can
store; the end users specify what kind of information they wish to store.

The only requirement placed on information to be stored in Magellan is that it can
be represented as a two dimensional table. In the case of data, such an abstracted table
would represent a data type with m samples and » variables collected per sample. In the
case of annotations, the abstracted table would contain m annotation types (such as
chromosome and distance from p-telomere designations that collectively make up
genomic position annotations) and »n variables to be annotated.

While this arrangement does provide extensibility such that new data types can be
stored as they emerge, it does not have the advantage of some custom databases that are
designed to work with particular data types. Such custom databases generally do a more
comprehensive job of representing data and metadata for the data type for which they
were designed, but have to be extensively modified to accommodate other data types.
For our purposes, a decision was made to make Magellan an extensible system because
of the heterogeneity of data currently available, and the strong likelihood that new data
types would emerge that would benefit from Magellan’s analytical framework.

While the storage and representation aspects of Magellan are generalized, the
analytical functions deployed within the system require varying degrees of specificity
with respect to the types of information that they utilize. While some analytical methods

may be generalized enough to work with large numbers of data types, others will require
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specific types and representations of data and annotations. For example, resampling-
adjusted correlation analysis can be applied to many different tabular quantitative data
sets, while methods that seek to explore the relationship between CGH and mRNA
expression data with respect to genomic position annotations are very specific in their
requirements. Such specificity is allowed within the Magellan application, but only at the
level of the analytical method. In summary, the Magellan database can store
heterogeneous data and annotations in an abstracted fashion, but analyze this information

along a continuum of specificities depending on the application chosen.

6.4. Use of Biological Annotations within Magellan

Given a series of tumor samples of known outcome, with experimental data
comprising both DNA copy number and mRNA expression measurements, natural
questions tend to span data types or require data annotation. Does genomic copy number
directly account for some of the variation in gene expression across samples? Are the
genes that map to loci that are frequently found to be of aberrant copy number more
likely to show an association with outcome than other genes? Are genes that have
functional annotations for processes involved in cancer (for example, adhesion,

apoptosis, invasion, ...) more likely to be associated with tumor aggressiveness?

Because of the importance of biological annotations in answering these types of
questions, Magellan has been designed to store and retrieve annotations for analyses that
utilize them. In addition to the use of annotation information during analysis, Magellan
provides two means of utilizing annotations prior to analysis: variable selection and

variable projection.
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6.4.1. Variable Selection

As has been previously discussed, a large number of variables collected from a
relatively small number of biological samples can present statistical challenges. One
particularly straightforward method to reduce dimensionality is to select only those
variables (such as genes from mRNA expression data or genomic loci from CGH data)
that meet criteria that are orthogonal to the property being investigated. Biological
annotations can provide such a means of variable selection. By restricting a data set to
only those variables whose annotations meet certain criteria, the dimensionality of the
data set may be reduced such that multiple comparisons do not predominate.

In addition to statistical considerations, experimentalists are frequently interested
in focusing on variable subsets of biological interest. For example, a user may wish to
focus on a specific gene family that is described by a biological pathway designation such
as ‘G protein coupled receptor’ or ‘cyclin dependent kinase’. By providing a generalized
means of selecting variables based upon categorical textual annotations, Magellan allows
end users to select for virtually any text based annotation they choose.

Magellan also allows users to select variables based on quantitative biological
annotations. By specifying the annotation to be used and the quantitative operator to
apply, a user can perform any number of variable selections, such as retrieval of all BACs
in a CGH data set that strongly correlate with a clinical outcome. By combining variable
selections, a user can create compound queries such as choosing genes in a particular

genomic region, which involves a text based selection for the chromosome name

followed by a quantitative selection for the distance from the p-telomere.
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6.4.2. Variable Projection

The term projection is used to describe the process of finding ‘equivalent’
variables between two data types by examining the relationship between the annotations
associated with those variables. There are many cases in which experimentalists would
use projection to look for effects across data types or data sets. For example, if a user has
identified an interesting subset of genes in mRNA expression data and wishes to find an
equivalent set BACs from CGH data, projection would involve finding BACs that are in
close genomic proximity to the genes in question. Alternatively, an end user may wish to
determine if a biological effect is consistently observed over multiple data sets by
projecting variables that meet certain criteria in one experimental data set onto a second
data set.

