UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Modeling Speed-up and Transfer of Declarative and Procedural Knowledge

Permalink
https://escholarship.org/uc/item/07d3w1vg

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 20(0)

Authors
Johnson, Todd R.
Wang, Hongbin
Zhang, Jiajie

Publication Date
1998

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/07d3w1v8
https://escholarship.org
http://www.cdlib.org/

Modeling Speed-up and Transfer of Declarative and Procedural Knowledge

Todd R. Johnson (Johnson.25@osu.edu)
Department of Pathology; The Ohio State University, 2015 Neil Ave. Room 395
Columbus, OH 43210
Hongbin Wang (wang.190@osu.edu)

Department of Psychology; The Ohio State University

Columbus, OH 43210
Jiajie Zhang (zhang.52@osu.edu)

Department of Psychology; The Ohio State University

Columbus, OH 43210

Abstract

This paper addresses three hypotheses concerning the proce-
dural/declarative distinction: 1) Procedural and declarative
knowledge speed-up as separate, but parallel, power curves; 2)
Procedural knowledge operates in one direction only—from
condition to action—whereas declarative knowledge can be
cued by any of its elements; and 3) Declarative knowledge is
active—it can result in behavior independent of procedural
knowledge. The paper presents a single Act-R model that
closely fits the data of two learning and transfer experiments
conducted by Rabinowitz and Goldberg (1995). The model
provides a good fit to the data, further validating Act-R as a
model of the human cognitive architecture. In addition, the
model shows that the two experiments cannot be used to argue
that declarative knowledge can be retrieved without any inter-
vening procedural knowledge.

Introduction

Recent results suggest that the retrieval of declarative knowl-
edge and the application of procedural knowledge speed up
as separate power laws of practice (see VanLehn, 1996 for a
review). In other words, the time to retrieve a declarative
memory element speeds up as a power function of the num-
ber of retrievals, whereas the time to apply a procedure
speeds up as a power function of the number of applications.
Another set of results indicates that procedural knowledge
operates in one direction only—from condition to action—
whereas declarative knowledge can be cued by any of its ele-
ments (Anderson, 1993).

Rabinowitz and Goldberg (1995) conducted two experi-
ments that nicely illustrate these phenomena. These experi-
ments use a learning and transfer paradigm to examine
learning of declarative and procedural knowledge, and their
different retrieval characteristics. In addition, they used the
results to argue that declarative knowledge is active—it can
result in behavior independent of procedural knowledge.
Furthermore they argued that Act-R (Anderson, 1993) could
not account for these findings, because its declarative mem-
ory is inert and can be retrieved only in the service of a pro-
duction rule.

This paper presents a single Act-R model that accounts for

531

the data in the two Rabinowitz and Goldberg experiments. In
addition, the paper presents protocol results from a new
experiment designed to further test the assumptions of the
experiments and the model. Trafton (1996) has described an
Act-R model for one of Rabinowitz and Goldberg’s experi-
ments, but a bigger challenge is to construct a single Act-R
model that can account for the results from both experi-
ments.

Rabinowitz and Goldberg’s Experiments

Both experiments used an alphabet arithmetic task, which
consists of problems of the form letter] + number = letter2,
where letter2 is number letters after letter!. For example,
A+2=?is C, because C is 2 letters after A.

In Experiment 1, one group of participants (the consistent
group) received training on 12 different alphabet addition
problems that were repeated for 36 blocks. Another group of
participants (the varied group) received training on 72 differ-
ent problems that were repeated for 6 blocks. The problems
used addends from | to 6. Consistent problems had two
occurrences of each addend, whereas varied problems had
12 occurrences.

In the transfer phase, both groups received 12 new addi-
tion problems, repeated 3 times. Rabinowitz and Goldberg
reasoned that during training the consistent group would
quickly acquire declarative knowledge of the answers and
switch to retrieval, whereas the varied group would continue
to count up the alphabet. Thus the consistent group would
get a lot of practice at retrieving the answers to the same 12
problems, but relatively little practice on the procedural
knowledge needed to count up the alphabet. In contrast, the
varied group would receive little or no practice retrieving
declarative knowledge, but a great deal of practice counting
up the alphabet. When transferred to the 12 new addition
problems, the consistent group should revert to counting up
the alphabet, resulting in a dramatic decrease in speed. How-
ever, the varied group should show perfect transfer from the
training problems to the new problems.

