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ABSTRACT 
The recent significant increase in the online food delivery market both in the US and many 

other countries and the emergence of transformative mobility services have brought both 

challenges and opportunities. While their evolution has provided consumers with a variety 

of options, existing services lack transparency in how they operate and their fee structure. 

Moreover, their long-term impact on human health, the environment, and social welfare is 

either unknown or unexplored. This study formulated and solved a simulation and 

optimization of a pricing model based on reinforcement learning techniques to establish 

dynamic, zone-based pricing for online food delivery services. A sample of restaurant or 

other food outlet dining experiences in San Francisco was used as a case study to test the 

model’s performance. The designed pricing method outperformed the alternative static and 

myopic pricing strategies. The results also reveal the importance of platform providers’ 

decisions regarding total profit and deliveries. Optimal surge pricing coupled with the 

efficient distribution of drivers in delivery regions is an important means of improving a 

service’s impact on the environment and social welfare. Microanalysis has concluded that 

the change in general cost per customer relies heavily on the value they place on the time 

they save using online food delivery services as an alternative to dining out. However, the 

elimination of active transport time among those who used to bike or walk to access food 

outlets for their meals negatively impacts their health in the long term. This could potentially 

be mitigated by ordering healthy food or engaging in other forms of physical activity during 

the time saved ordering food online. 
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1. Introduction 

1.1 Context and Motivation 

According to the U.S. Department of Commerce, total US ecommerce sales reached $759.47 

billion in 2020, a 31.73 percent year-over-year increase from 2019's $576.53 billion. The 

growth in e-commerce has been accompanied by increased customer expectations, with 

demands for faster and cheaper deliveries. As a result, the logistics behind those 

transactions, and especially the Last-Mile Delivery (LMD) needs to be fast, inexpensive and 

reliable (Gdowska, Viana et al. 2018). LMD refers to the last stage of the supply chain, where 

items are delivered to their destination (e.g., businesses, stores, or residences). For carriers, 

this is the most inefficient portion of deliveries, and accounts for more than 40% of the total 

supply chain costs in the U.S. (Joerss, Schröder et al. 2016), excluding pickup, line-haul, and 

sorting costs. Moreover, within the e-retailer supply chain, the LMD transport component 

represents about 40% of the used energy and generated emissions (Thompson 2015, 

Generation IM, Preston et al. 2020). LMD is also responsible for traffic externalities in urban 

and suburban areas such as congestion, emissions, accidents, wear-and-tear on road 

infrastructure, and parking issues (Rodrigue and Dablanc 2011), as increased demand has 

pushed more trucks on to the roads (Ibbetson 2019, New York City Department of 

Transportation 2019).  

To reduce the externalities of LMD, package delivery companies are investing in such 

solutions as optimizing vehicle tours (Ursani, Essam et al. 2011, Kritzinger, Doerner et al. 

2012, Ruan, Lin et al. 2012, Xiao and Konak 2016), use of electric vehicles (Cavadas, de 
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Almeida Correia et al. 2015, Roberti and Wen 2016, Jaller, Pineda et al. 2019) or introducing 

policy restrictions on delivery time (Jaller and Holguín-Veras 2013, Holguín-Veras and Aros-

Vera 2014, Jaller, Penagos et al. 2016, Holguín-Veras, Hodge et al. 2018), shipping routes 

(Holguín-Veras, Xu et al. 2015), the size and weight of packages (Holguín-Veras, Jaller et al. 

2013), low emission zone definitions (Giuliano 2013) and consolidation strategies (Morana, 

Gonzalez-Feliu et al. 2014, Jaller and Pahwa 2020, Tiwari, Wee et al. 2021). 

Additionally, transforming the LMD business model has captured increased attention from 

both researchers and stakeholders in recent years (Devari, Nikolaev et al. 2017). Among the 

newly proposed LMD models, there is one where professional freight (PF) delivery is 

supplemented or replaced by crowds of ordinary individuals willing to integrate shipment 

tasks with their own itinerary (Jaller, Otero-Palencia et al. 2020). These shippers are 

assigned delivery tasks and get a small compensation fee that reimburses them for additional 

costs. The widespread use of smartphones and the recent emergence of mobility apps 

increase the opportunity for this strategy. There are many names associated with this new 

shipping, all used interchangeably: crowdshipping, crowd logistics, crowd-sourced delivery, 

cargo hitching, and collaborative logistics (Rai, Verlinde et al. 2017). This study uses the term 

crowdshipping for most of the content.  

