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ABSTRACT: Analytic solutions are derived for a convecting atmosphere with mean ascent using a zero-buoyancy bulk-

plume approximation for moist convection. It has been suggested that such solutions should serve as a model for the

relationship between humidity, instability, and precipitation in the tropics, but it is shown here that this interpretation is

incompatible with the observed weak temperature gradient (WTG). Instead, the solutions can be used to understand the

atmospheric state averaged over all tropical convecting regions. Using the analytic solutions in this way, they predict the

changes in humidity, instability, and precipitation as a function of the size of the moist patch in a convectively

aggregated state.
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1. Introduction

In recent years, there has been substantial progress in un-

derstanding the structure of radiative–convective equilibrium

(RCE). This progress was sparked by Singh and O’Gorman

(2013), which introduced the zero-buoyancy approximation

for convective plumes. In this approximation, convection is

treated as having the same temperature as its surrounding

environment. This approximation is clearly inadequate for

understanding the dynamics of convection, but its use for un-

derstanding atmospheric stratification can be justified by the

fact that typical cloud buoyancies in the tropics are less than

1K (Lawson and Cooper 1990; Romps 2010; Sherwood et al.

2013; Romps and Charn 2015). The implication of the zero-

buoyancy approximation for RCE is that the mean convective

available potential energy (CAPE) is related to the mean

saturation deficit of the free troposphere because the satura-

tion deficit affects entraining clouds, which, in turn, set the

mean lapse rate. This idea was validated in a series of cloud-

resolving experiments (Singh and O’Gorman 2013; Seeley and

Romps 2015, 2016).

The zero-buoyancy approximation has also been used to

derive analytic solutions for RCE’s relative humidity (RH) and

lapse rate, and to show that RH is, to good approximation, an

invariant function of temperature in the tropical troposphere

(Romps 2014). This latter result that has been shown to hold in

global climate models (Po-Chedley et al. 2019) and has been

used to explain the ;2%K21 increase in global precipitation

rate (Jeevanjee andRomps 2018). Furthermore, Romps (2016)

showed that the solutions of Romps (2014) could be integrated

in height (with a particular choice of entrainment rate) to give

an analytic expression for CAPE.

All of this progress has been in the context of RCE, but the

tropical atmosphere has large-scale circulations with regions of

ascent (e.g., the ITCZ) and descent (e.g., the subtropics). To

understand how these large-scale circulations affect relative

humidity and static stability, the solutions of Romps (2014)

need to be generalized to allow for a nonzero net mass flux. An

attempt at this was made by Singh et al. (2019), but, as shown

here, that work contained two errors: an error of mathematics

and an error of interpretation. Regarding the latter, Singh et al.

(2019) interpreted their solutions as a useful framework for

understanding the covariation of RH, CAPE, lapse rate, and

precipitation in the tropics, but it will be argued here that this

is not a correct interpretation. Instead, the solutions provide

insight into themean properties of tropical convecting regions,

the stability of the tropics as a whole, and the state of con-

vective aggregation in numerical models. In the sections that

follow, the bulk-plume and zero-buoyancy approximations are

used to extend the analytic RCE solutions of Romps (2014) to

include net vertical motion and to explore their implications.

2. Derivation

RCE may be thought of as the steady-state solution of an

atmosphere in a box: we control the radiative heating rate Q

(Wm23), either by specifying it directly or by choosing a ra-

diation scheme, and there are fluxes of sensible heat and water

that pass through the floor, but the faces of the box are oth-

erwise impermeable to air, heat, and water. For a non-RCE

atmosphere, we may vent the walls of the box, forcing air

to enter or exit the sides of the box at each height. In general,

this will cause there to be a nonzero net vertical mass flux M

(kgm22 s21) at a range of heights in the box. The steady state of

such an atmosphere might appropriately be called radiative–

convective–advective equilibrium (RCAE), with ‘‘advective’’

referring to the net vertical advection of mass, momentum, and

energy.1 Since we control the ventilation on the sides of the

box, M at each height is a parameter that, like Q, may be

controlled externally.

Corresponding author: David M. Romps, romps@berkeley.edu

1Warren et al. (2020) have used the term RCDE with ‘‘D’’

standing for ‘‘dynamical.’’
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We will focus on solutions at a single height in an RCAE

atmosphere. Those solutions can be integrated numerically to

obtain full profiles within the box as in Romps (2014), but we

will not do so here. All of the points we wish to make in this

paper can be understood from studying the solutions at a single

height. Therefore, from here on, Q and M will refer to the

radiative heating and netmass flux at a chosen height in the box

with temperature T and pressure p.

To model the atmosphere within the box, we will use the

bulk-plume approximation. Borrowing from the notation of

Romps (2020), we will denote the upwardmass flux in clouds as

Mc and the upward mass flux in the environment as Me (note

that the value of Me will be negative). The net mass flux M is

equal to the sum of these:M5Mc 1Me. Using the notation of

Singh et al. (2019), wewill define r[2Me/Mc as the ratio of the

magnitudes of the descending environmental mass flux and the

ascending cloud mass flux [note that Me here is equal and op-

posite to the Md variable of Singh et al. (2019)].

