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Abstract

People use varied language to express their causal understand-
ing of the world. But how does that language map onto peo-
ple’s underlying representations, and how do people choose
between competing ways to best describe what happened? In
this paper we develop a model that integrates computational
tools for causal judgment and pragmatic inference to address
these questions. The model has three components: a causal
inference component which computes counterfactual simula-
tions that capture whether and how a candidate cause made
a difference to the outcome, a literal semantics that maps
the outcome of these counterfactual simulations onto different
causal expressions (such as “caused”, “enabled”, “affected”,
or “made no difference”), and a pragmatics component that
considers how informative each causal expression would be
for figuring out what happened. We test our model in an ex-
periment that asks participants to select which expression best
describes what happened in video clips depicting physical in-
teractions.
Keywords: causality; language; counterfactuals; pragmatics;
intuitive physics.

Introduction
The words we use to describe what happened matter. Hearing
that “Tom killed Bill” elicits a different mental model of what
happened than hearing that “Tom caused Bill to die” does
(Freitas, DeScioli, Nemirow, Massenkoff, & Pinker, 2017;
Niemi, Hartshorne, Gerstenberg, Stanley, & Young, 2020;
Thomson, 1976). The question of how we express our knowl-
edge of what happened in words, and how we infer what hap-
pened based on the words we hear, has a long and deep tradi-
tion in philosophy, linguistics, and cognitive science (Pinker,
2007).

In cognitive science, most work on causal cognition has fo-
cused on building models that capture the notions of “cause”
and “prevent” (Waldmann, 2017). However, some attempts
have also been made to uncover the differences between
causal verbs such as “cause” and “enable”. For example,
Cheng and Novick (1991) argue that these verbs map onto
different patterns of co-variation. Sloman, Barbey, and Ho-
taling (2009), in contrast, propose that their meanings are
best understood as mapping onto qualitatively different causal
models. Whereas “A causes B” means that there is a causal
link from A to B, “A enables B” means that A is necessary
for B to happen, and that there exists an alternative cause to
B. Goldvarg and Johnson-Laird (2001) develop an account
based on mental model theory in which “cause” and “al-
low” map onto different possible cause-effect pairs (see also
Khemlani, Wasylyshyn, Briggs, & Bello, 2018). What all

these accounts so far have in common is that they construe
causal relationships in terms of some notion of probabilistic,
counterfactual, or logical dependence.

Wolff (2007) developed a different framework for think-
ing about causal expressions such as “cause”, “enable”, “de-
spite”, and “prevent” that is based on Talmy’s (1988) theory
of force dynamics (see also Wolff, Barbey, & Hausknecht,
2010). According to the force dynamics model, causal ex-
pressions map onto configurations of force vectors (Figure 1).
For example, the causal construction “A caused P to reach E”
maps onto a configuration in which P’s initial force didn’t
point toward the endstate E, and A’s force combined with
P’s such that the resulting force R led P to reach the end-
state. In contrast, the construction “A enabled P to reach E”
implies that P’s force vector already pointed toward the end-
state, and A’s force combined with P’s such that it reached the
endstate. The force dynamics model accurately predicts par-
ticipants’ modal selection of which expression best captures
what happened in a variety of different video clips (Wolff,
2007). However, the force dynamics model also has some
limitations. For example, it doesn’t yield quantitative pre-
dictions about how well a particular expression captures what
happened, but instead relies on a qualitative mapping between
situations and causal expressions. Rather than a distribution
over response options, it predicts a single response. Also,
as we will see below, when people are provided with other
alternative expressions (such as “affected”, or “made no dif-
ference”) they don’t choose “enabled” for the predicted force
configuration.