The training results are shown in Figure 1. Each point on
the graph is the mean of the median response times for all
subjects on a block of 12 problems. The different asymptotes
support the assertion that varied participants practiced proce-
dural knowledge, whereas consistent participants practiced


mailto:Johnson.25@osu.edu
mailto:wang.190@osu.edu
mailto:zhang.52@osu.edu

4000

3000

RT (msec)

2000

1000

Consistent Observed
Vaned Observed
Consistent Predicted
Vared Predicted

T T T 1
10 15

retrieval.

The transfer results support the predictions (see Figure 2):
the varied group showed perfect transfer (from 2463 ms to
2427 ms), but the consistent group showed considerable
slow down (from 1294 ms to 2858 ms).

Although Experiment 1 supports the predictions, it is also
consistent with a procedural-only long-term store. The con-
sistent subjects might have acquired problem-specific proce-
dural knowledge that directly produces the answer to each
problem. For example, knowledge of the form “If problem is
A+2, then type C."” Since this knowledge is specific to the 12
training problems, it would not have helped the participants
during the transfer phase. This issue is examined in
Rabinowitz and Goldberg's second experiment.

The second experiment attempts to determine whether
consistent training leads to specific procedural knowledge,
or to declarative knowledge. It is based on the hypothesis
that declarative and procedural knowledge have different
retrieval characteristics. Declarative knowledge is thought to
be subject to symmetric retrieval, meaning that any part of a
declarative memory element can act as a cue for the retrieval
of that element. Procedural knowledge is thought to be sub-
ject to symmetric access, meaning that a procedure operates
in only one direction: from condition to action.

Training in Experiment 2 was identical to Experiment 1,
however, in the transfer phase, both groups were given 12
subtraction problems repeated 3 times. A subtraction prob-
lem is of the form letter] number = letter2. For example,
C-2=A. The 12 subtraction problems were inverted versions
of the addition problems that both groups had seen during
training. If the consistent group acquires declarative knowl-

20 25 30 35

Block

Figure 1: Observed and predicted mean response times during alphabet arithmetic training as a function of training
group and practice block. Observed data replotted from Rabinowitz and Goldberg (1995).

532

edge of the addition problems, the participants in this group
should be able to solve the subtraction problems by retriev-
ing and inverting addition problems. However, if this group
has acquired problem-specific procedural knowledge, they
will need to develop a new procedure for counting down the
alphabet, as will the varied participants—who presumably
strengthen their procedural knowledge during training.

Training results are similar to those for Experiment 1. The
transfer results are consistent with the predictions: the varied
group requires considerably more time than the consistent
group (see Figure 3). The consistent group went from 1100
ms to 4557 ms, whereas the varied group went from 2500 ms
to 7689 ms.

Taken together, Experiments 1 and 2 support the speed-up
of both declarative knowledge retrieval and procedural
knowledge application, as well as symmetric access to
declarative knowledge and asymmetric access to procedural
knowledge.

An Act-R Model

Act-R (Anderson, 1993) seems well suited for modeling
these results, because it contains procedural and declarative
long-term stores, along with learning mechanisms that alter
the speed of elements in the two stores as a function of expe-
rience. Such a model will serve three purposes. First, it will
act as an additional test for several of Act-R’s theoretical
assumptions. Second, although each of Act-R’s mechanisms
has been tested in isolation, this model will test the interac-
tion of several mechanisms. Third, the model will provide an
explicit account of declarative and procedural learning and



1500 —_— _—

Joo0 —

2500 NSt 7 e ———
2000 _—// g

1500 "7 —

AT (msec)

—— Consisleni Obswrvad
—&— Conuaislent Predicled

s00
~ & —Vatied Observed
= =m= = Varied Prodicled

End of Training

Transfer
Task

Figure 2: Mean response times for Experiment 1 as a
function of task and group.
transfer that might then be used to analyze a wide range of
more complex cognitive tasks. The model presented here
uses Act-R 4.0 (Anderson & Lebiere, in press).

The alphabet arithmetic model has three main production
rules for the main goal (see Table 1). RETRIEVE-PLUS-
RESULT attempts to solve an addition problem by retrieving
a fact from declarative memory that matches the problem,
but also contains the answer. If successful, it uses the
retricved answer as the solution. RETRIEVE-MINUS-
RESULT attempts to solve a subtraction problem by retriev-
ing an addition declarative memory element (DME) that is
the inverse of the subtraction problem. In other words, if the
current problem is C-2=?, this rule will attempt to retrieve a
fact of the form letter + 2 = C. SUBGOAL-COUNT creates a
subgoal to solve the current problem by counting up or down
the alphabet.