To represent the convergence of air through the sides of the

box, we will denote the large-scale horizontal convergence of

mass by l (kgm23 s21). Then, the steady-state bulk-plume

equations for mass, water, and moist static energy (MSE) are
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Here, e and d (kgm23 s21) are the rates of entrainment and

detrainment, respectively. The mass fraction of water vapor in

the environment is qy (kg kg
21) and the mass fraction of water

vapor in the convection is qy*, with an asterisk to denote that

this is the saturated value. In these equations, we have used the

zero-buoyancy approximation, as introduced by Singh and

O’Gorman (2013) and used by Romps (2014); under this ap-

proximation, the small virtual effect is ignored and the tem-

peratures of the convection and environment are treated as

equal at the same height. MSE is represented in these equa-

tions by h (J kg21), with h5 cpT1 gz1 Lqy being the value in

the environment and h*5 cpT1 gz1Lqy* being the value

in the convection. Here, L is the latent heat of evaporation, cp
is the specific heat capacity of air at constant pressure, and g is

the gravitational acceleration. In Eq. (3), c is the condensation

rate (Wm23). Note that, in Eqs. (5) and (6), the radiative

heating rate Q (which will be negative to give cooling) is ap-

plied only to the environment since the clouds are assumed to

occupy a negligible fractional area; equivalently, clouds rise

too quickly for radiative cooling to be of any practical rele-

vance to their energy budget. Note also that horizontal

convergence has been included in these equations, but not

horizontal advection. Finally, we have simplified matters by

assuming a precipitation efficiency of one; i.e., condensates fall

out as rain without any evaporation in the environment. This

same simplification was used in sections 1–5 of Romps (2014)

and in section 2.3 of Singh et al. (2019).

Our first task is to derive an expression for the environ-

mental mass flux. The mathematical error of Singh et al. (2019)

was to assume that ‘‘the downward mass flux in the environ-

ment remains fixed at its RCE value irrespective of the upward

mass flux in the [convection],’’ an approximation that was

claimed to be ‘‘valid if it may be assumed that the down-

ward mass flux is set by a balance between radiative cooling

and subsidence in the environment and that the radiative

cooling rate itself is fixed.’’ To see why this is not a valid

assumption, we can subtract L times (4) from (6) and then

use (2) to obtain

M
e
5

Q

g2 c
p
G
. (7)

In the solution below, we will see that G varies from the dry

lapse rate to the moist lapse rate as the net mass flux is varied,

leading to dramatic variations in Me.

Equations (1)–(6) can be solved analytically in terms of M

and Q (and also the chosen p, T, e, and d) and the derivation

and solutions are given in the appendix. In RCE (i.e., M 5 0),

the cloud mass flux and condensation rate are

M
c,RCE

52
C

Lq
y
*
Q , (8)

c
RCE

52
1

L
Q , (9)

where the constant C (constant in the sense that it does not

depend on M or Q) is defined in Eq. (A36). Note that both

Mc,RCE and cRCE are linear in the radiative heating rate Q

(which, as we recall, is negative). Note also that cRCE does not

depend at all on the rates of entrainment or detrainment; in the

absence of any large-scale flow, the condensation rate must

balance the radiative cooling. Figure 1 shows the dependence

of Mc,RCE and cRCE on the fractional entrainment rate (« [
e/Mc) and the fractional detrainment rate (d[ d/Mc). Figure 1

supplements Fig. 2 of Romps (2014), which plotted RHRCE

as a function of « and d.

For the general solution (i.e., for any net mass flux M), it is

helpful to define

~c[ c/c
RCE

, (10)

~M[M/M
c,RCE

, (11)

~M
c
[M

c
/M

c ,RCE
, (12)

~M
e
[M

e
/M

c ,RCE
, (13)

so that ~c is the condensation rate normalized by its RCE value,

and ~M, ~Mc, and ~Me are the net, cloud, and environmental mass

fluxes, respectively, all normalized by the cloud mass flux in
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RCE. We can also define the lapse rate G, the inverse of the

water-vapor-scale height g, and the relative humidity RH as

G 5 2›T/›z, g52› log(qy*)/›z, and RH5qy/qy*, respectively.

With these definitions, and assuming that RH varies over dis-

tances that are large compared to 1/g, we can then find analytic

solutions for RH, g, G, r, ~c, ~Mc, and ~Me as explicit functions of ~M

that do not depend on the radiative cooling rateQ. TheseRCAE

solutions are given in Eqs. (A37)–(A43) in the appendix.

3. Behavior of the solutions

The solutions are plotted in Fig. 2 for T 5 300K, p 5
100 kPa, and «5 d5 0.5 km21. BecauseQ has dropped out the

solutions, the variables plotted in Fig. 2 are functions only of
~M. To show the limiting behavior of the solutions, the abscissa

ranges over 210 to 10. Black circles mark the RCE values

at ~M5 0.