In this paper, we propose a new model of the meaning and
use of causal expressions. Our model builds on the counter-
factual simulation model (CSM) of causal judgment devel-
oped by Gerstenberg, Goodman, Lagnado, and Tenenbaum
(2015, 2020). Gerstenberg et al. tested their model on dy-
namic physical interactions similar to the diagrams shown at
the top of Figure 2. In their experiment, participants judged
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Figure 1: Analysis of different causal expressions in terms of
configurations of forces. P = patient force, A = agent force,
R = resulting force, E = endstate.
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to what extent balls A and B were responsible for ball E’s
going through (or missing) the gate. The CSM predicts that
people’s causal judgments are sensitive to different aspects of
causation that capture the extent to which the cause made a
difference to how and whether the outcome happened. These
aspects of causation are defined in terms of counterfactual
contrasts operating over an intuitive understanding of the
physical domain. People use their intuitive understanding of
physics to mentally simulate how things could have turned
out differently (cf. Gerstenberg & Tenenbaum, 2017; Ull-
man, Spelke, Battaglia, & Tenenbaum, 2017), and the result
of these counterfactual simulations informs their causal judg-
ments (Gerstenberg, Peterson, Goodman, Lagnado, & Tenen-
baum, 2017).

The model we develop here predicts people’s use of
the causal expressions “caused”, “enabled”, “affected”, and
“made no difference”. The model has three components: a
causal inference component that computes the different as-
pects of causation according to the CSM, a semantics compo-
nent that defines a logical mapping from aspects of causation
to causal expressions, and a pragmatics component that takes
into account how informative each expression would be about
what happened (Goodman & Frank, 2016).

The paper is organized as follows. We first describe our
model and its three components by illustrating how it applies
to some example cases. We then present an experiment that
tests the model, as well as alternative models, on a challeng-
ing set of video clips. We conclude by discussing the model’s
limitations that suggest important avenues for future research.

Model
We discuss the three components of our model in turn: causal
inference, model semantics, and pragmatics.

Causal inference
The causal inference component of our model builds on
the CSM (Gerstenberg et al., 2015, 2020), which postulates
that causal judgments are sensitive to different aspects of
causation including how-causation, whether-causation, and
sufficient-causation. We briefly describe each aspect here us-
ing clips participants viewed in our experiment (see Figure 2).
Table 1a shows the aspect values for clips 1–4.

whether-causation To test for whether-causation W , the
model computes the probability that the counterfactual out-
come e′ in scenario S would have been different from what
actually happened e, if the candidate cause A had been re-
moved.

W (A→ e) = P(e′ 6= e|S,remove(A))

For example, in clip 1, ball A is a whether-cause of ball B’s
going through the gate (see Figure 2’s caption for a brief de-
scription of each clip). If ball A had been removed from the
scene, then ball B wouldn’t have gone through the gate (be-
cause it was initially at rest). While it is clear in clip 1 that
ball A was a whether-cause, in clip 8, it is less clear whether

Table 1: Model derivation for clips 1–4 shown in Figure 2.
a) Aspect Values

Clip 1 2 3 4

Whether 1.00 1.00 0.00 0.00
How 1.00 0.00 1.00 0.00

Sufficient 1.00 1.00 0.00 0.00

b) Semantic Values
Clip 1 2 3 4

No Difference 0.00 0.00 0.80 1.00
Affected 1.00 0.00 1.00 0.00
Enabled 1.00 1.00 0.00 0.00
Caused 1.00 0.00 0.00 0.00

c) Literal Listener Distributions
Clip 1 2 3 4

No Difference 0.00 0.00 0.44 0.56
Affected 0.50 0.00 0.50 0.00
Enabled 0.50 0.50 0.00 0.00
Caused 1.00 0.00 0.00 0.00

d) Speaker Distributions
Clip 1 2 3 4

No Difference 0.00 0.00 0.47 1.00
Affected 0.25 0.00 0.53 0.00
Enabled 0.25 1.00 0.00 0.00
Caused 0.50 0.00 0.00 0.00

ball B would have gone through the gate if ball A had been re-
moved. The model captures this uncertainty by running noisy
counterfactual simulations. In simulating the counterfactual,
B’s movements are perturbed from the point at which the col-
lision with ball A would have happened onward. By record-
ing the proportion of cases in which the outcome would have
been different from what actually happened in these noisy
samples, the model computes the probability that A was a
whether-cause of e. Whether-causation captures the extent
to which the presence of the candidate cause was necessary
for the outcome to come about.

how-causation For how-causation H , the model computes
whether the fine-grained counterfactual outcome ∆e′ in sce-
nario S would have been different from what actually hap-
pened ∆e, if the candidate cause A had been changed.