Table 1: The English version of the model's main production
rules.

Retrieve-Plus-Result

IF the goal is to do an alphabet ADDITION arithmetic
problem of the form letter] + number =, but the answer
has not been determined, and there is a fact in memory
stating that letter] + number = letter2

THEN note letter2 as the answer

Retrieve-Minus-Result

IF the goal is to do an alphabet SUBTRACTION arith-
metic problem of the form letter] - number =, but the
answer has not been determined, and there is a fact in
memory stating that letter2 + number = letter]

THEN note letter2 as the answer

Subgoal-Count

IF the goal is to do an alphabet arithmetic problem, but the
answer has not been determined

THEN set a subgoal to compute the answer by counting

The model first tries to retrieve an answer by using the
appropriate retrieval rule. If the retrieval fails, then SUB-
GOAL-COUNT will fire to create the computation subgoal.

The model switches from computation to retrieval by
acquiring declarative representations of problems that it has
solved. When the model begins to solve problems it will not

533

RT (msec)

= U

End of Training Transfer

Task

Figure 3: Mean response times for Experiment 2 as a
function of task and group.
have any DMEs to retrieve, so it will always use SUB-
GOAL-COUNT. However, each time it solves a problem, it
automatically remembers the problem and solution as a
DME. These DMEs are then available for recall in future tri-
als. Details of this memorization process are given below.

The computation subgoal works by counting either up or
down the alphabet. It uses a set of declarative memory ele-
ments that represent the alphabet using the chunks:

ABCD EFG HIJK LMNOP QRS TUV WXYZ

Each chunk is a DME containing up to five letters and a
pointer to the next chunk.

The subgoal contains 26 rules that implement counting
forward and backward through the alphabet. To do this, it
must first retrieve the alphabet chunk that contains the start-
ing letter (e.g., A for A+2=7). Next it steps forward along the
chunk until it finds the starting letter. Finally, it counts along
the alphabet (either forward or backward) the required num-
ber of letters. If it reaches a chunk boundary, it must retrieve
either the next or previous chunk before continuing the
count.

The subgoal automatically produces a declarative memory
trace of the problem and its solution. Goals in Act-R are
DMEs that have been pushed onto the goal stack. You can
think of a goal as problem-specific working memory,
because it encodes the problem, the solution, and possibly
intermediate results. When the subgoal is achieved, a rule
pops the goal off of Act-R’s goal stack, but the goal remains
in declarative memory as a DME representing the problem
and its solution.

The model uses three of Act-R’s mechanisms: base-level
learning, which speeds up access to commonly retrieved
DMEs, strength learning, which speeds up rules that are
commonly used, and the memory retrieval threshold, which
prevents the retrieval of DMEs below a specified activation.

To understand how these mechanisms produce the speed-
up and transfer shown in the data, you must first understand
how Act-R predicts latencies. The total time for a trial in
Act-R is the sum of the times needed to fire each production
rule during that trial. The time to fire a rule is the sum of the
time needed to retrieve the DMEs it matches plus the time to
execute the rule’s action. The time to retrieve a DME is
inversely proportional to DME activation and production
strength:



—f(A, +S,)

t Fe

Here, F and f are constants. A; is the activation of DME i,
and S, is the strength of production p.

The activation of a DME is the sum of its base level acti-
vation and the spreading activation from other DMEs:

Equation |

Equation 2

where Bi is the base level activation, WJ is the source activa-
tion of DME j, and §j; is the strength of association from j to

i. A single unit of source activation is divided among all
DMEs that fill slots of the current goal. For the present
model, this means that elements of the current problem (i.e.,
the letter, operator, and number) will spread activation to
DMEs representing past solutions. For example, if the cur-
rent goal is to solve A+2, then A will spread activation to all
DMEs of previous problems that contain A either as the first
letter or as the answer. The same is true for the operator and
the number. Hence, the DME that represents the past solu-
tion to the current problem will receive activation from all
three elements and will, most likely, be the most active
DME.

The base level activation of a DME reflects the log prior
odds that the DME will be matched by a production rule.
Act-R assumes that these odds increase as a function of use
and decrease as a function of delay. This is given by the opti-
mized base-level learning equation:

—d
B. = In [“L )+B

! 1-d
where P represents the initial base-level, d is the decay rate,
L is the time since the DME was created, and n is the number
of times the DME has been used.

