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SUMMARY

Evaluating the abilities of others is fundamental for
successful economic and social behavior. We inves-
tigated the computational and neurobiological basis
of ability tracking by designing an fMRI task that
required participants to use and update estimates
of both people and algorithms’ expertise through
observation of their predictions. Behaviorally, we
find a model-based algorithm characterized subject
predictions better than several alternative models.
Notably, when the agent’s prediction was concor-
dant rather than discordant with the subject’s own
likely prediction, participants credited people more
than algorithms for correct predictions and penalized
them less for incorrect predictions. Neurally, many
components of the mentalizing network—medial
prefrontal cortex, anterior cingulate gyrus, temporo-
parietal junction, and precuneus—represented or
updated expertise beliefs about both people and
algorithms. Moreover, activity in lateral orbitofrontal
and medial prefrontal cortex reflected behavioral
differences in learning about people and algorithms.
These findings provide basic insights into the neural
basis of social learning.

INTRODUCTION

Is President Obama an expert? How about the colleagues down

the hall? Whether assessing politicians or colleagues, we contin-

ually form and update impressions of others’ abilities. This skill

carries considerable advantages because identifying the exper-

tise of group members dramatically facilitates group perfor-

mance in a range of contexts and is thought to enhance the

survival fitness of social groups (Einhorn et al., 1977; Libby

et al., 1987; Littlepage et al., 1997; Yetton and Bottger, 1982).

Perceptions of expertise emerge by age eight (Henrich and

Broesch, 2011) and appear to be key in guiding whom people

select as political leaders, role models, professional advisors,

employees, students, and colleagues (Aronson, 2003; Frith and
1558 Neuron 80, 1558–1571, December 18, 2013 ª2013 The Authors
Frith, 2012). Taken together, this suggests that tracking the abil-

ity or expertise of others is critical for effectively navigating our

complex social world. Despite this, the computational and

neurobiological basis of tracking others’ abilities is presently

unknown.

Pioneering neuroscience studies on social learning have

begun to reveal the neural mechanisms responsible for vicarious

learning about the world (Burke et al., 2010; Cooper et al., 2012;

Olsson and Phelps, 2007), as well as for learning about other

agents’ beliefs, intentions, and expected future behavior

(Behrens et al., 2008; Cooper et al., 2010; Hampton et al.,

2008; Suzuki et al., 2012; Tomlin et al., 2006; Yoshida et al.,

2010). However, the computational and neural underpinnings

of learning about other agents’ attributes, such as their exper-

tise, have received much less attention.

To effectively learn a person’s expertise in an uncertain world,

our brains must assign causal responsibility for good or bad

performance to their abilities, rather than to chance. Recent find-

ings across species in the field of reinforcement learning have

implicated lateral orbitofrontal cortex (lOFC), medial frontal and

prefrontal cortex (MFC and mPFC, respectively), and dorsome-

dial striatum in aspects of contingent learning or credit assign-

ment—the processes by which causal responsibility for a partic-

ular reward is attributed to a particular choice (Balleine et al.,

2008; Noonan et al., 2011; Takahashi et al., 2011; Tanaka

et al., 2008; Walton et al., 2010). It remains an open question

whether similar or distinct neural systems underlie social contin-

gent learning.

Another open question about expertise tracking concerns the

nature of the learning mechanism. Because little is known about

this, the set of potential learning mechanisms to be considered

range from relatively simple algorithms, to relatively sophisti-

cated ones based on optimal observer models. Recent findings

have highlighted the prominence of simulation during executed

and observed choice (Nicolle et al., 2012; Patel et al., 2012), as

well as emulation learning (Suzuki et al., 2012). These studies

suggest that subjects’ assessments of others’ expertise might

depend upon their own simulated beliefs about the world.

Another critical open question in social learning concerns

whether forming and updating beliefs about human and

nonhuman agents involve distinct processes. To date, most

computational accounts of social learning have lacked matched

human and nonhuman comparisons (Behrens et al., 2008;

mailto:erie.boorman@gmail.com
http://dx.doi.org/10.1016/j.neuron.2013.10.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2013.10.024&domain=pdf
http://creativecommons.org/licenses/by/3.0/


Figure 1. Experimental Task

(A) Experimental task and timeline are shown.

Participantswere presentedwith either a picture of

a human face (condition 1), a 2D fractal image

symbolizing an algorithm (condition 2), or a hypo-

thetical asset (condition 3). In conditions 1 and 2,

subjects had to either bet for or against the agent.

After a brief delay, they observed the agent’s

choice: a prediction about whether the hypotheti-

cal asset would increase or decrease in value.

Following a jittered fixation period, feedback was

presented indicating whether the asset went up or

down and whether the subject made or lost $1 for

correct or incorrect predictions, respectively. In

condition 3, the subject had to predict whether the

asset would go up or down, and then received

immediate feedback. ISI, interstimulus interval;

RT, reaction time.

(B) The task was divided into four blocks of 55

trials each. In each block, the subject observed

the predictions of three agents (either two people

and one algorithm, or the reverse). The true per-

formance level of an agent is shown above each

stimulus. Assignment of specific faces and fractal

images to the corresponding predictions was

pseudorandomly generated and counterbalanced

across subjects.
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Cooper et al., 2010; Hampton et al., 2008; Suzuki et al., 2012;

Yoshida et al., 2010). Therefore, it is possible that some of the

computations that have been attributed to learning specifically

about other people are in fact also engaged when learning about

nonhuman agents.

We addressed these questions by designing an fMRI task that

required human participants to form and update beliefs about

the expertise of both people and algorithms through observation

of their predictions in a simulated stock market (Figure 1).

Crucially, participants’ expected monetary reward and reward

prediction errors (rPEs) were carefully decorrelated from exper-

tise estimates and expertise-updating signals.

Behaviorally, we found that amodel-based sequential learning

algorithm described subject choices better than several alter-

native models. Furthermore, when subjects believed that agents

made the better choice, they effectively credited people more

than algorithms for correct predictions and penalized them less

for incorrect predictions. Neurally, we found that many compo-

nents of the mentalizing network tracked or updated beliefs

about the expertise of both people and algorithms. Finally,

lOFC andmPFC activity reflected behavioral differences in social

learning.
Neuron 80, 1558–1571, De
RESULTS

To investigate how humans form and

update impressions of other agents’ abil-

ities, we scanned 25 participants while

they made two different types of predic-

tions: predictions about whether or not

a specific agent (condition 1, person;

condition 2, computer algorithm) would
accurately predict increases or decreases in the value of a

hypothetical financial asset (Figure 1A), and predictions about

whether or not the financial asset would go up or down (condition

3; Figure 1A). Each agent had a fixed probability of predicting the

asset’s movement accurately (Figure 2A), although this was not

told to the subjects. As a result, the agents’ forecasting perfor-

mance was independent of the asset’s performance. The asset

increased or decreased in value on any particular trial with a drift-

ing probability (Figure 2B). Subjects’ payoffs depended on the

quality of their predictions, and not on the performance of the

asset: every trial subjects won $1 for correct guesses and lost

$1 for incorrect ones. See the Experimental Procedures for

details.