The limiting values of RH are

RH5

8<
:

1 ~M5‘
«2 «

0

«
~M52‘

, (14)

where

«
0
[

g

c
p
T

�
L

R
y
T
2

c
p

R
a

�
. (15)

In the limit of rapid ascent, we see that the column becomes

saturated (RH 5 1). In RCE (i.e., ~M5 0), the relative hu-

midity takes an intermediate value derived previously by

Romps (2014). In the limit of rapid descent, the relative hu-

midity asymptotes not to zero but to a finite value that is

nonnegative so long as «$ «0. For p5 100 kPa and T5 300K,

«0 5 0.46 km21; for « greater than this value (e.g., the value of

0.5 km21 used in Fig. 2), the solution remains physical for all

values of ~M.

The limiting values of the lapse rate are

G5

8>>>>>>>>><
>>>>>>>>>:

g

�
11

q
y
*L

R
a
T

�

c
p
1

q
y
*L2

R
y
T2

~M5‘

g

c
p

~M52‘

. (16)

In the limit of rapid ascent, the lapse rate equals the moist

adiabat. In RCE, the lapse rate takes an intermediate value

derived by Romps (2014). In the limit of rapid descent, the

lapse rate asymptotes to a dry adiabat.

The limiting values of the condensation rate are

~c5

8<
:

‘ ~M5‘
«2 «

0

d
~M52‘

. (17)

In the limit of rapid ascent, the condensation rate tends to in-

finity. In RCE, ~c5 1. In the limit of rapid descent, the con-

densation rate asymptotes not to zero but to a finite value

that is nonnegative so long as « $ «0. Recalling that the lapse

rate equals the dry adiabat in the rapid-descent limit, it may

sound odd that there could be nonzero condensation in that

limit. This apparent contradiction (precipitating dry-adiabatic

clouds) is resolved by noting that the cloud mass flux tends to

infinity in this limit. Therefore, the condensation rate per unit

of cloud mass flux can go to zero while maintaining a finite

domain-wide condensation rate.

Figure 3 plots the solutions for five different values of « (0.1,

0.2, 0.5, 1, and 2 km21) with d 5 « in all cases. The green curves

are the same as in Fig. 2. Note that the abscissa in Fig. 3 ranges

from22 to 2 instead of210 to 10. In the sections that follow, let

us refer to these solutions as the zero-buoyancy solutions. This

terminology emphasizes the solutions’ defining characteristic:

FIG. 1. For RCE (i.e., ~M5 0) at T 5 300K and p 5 100 kPa with Q 5 0.01Wm23, (left) cloud mass flux and

(right) condensation rate, both as functions of the fractional rates of entrainment and detrainment. The conden-

sation rate is plotted here to emphasize that it is independent of the entrainment and detrainment rates; in RCE, it

must balance the radiative cooling.
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given M and Q, the solutions give the state of the atmosphere

that would be consistent with zero-buoyancy convection.

4. Do the solutions explain tropical variability?

A series of papers (Singh and O’Gorman 2013; Singh et al.

2017, 2019) claimed to show that the zero-buoyancy solutions

are useful for understanding the covariation of RH, CAPE,

and precipitation in the tropics. Sections 4a and 4b will re-

examine the proffered evidence. Section 4c will explain that

the zero-buoyancy solutions fail as a model for tropical vari-

ability because they neglect the gravity waves that enforce the

tropic’s weak temperature gradient (WTG).

a. Variability of CAPE

Singh and O’Gorman (2013) looked at soundings from the

tropical Pacific warm pool (their Fig. 3) and found that high

RH and high CAPE do not coexist. The proposed explanation

was based on the zero-buoyancy solutions: high RH causes a

low lapse rate, i.e., high stability and, therefore, low CAPE.

But this explanation would produce spatial variations in the

lapse rate that are incompatible with WTG. Very roughly,

using a gravitational acceleration of 10m s22, a mean tropo-

spheric temperature of 250K, and a tropospheric depth of

104m, each 1K of virtual temperature anomaly adds;400 J of

additional CAPE (10 3 104/250 5 400). Singh and O’Gorman

(2013) interpreted their Fig. 3 as showing that variations in RH

cause variations in CAPE ranging from 0 to 1500 J. That would

imply horizontal variations in tropospheric temperature of

;4K, which is incompatible with the observed variations of

;1K (see section 4c). Instead, high RH and high CAPE are

rarely found together because such a state would be highly

unstable. If the high CAPE were caused by high boundary

layer entropy, then the entraining convection would thrive in

the high-RH troposphere and would reduce RH, CAPE, or

both. If the high CAPE were caused by an especially cold

troposphere, then gravity waves would act to heat the column,

thereby reducing CAPE and enforcing WTG.

Singh et al. (2017) looked at all available soundings from

368S to 368N and found that conditionally averaged CAPE

roughly doubles as the lower-tropospheric saturation deficit

grows from zero to its median value (their Fig. 3 and Fig. S5).