The use count of a DME is incremented whenever the
DME is matched by a rule or when a duplicate DME is cre-
ated. As noted above, when a goal is popped from the stack it
remains in declarative memory. However, if Act-R detects
that a newly created DME is identical to an existing DME,
then it destroys the new DME and increments the use count
of the old DME. This increases the DME’s chances of recall
in future trials,

A DME that matches a rule’s condition will be success-
fully retrieved whenever its activation exceeds the global
retrieval threshold. When a DME is first created, its base-
level activation is set to a base level constant plus a perma-
nent activation noise.

We can now see how the model might learn to retrieve
declarative traces in the consistent training condition, but not
in the varied training condition. In the consistent condition,
the model is exposed to each problem 36 times. These fre-
quent exposures boost the base-level activation of the mem-
ory traces, allowing the retrieval rules to directly recall the
solutions. In contrast, in the varied condition the model is
exposed to each problem only six times. In addition, the var-
ied condition takes longer because the first 72 trials can only
be solved by counting. In the consistent condition there is a
chance of recalling one or more answers after the first 12 tri-

Equation 3

534

als. Even if we assume that both conditions can be done in
the same amount of time, Equation 3 predicts major differ-
ences in final base-level activations.

The speed-up of participants in the consistent condition is
predicted by Equation I, which predicts that retrieval latency
is inversely proportional to activation and rule strength.
Without considering rule strength we can see that an increase
in DME activation will lead to lower predicted retrieval
times and hence lower trial times in the consistent condition.

The model predicts that speed-up in the varied condition
and part of the speed up in the consistent condition is due to
speed-up of procedural knowledge. As discussed earlier in
this section, Act-R assumes that the latency of a rule applica-
tion is inversely proportional to its strength and the activa-
tion of the DMEs that it matches (see the discussion
surrounding Equations 1 and 2). Rule strength is governed
by the same equation that governs base-level learning (Equa-
tion 3) except that L is the time since the rule was created, d
is a separate strength decay constant, and n is the number of
times the rule has been fired.

Strength learning, combined with the latency equations
(Equations 1 and 2), predict the speed-up in the varied condi-
tion and why varied training produces perfect transfer to new
addition problems, whereas consistent training shows no
transfer. In the varied condition, the model receives a lot of
practice using the rules for counting up the alphabet and
these same rules are also used in transfer. In contrast, when
the model is given consistent training, it learns to retrieve the
answers to the 12 problems, so it rarely uses the counting
rules. Once the model reaches the transfer phase it must
begin to use the counting rules again, but their strengths will
be either at or below their initial values, producing the dra-
matic slowdown observed in the data.

The model also accounts for the subtraction transfer
results. In the consistent condition, the model acquires and
strengthens DMEs representing each problem and its solu-
tion. When transferred to subtraction, these DMEs have a
high enough activation to be retrieved and inverted by
RETRIEVE-MINUS-RESULT. The model predicts that per-
formance will be slower than at the end of training, because
it has not yet strengthened RETRIEVE-MINUS-RESULT. In
contrast, when the model is in the varied training condition,
the DMEs rarely become active enough to retrieve, so they
are not available during transfer. Although the model has
strengthened its rules for counting up the alphabet, very few
of these rules are used to count down, so the model must use
counting down rules that have not yet been used, and hence
are much slower to fire.

The above discussion illustrates how the model can make
the right qualitative predictions. The remainder of this sec-
tion discusses the quantitative predictions and their fit to the
observed data.

Four parameters were estimated to fit the model to the
data. These were the base-level learning decay parameter (d
in Equation 3), production strength decay parameter,
retrieval threshold, and permanent activation noise. These
four parameters are critical to fitting the data. The rule
strength decay parameter affects the learning rate of proce-
dural knowledge. The interaction of the retrieval threshold



with the three other parameters determines the amount of
practice needed before the model can switch from computa-
tion to retrieval. To fit the data, these parameters must be set
so that consistent training leads the model to retricve the
answers, whereas varied training leads the model to continue
to compute the answers. In addition, the parameters must
also produce the right learning curves for the two conditions.