H (A→ ∆e) = P(∆e′ 6= ∆e|S,change(A))

This test captures whether A made a difference to how the
outcome came about (cf. Lewis, 2000; Woodward, 2011).
The outcome event ∆e is construed at a finer level of gran-
ularity, with information about the time and space at which
the event happened. The change() operation is implemented
as a small perturbation to ball A’s initial position. For exam-
ple, in clip 3 ball A knocks into ball B which was already
headed toward the gate. Here, ball A is a how-cause of B’s
going through the gate (the outcome would have been differ-
ent if ball A’s initial position had been slightly perturbed) but
not a whether-cause. In clip 2, ball A knocks the box out of
the way so that ball B can go through the gate. Here, ball A is
a whether-cause (B would not have gone through the gate if
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Figure 2: Results for a selection of clips. The clips above are an illustrative subset of the complete set of 30 clips used in the
experiment. In clip 1, ball A knocks a stationary ball B into the gate. In clip 2, ball A knocks the box out of the way, enabling
ball B to go through the gate. In clip 3, ball A bounces into ball B which was already headed toward the gate. In clip 4 the blue
ball knocks ball B into the gate before ball A would have knocked it in. In clip 5 both balls hit ball B simultaneously. Ball B
would have gone through the gate even if only one of the balls had hit it. In clip 6, ball A hits the green button that moves the
door down so ball B can go through the opened gate. The blue ball would have hit the green button a little bit later if ball A
hadn’t been there. Clips 7 and 8 contrast a situation where ball A is stationary with one where ball A is moving. The results
panels show the probabilities with which participants’ selected each of the four causal expressions for each clip (bars) together
with the predictions of the different models. Note: Error bars are bootstrapped 95% confidence intervals.

ball A had been removed) but not a how-cause (B would have
gone through the gate exactly like it did, even if A’s position
had been somewhat perturbed).

sufficient-causation Sufficient-causation S is defined as

S(A→ e) = P(W (A→ e)|S,remove(\A)).

A is sufficient for e if A would have been a whether-cause
W (A → e) in a situation in which the relevant alternative
causes \A had been removed. This notion of sufficiency is
inspired by Halpern and Pearl (2005) who define a test for
causation that considers not only whether a candidate cause
made a difference in the actual situation, but also whether it
would have made a difference in other counterfactual contin-
gencies (see also Halpern, 2016). For example, in clip 5 ball
A was sufficient but not necessary for B’s going through the
gate. Ball A would have been a whether-cause in the situ-
ation in which the alternative cause, the blue ball, had been
removed from the scene.

Also following Halpern and Pearl (2005), we constrain
sufficient-causation to check whether the relevant events in
the counterfactual contingency match the events that actually
happened. For example, in clip 4, ball A would have knocked
ball B through the gate in the counterfactual contingency in
which the blue ball had been removed from the scene. How-
ever, ball A wasn’t sufficient for B’s going through the gate
because the relevant events in this counterfactual contingency
(e.g., ball A’s hitting ball B) don’t match the events that actu-
ally happened. For clips 1–3, there are no relevant alternative
causes, so sufficient-causation reduces to whether-causation.

Model Semantics
We define a semantics of four causal expressions, “made no
difference”, “affected”, “enabled”, and “caused”, as a logical

mapping from causal aspects to these expressions. Table 1b
shows the semantic values for clips 1–4.