Behavior: Learning about the Asset
We assumed that subjects learned about the asset using a

Bayesian model that allowed for estimates of the probability of

price changes to evolve stochastically with changing degrees

of volatility. This part of the model is based on previous related

work on Bayesian learning about reward likelihood (Behrens

et al., 2007, 2008; Boorman et al., 2011). The model described

in the Supplemental Information (available online) learned to
cember 18, 2013 ª2013 The Authors 1559



Figure 2. Task Parameters and Behavioral

Analyses

(A) True probabilities and model estimates of cor-

rect performance for the eight agents (four people

and four algorithms) that subjects observed during

the experiment are shown for one subject. For half

of the subjects, blue represents people, and red

represents algorithms; this was reversed for the

other half, as indicated by parentheses.

(B) Underlying probability that the asset’s value

would increase and corresponding model esti-

mates are plotted across trials.

(C) Predictions of the best-fitting behavioral model

are plotted against the true choice frequencies for

all trials (top) and for predictions about people

(bottom left) and algorithms (bottom right). Circles

indicate means. Error bars represent ±SEM.

(D) In the left panels, regression coefficients for

correct and incorrect agent predictions of past

trials are plotted but divided into correct trials

with which subjects agree (Agree and Correct),

disagree (Disagree and Correct), and incorrect

trials with which subjects agree (Agree and Incor-

rect) and disagree (Disagree and Incorrect). In the

rightmost panel, mean coefficients reflecting the

overall influence of outcomes across trials n-1 to

n-5 for correct trials with which subjects agree,

compared to disagree (Agree Correct � Disagree

Correct), and mean coefficients for incorrect trials

with which subjects agree, compared to disagree

(Agree Incorrect � Disagree Incorrect), are plotted

separately for people (blue) and algorithms (red).

Note that inverse coefficients are computed for

incorrect trials such that the y axis indicates posi-

tive effects for correct trials and negative effects for

incorrect trials.

*p < 0.05; **p < 0.01. See also Figure S2.
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effectively track the performance of the asset, as shown in Fig-

ure 2B (Table S1). Furthermore, on average, it successfully

predicted 80.0% (SE, 2.0%) of subjects’ asset predictions and

dramatically outperformed a standard reinforcement-learning

algorithm with a Rescorla Wagner update rule (Rescorla and

Wagner, 1972) that allowed for subject-specific learning rates

(see Table S1 and Supplemental Information for details).

Learning about Ability: Model-Based Behavioral
Analyses
We considered four natural classes of behavioral models

according to which participants might form and update beliefs

about the agents’ expertise (see Experimental Procedures and

Supplemental Information for formal descriptions). All of the

models assumed that subjects used information about agents’

performance to update beliefs about their ability using Bayesian

updating. The models differed on the information that they used

to carry out the updates, and on the timing of those updates

within a trial. First, we considered a full model of the problem,

given the information communicated to subjects, which uses

Bayes rule to represent the joint probability distribution for the

unknowns (i.e., the asset predictability and an agent’s ability),

given past observations of asset outcomes and correct and

incorrect guesses. This model predicts that subjects learn about

the asset and agents together, on the basis of both past asset
1560 Neuron 80, 1558–1571, December 18, 2013 ª2013 The Authors
outcomes and the past performance of agents. This model

would represent an optimal approach for a setting in which these

two parameters fully governed agent performance. Second, we

considered a pure evidence model in which subjects updated

beliefs at the end of the trial based solely on the agent’s perfor-

mance (i.e., whether the agent guessed the asset performance

for the trial correctly). Importantly, this was done independently

of whether or not the subject believed that the agent made the

better choice, given the subject’s own beliefs about the asset.

Third, we considered a pure simulation model, which does the

converse. Here, the model predicts that the subject updates

beliefs on the basis of whether or not the agent made the better

choice according to the subject’s own beliefs about the asset

and independently of the outcome at the end of the trial. In this

case, the ability update takes place in the middle of the trial,

when the agent’s choice is revealed. Finally, we considered a

sequential model that effectively combines the updates of the

evidence and simulation models sequentially. In this case, sub-

jects update their ability estimates in the middle of the trial based

on their belief about the quality of the agent’s choice and then

update this new belief again at the end of the trial based on the

performance of the agent’s prediction.

Out of all models tested, the Bayesian sequential model best

matched subjects’ actual bets, as assessed by Bayesian infor-

mation criterion (BIC; see Table 1), which penalizes additional



Table 1. Model Comparison

Model Params (per Subject) l(p) (Mean per Subject) l(a) (Mean) b (Mean) l(s) (Mean) NlogL (Sum) BIC (Sum)

Sequential Bayes 1 NA NA 4.45 NA 3,018.8 6,253.0

RL sequential 2P 2 0.06 NA 6.78 NA 3,007.7 6,446.0

Bayes evidence 1 NA NA 3.52 NA 3,158.0 6,531.3

RL sequential 3P 3 0.06 0.06 7.18 NA 3,058.7 6,763.3

Bayes simulation 1 NA NA 2.79 NA 3,286.8 6,789.0

RL evidence 2P 2 0.05 NA 6.84 NA 3,245.7 6,922.1

RL simulation 2P 2 0.045 NA 6.47 NA 3,275.4 6,981.4

RL evidence 3P 3 0.064 0.063 6.97 NA 3,194.5 7,034.8

Full model 1 NA NA 6.56 NA 3,414.1 7,043.6

RL simulation 3P 3 0.054 0.045 7.22 NA 3,254.3 7,154.5

RL evidence 4P 4 0.095 0.087 4.51 0.20 3,261.6 7,384.5

A comparison of several alternative models is presented, including the number of parameters (Params) in the model (per subject), the mean value for

terms in themodels (where applicable), the negative log likelihoods (NlogL; summed [Sum] over participants), and the BIC (summed over participants).

Lower values indicate better fits to behavior. l(p), learning rate for people; l(a), the learning rate for algorithms (where applicable; if there is only one

learning rate, then this is denoted by l(p)); l(s), the learning rate for asset tracking; b, the inverse temperature (choice-sensitivity parameter).
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free parameters. As described in the Supplemental Information,

and reported in Table 1, we also tested several reinforcement-

learning versions of these models, with different degrees of

complexity. None of them performed as well as the Bayesian

sequential model. Figure 2A depicts the predictions of the

sequential model alongside the agent’s true probability of

making correct predictions, which shows that the model was

able to learn the agents’ expertise parameters quickly and accu-

rately. Furthermore, comparison of actual choice frequencies

with the predictions of the sequential model revealed a good fit

both across all trials and when considering predictions about

people and algorithms separately (Figure 2C). See Figure S1

for a comparison of model fit by subject.

Learning about Ability: Regression-Based Behavioral
Analyses
Interestingly, the optimal inferencemodel in conditions 1 and 2 is

the pure evidence one, where all updating takes place at the end

of the trial based on the correctness of agents’ guesses. This is

because agent expertise is given by a constant probability of

guessing the direction of asset price change correctly, indepen-

dent of actual asset performance. Because the sequential model

provides a superior fit to subjects’ choices, this implies that

subjects’ behavior is not fully optimal for the task.