The fit reported here was obtained with base-level learning
decay set to .7, strength decay set to .5, retrieval threshold set
to .55, and permanent activation noise variance set to .15. In
addition, the total time to read the problem and type a letter
was estimated at a constant 1.25 sec. This defines the lower
bound of the model’s response times. To reflect familiarity
with the alphabet, all alphabet DMEs were given initial base-
level activations of .974, reflecting 100 uses in the last 1000
seconds. Production rule strengths were initially set to .486,
reflecting 25 uses in the past 1000 seconds. All other param-
eters used the default Act-R 4.0 values.

The model's predictions for the training phase in Experi-
ment 1 are shown in Figure 1 along with the observed data.
The model predictions were produced by simulating 15 sub-
jects in each condition. The same model and parameter val-

ues were used for both conditions. The R? for the consistent
condition was .89 and for the varied condition .78. This is
pretty good considering that two different groups of subjects
were modeled using the same parameters. In addition, the
model captures the qualitative trends in the data—consistent
simulations get much faster than varied simulations.

The transfer results are shown in Figures 2 and 3. The
model closely fits the quantitative and qualitative results for
alphabet addition transfer: consistent training leads to a large
slow down in the transfer phase, whereas varied training
results in perfect transfer. The subtraction transfer simulation
matches the qualitative results, but not the quantitative ones:
consistent training leads to better performance on subtraction
than does varied training, but the model underestimates the
latency of subtraction problems.

The poor fit of the model to the quantitative subtraction
data for the varied condition is easy to fix. It is possible to
increase the time to compute a subtraction problem answer
by either decreasing the strength of the subtraction counting
rules or by switching to a different technique to solve the
problems. A decrease in the rules’ strengths is justifiable
because most people rarely need to recite the alphabet back-
wards. However, it is also possible that people use a different
strategy, such as guessing an answer and then counting for-
ward to see if it is the right one. The next section further
explores this issue.

The poor match to the subtraction latency in the consistent
condition is much more puzzling. Specifically, why do the
participants need over 4 seconds to solve each problem? If
they are really recalling an alphabet addition problem and
inverting it, then they should be closer to the predicted times,
but instead their times are more than double the predictions.
One possibility is that only a subset of varied participants
actually switched to retrieval, whereas the remainder used
computation. This hypothesis is further explored in the next
section.

The model’s good fit to the data shows that active declara-

535

tive knowledge is not needed to account for the results. Thus,
the two experiments do not discriminate between declarative
knowledge being inert or active. However, it is possible that
protocol data might provide evidence concerning this issue.

Protocol Analysis

To better understand the strategies that people use for alpha-
bet arithmetic, particularly with respect to subtraction, a
variant of Rabinowitz and Goldberg's Experiment 2 was run
at The Ohio State University. Participants were 42 under-
graduate students who received course credit for their effort.
The main change to the experiment was that participants
were required to answer a questionnaire that asked them to
describe the strategies they used to solve the problems dur-
ing training and then during transfer.

The analysis considered the three issues discussed at the
end of the last section: 1) strategies for computing subtrac-
tion answers; 2) whether only a subset of consistent training
participants used retrieval in the subtraction transfer phase;
and 3) inert versus active declarative knowledge.

Three main strategies were mentioned during the training
phase: counting only, counting plus recall, and computing (in
an unspecified way) plus recall. Many more strategies were
mentioned in the transfer phase: counting backwards only,
recall and inversion only, counting backwards or computing
initially then switching to recall and inversion, generate and
test, and a mixture of counting back and generate and test.
Table 2 shows the percentage of participants in each cate-
gory. The results clearly support the assumption that varied
training leads to more counting, whereas consistent training
leads to direct retrieval. 95% of the participants in the con-
sistent group reported using recall during training, versus
only 32% of those in the varied condition. Most participants
in the varied group (68%) reported that they used only count-
ing throughout the entire training phase, in contrast to only
5% of participants in the consistent group.

The transfer protocol results are consistent with the
hypothesis that varied training leads to strengthened asym-
metrically accessible procedural knowledge for counting up,
whereas consistent training leads to symmetrically accessi-
ble declarative knowledge. 70% of the consistent group
reported recalling and inverting the addition problems, ver-
sus only 5% of the varied group. Likewise, only 15% of the
consistent group reported counting back only, versus 36% of
the varied group. Another 18% of the varied group used the
generate and test strategy.

These results help clarify the model’s problems of under-
estimating the difficulty of subtraction. First, they show that
at least 15% of the consistent group used computation
instead of recall, offering a possible explanation for the
higher than predicted response times for this group on the
transfer task. Second, the results indicate that the model’s
strategy of counting backward is consistent with the majority
of participants in the varied group, but that the model is sim-
ply underestimating the time required to count back. In fact,
two participants who used generate and test, mentioned that
they switched to this method because counting back was too
difficult.