Projection can be used to find equivalent variables over a number of different
variable equivalencies, both quantitative and qualitative. In order to project variables
between data types, an end user must specify which annotations to use and what
constitutes equivalency. In the case of projection over identifier names, projection would
use a simple string equivalency over that namespace. In the case of projection over
genomic position, the equivalence criteria would include both string equivalence of
chromosome name and a difference threshold for the distance from the p-telomere.

Variable projection is performed by comparing annotations associated with the
variables of two data types. By moving from variables, through identifiers, into a
common annotation space, comparisons can be performed that are not possible to make
on the variables themselves. In the case of projection from CGH space to gene space, for

example, there is no direct way to compare genes and BACs. By projecting these



individual variables into a common annotation space of genomic position, however, these

comparisons can be made, and user defined criteria of equivalence can be established.

6.5. Other Analytical Applications

Biological data analysis has been the subject of intense research in many groups,
and there are a number of systems available that are geared toward a similar user
community. These range from single-use packages (such as clustering) to integrated
packages for performing multiple types of analysis (such as univariate analyses and
classification for multiple data types). Examples of the former include methods such as
SAM and PAM, which address permutation-corrected statistics and pattern classification,
respectively (Tusher, Tibshirani et al. 2001; Tibshirani, Hastie et al. 2002), and Cluster
and TreeView (Eisen), which address clustering. Magellan differs from these in that it is
a platform for offering multiple types of analysis. Examples of the latter include MeV
(TIGR), caWorkBench (Columbia Genome Center), GeneCluster (Broad Institute),

GeneSifter (VizX Labs LLC), and mAdb (NCI).

In terms of functionality, Magellan’s primary distinguishing characteristics are its
generality and its use of biological annotation information as a means of constraining
analyses to variable subsets. Magellan is general in two respects. First, the internal
schema for storing information supports any type of data that can exist in a table (either
numerical or textual). Second, Magellan does not impose complex format requirements
on data, which is frequently a hurdle in making use of other systems, where local

procedures for data preparation may be at variance with expectations and requirements

for data formatting.
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6.6. Conclusions

Magellan was designed with generality and extensibility in mind, such that many
data and annotation types can be stored and analyzed. As such, Magellan employs an
abstract representation of both data and annotations. While the generality of the
Magellan database means that certain information will not be represented in as much
detail as a specialized database, this is a reasonable tradeoff for versatility. Magellan is
designed to make extensive use of annotation information, which describes the variables
of data types. The specificity of Magellan is contained at the level of a subset of

analytical methods which require certain data and annotation types.
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Chapter 7

Magellan: System Implementation

7.1. Introduction

The previous chapter detailed the design features of Magellan in general terms.
This chapter describes the details of Magellan’s implementation. The following sections

cover the specific software design decisions that were made in the implementation of

Magellan.

7.2. Magellan System Architecture

Magellan is composed of several different components. Figure 10 is a Unified
Modeling Language (UML) diagram that shows the various components of the Magellan
system, including the presentation logic, business logic, database layer, and application
layer. All of these components will be discussed in the following sections, while

connectivity to the data sources at the National Cancer Institute will be covered in

Chapter 9.
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Figure 10 - UML component diagram of the Magellan system.
7.2.1. Server Sided Application Using JSP Technology

It was decided early on in the development process that Magellan should be a
server sided application. As such, Magellan is installed on a centralized server that can
be accessed by end users over the internet. The choice of a server side web application
was made for several reasons: First, a server sided application overcomes many of the
compatibility issues associated with the many different desktop platforms (PC, Mac,

Unix) currently used by researchers, since interaction with the system is achieved through
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a web browser. Server sided applications typically have a lower barrier of entry for end
users, since little or no software has to be installed on their own client computers. The
centralized nature of server sided applications allows for all user data and annotation
information to be stored in one location, rather than scattered over many decentralized
computers. Updates to the application are also much more easily managed, since they
need only be installed on a small number of servers, rather than a large number of clients.

After building prototype systems using Active Server Pages and Perl CGI, Java
Server Pages (JSP) technology (http://java.sun.com/) was chosen for the development of
Magellan. The primary reason for this choice is that JSP allows for the creation of server
side applications using the full power of the Java programming language. Java has the
advantage of being a true object oriented language, which allows for efficient code
development and reuse. In moderate to large sized projects, Java provides a
straightforward means of dividing the different pieces of a large application into a series
of separate Java Classes. The functionality of these Java classes can be accessed through
abstracted application programming interfaces (API’s), which allow for easy utilization
of the underlying programmatic logic without knowledge of their implementation.