Again, the explanation for this was based on the zero-buoyancy

solutions: a higher saturation deficit causes a higher lapse rate

and, therefore, higher CAPE. Figure 4a in this paper plots the

conditionally averaged CAPE (red squares) as a function of

saturation deficit using the same data and, to the extent repli-

cable, the same methods. As in Singh et al. (2017), CAPE

roughly doubles as the saturation deficit increases from zero to

its median value. Note, however, that this does not showCAPE

varying with saturation deficit with all else equal. By looking at

368S to 368N, this has included soundings from places that are

FIG. 2. Solutions from Eqs. (A37)–(A43) with p5 100 kPa, T5 300K, and «5 d5 0.5 km21. Circles denote values in RCE, i.e., at ~M5 0.

Dashed lines in the plot of lapse rate mark the moist and dry adiabats.
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in no way tropical (e.g., Oklahoma City and Gwangju, South

Korea, whose average lows are below freezing in winter).

Indeed, if we plot conditionally averaged temperature as a

function of saturation deficit (blue plusses), we see that the

low CAPE at low saturation deficit is caused, in large part, by

the inclusion of cold nontropical soundings. Instead, if we

restrict to 158S to 158N, the conditionally averaged surface

air temperature varies over less than 2K and the condition-

ally averaged CAPE behaves as shown in the red squares

of Fig. 4b.

FIG. 4. (a) For soundings between 368S and 368N, conditionally averaged CAPE (red squares) and surface air

temperature (blue plus signs) as functions of the lower-tropospheric saturation deficit. (b) For soundings between

158S and 158N, conditionally averaged CAPE (red squares), lifted-parcel density anomaly r2 r̂s at 50 kPa (green

circles), r2 r̂s at 50 kPa (purple triangles), and r2 r̂s at 50 kPa (orange diamonds).

FIG. 3. As in Fig. 2, but with « 5 d ranging from 0.1 to 2 km21. Diamonds mark the RH 5 0 solutions in cases where « , «0.
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What causes the unimodal shape of CAPE in Fig. 4b? To

find out, let us denote the density of a lifted surface air parcel as

r̂s, which is a function of the isobar to which it is lifted, and let

us write the environmental density as r, also a function of

isobar. Their difference (r2 r̂s) evaluated at 50 kPa is plotted

in green circles, and we see that this density anomaly is an

excellent proxy for CAPE. Using a bar to denote an un-

conditional average over all soundings, we can figure out

what causes the variation in CAPE by also plotting r2 r̂s
(purple triangles) and r2 r̂s (orange diamonds). These

show that the variation in CAPE is entirely explained

by variations in surface air entropy, with virtually zero

contribution from variations in free-tropospheric density

or, equivalently, free-tropospheric virtual temperature.

Contrary to the prediction of the zero-buoyancy solutions,

the local saturation deficit does not control the local free-

tropospheric temperature.

b. Variability of precipitation

Singh et al. (2019) found that the precipitation rate (i.e.,

condensation rate) goes to zero at a critical relative humidity

RHmin in their zero-buoyancy solutions [see their Eq. (15)].

Noting that precipitation relates nonlinearly with RH in the

tropics, this was cited as evidence for the usefulness of the zero-

buoyancy solutions in understanding the covariation of tropical

RH and precipitation. As mentioned earlier, however, Singh

et al. (2019) made a mathematical error in their derivation.

One clue that something is awry with their solutions is that

their sensitivity to relative humidity is extreme. By Eq. (15)

of Singh et al. (2019), the difference between their minimum

relative humidity (RHmin, at which precipitation turns on)

and the RCE relative humidity (RHRCE, at ~M5 0) is

(RHRCE 2 1)2/RHRCE. For RHRCE 5 0.83 as in Singh et al.

(2019), this implies that precipitation shuts off if the relative

humidity drops from its RCE value by only 3%, implying

that RCE sits on the knife’s edge, just barely able to

precipitate.

This behavior, however, is spurious: with the correct solu-

tions derived here, we can see that there is no such behavior.

The general solution for ~c, given by Eqs. (A40) and (A41), tells

us that

~c5
(A2BRH)RH

d(12RH)
, (18)

where A and B are defined in Eqs. (A28) and (A29) in the

appendix. Since A . B . 0, this tells us that the condensation

rate is positive for all positive values of RH. This relationship

between condensation and relative humidity is plotted as the

solid curve in Fig. 5a using «5 d5 1.5 km21 to match the RCE

RH of 0.83 in Fig. 1 of Singh et al. (2019). Around RCE, the

solution of Singh et al. (2019) gives a precipitation rate that

varies with relative humidity more than 10 times too rapidly.

And, in the correct solution, there is no special RH at which the

condensation rate suddenly turns on.