Table 2: Reported strategy use based on training group and

task.
Condition
Consistent Varied
(n=20) (n=22)
Training
Counting only | 5 % (1) 68% (15)
Count + Recall | 80% (16) 32% (7)
Compute + Recall | 15% (3) 0%
Transfer
Counting back only | 15% (3) 36% (8)
Recall and Invert | 60% (12) 5% (1)
Count back then | 5% (1) 0%
recall and invert
Compute then Recall | 5% (1) 0%
and Invert
Generate and Test | 5% (1) 18% (4)
Count back + Gener- | 0% 9% (2)
ate and Test
Other | 5% (1) 5% (1)
Not codable | 5% (1) 27% (6)

The protocol data provides little evidence of whether
declarative knowledge is inert or active. Only 10% of the
consistent group mentioned computing the answers to a few
subtraction problems before recognizing them as inverted
addition problems. For these two subjects, it seems that
switching to recall and inversion was a conscious activity
that required an initial recognition step. If declarative mem-
ory is truly active, the answers to the subtraction problems
should come to mind immediately, without a conscious rec-
ognition process. Although these results are inconclusive,
they do suggest that a follow-up study using concurrent ver-
bal protocols during the transfer phase might resolve this
issue.

Conclusion

This paper has three main results. The first is that the suc-
cessful fit of the model to the alphabet arithmetic results
shows that the two experiments fail to discriminate between
active or inert declarative memory. Declarative memory in
Act-R is inert—it can only be retrieved in the service of a
production rule. Although the protocol data provided little
insight into this issue, it does suggest that some kind of rec-
ognition process is needed before some participants can
switch to recall and inversion. Recent work on feeling-of-
knowing (i.e., the feeling that you know an answer to a prob-
lem) provides some support for this view. Schunn, et al.

(1997) have shown that feeling-of-knowing is based on simi-
larity of the problem to previously seen problems, not on the
availability of an answer to the problem. Since subtraction
problems are so different from the inverted addition prob-
lems, it seems likely that solving one or two subtraction
problems might lead to a feeling of knowing based on simi-
larity between the solved subtraction problem and previously
seen addition problems. This feeling-of-knowing might then
prompt a person to consciously explore the similarities,

Second, the model’s successful fit to the data and the pro-
tocol results provide additional support for separate declara-
tive and procedural long-term memory stores. In addition,
the model also shows that the separate strengthening of pro-
cedural and declarative knowledge can produce the observed
results,

Third, the paper shows that Act-R is sufficient to capture
both the qualitative and quantitative details of the acquisition
and transfer of procedural and declarative memory. More
importantly, the model shows that several Act-R mecha-
nisms working together can predict whether training will
lead to procedural strengthening or the recall of declarative
knowledge.

Acknowledgments

Special thanks to Mitchell Rabinowitz for supplying the
data presented in this paper. This research was supported in
part by grants N00014-95-1-0241 and N00014-96-1-0472
from the Office of Naval Research, Cognitive and Neural
Science and Technology Division.

References

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ:
Lawrence Erlbaum.

Anderson, J. R., & Lebiere, C. (in press). The Atomic Com-
ponents of Thought. Hillsdale, NJ: Lawrence Erlbaum.

Rabinowitz, M., & Goldberg, N. (1995). Evaluating the
structure-process hypothesis. In F. E. Weinert & W.
Schneider (Eds.), Memory Performance and Competen-
cies: Issues in Growth and Development (pp. 225-242).
Hillsdale, NJ: Lawrence Erlbaum.

Schunn, C. D., Reder, L. M., Nhouyvanisvong, A., Richards,
D. R., & Stroffolino, P. J. (1997). To calculate or not to
calculate: A Source activation confusion model of prob-
lem familiarity's role in strategy selection. Journal of
Experimental Psychology: Learning, Memory, and Cogni-
tion, 23(1), 3-29.

Trafton, J. G. (1996). Alphabet arithmetic and Act-R: A reply
to Rabinowitz and Goldberg, Proceedings of the Eigh-
teenth Annual Conference of the Cognitive Science Society
. Mahwah, NJ: Lawrence Erlbaum Associates.

VanLehn, K. (1996). Cognitive skill acquisition. Annual
Review of Psychology, 47, 513-539.

536



	cogsci_1998_531-536