“Made no difference” Our literal semantics of “made no
difference“ is:

no difference(A→ e) = ¬W (A→ e)∧¬S(A→ e)∧¬sH (A→ ∆e)

Accordingly, A made no difference to e when it wasn’t a
whether-cause, sufficient-cause, or how-cause. The require-
ment to not be a how-cause is soft (which we capture by the
soft-NOT ¬s). This means that there is some probability that A
can be said to have made no difference to the outcome e even
if it was a how-cause. For example, in clip 3, ball A was only
a how-cause and neither a whether-cause nor a sufficient-
cause. The semantics predicts that there is still some chance
of saying that ball A made no difference to B’s going through
the gate. In our experiment, we fit a parameter to measure the
probability of responding “made no difference” even when
the candidate was a how cause.

“Affected” We define “affected” like so:

affected(A→ e) = H (A→ e)

A affected the outcome e if A was a how-cause. For example,
in clip 7 although it is unclear if ball A was a whether-cause
of B’s going through the gate (B might have gone through
even if ball A had been removed from the scene), it is clear
that ball A affected how ball B went through the gate.

“Enabled” We define “enabled” as:

enabled(A→ e) = W (A→ e)∨S(A→ e)

For A to have enabled e it must have either been a whether-
cause, a sufficient-cause, or both. For example, in clip 2, ball
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A enabled B’s going through the gate. It was both a whether-
cause and a sufficient-cause (because there were no alterna-
tive causes) of the outcome. Clip 6 demonstrates that consid-
ering sufficient-causation is important. Here, ball A hits the
button that opens the door to the gate shortly before the blue
ball would have hit the button. Ball A wasn’t a whether-cause
in this case, but it still feels right to say that ball A “enabled”
B’s going through the gate.

“Caused” We define “caused” as:

caused(A→ e) = H (A→ ∆e)∧ (W (A→ e)∨S(A→ e))∧s M(A)

A “caused” e when it was a how-cause of the outcome, and
either a whether-cause or sufficient-cause (or both), and when
A was moving M(A). The requirement for ball A to have been
moving is soft as indicated by ∧s. This means that even if
ball A wasn’t moving it can still be said to have caused the
outcome sometimes.

The addition of the soft requirement for ball A’s move-
ment was motivated by the observation that prior movement
affects people’s causal intuitions (Mayrhofer & Waldmann,
2016; White, 2014). For example, clip 7 and clip 8 are iden-
tical in terms of their causal aspects. The only difference is
that ball A is stationary in clip 7 and moving in clip 8. Par-
ticipants were reluctant to say that ball A caused ball B to go
through the gate when ball A was stationary.

We make the additional observation that the term “caused”
is ambiguous. An event could merely be “a cause” of the out-
come, or it could be “the cause”. In clip 5, for example, both
ball A and the blue ball collide with ball B simultaneously,
knocking it into the gate. Though one could describe this sit-
uation by saying “ball A caused ball B to go through the exit”,
and a significant portion of participants made this selection in
the experiment, doing so elides the equally important role of
the blue ball in the observed causal event. It’s true that ball A
was “a cause” of the outcome here, but it would be misleading
to say that it was “the cause” (since the blue ball played the
exact same role in bringing about the outcome). To capture
this ambiguity we normalized the semantic value of “caused”,
dividing by the sum of the semantic values of all candidate
causes. This means that unique causes are more likely to be
referred to by the “caused” expression. So as to not inflate
the value of one candidate cause by adding alternative causes
that didn’t do anything, we assume that the presence of other
candidate causes can only decrease the target cause’s value
but not increase it.

“caused” is the strongest expression in that it has the
strictest requirements. A candidate can only be said to have
“caused” the outcome if it made a difference to how it came
about, and if it was either necessary or sufficient (or both). It
is further restricted as a concept by the softer constraints that
a cause must be moving and that it be unique.