In order to explore the source of this deviation from task opti-

mality, we carried out the following regression analysis. We pre-

dicted current bets on the basis of previous correct and incorrect

predictions from the past five trials with a particular agent. See

the Supplemental Information for details. As expected, subjects

were more likely to bet for both specific people and algorithms

following previous correct predictions by that specific agent,

with the size of the effect diminishing over time (Figure S2A).

To quantify the influence of past prediction outcomes on current

choices, we computed the mean of the regression coefficients

for the past five trials observing an agent for people and

algorithms separately. When considering all trial types together,

there were no differences between people and algorithms

(t(24) < 1; p > 0.1).
Ne
However, an interesting difference between learning about

people and algorithms emerged when guesses were divided

into those with which subjects likely agreed, compared to those

with which they disagreed (i.e., when subjects believed agents

chose the better option, as inferred from the asset-tracking

model). Subjects were more likely to bet for human agents

following correct predictions with which they agreed than

following correct predictions with which they disagreed

(t(24) = 2.1; p < 0.05; Figure 2D). This ‘‘agreement boost’’ for cor-

rect trials was not present for algorithms (t(24) < 1; p > 0.1) and

was larger for people than algorithms (t(24) = 2.0; p < 0.05). In

addition, there was an effect of agreement on betting for people

following incorrect trials (t(24) = 2.75; p < 0.01; Figure 2D),

and this effect was even larger for algorithms (t(24) = 6.29;

p < 0.0001; difference between people and algorithms,

t(24) = �2.06 and p < 0.05). This interaction can be illustrated

by plotting the mean regression coefficients from trial n-1 to

n-5 for trials on which subjects would likely agree (A) compared

to disagree (D) on correct (C) trials and incorrect (I) trials

separately (Figure 2D). Formal tests of this difference revealed

a significant interaction between outcome type (AC�DC

versus AI�DI) and agent type (people versus algorithms;

F(24,1) = 7.65; p < 0.01). Similar results were obtained

when we simply computed choice frequencies following

AC, DC, AI, and DI outcome types on trial n-1 (Figure S3).

Together, the data indicate that human, but not algorithm

agents, receive a boost from making correct predictions that

agree with subjects’ beliefs about the asset. They also show

that algorithms are penalized more than human agents for mak-

ing incorrect predictions that disagree with the subjects’ beliefs

about the asset.

We carried two robustness tests of this result. First, we tested

if this interaction effect depended on the amount of experience.

To do this, we repeated the regression analyses separately in the

first and the second half of trials and found a significant inter-

action effect in both halves of the experiment (first half, t(24) =

1.75 and p = 0.046; second half, t(24) = 2.58 and p = 0.008),

and no significant difference between them (t(24) = 0.11;
uron 80, 1558–1571, December 18, 2013 ª2013 The Authors 1561



Figure 3. Expected Value and Reward Prediction Errors

(A) Z-statistic map of the chosen option’s expected reward value at decision

time is presented.

(B) The same is shown for rPEs at feedback time. Maps are thresholded at Z >

3.1, p < 0.001, uncorrected for display purposes and are overlaid onto an

average of subjects’ T1-weighted structural maps.

Activations range from red (minimum) to yellow (maximum) Z-statistic values.
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p = 0.46). Second, we tested if the effect differed across blocks.

This revealed no evidence for an interaction between the effects

of trial type (AC, DC, AI, and DI) and block (first or second; all

t(24) < 1.0; p > 0.1), suggesting that combining data across

blocks was not problematic.

The regression analyses we have reported are complementary

to the model-based fitting approach. The sequential model pre-

dicts that participants update their beliefs partly on the basis of

agreement between the subject and agent, and partly on the

basis of the agent’s correctness, but it does not allow for an inter-

action between the two. In a post hoc effort to directly relate

these two approaches, we constructed an additional reinforce-

ment-learning algorithm that allows for differential updating on

AC, DC, AI, and DI trial types for people and algorithms (see Sup-

plemental Information for details). Due to the large number of

parameters, this model was not identifiable in individual subjects

but could be identified for the group using a fixed effects anal-

ysis. We computed maximum likelihood estimates (MLEs) on

the eight relevant learning rates: people, gp on AC trials, hp on

DC trials, 4p on AI trials, and lp on DI trials; algorithms, ga

on AC trials, ha on DC trials, 4a on AI trials, and la on DI trials.

As shown in Figure S4A, this analysis revealed a greater MLE

for gp than for ga, the learning rate constants on AC trials, but

a smaller MLE for 4p than 4a, the learning rate constants on AI

trials. The differences between MLEs on DC and DI trials
1562 Neuron 80, 1558–1571, December 18, 2013 ª2013 The Authors
were notably smaller. These results are consistent with the

regression results, in that the group of subjects updated their

ability estimates more for people than algorithms following cor-

rect predictions with which they agreed but less for people

than algorithms following incorrect predictions with which they

disagreed.

Neural Representation of Expected Value and rPE
We began the analysis of the fMRI data by searching for ex-

pected value (EV) signals at choice, and rPE signals at feedback.

On the basis of previous findings, we predicted to find EV signals

in ventromedial prefrontal cortex (vmPFC) at the time subjects

made decisions and rPEs in striatum at the time of outcome

(Boorman et al., 2009; FitzGerald et al., 2009; Klein-Flügge

et al., 2011; Li and Daw, 2011; Lim et al., 2011; O’Doherty

et al., 2004; Tanaka et al., 2004). At the time of decision, EVs

are high when subjects believe that the agent will bet correctly

or incorrectly with high probability because they can forecast

their behavior confidently and low when they believe that the

agent’s ability is close to 0.5 because they cannot.

We estimated subjects’ trial-by-trial reward expectation and

rPEs across all conditions using the sequential model and

regressed these against the BOLD response across the whole

brain. These contrasts revealed positive effects of the EV of

the chosen option in vmPFC at choice and rPE at feedback in

both ventral and dorsal striatum, among other regions (Figure 3;

chosen value, Z > 3.1 and p < 0.001, voxel-wise thresholding;

rPE, Z = 3.1 and p = 0.0l, corrected for multiple comparisons

with cluster-based thresholding; Table S2). This provides evi-

dence that activity in vmPFC and striatum reflects expected

reward and rPEs in the context of our task and also provides

further evidence for the descriptive validity of the sequential

model.