Few definitions exist for crowdshipping in the literature (Mehmann, Frehe et al. 2015, Rai, 

Verlinde et al. 2017, Rześny-Cieplińska and Szmelter-Jarosz 2019). Based on the research 

background, this study defines crowdshipping as the outsourcing of delivery tasks to crowds 

of on-demand ordinary agents to finish the last mile delivery and receive a small 

compensation fee in return. The service is usually supported by an online platform with 
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various features (e.g., matching, routing, pricing). Crowds’ transport mode and time shift are 

determinant factors in size and type of delivery items. While the original objective is to 

decrease delivery costs for retailers, it might (but not necessarily) lead to environmental 

benefits if it happens by zero-emission means of transport or through already existing trips 

with a minimal detour. This is due to the fact that crowdshipping could support sustainability 

efforts by using excess transportation capacity for freight deliveries without adding a new 

trip to the network. In a successful implementation, crowdshipping benefits society by 

reducing the number of freight delivery trucks in urban/suburban areas. It also benefits 

companies by helping them reduce their delivery costs while maintaining the same level of 

service. This novel design also creates an opportunity for social collaboration, for non-

professional individuals to be involved in LMD practices and play a role in a social activity 

that might ultimately lead to a more sustainable community. If these benefits materialize, 

crowdshipping could lead to a more environmentally friendly and economically efficient 

system that ultimately improves everyone’s quality of life. 

However, these positive outcomes are based on optimistic assumptions that may not 

necessarily happen in practice. For instance, some crowdshipping services operate in similar 

ways to other courier or transport services, where the carriers (crowds of individuals in this 

case) exclusively conduct transport delivery activities, and not as part of their regular travel 

needs. Nevertheless, during the COVID-19 pandemic, crowdshipping services offered an 

important social benefit by enabling some of the increased shipments and home deliveries 

that are necessitated by quarantined households, minimizing their risk. 
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Crowdshipping is challenging due to its novelty, as well as its lack of operational uniformity 

and real-world systems that disseminate data. Implementing an effective and efficient 

system requires developing a better understanding of the involved stakeholders, as well as 

the environmental, and economic impacts of the strategy. Pourrahmani and Jaller (2021) 

conducted a state-of-practice and research review on crowdshipping. The authors extracted 

critical characteristics of existing platforms in the industry, proposed a typology to 

categorize current crowdshipping practices based on platform type, delivery type, mode, 

pricing strategies; and identified potential unintended consequences, challenges, and 

opportunities associated with the service. According to the findings, insufficient details are 

available on delivery pricing criteria and algorithms in practice. In almost all the operational 

studies, pricing was simply treated as either being fixed or incremental in distance/time, 

although the concept received more thorough attention in the passenger ridesharing market.  

1.2 Focus and Scope 

Pricing affects both demand and supply in crowdshipping. It plays an important role in 

maintaining the supply in the system where couriers may participate in several other on-

demand services, including passenger rideshare markets. The importance of pricing on 

demand is emphasized more in (Rougès and Montreuil 2014) that point to the higher cost of 

unfulfilled requests in delivery compared to the passenger market, where other modes of 

transportation are readily available. According to this, pricing for delivery is the focus of this 

study.  

Overall, three types of pricing and payment schemes were identified in crowdshipping 

(Pourrahmani and Jaller 2021).   
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1. Hourly or per time block. Payment is made for an entire delivery time shift or per 

hour, and does not change, whether the delivery task takes longer or finishes earlier. 

The rate varies depending on the region, time of the day, or weather conditions. There 

are limits set on the maximum number of deliveries per shift. Amazon Flex, Deliv, and 

Shipt have implemented this pricing strategy, whereby couriers choose their time 

shift and are paid per shift/hour of delivery.   

2. Fixed per task with possible incremental charges. This type of payment starts 

with a flat fee and can increase depending on the order or parcel’s weight, size, 

delivery urgency, time, and distance (e.g., New Dada and Hummer crowdshipping). 

This pricing scheme works well in attracting new customers; however, it might not 

be profitable in later phases without incremental charges. Many crowdshipping 

platforms apply this strategy. Some charge a fixed rate per task (e.g., Doordash and 

Instacart), while others also include incremental charges (e.g., Postmates and Deliv). 

Uber implements both strategies alternatively in different regions. 

3. Negotiation and biding. In this scheme, the sender/platform suggests an initial 

flexible price and potential couriers bid, then the best offer is accepted. Nimber and 

DHL MyWays are among the platforms that apply this strategy.  

Customer tips, service fees, and surge (busy time) pricing might impact the initially 

determined price of each strategy.  For more information about pricing and payment 

schemes in the selected crowdshipping platforms, it is referred to (Pourrahmani and Jaller 

2021). 
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Online food delivery services which is considered in this study represents a major 

application for crowdshipping. Food delivery services are growing popular in the U.S. as two-

thirds of Americans now use food delivery apps to order food online. According to Morgan 

Stanley Research in November 2019, 65% of a survey respondents have ordered food for 

delivery online in the last six months. Meanwhile, ordering food delivery by phone decreased 

by 3% per year through 2025. Annual online food delivery sales in the U.S. could grow by 

18%, from 2018 to 2025 (Morgan Stanley 2020, Noah Lichtenstein 2020).   