Pragmatics
We use a rational speech acts (RSA) model of pragmatic rea-
soning to predict the probability with which a speaker would

select each causal expression to describe a clip (Frank &
Goodman, 2012; Goodman & Frank, 2016). The speaker
chooses a causal expression by reasoning about what a lis-
tener would infer based on the utterance. This is implemented
via recursive reasoning that starts with a literal listener.

The Literal Listener L0 updates his uniform prior beliefs
about which video v the speaker refers to, conditioned on a
given utterance u being literally true of that video. Formally,

PL0(v|u) ∝ P(u is true of v) ·P(v),

An utterance is true of a video with some probability based on
the semantics of the utterance and the joint distribution over
aspect values.

In modeling our experiments, the literal listener is defined
over the full set of video stimuli. For the purpose of demon-
stration, we assume that clips 1–4 in Figure 2 are the only
possible videos that the speaker could be referring to. When
the literal listener hears the utterance “ball A affected ball B’s
going through the gate”, he can rule out clips 2 and 4 (since
it’s literally false that ball A affected ball B in these cases) but
considers clips 1 and 3 to be equally likely (since “affect” is
true in these clips). Assuming that each clip is equally likely
a priori, the literal listener’s beliefs over the different videos
PL0(v|u) can be computed by normalizing the semantic values
in Table 1b across each row to turn it into a valid conditional
distribution over videos given each utterance (see Table 1c).

Notice that even though the semantic value for “enabled”,
“affected”, and “caused” are all 1 for clip 1, the Literal Lis-
tener is less likely to pick out clip 1 when hearing “enabled”
or “affected” compared to “caused”. This is because there are
fewer clips for which the more restrictive “caused” is true,
and therefore that utterance is more informative.

We model the speaker S as soft-maximizing (with optimal-
ity parameter λ) the tradeoff between informativity to a lis-
tener and the cost c of an utterance.

PS(u|v) ∝ exp(λ(logPL(v|u)− cu))

The informativity is based on the surprisal that a listener
would experience at finding out which video the speaker re-
ferred to. The higher probability the listener assigns to the
correct video, the higher the informativity. The optimality
parameter λ controls the “peakiness” of the speaker distribu-
tion. At λ = 1, the distribution is unchanged, but as λ in-
creases, the mass of the distribution collects around the most
probable response. As λ decreases, the distribution becomes
increasingly flat, becoming uniform at λ = 0.

The speaker distribution in Table 1d shows the distribution
over utterances for a first-level speaker reasoning about a lit-
eral listener for each of the sample clips, given λ = 1.0 and
equal cost for each utterance. To compute this distribution,
we multiply the Literal Listener distribution from Table 1c
by a prior on utterances (in this case equal) and then we nor-
malize again, this time over columns . We model participants
with a second-level speaker, who reasons about the informa-
tivity to a pragmatic listener L1.
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Experiment
We tested our model by presenting participants video clips
like the ones shown in Figure 2, and asking them to select
which expression best describes what happened.

Methods
Materials We created 30 video clips, including the exam-
ples from Figure 2. All stimuli included the labeled billiard
balls A and B, a door, and two buttons that controlled the
door’s movement. Some of the stimuli also included a third
(blue) ball or a box. We created this set of video clips to cap-
ture a wide range of causal interactions that are reflected in
the different causal aspects.1

Participants We recruited 64 participants (Mage = 35,
SDage = 8.24, 19 female) online via Mechanical Turk using
Psiturk (Gureckis et al., 2016). We removed two participants
who failed to select “no difference” on an attention check
video in which ball A unambiguously had no causal relation
to the outcome. The experiment took 25 minutes and each
participant was paid $3.67.