Neural Signatures of Ability and Ability Prediction Errors
The remaining analyses focus on identifying signals associated

with computations that can support the learning and tracking

of expertise. The logic of these tests is as follows. The sequen-

tial model makes three general predictions regarding the repre-

sentation and updating of ability beliefs: (1) estimates of ability

should be encoded at the time of decision making in order to

guide subjects’ choices, (2) information related to simulation-

based updates should be evident at the time the subject

observes the agent’s prediction, and (3) information related

to evidence-based updates should be evident at the time of

feedback. To dissociate these signals from reward expectation

and rPEs, we included expertise estimates (at decision), simu-

lation-based expertise prediction errors (at the observed

agent’s prediction), and evidence-based expertise prediction

errors (at feedback) within the same general linear model

(GLM) of the BOLD response as these reward terms. See the

Experimental Procedures for details and Figure S5 for the cor-

relation matrix between task variables. Importantly, we used

unsigned prediction errors (i.e., the absolute value of prediction

errors) as our marker of updating activity. The reason for this,

which is explained in more detail in the Discussion, is that

Bayesian updating is generally largest when outcomes deviate

from expectations (i.e., when agents are surprised), and



Figure 4. BOLD Effects of Ability Estimates

(A) Left view shows a sagittal slice through the

Z-statistic map (p = 0.05, cluster corrected across

the whole brain) for ability belief, as predicted by

the sequential model, independent of agent type

(people or algorithms), at decision time. Right view

shows the time course of the effect of expertise

from independently identified rmPFC ROIs

(circled), plotted separately for people (cyan) and

algorithms (orange) across the entire trial. Dark

lines indicate mean effects; shadows show ±SEM.

(B) Left view is a sagittal slice through Z-statistic

map (p = 0.05 whole-brain cluster corrected)

relating to individual differences in the effect of

expertise and the fit to behavior of the sequential

model. In the right view, a scatterplot of the

percent signal change elicited by expertise in

independently identified rmPFC ROIs (circled) is

plotted against the model fit (less negative

numbers indicate better fit) for people (cyan) and

algorithms (orange) separately.

Activations range from red (minimum) to yellow

(maximum) Z-statistic values.
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unsigned prediction errors provide a simple measure of such

deviations.

Expertise Estimates at Decision
We tested for correlates of subjects’ trial-by-trial ability

estimates, independently of agent type (people or algorithms),

using a whole-brain analysis. This analysis revealed a network

of brain regions exhibiting positive effects of subjects’ ability es-

timates, which included rostromedial prefrontal cortex (rmPFC),

anterior cingulate gyrus (ACCg), and precuneus/posterior cingu-

late cortex (PCC) (Figure 4A; Z = 2.3, p = 0.05 whole-brain

corrected; Table S2). Throughout the paper, we identify ROIs

for further analysis in a way that avoids the potential for selection

bias, by using the leave-one-out procedure described in the

Supplemental Information. Inspecting the time course of the

effects of ability for people and algorithms separately revealed

similar response profiles that occurred specifically at decision

time (Figure 4A). Notably, no regions showed significant differ-

ences in the neural response to expertise estimates for people

and algorithms.

If our behavioral model accurately predicts subject choices,

and our fMRI model identifies a neural representation of a crucial

decision variable from the behavioral model, then one would

expect a particularly strong neural effect of this variable in those

subjects in whom the behavioral model provides a better

description. Hence, we tested whether the fit of the sequential

model to subject behavior was correlated with the BOLD

response to ability in a between-subjects whole-brain analysis.

This identified similar regions of rmPFC, ACCg, and PCC as

the initial analysis and additionally a cluster in dorsomedial

prefrontal cortex (dmPFC) (Figure 4B; Z = 2.3, p = 0.05 corrected;
Neuron 80, 1558–1571, De
Table S3). Furthermore, analysis of

independently identified ROIs in rmPFC

demonstrated a significant correlation

between the sequential model’s fit to a
subject’s behavior and the neural effect of expertise for both

people (r = 0.49; p = 0.01) and algorithms (r = 0.54; p < 0.01;

Figure 4B).

Simulation-Based Expertise Prediction Errors
The sequential model predicts that subjects will first update their

beliefs about ability at the time they see the agent’s choice,

based on whether or not it agrees with their own belief about

the likely asset returns. Unsigned ability prediction errors

(aPEs) time locked to this event revealed a network of brain

regions frequently recruited during mentalizing tasks, including

right temporoparietal junction (rTPJ), dmPFC, right superior tem-

poral sulcus (rSTS)/middle temporal gyrus (rMTG), and an acti-

vation encompassing both ventral and dorsal premotor cortex

(PMv and PMd, respectively) (Figure 5A; Z = 2.3, p = 0.05 cor-

rected; Table S2). Independent time course analyses revealed

largely overlapping effects of this simulation-based aPE when

participants observed people and algorithms’ predictions (Fig-

ure 5A). Once again, we did not find any region that exhibited

significantly different effects of simulation-based aPEs when

subjects were observing people compared to algorithms.

To ascertain whether the neural representation of simulation-

based aPEs in any brain regions might be behaviorally relevant,

we tested whether individual differences in the choice variance

explained by the sequential model were correlated with in-

dividual differences in the BOLD response to simulation-based

aPEs. This whole-brain analysis revealed an overlapping region

of rTPJ (Figure 5B; Table S3; p < 0.05 small volume corrected

for a 725 voxel anatomical mask drawn around the rTPJ sub-

region identified by Mars et al., 2012). This analysis demon-

strates that subjects whose behavior is better described by the
cember 18, 2013 ª2013 The Authors 1563



Figure 5. BOLD Effects of Simulation-

Based aPEs

(A) Left view shows Z-statistic maps (p = 0.05

cluster corrected) for the simulation-based aPE

predicted by the sequential model, independent of

agent type (people or algorithms), at the time of the

observed agent’s choice. Right view shows the

time course of the effect of this aPE in rTPJ

(circled) plotted separately for people (blue) and

algorithms (red) across the entire trial. Z-statistic

map and time course are displayed according to

the same conventions used in Figure 4.

(B) Left view is a sagittal slice through Z-statistic

map (p < 0.001 uncorrected for display purposes)

relating to individual differences in the effect of

simulation-based aPEs and the fit to behavior of

the sequential model across people and algo-

rithms. In the right view, a scatterplot of the percent

signal change elicited by aPEs in independently

identified rTPJ ROIs is plotted against the model fit

for people (blue) and algorithms (red) separately.
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sequential model have a stronger representation of simulation-

based aPEs in rTPJ, suggesting that these learning signals are

relevant to behavior.

Evidence-Based Expertise Prediction Errors
A third prediction made by the sequential model is a neural rep-

resentation of a second aPE at the time subjects witness feed-

back indicating whether the agent’s choice was correct.

Unsigned evidence-based aPEs time locked to this feedback

event were significantly correlated with the BOLD response in

right dorsolateral prefrontal cortex (rdlPFC) and lateral precu-

neus, independently of agent type (Figure 6A; Z = 2.3, p = 0.05

corrected; Table S2). Interrogation of the BOLD time course

from independently identified rdlPFC ROIs on trials when sub-

jects observed people and algorithms separately showed similar

response profiles, both of which were time locked to feedback

(Figure 6A).