It is tempting to look at the correct solution in Fig. 5a and

conclude that the convection shuts off at a relative humidity

of 0.69, but that would be wrong. In the zero-buoyancy

solutions, relative humidity is not an independent variable:

instead, it is set internally by the interplay between convection

and its environment. The external control is the mean ascent

rate ~M, and both the relative humidity and the condensation

rate asymptotically approach finite values as ~M goes to

negative infinity. Thus, while it is fine tomakeplots like Fig. 5a, it

must be understood that relative humidity is not ‘‘controlling’’

the condensation rate, the lapse rate, or CAPE any more than

the reverse is true. Figure 5b plots the condensation rate as a

function of the independent variable ~M, which shows that the

correct solution continues to have ~c$ 0:69 no matter what the

value of ~M is. In other words, as a model for tropical variability,

FIG. 5. (a) Normalized condensation rate ~c plotted against relative humidity for the correct solution given by

Eq. (18) (solid) and Eq. (15) (dashed) of Singh et al. (2019). For both curves, p5 100 kPa, T5 300K, and «5 d5
1.5 km21 to match the RCE relative humidity of 83% as in Fig. 1 of Singh et al. (2019). The circle marks the RCE

solution and the square marks the solution with infinite mean descent. (b) As in (a), but with ~c plotted against ~M.
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these solutions would predict that everywhere in the tropics

precipitates at a rate at least 69% as high as RCE. The real

tropics are not like this at all.

c. Why the solutions fail as a model of variability

We have seen that the zero-buoyancy solutions fail to ex-

plain the tropical covariation of RH, CAPE, and precipitation.

The fundamental reason for this failure is that these solutions

are for an atmosphere in a box decoupled from its surround-

ings: that atmosphere in a box does not feel or adjust to the

lapse rate of neighboring patches of atmosphere, thereby vio-

lating the tropical WTG.

In fact, the bulk-plume solutions violate WTG in a rather

spectacular fashion. From the solution for G in Eq. (A39), we

learn that the lapse rate G is linear in RH. In particular,

›G

›RH
52

q
y
*L«

c
p
1

q
y
*L2

R
y
T2

. (19)

With the same parameters used for Fig. 2 (p 5 100 kPa, T 5
300K, «5 d5 0.5 km21), this gives26.5K km21, whichmeans,

e.g., that a change in RH by 50% (e.g., from 50% to 100%)

reduces the lapse rate by 3.3K km21. Integrated over the scale

height of water vapor 1/g (’4.4 km), this would lead to a

temperature difference of’14K at a height of 5 km between a

patch of saturated atmosphere and a patch of atmosphere

with a relative humidity of 50%. In the tropics, such large

temperature variations are unrealizable due to efficient gravity

waves, which maintain a weak temperature gradient. Using the

Integrated Global Radiosonde Archive (IGRA) database

(Durre et al. 2006) and restricting to soundings in the deep

tropics (158S to 158N), where planetary rotation is small, the

interquartile range of temperature at 5 km is only 1.6 K. (No

effort has been made here to detrend the sounding data for the

effect of global warming, so this interquartile range, impres-

sively small already, is biased high.) Repeating this analysis

with radiosonde data from the U.S. Department of Energy

(DOE)Atmospheric RadiationMeasurement (ARM) tropical

western Pacific (TWP; Mather et al. 1998) sites in Darwin,

Manus, and Nauru from 2001 to 2015, the interquartile ranges

for the temperature and virtual temperature at 5 km are found

to be 1.4 and 1.3K, respectively, confirming the near absence of

temperature variation.

Not only is WTG obeyed in the tropics, but the small tem-

perature variations have no meaningful correlation with the

relative humidity, as we saw in Fig. 4b. To illustrate this in

another way, Fig. 6 shows the virtual temperature at 5 km in the

deep tropics plotted at 10 percentiles (5th through 95th) of

the relative humidity of the lower troposphere (defined as the

mean of the relative humidities at the 85-, 70-, and 50-kPa

levels, weighted by their saturation specific humidity). At

each relative humidity, the median and interquartile range of

the 5-km virtual temperature is plotted. Note that the mid-

tropospheric virtual temperature does not vary with lower-

tropospheric humidity.

Also shown in Fig. 6 are the predictions for those tem-

peratures if the 5-km temperature were controlled by local

convection, as is assumed in the zero-buoyancy solutions. For

the purposes of illustration, we will take the lapse rate pre-

dicted by Eq. (A39) (using the mean observed properties at

the standard pressure level of 70 kPa), multiply that lapse rate

by 5 km, and subtract that from 300K to predict the tem-

perature at a height of 5 km. As mentioned earlier, the ob-

served surface air temperature varies by less than 2K when

conditionally averaged on saturation deficit, so measuring the

temperature at 5 km is tantamount to measuring the inte-

grated lapse rate up to that height. The results are plotted in

Fig. 6 for three different entrainment rates, with d set to « in

each case. For all of the model solutions, the slope of T(5 km)

versus RH is entirely inconsistent with the observations.

What we can infer from Fig. 6 is that the tropics have a lapse

rate that is everywhere consistent with an ascending zero-

buoyancy solution with a relative humidity of ;0.8 and an

entrainment rate of;0.5 km21. This roughly matches what we

know: tropical precipitation occurs mostly in regions with

lower-tropospheric relative humidity in the range of 0.7–0.8

(Bretherton et al. 2004) and large-eddy simulations find that

the mean lower-tropospheric bulk-plume entrainment rate for

tropical deep convection is in the ballpark of 0.5 km21 (e.g.,

Romps 2010).