Magellan is designed to be deployed on a server that is running the Windows
2000 or XP Operating System (http://www.microsoft.com/), and the Apache Tomcat web
server and servlet container (http://tomcat.apache.org/). In addition, the Java component
of Magellan was developed using the Eclipse IDE (http://www.eclipse.org/) and the

Sysdeo Tomcat plugin (http://www.sysdeo.com/eclipse/tomcatplugin).

49



7.2.2. Centralized Oracle Database Utilizing an Open Architecture

All information uploaded by the end user to Magellan is stored in a relational
database rather than in flat text files. While incorporation of a database component added
complexity to the project, storage in a relational database provides for sophisticated
querying of data and annotations using Structured Query Language (SQL). Magellan
was prototyped on the Oracle database platform (http://www.oracle.com/index.html),
although a port to the open source database MySQL (http://www.mysql.com/) has been
initiated with collaborators at UPENN.

The use of a server sided Oracle relational database allows for centralization of all
data and annotation information into one physical location. This allows for easy sharing
of information between different users, with a security layer to ensure that the owner of
said information has granted permission for access.

Because the data types generated by biological researchers are heterogeneous and
likely to change over time, it was decided to represent both data and annotations as
generally as possible. Rather than hard coding the database schema to store only certain
data types, data and annotations are represented as type-value pairs. As seen in a
simplified representation of the Magellan database schema (Figure 11), separate tables
are utilized to store data types and annotation types as user defined strings. This method
of representation is analogous to the Entity-Value-Relationship model, which also

employs type-value representation of data.
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Figure 11 — A simplified representation of the table structure of the Magellan database schema.
Tables with hatched outlines are used to store annotation information.

7.2.3. Analytical Applications

Although Java is a very powerful language for building server sided applications,
it is not necessarily the best solution for developing the analytical applications that
perform computations on data once it has been retrieved from the database. Several of
the analytical applications, particularly those that make use of resampling and
permutation, are extremely computationally intensive and are best suited for development
using the C programming language. Compiled C programs tend to run faster than their

Java based counterparts by a factor of at least two or three, a difference that becomes
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particularly significant with large genomic data sets. Other applications deployed in
Magellan that make extensive use of statistical functions and/or graphical output have
been developed using the R statistical package (http://www.r-project.org/). R is an open
source application used extensively by the statistics community, and is useful because its
many publicly available code libraries allow for rapid development and deployment of
algorithms that make heavy use of statistical functions

External applications written in C or Java are executed from within the JSP pages
by making use of Java’s Runtime.exec() method. This method executes the appropriate
analytical program on the server, and monitors the termination of the process. If the
process terminates without error, then the user is provided with a hyperlink to all result
files. If the process terminates abnormally, then the user is provided with a list of the
program output and error messages, which can be provided to the system administrator

for remedy.

7.3. Documentation

In an application such as Magellan, it is important that the analytical functions not
be regarded as a black box by end users. To this end, several web pages have been
developed to document both the core functionality of the system as well as the analytical
functions deployed within. This documentation serves to explain the basic purpose of
each analysis method, descriptions of the parameters that the user must specify, and
definitions of statistics and distance metrics used by the algorithm. In addition, the

documentation for analytical functions includes an example use case and output.
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Figure 12 — Example documentation of analytical methods in Magellan

7.4. System Security

All data and annotations stored in Magellan are password protected. Each user
chooses a login and password when they register to use Magellan online and must enter

the login and password each time they use the system. All information uploaded by a

user belongs to that individual, and is only accessible by other users with the permission

of the researcher who uploaded it. Magellan was not designed to store any identifiable
patient data, so additional system security measures besides the password protection

described above have not been employed.

7.5. User Interfaces to Magellan Features

7.5.1. File Format Independent Method of Data Entry

One of the difficulties in using existing analytical applications is their dependence
on particular file formats. For this reason, it was decided that Magellan would provide a

generalized means of uploading data from the user to the system. Rather than forcing end
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users to reformat their data, the user can specify the content and location of the
information to be stored. This is achieved by generating a representation of the uploaded
data file in the browser complete with hyperlinks along the rows and columns. When a
particular hyperlink is activated, a web page pops up that contains fields into which a user
can specify the content contained within that region of the file (Figure 13). By repeating
the process for the sample names, data types, identifiers and annotations, the user tells the
system exactly what information to extract from the uploaded file, and how it should be

represented in the database.
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Figure 13 — Web pages used to upload unformatted biological data to the Magellan database. The
file contents, content specification, and upload preview pages are shown.