Furthermore, similar rdlPFC and lateral precuneus regions

showed greater neural responses to evidence-based aPEs in

those individuals whose choices were better explained by the

sequential model, as revealed by a whole-brain between-

subjects analysis (Z = 2.3, p = 0.05 corrected; Table S3). This

further shows that evidence-based aPEs are related to subjects’

behavior.
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Individual Differences in Learning
and aPEs
We constructed a weighted semi-

Bayesian variant of our sequential model

to assess to what extent subject behavior

was influenced by the evidence-based

update as compared to the simulation-

based update. This model included two

additional free parameters, r and s, that

denote, respectively, the weight given to

the simulation-based and evidence-

based updates. See Supplemental Infor-
mation for details. These parameters were estimated for each

subject, and they effectively shift the distributions on ability up

or down relative to the Bayesian sequential model (Figure S6).

To compute a between-subject covariate that reflected the rela-

tive weighting of the evidence-based update, we normalized the

relevant term by the sum of the two: s/(r+s). We found an over-

lapping region of rdlPFC that exhibited a strong relationship

between this behavioral index and evidence-based aPEs (Fig-

ure 6B; Z = 2.3, p = 0.05 whole-brain corrected; Table S3). More-

over, analysis of independently identified ROIs revealed that this

between-subject correlation was evident for both people (r =

0.58; p < 0.005) and algorithms (r = 0.48; p = 0.01). These ana-

lyses demonstrate that activity in the rdlPFC region correlates

better with evidence-based aPEs in those individuals whose

behavior is influenced more heavily by the evidence-based up-

date than by the simulation-based update, further linking the

neural signals and learning behavior.

Neural Differences in Social Updating
Agent performance can be attributed to ability or to chance. The

behavioral regression analyses reported above show that sub-

jects differentially credited specific agents for their correct and

incorrect predictions in amanner that depended on the subjects’

own beliefs about the state of the asset. We investigated the



Figure 6. BOLD Effects of Evidence-Based

aPEs

(A) Left view shows Z-statistic maps (p = 0.05

cluster corrected) for the second aPE predicted by

the sequential model, independent of agent type,

at the time of feedback. In the right view, a time

course of the effect in rdlPFC (circled) is plotted

across the trial separately for people (green) and

algorithms (magenta). Z-statistical map and time

course are displayed according to the same con-

ventions used in Figure 4.

(B) Left view shows a Z-statistic map resulting

from a between-subjects analysis of intersubject

differences in relative behavioral fit (log likelihood)

of the sequential and pure simulation models and

the BOLD effect of evidence-based aPEs (p = 0.05

cluster corrected). In the right view, the percent

signal change elicited by aPEs in independently

identified rdlPFC ROIs (circled) is plotted against

the relative model fit between sequential and

simulation models (positive values indicate better

fit of sequential compared to simulation model) for

people (green) and algorithms (magenta) sepa-

rately.
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neural processes associated with this effect, by searching

across the whole brain for regions exhibiting significant effects

of the following contrast between unsigned aPEs at feedback:

((AC�DC) � (AI�DI)) 3 people � ((AC�DC) � (AI�DI)) 3 algo-

rithms. Significant whole-brain corrected clusters were found

in left lOFC andmPFC only (Figure 7; Z = 2.3, p = 0.05, corrected;

Table S3). Importantly, this analysis controls for differential up-

dating between people and algorithms that is simply due to (1)

correct versus incorrect predictions (because DC trials are sub-

tracted from AC trials), and (2) predictions with which subjects

would likely agree versus disagree (because AI�DI trials are sub-

tracted from AC�DC trials). Moreover, there was a strong

between-subject correlation between the behavioral interaction

effect illustrated in Figure 2D and the neural interaction effect

in independently defined lOFC ROIs (r = 0.55; p < 0.01).

To assess the robustness of the neural interaction effects in

lOFC and mPFC, we repeated the analysis but replaced the

regressors derived from the sequential model with ones derived

from the model that allows for differential updating on AC, DC,

AI, and DI trials for people and algorithms described above and

in the Experimental Procedures. Unlike the sequential model,

this model explicitly allows for the possibility of an interaction

between agreement and correctness for people and algo-

rithms. This analysis revealed very similar and overlapping

effects in lOFC and mPFC for the same contrast between
Neuron 80, 1558–1571, De
unsigned aPEs at feedback: ((AC�
DC) � (AI�DI)) 3 people � ((AC�DC) �
(AI�DI)) 3 algorithms (Figure S4B; Z >

3.1, p < 0.001 uncorrected).

DISCUSSION

One of the strongest determinants of

social influence is the perceived ability
or expertise of others (Aronson, 2003). Neurally, expert opinion

has been shown to influence the valuation of obtained goods

in ventral striatum, suggesting that it can modulate low-

level reward processing (Campbell-Meiklejohn et al., 2010).

Furthermore, prior advice has been shown to interact with

learning from experience via an ‘‘outcome bonus’’ in the stria-

tum and septum (Biele et al., 2011). Here, we investigated

how beliefs about the expertise of others are represented and

updated.

Computationally, we found that subjects used a model-based

learning algorithm to learn the expertise of human and computer

agents. Interestingly, the learning model was suboptimal for

the task in two ways. First, subjects updated their expertise

estimates both after observing the agent’s prediction (i.e., simu-

lation-based updating) and after observing the correctness of

the agent’s prediction (i.e., evidence-based updating). However,

in the setting of the experiment, in which agents’ performance

is determined by a constant probability of making a correct pre-

diction independently of the state of the asset, only evidence-

based updating is optimal. This may be because participants

believed that agents were tracking the asset in a similar way to

themselves, rather than performing at a constant probability.

Second, subjects took into account their own beliefs about the

asset when updating expertise beliefs, and they did this asym-

metrically for human and algorithmic agents.
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Figure 7. mPFC and lOFC Reflect Behavioral Differences in Ability Learning

(A) Z-statistic maps (p = 0.05, cluster corrected) relating to the interaction between outcome type and agent type revealed in behavior (see Figure 2D) are shown.

Z-statistic maps represent the following contrast between unsigned prediction errors at feedback: ((Agree and Correct � Disagree and Correct) � (Agree and

Incorrect � Disagree and Incorrect)) 3 people � ((Agree and Correct � Disagree and Correct) � (Agree and Incorrect � Disagree and Incorrect)) 3 algorithms.

Z-statistitcal map and time course are displayed according to the same conventions used in Figure 4.

(B) Percent (%) signal change elicited by unsigned prediction errors for correct and incorrect agent predictions, when subjects would have likely agreed

compared to disagreed, is plotted separately for people (blue) and algorithms (red). Plots on the far right show the same divided into the four outcome types

separately: AC, DC, AI, and DI.

See also Figure S4.
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Neurally, we found that the key computations associated with

the sequential model that best described behavior were re-

flected in brain regions previously implicated in aspects of social

cognition (Behrens et al., 2009; Frith and Frith, 2012; Saxe,

2006), like the rTPJ, the aCCg, and rmPFC. The present study

also extends the known roles of lOFC and mPFC in reward

learning to updating beliefs about people and algorithms’

abilities. Furthermore, we found that reward expectations and

rPEs were encoded in parallel in vmPFC and striatum, which

are regions widely thought to be responsible for valuation,

choice, and reward learning (Rangel and Hare, 2010; Behrens

et al., 2009; Rushworth et al., 2011).