To reiterate, the zero-buoyancy bulk-plume solutions fail

as a model of the covariation of tropical RH, CAPE, and

precipitation because they assume that the lapse rate is set

locally. In reality, the lapse rate of a patch of tropical atmo-

sphere is predominantly controlled by an appropriate average

FIG. 6. A comparison of the dependence of the 5-km tempera-

ture on the lower-tropospheric humidity as (lines) predicted by the

zero-buoyancy bulk-plume model for three different fractional

entrainment rates with d 5 « and (circles) observed in the deep

tropics. Circles give the median virtual temperature at 5 km at each

of 10 percentiles (5th through 95th) of lower-tropospheric relative

humidity. Whiskers show the interquartile range. Lines show the

bulk-plume prediction from Eq. (A39).
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of moist convection throughout the tropics, not by the con-

vection (if any) that is local to the patch.2 The value of the

zero-buoyancy solutions is not that they explain variance in the

tropics, but that they can tell us about the mean RH, CAPE,

and precipitation rate of the deeply convecting regions and the

mean lapse rate that they impart to the whole tropics.

5. The aggregated state

According to this interpretation, the deep tropics provides

only a single realization of a zero-buoyancy solution. To pro-

vide additional checks of the theory, we can turn to numerical

simulations. Here, we will see if the theory can predict the

properties of the convectively aggregated state.

To build a toy model for the aggregated state, we can stitch

together a zero-buoyancy ascending solutionwith a nonconvecting

dry patch. A steady-state descending column does not have deep

convection because its lapse rate is set by ascending convecting

regions elsewhere, and that lapse rate is smaller than is required

for a zero-buoyancy solution withM, 0. For such dry patches, we

can set G to the value from the convecting regions. For the mean

relative humidity of the dry patch, wewill simply approximate it as

zero as would be appropriate for a circulation that converges air

into the dry patch in the upper troposphere; the results below can

be generalized easily to a dry-patch relative humidity that is some

nonzero fraction of the moist patch’s relative humidity. The envi-

ronment descends in this nonconvecting region at the same speed

as in the convecting region, as given by Eq. (7).

If the convecting region occupies a fraction f of the domain,

then mass conservation requires

(12 f )M
e
1 fM5 0. (20)

Rearranging, we find that

f 52
M

e

M
c

. (21)

From Eq. (A41) in the appendix, 2Me/Mc 5 ~c, so

~c5
1

f
. (22)

Since there is no condensation in the dry patch, the normalized

domain-mean condensation rate ~cave is equal to f ~c, which,

combined with (22), gives

~c
ave

5 1 . (23)

Equations (22) and (23) tell us that the radiative cooling

throughout the domain is balanced by the latent heating in the

convecting portion of the domain.

Next, combining (21) with (A40) in the appendix, the rela-

tive humidity in the convecting region is found to be

RH5
d1 fA2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d1 fA)2 2 4fBd

q
2fB

, (24)

where A and B are given by Eqs. (A28) and (A29) in the

appendix. Using our approximation of qy 5 0 in the non-

convecting region, the domain-mean relative humidity is simply

RH
ave

5 f RH . (25)

Finally, to get an expression for G in terms of f, we can combine

(24) with (A39) in the appendix to get

G5
R

y
T2

L

0
@2d1 fA1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d1 fA)

2 2 4fBd

q
2f

1
g

R
a
T

1
A . (26)

Figure 7 plots RH and RHave (left panel), the lapse rate

(middle panel), and the condensation rates (right panel) as

functions of f for five different entrainment rates. The RCE

case corresponds to f 5 1, where convection is uniformly dis-

tributed through the entire domain. As f decreases, the con-

vection is aggregated into a fraction f of the domain.

As the convection aggregates, the relative humidity in the

convecting patch increases while the domain-mean relative

humidity decreases, a behavior that is found in numerical

simulations (Held et al. 1993; Bretherton et al. 2005;Wing et al.

2017). We can understand this behavior as follows: RH in the

convecting patch goes to one as f goes to zero because the

convection is increasingly concentrated in a smaller area,

causing detrainment moistening to overwhelm subsidence

drying there. While the convecting patch approaches satura-

tion as it contracts, the domain-mean relative humidity is given

by fRH, which, in the limit of small f, simply equals f.

We also see that the lapse rate decreases as the atmosphere

aggregates; this, too, is found in numerical simulations of

convective aggregation (Held et al. 1993; Wing and Cronin

2016; Wing et al. 2017; Becker et al. 2018). We can understand

this by noting that RH approaches one as the convecting patch

contracts to zero size, for the reason just noted. As RH ap-

proaches unity, the effect of entrainment vanishes, so the lapse

rate asymptotically approaches a moist adiabat.

Finally, as the convection aggregates, the fixed rate of

domain-mean condensation occurs in a smaller area, causing ~c

to increase. This is a robust feature of every numerical simu-

lation of convective aggregation, reflected in the very high

precipitation rate in the convecting patch. In this toy model,Q

is held fixed, so the domain-mean condensation rate does not

change with aggregation. In models with interactive radiation,

the redistribution of water vapor and clouds can alter the net

radiative cooling of the troposphere, leading to small fractional

changes in the domain-mean precipitation rate [e.g., the&10%

decrease seen by Held et al. (1993)].