Procedure Participants received instructions and had to
successfully complete a set of comprehension check ques-
tions before being able to proceed to the test phase of the
experiment. In the test phase, participants viewed thirty stim-
ulus clips plus one attention check video. The clip order was
randomized between participants. Each participant watched
each video at least twice before choosing one of four answers
to the prompt: “Which of the following sentences best de-
scribes the clip?”: (1) “Ball A caused ball B to go through
the red exit.”, (2) “Ball A enabled ball B to go through the
red exit.” (3) “Ball A affected ball B’s going through the red
exit.”, or (4) “Ball A made no difference to ball B’s going
through the red exit.” The order of the first three descrip-
tions was randomized between participants, but the descrip-
tion with “made no difference” always came last. Participants
were allowed to replay the video as many times as they liked.

Analysis
The causal inference component of the model has one free
parameter which determines how much noise is added to ball
B’s motion in the counterfactual simulations for whether-
causation and sufficient-causation, capturing participants’ un-
certainty about what would have happened. The semantics
component has two free parameters. One for the soft-NOT in
the definition of “no difference”, and one for the soft-AND in
the definition of “caused”. The pragmatics component of the
model has one free parameter λ to determine the speaker opti-
mality. We fit these parameters via a grid-search minimizing
squared error between aggregated participant responses and
model predictions. We found an optimal value of 0.9 for un-
certainty noise, 0.5 for the soft-NOT, 0.4 for the soft-AND,
and 1.5 for speaker optimality.

1The materials for this project may be accessed here: https://
github.com/cicl-stanford/causal language public

Alternative models We compare our model to two alter-
natives: a lesioned version of our full model that removes
the pragmatics component, and a Bayesian ordinal regression
that directly maps from aspect values to utterance selections.
No Pragmatics This model removes the RSA part of the full
model, and predicts selections based on a softmax function on
the semantic values. While this model retains the semantic
assumptions about the mapping between causal aspects and
expressions, it does not consider how informative different
utterances are. Instead, it predicts participants’ responses by
computing a soft-max function over the semantic values (as
shown in Table 1b). We found that normalizing the semantic
values for “caused” hurt this model’s performance, and so our
reported “No Pragmatics” doesn’t consider uniqueness.
Ordinal Regression We fit a Bayesian ordinal regression with
coefficients for each of the causal aspects, the movement fea-
ture, and random intercepts for each participant. This model
assumes the following ordering of the expressions (from
weakest to strongest): “made no difference”, “affected”, “en-
abled”, “caused”. Unlike the other models, the regression
makes no assumptions about a logical mapping from causal
aspects to expressions and instead finds a linear mapping that
best explains the data.

Results & Discussion
Figure 2 shows participants’ selections and model fits for
a subset of the clips. The full model does a good job of
capturing participants’ responses relative to the alternative
models. In clip 1, the “No Pragmatics” model cannot dis-
tinguish between “affected”, “enabled”, or “caused”, since
all of these expressions are equally true, but the full model
prefers “caused” due to its being the most informative utter-
ance. A similar effect of informativity can be observed in
clip 8. The ordinal regression works fine for clip 1 but strug-
gles in other cases. In clip 2, the regression predicts “caused”
would be preferred whereas most participants selected “en-
abled”. In clip 6 the regression predicts “affected”, which
was almost never selected by participants. Interestingly, in
clip 3 which maps onto the force vector configuration for “en-
able” (see Figure 1) according to the force dynamics theory
(Wolff, 2007), participants modal response was to say that
ball A “made no difference” to B’s going through the gate,
and some participants selected “affected”. Almost no one se-
lected “enabled” in this case.

Figure 3 shows scatter plots of model predictions and ag-
gregated participants’ responses for the full set of clips. The
full model’s predictions correlate best with participants’ re-
sponses and show the lowest error, followed by the “No Prag-
matics” model, and lastly the ordinal regression. This pattern
of decreasing performance with each successive lesion sug-
gests that the addition of both the explicit semantics, and the
pragmatic comparison provide important contributions to the
overall model performance. To further assess model fit, we
performed 100 split-half cross validation runs for each model,
splitting the data by trials. The full model achieves a correla-
tion of r = 0.91 [0.83,0.94] (median [5%, 95% percentile]),
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Figure 3: Experiment model fits. Scatter plots of model predictions (x-axis) and proportion of participants selections of each
causal verb (y-axis) for the full model (left), the model without pragmatics (middle), and the ordinal regression. Error bars are
bootstrapped 95% confidence intervals.

outperforming “No Pragmatics” (r = 0.82 [0.73,0.90]), and
the ordinal regression (r = 0.59 [0.30,0.74]).