The computational model that best described subjects’

behavior predicts that they make their choices based on their

belief about the agent’s expertise. Consistent with this predic-

tion, responses in rmPFC, ACCg, and precuneus/PCC at the

time of decisions were positively correlated with behavioral esti-

mates about agents’ expertise. The model also predicts a simu-

lation-based revision of expertise beliefs, just after subjects

observe the agent’s choice. In line with this prediction, re-

sponses in rTPJ, dmPFC, rSTS/rMTG, and premotor cortex
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tracked unsigned simulation-based aPEs at that time. Finally,

the sequential model predicts an evidence-based revision to

subjects’ expertise estimates when they witness the final feed-

back. Accordingly, we found that responses in lateral precuneus

and rdlPFC at this time increased with unsigned evidence-based

aPEs. Together, these findings show localized neural activity for

all of the key elements of the computational model.

The network found to encode expertise estimates during

decisions has previously been implicated in component pro-

cesses of social cognition. rmPFC has consistently been re-

cruited in mentalizing tasks and has been suggested to play a

top-down role in biasing information to be construed as socially

relevant (Frith and Frith, 2012). Cross-species research has also

suggested that ACCg plays a role in the attentional weighting of

socially relevant information (Baumgartner et al., 2008; Behrens

et al., 2008; Chang et al., 2013; Rudebeck et al., 2006), whereas

activity in both the ACCg and posterior cingulate gyrus, which

was also found to reflect expertise estimates, has been linked

to agent-specific responses during the trust game (Tomlin

et al., 2006). Here, we extend these findings by showing that

these regions also play a role in representing another agent’s
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expertise when this information must be used to guide decision

making. Furthermore, we show that intersubject variance in the

fit of the sequential model explains variance in the neural fluctu-

ations associated with tracking expertise in these same regions,

and also in dmPFC.

Another set of brain regions, which includes rTPJ, dmPFC,

and rSTS/rMTG, encoded simulation-based aPEs, when

observing the agent’s choice. In order to compute simulation-

based aPEs in our task, the subject must simulate his or her

own prediction and then compare this with both the agent’s

prediction and the agent’s estimated expertise level. The behav-

ioral finding that learning depends on one’s own asset pre-

dictions and the neural identification of simulation-based

aPEs complement recent demonstrations that simulation or

modeling plays a central role in predicting others’ behavior (Nic-

olle et al., 2012; Suzuki et al., 2012). Activity in components of

this network has repeatedly been reported during mentalizing

(Frith and Frith, 2012; Saxe, 2006). Intriguingly, some of these

regions are also consistently recruited during tasks that engage

imagination, episodic memory, and spatial navigation (Buckner

and Carroll, 2007; Mitchell, 2009), all of which may require

some form of self-projection or simulation. The involvement of

rTPJ, dmPFC, and STS/MTG in updating estimates about

others’ expertise through simulating their own prediction ac-

cords with previous demonstrations that these regions encode

prediction errors in situations where subjects simulate either

the intentions of a social partner (Behrens et al., 2008) or the

likely future behavior of a confederate (Hampton et al., 2008).

Recent studies have examined the relative contributions of

structures in the mentalizing network to aspects of social cogni-

tion (e.g., Carter et al., 2012). In our study, we did not find any

clear differences between these regions in tracking expertise,

although multivariate approaches may prove more sensitive to

any such differences.

Activity in yet another pair of brain regions, rdlPFC and lateral

precuneus, reflected aPEs when subjects revised expectations

at feedback, and in parallel to rPEs identified in striatum. Similar

regions have been implicated in executive control and, intrigu-

ingly, have recently been shown to encode model-based state

prediction errors (Gläscher et al., 2010). Moreover, activity in

rdlPFC elicited by evidence-based aPEs reflected individual

differences in subjects’ relative reliance on evidence-based

aPEs, compared to simulation-based aPEs, during learning.

Activity in this region therefore reflects individual differences in

the extent to which learning is driven by correct agent perfor-

mance or subjects’ own beliefs about the best prediction.

We found that subjects credited people more than algorithms

for correct predictions that they agreed with rather than with

correct predictions that they disagreed with. In fact, subjects

gave substantial credit to people for correct predictions they

agreed with but hardly gave them any credit for correct predic-

tions they disagreed with, whereas this distinction had little

impact on crediting algorithms for correct predictions (see Fig-

ure 2D). Furthermore, subjects penalized people less than

algorithms for incorrect predictions with which they agreed

compared to disagreed. This difference in learning about people

and algorithms is striking because the only difference between

them in our study was the image to which they were assigned.
Ne
A key open question concerns what factors control the construc-

tion of the prior categories that lead to this behavioral difference.

We speculate that one source of the difference between people

and algorithms may be related to the perceived similarity of the

agent to the subject. It is likely that subjects thought of the

human agents as more similar to themselves, which may have

led them to relate or sympathize more with people than with

algorithms as a function of their own beliefs about what consti-

tuted a reasonable choice.

This differential updating for people and algorithms was

reflected in brain regions thought to be important for contingent

learning in nonsocial contexts (Tanaka et al., 2008; Walton et al.,

2010), suggesting that social and nonsocial contingent learning

share neuroanatomical substrates. Interestingly, there was a

tendency for the neural interaction effects to be driven by people

in mPFC, a region also linked to social cognition, and algorithms

in lOFC, although the difference was not significant. We did not

identify any brain regions that were specific to learning about

the expertise of people or algorithms in our study. Rather,

lOFC and mPFC appear to be utilized differentially in ways that

corresponded to behavioral differences in learning about people

and algorithms.

Many of our analyses revealed common recruitment of regions

often associated with mentalizing when subjects used or revised

beliefs about people and algorithms. Notably, most other studies

investigating the computations underlying social learning have

not incorporated matched human and nonhuman controls

(Behrens et al., 2008; Cooper et al., 2010; Hampton et al.,

2008; Yoshida et al., 2010). It may also be important that our

algorithm possessed agency in that they made explicit predic-

tions, just as people did. It is therefore possible that some of

the neural computations underlying social learning about hu-

mans and nonhuman agents are alike because they both recruit

the same underlying mechanisms. This interpretation is con-

sistent with a recent demonstration that dmPFC activity tracks

the entropy of a computer agent’s inferred strategy during the

‘‘stag hunt’’ game (Yoshida et al., 2010). It is also possible that

learning about expertise is distinct from learning about inten-

tions, dispositions, or status (e.g., Kumaran et al., 2012), which

people might be more likely to attribute to humans than to

nonhuman agents.