7.5.2. Variable Selection

The user interface used to perform a variable selection is detailed in Figure 14. A
user chooses a data type, and a set of annotations to use in performing variable selection.

The user then specifies whether to perform a quantitative or qualitative (i.e. categorical)
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selection on the annotations. Figure 15 illustrates an instance in which CGH data is

variable selected for only those loci whose F statistics against patient survival exceed the

numerical value 5. As a result of navigation through these pages, a new data type
becomes available to the user in which only the variables whose annotations satisfy the
selection criteria are returned for analysis.

Magellan utilizes this information at the level of the interaction between the
business logic (residing in compiled Java classes) and the Oracle database. When the
user chooses to perform an analysis on the selected data type, the system first performs a
query to determine which annotations satisfy the user specified criteria, and links those
annotations to specific rows of data through identifiers. Only those rows of data are

returned to the system for analysis.
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Figure 14 — User interface to perform variable selection on a data type.

7.5.3. Variable Projection

As stated in the previous chapter ‘projection’ is a term used to describe the

process of finding equivalent variables between data types or data sets. The user
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interface for performing projections is illustrated in Figure 15. A user selects a data type
that serves as the source of the projected variables, a second data type onto which the
variables will be projected, and the annotations that will be used to determine
equivalence. In the succeeding web page, the user defines the criteria for equivalence of
annotations; in the example shown, projection by genomic position has been chosen such

that only those BACs within 1Mb of the genes will be retrieved to make up the new data

type.
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Figure 15 — User interface to perform variable projection between two data types.

The concepts of projection and annotation comparison are implemented as Java
classes. The projection class stores pointers to the data types that serve as the source and
destination of variable projection, as well as the annotations to be used in determining
variable equivalence. The annotation comparison object stores the information the user
has specified in determining equivalence, i.e. whether the comparison is to be based on
string equality or quantitative relationships, and the comparison operator and threshold
involved. By stringing together multiple annotations with multiple annotation
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comparison objects, complex projection events involving multiple annotation types can
be made. For example, comparison of genomic position involves a two part comparison
including string equality of chromosome name and a thresholded difference in distance
from p-telomere. The overall comparison can be made by instantiating multiple

annotation comparison objects, one for each annotation type to be used in the

determination of equivalence (Figure 16).
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Figure 16 - Projection involving multiple annotation comparisons

7.6. Analytical Processes

7.6.1. UML Representation of the Analytical Process

The process by which an analysis on data and annotations is performed within
Magellan is depicted in the Unified Modeling Language sequence diagram in Figure 17.

Briefly, the user selects a data set in her browser, and a list of data types are retrieved
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from the database and displayed in the browser window. The user then chooses an
analytical method and parameters for that method including the data and annotations (if
needed) to be analyzed. The analysis is initiated, which consists of retrieving the data as
a flat file from the database, forking off the analytical process that operates on the data,

and informing the user when the results are ready to be viewed and/or downloaded.

1 Selact Data Set

getDataTypes(experiment) ;

€ _List of DataType Objects

Display Data Types J
Annotate Data Type

getAnnotation(upload)

'
.

Retumned Annotation Object

Associate Annotation with Data

Display Annotated Data Type

Speoify Analytical Paramters

Analysis setAnalyticalParameter)) |

Anatysis. makeDataFileQ _ |
Flat Text Data File

:
Anatysis.makeAnnotationFileQ

Fiat Text Annotation File

5 runtime.axec) -

e i Retum Value from Process 1 __j_l

atilhd

[Process st 7]
J Return Hyperink to Results | |

ﬁ ---------------------- :

........ g SRR
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Retum Error Messages from Stdout,

.
.
\
.
.

Figure 17 — UML sequence diagram of the execution of an analytical method on data and annotations
within Magellan.
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7.6.2. User Interface to the Analytical Functions Deployed in Magellan

The analytical processes deployed in Magellan to date utilize a similar user
interface and flow of operation (Figure 18). Briefly, the user selects a data set from the
list of data sets to which she has access. The subsequent page allows the user to select a
method of analysis, while the page after that provides an HTML form into which the user
specifies analysis parameters. Once the analysis parameters have been provided, the data
is retrieved, the application executed, and the user is presented with a hyperlink to the

results, which can be viewed in a web browser.
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