6. Summary

Using a zero-buoyancy bulk-plume model of a convecting

atmosphere, analytic solutions have been derived for the

2 Note the key word ‘‘predominantly.’’ Of course, local convec-

tion does have some influence on the local temperature, and the

resulting small temperature variations are essential to establishing

large-scale circulations. But gravity waves are so efficient that

circulations can be established with only small deviations from the

tropical mean temperature profile.
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relative humidity, lapse rate, condensation rate, cloud mass

flux, and environmental mass flux as functions of the pressure,

temperature, fractional rates of entrainment and detrainment,

radiative cooling, and the net mass flux (or, instead of the net

mass flux, the fraction of the domain that is deeply convecting).

This extends the solutions in Romps (2014) to nonzero net

vertical mass flux (see Fig. 3). As in Romps (2014), these so-

lutions can be integrated numerically in the vertical to produce

full atmospheric profiles, although that has not been done here.

Several papers (Singh andO’Gorman 2013; Singh et al. 2017,

2019) have argued that the zero-buoyancy solutions can ex-

plain much of the covariation of RH, CAPE, and precipi-

tation in the tropics. As argued in section 4, the evidence

does not support this claim and, further, the idea is incom-

patible with the tropics’ weak temperature gradient (WTG;

see Fig. 6). Instead, it is appropriate to use an ascending

zero-buoyancy solution to describe the mean properties

(RH, CAPE, lapse rate, and precipitation rate) of tropical

regions that are deeply convecting and, thanks to efficient

gravity waves, the thermal structure of the free troposphere

throughout the tropics.

In section 5, we constructed an aggregated state by stitching

together an ascending and convecting patch of atmosphere to a

descending and nonconvecting patch of atmosphere using the

WTG approximation. As the convection aggregates, the rela-

tive humidity and precipitation rate increase in the ascending

region, the domain-mean relative humidity decreases, the

domain-mean precipitation stays the same (assuming a fixed

radiative cooling rate), and the lapse rate decreases (see Fig. 7).

These behaviors match what has been found in cloud-resolving

simulations of convective aggregation, bolstering the notion

that these zero-buoyancy solutions are an appropriate toy

model for the mean properties of convecting regions.
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APPENDIX

Zero-Buoyancy Solutions

To solve Eqs. (1)–(6), we will first derive expressions for the

condensation rate and the relative humidity.With the aid of (1)

and (2), we can write (3)–(6) as

M
c

›

›z
q
y
*5 e(q

y
2q

y
*)2 c , (A1)

M
e

›

›z
q
y
5d(q

y
*2q

y
) , (A2)

M
c

›

›z
h*5 e(h2 h*), (A3)

M
e

›

›z
h5d(h*2 h)1Q . (A4)

Following Romps (2014), these can be simplified by intro-

ducing g defined as g[2› log(qy*)/›z, the relative humidity

defined as RH[ qy/qy*, and the fractional entrainment and

detrainment rates defined as « [ e/Mc and d [ d/Mc, re-

spectively. Written in terms of these variables, Eq. (A1) be-

comes an expression for the condensation rate,

c5 [g2 «(12RH)]M
c
q
y
*. (A5)

FIG. 7. (left) As a function of the fraction f of the domain that is convecting, RH in the convecting fraction of the domain (solid) and the

domain-mean RH plotted for five different fractional entrainment rates (dashed). (center) The lapse rate as a function of f for the five

different entrainment rates. The dashed lines mark the dry andmoist adiabats. (right) The normalized condensation rate in the convecting

region (~c; solid) and averaged throughout the domain (~cave; dashed). The curves are colored black here because the condensation rates,

expressed as functions of f, are independent of the entrainment rate.
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Since all condensates are assumed to fall out of the atmosphere

immediately upon formation, c represents the generation of

precipitation. Next, using the fact that qy 5RHqy*, applying the

definitions of g, d, and r [ 2Me/Mc, and ignoring the small

fractional vertical variations in RH, Eq. (A2) can be rewritten

as an expression for RH,

RH5
d

d1 rg
. (A6)

As noted by Singh et al. (2019), this expression for RH

generalizes the expression obtained by Romps (2014) to

non-RCE cases (i.e., r 6¼ 1). But Eq. (A5) for the conden-

sation rate and Eq. (A6) for the relative humidity both de-

pend on the unknown g, so our derivation is not yet

complete.

As shown by Romps (2014), g (defined as 2› logqy
*/›z) is

related to the lapse rate G (defined as 2›T/›z) by

g5
LG

R
y
T2

2
g

R
a
T
, (A7)

where Ry and Ra are the specific gas constants of water vapor

and dry air, respectively. Next, consider the definitional

equation for h*, which is h*5 cpT1Lq
y
*1 gz. Taking ›/›z of

this definitional equation and then using Eq. (A7) to rewrite

g in terms of G, we get

›h*

›z
5 g

�
11

q
y
*L

R
a
T

�
2G

 
c
p
1

q
y
*L2

R
y
T2

!
. (A8)

Another expression for ›h*/›z canbe obtainedby dividing (A3) by

Mc and using the fact that h2h*5L(qy 2qy*)5L(RH2 1)qy*.