One important methodological aspect of the study is worth

highlighting. Behaviorally, we find evidence in support of a

Bayesian model of learning, in which subjects update their ability

estimates whenever they observe useful information. Impor-

tantly, we also find evidence that neural activity in the networks

described above covaried with unsigned prediction errors at

the time of these two updates. Because prediction error activity

ismore commonly associatedwith non-Bayesian reinforcement-

learning algorithms than with Bayesian learning, we provide

some elaboration. Notably, in our study, unsigned prediction

errors at choice and feedback were indistinguishable from the

surprise about the agent’s prediction or outcome (�p(log2(p(gt));

mean correlation, r = 0.98). One possibility is that the unsigned

aPEs reflect the amount of belief updating that is being carried

out in these areas, rather than the direction of updating (see Sup-

plemental Experimental Procedures and Figure S7 for a direct

comparison between aPEs and Bayesian updates). In particular,
uron 80, 1558–1571, December 18, 2013 ª2013 The Authors 1567
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unsigned aPEs are high when subjects’ mean beliefs about the

agents’ abilities are close to 0.5, at which point information about

agents’ bets or accuracy generally induces substantial updating

in our task. On a neuronal level, these may reflect (1) content-

selective attentional weighting or surprise signals (see Roesch

et al., 2012 for a discussion of such signals in reinforcement

learning); (2) within- and/or between-subject variation in the

direction of signed aPEs; or (3) spatial intermixing of signed

and unsigned aPE neurons at a spatial scale that cannot be

resolved with fMRI. We also emphasize that the objective of

this study is not to make a strong claim about whether or not

computations about expertise necessarily involve a Bayesian

updating mechanism. Rather, the Bayesian algorithms used

here provide a tractable framework through which we have

been able to implicate specific neural structures in mediating

computations important for tracking expertise.

Although it is unlikely that subjects uncovered the full structure

of the process underlying the agents’ predictions, it is nonethe-

less the case that the agents in our task did not learn to track the

asset behavior (because their performance stayed constant

throughout the study). We therefore use the term ‘‘expertise’’

loosely to refer to the participants’ beliefs about the performance

level of an agent within a specified domain. This is most likely to

be an oversimplification in the real world, where an agent’s

expertise is likely to depend on context. For example, someone

might be good at picking winning stocks in bull markets, but not

in bear markets; or might be good at forecasting stocks, but not

bonds. Furthermore, the difficulty of the setting will modulate

real-world agent performance and likely expertise judgments.

Determining the role of these contextual factors in evaluating

others will provide a richer characterization of social learning in

naturalistic settings.
EXPERIMENTAL PROCEDURES

Subjects

A total of 31 human subjects participated in the experiment. Two subjects were

removed from further analysis due to excessive head motion, one because of

experimenter error during data collection, and three because they showed no

behavioral evidence of learning, resulting in 25 subjects (eight females/17

males, mean age 25 years, age range 18–30). We excluded volunteers who

were not fluent English speakers and who had any history of a psychiatric or

neurological disorder. All subjects provided informed consent prior to their

participation following the rules of Caltech’s IRB.

Task

Subjects performed a task in which they had to learn about the performance of

a financial asset, as well as about the ability of human and computerized

agents who would predict the performance of the asset. Every trial, the asset

went up with probability pTRUEt and down with probability 1-pTRUEt. These

probabilities evolved over the course of the trial according to the time series

shown in Figure 2B (dashed line). Each element ofpTRUEtwas drawn indepen-

dently from a beta distribution with a fixed variance (SD, 0.07) and a mean that

was determined by the true reward probability on the preceding trial. This func-

tional form was selected, together with all other parameters of the task, to

reduce the correlation among the fMRI parametric regressors described below

(e.g., see Figure S5).

Subjects made decisions in three types of trials (see Figure 1). In condition 1,

they were presented with a face picture of a human agent and had to decide

whether to bet for or against the agent. After a brief delay, they observed the

agent’s prediction about the asset performance (up/down). Following a jittered
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interstimulus interval, feedback was presented indicating whether the asset’s

value went up or down, as well as feedback for the trial. The subject made $1 if

she guessed correctly the performance of the agent (i.e., if she bet for him, and

he was correct, or if she bet against him, and he was mistaken) and lost $1

otherwise. This screen also indicated the performance of the asset with an

up/down arrow, independently of any other contingencies for the trial. The

feedback phase was followed by a jittered intertrial interval.

Condition 2 was identical to condition 1, except that now the agent was

depicted by a 2D fractal image and described to the subjects as a computer-

ized-choice algorithm. In contrast, in condition 1, the agent was described as

depicting the predictions of a real person that had made predictions in a prior

testing session. This was indeed the procedure implemented, although the

choices that the real person made in the prior testing session were predeter-

mined by choices generated by the probabilities shown in Figure 2A.

In condition 3, there was no agent and thus no ability prediction. Instead, the

subject had to predict whether the asset would go up or down. The partici-

pant’s payoff in this case depended on the ability to predict the next outcome

of the asset correctly: $1 for correct guesses, and �$1 for incorrect ones.

We emphasize that in all of the conditions, the subject’s payoff depended on

the quality of his guesses, and not on the actual performance of the asset or of

the agents. At the end of the experiment, subjects were paid their total earn-

ings in cash.

The task was divided into four fMRI blocks (or runs) of 55 trials. In each block,

the subject observed the predictions of three agents (either two people and

one algorithm, or the reverse). There were 11 asset prediction trials per block.

Subjects made predictions about each of the three agents in a block in an

equal or nearly equal number of trials (14 or 15 trials each, depending on the

block). The three agents and asset prediction trials were randomly interleaved

with the constraint that the same stimulus (agent or asset) was never repeated.

In total, this allowed for 88 trials observing people, 88 trials observing algo-

rithms, and 44 asset prediction trials.

There were four people and four algorithms in total. Each agent was charac-

terized by a fixed ability a denoting the constant and independent probability

with which hemade the correct prediction for the asset’s performance in every

trial. Note that the agents with correct performance 0.6 and 0.4 repeated in a

later block but that those with 0.3 and 0.7 performance did not (see Figure 1B).

Because the estimated probabilities for asset price increases fluctuated pri-

marily between 0.25 and 0.75 (see Figure 2B), agent performance seldom

reached unreasonably high or low levels given the predictability of the asset.

Figure 1B summarizes the agent configuration and parameters used in the

experiment.For thehumanagents,weusedmale facesof the sameapproximate

age to minimize any potential inferences of ability based on age or gender-

related cues. Assignment of specific faces and fractal images to agent predic-

tions was pseudorandomly determined and counterbalanced across subjects.

Importantly, at the beginning of the experiment, subjects were told that the

asset performance evolved over time but were not given the details of the

specific process. In addition, they were told that real people and computerized

algorithms programmed by the experimenters to track the asset had previ-

ously made predictions about whether the asset would increase or decrease

in value and that those constituted the predictions that they would bet on.

They were also informed that the identities of the faces displayed did not corre-

spond to the actual people who had made the prior predictions. Finally, they

were told that people agents were selected such that they differed in their abil-

ities to track the asset, and likewise for algorithms.

Behavioral Models

We compared the extent to which various models could account for the sub-

jects’ behavior when predicting the agent’s ability and the performance of the

assets. Except for the Full Model, these models consisted of two separable

components: a model for the performance of the asset, and a model of the

agent’s ability. These models use the history of observed evidence to update

beliefs about the agents’ abilities and about the state of the asset.