To what extent can the effects of pragmatic inference be
captured by more fine-grained semantic distinctions? Partic-
ipants almost unanimously endorsed “caused” in clip 1 and
“enabled” in clip 2, which might give the impression that par-
ticipants don’t think that there are multiple true utterances in
these clips. Can we improve or at least match the perfor-
mance of the full model by encoding more in the semantics?
We modified the semantics of “enabled” to explicitly include
a negation of how-cause thus rendering “cause” and “enable”
mutually exclusive. The resulting model has a lower perfor-
mance overall (r = 0.87,RMSE = 0.16). It struggles with
cases like 5 and 8 where participants endorse a wider range
of descriptions. But this observation does raise an interesting
question. To what extent are participant’s selections in this
task a reflection of their semantic understanding of the causal
expressions versus a reflection of pragmatic communicative
pressures in context?

General Discussion
In this paper, we developed a novel model of the meaning and
use of different causal expressions. The model builds on a
counterfactual simulation model to compute different aspects
that capture the way a candidate cause made a difference to
the outcome (Gerstenberg et al., 2015, 2020). It uses these
aspects of causation to define a literal semantics of a set of
causal expressions including “caused”, “enabled”, “affected”,
and “made no difference”. Finally, it uses pragmatic infer-
ence to predict language use by taking into account which
expression would be most informative about what happened.
The model accurately captures what expressions participants
select for a range of video clips depicting dynamic physical
interactions. An important contribution of this work is the in-
tegration of a model of people’s causal knowledge with tools
for modeling pragmatic linguistic communication (Goodman
& Frank, 2016). The comparison of our full model with le-
sioned models shows that both the semantic and the prag-
matic components of the model are critical.

The model developed here makes a first step toward a more
complete theory of causal language use, but is still limited in
important ways. For example, the test for sufficient-causation
includes a quantifier over relevant alternative causes, as well
as relevant causal events. Defining in a more principled way
what should be included in these sets (e.g. should the box be
treated as an alternative cause?) is an open question for future
research (Hesslow, 1988).

Our full model includes a softening parameter in the se-
mantics for “made no difference” that captures the ambiguity
between made no differnce to how versus whether the out-
come occurred. One way to derive this softening in a more
principled way might be by assuming uncertainty in the se-
mantics, which can then be resolved by pragmatic inference
(cf. Bergen, Levy, & Goodman, 2016).

Our literal semantics of “caused” includes the movement
feature which captures people’s reluctance to use the expres-
sion “caused” for stationary causes. However, the inclusion
of this feature seems somewhat ad-hoc and it would be nice to
derive it in a more principled way from the CSM. One possi-
bility is to strengthen the definition of sufficiency. Only mov-
ing balls can be strongly sufficient-causes in our setting – only
moving balls have the capacity to bring about an outcome
without help of other additional causes (like in clip 1). A sta-
tionary cause can never be strongly sufficient in that sense –
it always requires the existence of some other cause to make
the outcome happen. For example, in clip 7, some other cause
must be responsible for ball B’s initial movement.

We focused here on a relatively small set of causal ex-
pressions. In future work, we aim to expand our model to
capture additional causal expressions such as “helped”, “al-
lowed”, “let”, and “made” (cf. Lauer & Nadathur, accepted).
Eventually, we would like to develop the model to produce
written explanations to questions such as “Why did ball B go
through the gate?” In tandem with such an account of expla-
nation generation, we aim to develop a model of explanation
understanding that can infer from causal explanations what
happened in a video.
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