This gives

›h*

›z
5 «L(RH2 1)q

y
*. (A9)

Equating the right-hand sides of Eqs. (A8) and (A9)

produces

G5

g

�
11

q
y
*L

R
a
T

�
1 q

y
*L«(12RH)

c
p
1

q
y
*L2

R
y
T2

. (A10)

This expression for G is valid in the zero-buoyancy approxi-

mation for RCE and non-RCE atmospheres alike. Note that it

is a linear function of RH. Using (A7), we can obtain from

this a similar expression for g:

g5A2BRH, (A11)

where A and B are constants given below.

Our penultimate task is to find a relationship between

Q, r, and c. Multiplying (A1) by r and adding it to (A2),

and likewise multiplying (A3) by r and adding it to (A4),

we get

M
e

›

›z
(q

y
2 q

y
*)5 (d2 re)(q

y
*2 q

y
)2 rc , (A12)

M
e

›

›z
(h2h*)5 (d2 re)(h*2h)1Q . (A13)

Multiplying (A12) by L and replacing h2 h* with L(qy 2 q
y
*)

in (A13), we get

LM
e

›

›z
(q

y
2 q

y
*)5L(d2 re)(q

y
*2 q

y
)2Lrc , (A14)

LM
e

›

›z
(q

y
2q

y
*)5L(d2 re)(q

y
*2q

y
)1Q . (A15)

Subtracting (A14) from (A15), we are left with

c52
Q

rL
. (A16)

For a given Q, c is inversely proportional to r.

We are now ready to solve the system of Eqs. (1)–(6). Using

(A11) in (A6) and solving for r, we get

r5
d/RH2 d

A2BRH
. (A17)

Taking one minus (A17) and dividing by (A17), we get

12 r

r
5

2BRH2 1 (A1 d)RH2 d

d(12RH)
. (A18)

Next, we can use (A11) and Mc 5 M/(1 2 r) to write (A5) as

c5 [A2BRH2 «(12RH)]
M

12 r
q
y
*. (A19)

Using (A16) to replace c in (A19) andmultiplying both sides by

1 2 r, we get

12 r

r
52

Q

MLq
y
*
[A2BRH2 «(12RH)]. (A20)

Equating the right-hand sides of (A18) and (A20) gives a

quadratic equation for RH in terms of constants (T, p, «, d),

thermodynamic functions of those constants (qy* and L), and

control parameters (Q and M).

Altogether, the solution for the state of the atmosphere is

RH5
2b

2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
2 2 4b

1
b
3

q
2b

1

, (A21)

g5A2BRH, (A22)

G5
R

y
T2

L

�
A2BRH1

g

R
a
T

�
, (A23)

r5
d(12RH)

(A2BRH)RH
, (A24)

c52
Q

Lr
, (A25)

M
c
5

c/q
y
*

g2 «(12RH)
, (A26)

M
e
5M2M

c
, (A27)
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where the constants A, B, b1, b2, and b3 are defined as

A5
L

R
y
T2

g

�
11

q
y
*L

R
a
T

�
1q

y
*L«

c
p
1

q
y
*L2

R
y
T2

2
g

R
a
T
, (A28)

B5
L

R
y
T2

q
y
*L«

c
p
1

q
y
*L2

R
y
T2

, (A29)

b
1
5

B

d
1M(«2B)

Lq
y
*

Q
, (A30)

b
2
52

A1 d

d
1M(A1B2 2«)

Lq
y
*

Q
, (A31)

b
3
5 11M(«2A)

Lq
y
*

Q
. (A32)

We can simplify these solutions further by removing any ex-

plicit dependence onQ. In RCE,M5 0 and the expression for

RH simplifies to

RH
RCE

5
A1 d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A1 d)

2 2 4Bd

q
2B

. (A33)

UsingEqs. (A5), (A11), and (A16), and using the fact that r5 1

in RCE, we can derive expressions for Mc,RCE and cRCE,

M
c,RCE

52
C

Lq
y
*
Q , (A34)

c
RCE

52
1

L
Q , (A35)

where

C5

"
A2 «2 (B2 «)

A1 d2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A1 d)2 2 4Bd

q
2B

#21

. (A36)

Using (10)–(13), which normalize the condensation rate and

mass fluxes by RCE values, we can write Eqs. (A21)–(A27) as

RH5
2b

2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
2 2 4b

1
b
3

q
2b

1

, (A37)

g5A2BRH, (A38)

G5
R

y
T2

L

�
A2BRH1

g

R
a
T

�
, (A39)

r5
d(12RH)

(A2BRH)RH
, (A40)

~c5
1

r
, (A41)

~M
c
5

1

Cr[g2 «(12RH)]
, (A42)

~M
e
5 ~M2

1

Cr[g2 «(12RH)]
, (A43)

with variables
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L
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, (A45)

C5

"
A2 «2 (B2 «)

A1 d2
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(A1 d)2 2 4Bd
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5
B

d
2C(«2B) ~M , (A47)

b
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A1 d

d
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b
3
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This has eliminated Q from the solution.
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