Asset Learning Model

The model of how subjects learn the probability of asset price changes is

based on previous work on Bayesian reward learning (Behrens et al., 2007,

2008; Boorman et al., 2011). A detailed description of this model and its
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estimation is provided in the Supplemental Information, as well as in the sup-

plemental tables and figures of these studies; for example, Behrens et al.

(2007).

Bayesian Learning about an Agent’s Expertise

We considered four distinct but natural classes of behavioral models. We refer

to the classes as the full model, pure evidence model, the pure simulation

model, and the sequential model. A formal description of the full model is pro-

vided in the Supplemental Information. Let qt denote the probability that the

asset goes up at time t, according to the subject’s beliefs at the time.

The remainingmodels havesomecommonproperties,whichwediscussfirst.

Inferences about agent expertise are made based on the performance of the

agent’s guesses. Letgtdenote the subject’s belief about thequality of the guess

made by the agent presented at time t. In a slight abuse of notation, let g1:t
denote the quality history of the agent’s guesses, with 1 indexing the first time

the agent was active, 2 the second time it was active, etc. At every active time

step t,gt=1 if the agent’s choice is judged tobeof goodquality, andgt=0other-

wise. The subject assumes that the agent’s ability is described by the constant

but unknown parameter a describing the agent’s (independent) probability of

making the right guess in every trial. In all of the models, subjects update their

beliefs about a using optimal Bayesian inference. Under these assumptions, if

the model starts the learning process with uniform priors over all ability levels,

the posterior beliefs are known to have a very simple form (Jackman, 2009):

pðat + 1jg1:tÞ=Betaðsðg1:tÞ; fðg1:tÞÞ;
where

sðg1:tÞ= 1+ # correct guesses in g1:t

and

fðg1:tÞ= 1+ # incorrect guesses in g1:t:

Let (at+1) denote themean ability level in the posterior distribution, and let b1:t

denote the subject’s history of bets in any trial t involving an agent (i.e., in

conditions 1 or 2). All of the models assume that subjects chose their bet

according to the following soft-max distribution:

Pðbt = forÞ= 1

1+ expð � bðmeanðatÞ � 0:5ÞÞ
where b is a subject-specific free parameter that reflects the sensitivity of sub-

jects’ bets to their expertise estimates. P(bt = against) = 1 � P(bt = for).

The models differ from each other in the information that they use to judge

the agents’ guesses as correct or incorrect and on when the ability beliefs

are updated.

According to the pure evidence model, subjects judge the performance of

the agents based only on the correctness (ct) of their guesses at the end of

the trial. Note that ct = 1 if the agent guesses the performance of the asset

in trial t correctly, and ct = 0 otherwise. Because gt denotes the subject’s judg-

ment about the quality of the agent’s action, in this model, we have that gt = 1 if

ct = 1, and gt = 0 otherwise (i.e., if ct = 0). Because the correctness information

is only revealed at the end of the trial, in this model, beliefs are only updated at

that time. Note that because agent performance was in fact independent from

the asset value, the evidencemodel is the best updating strategy given the true

parameters of the task.

In contrast, in the pure simulation model, subjects judge the performance

of the agents based on whether or not they conform to their own beliefs about

the asset. Thus, in this case, gt = 1 if the agent chooses up (at = 1) when the

subject also believes that the asset is likely to go up (qt > 0.5) and chooses

down (at = 0) when the subject believes that the asset is likely to go down

(qt < 0.5), and gt = 0 otherwise. Because this information is revealed at the

time of the agents’ choices, in this case, expertise beliefs are updated in the

middle of the trial.

Finally, the sequential model combines the two updates, which are carried

out sequentially. In particular, it predicts that subjects update their beliefs

twice: first upon observing how the agent’s choice compares to their own

beliefs about the likely asset performance, and second, at the end of the trial
Ne
based on the correctness of the agent’s prediction. Let u denote the temporal

order of the update within a trial (i.e., u = 1 for the first update and u = 2 for the

second update). In this case, the judgment at the time the agent’s prediction is

observed is given by

gu
t = 1 if ðat = 1 and qt>0:5Þ OR ðat = 0 and qt<0:5Þ

gu
t = 0 otherwise;

and the judgment at the end of the trial is given by

gu
t = 1 if ct = 1

gu
t = 0 otherwise:

The ability belief updated at each time step is the most recent estimate. We

also considered several reinforcement-learning (non-Bayesian) versions of

these three models, none of which performed as well as their Bayesian coun-

terparts (see Supplemental Information for details).

fMRI Data Analysis

fMRI analysis was also carried out using FSL (Jenkinson et al., 2012). A GLM

was fit in prewhitened data space. A total of 28 regressors (and their temporal

derivatives, except for the 6 motion regressors produced during realignment)

were included in theGLM, one for each of the four runs/sessions collected dur-

ing scanning: the main effect of the first decision making phase for predictions

about people (condition 1), algorithms (condition 2), and assets (condition 3);

the main effect of the observed agent’s prediction for people (condition 1)

and algorithms (condition 2); the main effect of the interstimulus interval (con-

ditions 1 and 2); the main effect of the feedback phase for AC, DC, AI, and DI

trials for people (condition 1) and algorithms (condition 2); themain effect of the

feedback phase for assets (condition 3); the main effect of the presentation

screen at the beginning of each run; the interaction between chosen subjective

EV and the decision making phase separately for people, algorithms, and

assets; the interaction between expertise and the decision making phase

separately for people and algorithms; the interaction between simulation-

based aPEs and the other agent’s prediction separately for people and algo-

rithms; the interaction between rPE and feedback phase separately for people,

algorithms, and assets; the interaction between evidence-based aPEs and

feedback phase separately for AC, DC, AI, and DI trials separately for people

and algorithms; and 6 motion regressors. The ITI event was not modeled. See

the main text for the definition of the AC, DC, AI, and DI trials.

We defined additional contrasts of parameter estimates (COPEs) for

expertise and expertise prediction errors of agents, independent of agent

type, as a (1 1) contrast of relevant regressors based on the people and algo-

rithms, as well as COPEs for the difference (1 �1) between expertise and

expertise prediction errors for people compared to algorithms. To search for

common expertise prediction errors at feedback, we defined a ((AC + DC) +

(AI + DI)) 3 people + ((AC + DC) + (AI + DI)) 3 algorithms) contrast. To search

for differences between people and algorithms that depended on an inter-

action between agreement and correctness, as was revealed in behavior,

we defined the following difference contrast: ((AC � DC) � (AI � DI)) 3

people � ((AC � DC) � (A I� DI)) 3 algorithms. Similarly, we defined COPEs

for chosen subjective EV and rPE as a (1 1 1) contrast of relevant regressors

based on people, algorithms, and assets. Aside from the motion regressors,

all regressors were convolved with FSL’s default hemodynamic response

function (gamma function, delay is 6 s, SD is 3 s) and filtered by the same

high-pass filter as the data. COPEs were combined across runs using a fixed

effects analysis. See Supplemental Information for more details of fMRI acqui-

sition, preprocessing, and analyses.
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