Food delivery has existed since 1889 when a pizza was delivered in Naples, Italy. It has 

evolved until 1995, when the first online restaurant delivery service, Waiter.com, was 

launched in the Bay Area, featuring more than 60 different restaurants. The current modern 

form of the food delivery services initiated in 2004 when GrubHub was founded in Chicago 

(Caitlyn Hitt 2020). Nowadays, the food delivery digital platforms are increasing in number 

as they become more popular. Some platforms deliver almost everything including, food and 

fresh items. For example, Amazon Flex drivers deliver various Amazon products, including 

Amazon Fresh and Amazon Restaurants (Carter 2019). Postmates delivers a wide range of 

products, with food deliveries being the most significant portion. Others might exclusively 

deliver food from restaurants (e.g., GrubHub) or grocery stores (e.g.,Instacart). 

Recently, restaurants and food providers have responded to difficulties by increasing the 

menu prices to cover the extra costs associated with the third-party delivery platforms or 

services. These additional fees have become a burden to customers paying more than the 

original price for the food (João Pedreda 2020). On the other hand, drivers complain about 

long wait times and low compensation fees. Moreover, there is a lack of clarity about factors 
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affecting delivery fees. For instance, the delivery fee might be more expensive depending on 

other factors rather than only the distance from the customer. Hence, platforms have 

recently focused on new ways to charge customers to reduce their burden and maintain 

profitability for themselves and for drivers.  

Setting delivery fees proportional to delivery distance is psychologically more appealing to 

users and mitigates pricing confusion. Introducing variation in delivery fees due to change 

in demand across spatial zones and time of the day potentially enhances the service 

performance in terms of deliveries and profitability. Coupling pricing with effective demand 

prediction and signaling the level of pricing to couriers in real-time can increase their profit. 

This happens by efficiently repositioning the couriers to zones where demand exists to 

satisfy their expected earnings and reducing their relocation operation cost. Eventually, the 

traffic and environmental food prints are mitigated, particularly for crowdshipping systems 

operating by motor vehicles. 

1.3 Relevance and Importance 

Given the importance of pricing for delivery services and the need for innovation and 

research on food delivery pricing, this study addresses the gap in the empirical analysis for 

food delivery pricing. Next, it conducts a dynamic zone-based pricing simulation-

optimization model for online food delivery with crowds of drivers.  

First, the study collects empirical data from four food giant delivery apps in three Californian 

cities. The data includes details on delivery pricing for various times of the day, food types, 

and delivery distances. The analysis of the results provides insightful information for hidden 

costs of delivery in different apps and its variations across region and time. Although the 
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empirical data analysis by (Kinetic 2019) and (Noah Lichtenstein 2020) was eye-opening, 

the authors were limited to comparing total pricing for various apps. More insight is needed 

into the temporal change in delivery fees and the impact of delivery region on price in 

various food apps.  

Second, the study formulates and solves dynamic zone-based pricing for an online food 

delivery platform using reinforcement learning simulation and optimization techniques. 

This platform is assumed to be of type b (Pourrahmani and Jaller 2021), the most common 

delivery platform featuring tasks such as matching drivers, requesters, and senders, 

facilitating navigation, tracking deliveries, and setting prices. Drivers are on-demand crowds 

willing to fulfill delivery tasks and receive a small compensation in return. Requesters place 

a food delivery order given the offered price and wait time. The dynamic pricing model finds 

the optimal delivery fees with respect to requesters’ elasticities and drivers’ preferences by 

maximizing profits and social welfare. Delivery fees represent a key item in food delivery 

total cost and affect requesters’ payment and the revenue of drivers and platform providers. 

Dynamic delivery pricing is rarely studied in the literature, although it has captured 

researchers’ attention in the passenger rideshare market (Banerjee, Riquelme et al. 2015, 

Cachon, Daniels et al. 2017, Guda and Subramanian 2017, Guda and Subramanian 2019, Garg 

and Nazerzadeh 2021). Most of these studies are highly analytical and are not applied. They 

rarely consider supply and demand elasticities with pricing and matching decisions. 

Furthermore, they lack the flexibility of simulation models that enable the study of different 

actors’ behavior in the system and environmental impacts under different settings. 
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This study contributes to the growing literature in several ways: 1) empirical data collection 

and analysis for food delivery pricing in California; 2) formulating a dynamic zone-based 

pricing model for a many-to-many food delivery problem considering variations in drivers’ 

preferences and requesters’ elasticities; 3) estimating an elasticity function for food delivery 

requesters given the time of day, delivery price, and wait time; 4) building an agent-based 

macrosimulation model based on reinforcement learning to train and simulate the pricing 

model; 5) designing multiple scenarios considering various drivers distribution strategies as 

well as model objectives; 6) evaluating the service operation and its impact on platforms, 

drivers, requesters, and environment.  

1.4 Questions and Objectives 

The main objective of this study is to explore crowdshipping operation in food delivery and 

evaluate its impacts on the system in which pricing decisions play the key role. To do so, 

empirical data is collected from a sample of food delivery requests and a dynamic zone-based 

pricing simulation model is built. This main objective can further be divided into secondary 

objectives as follows:  

a) Collecting  food delivery pricing data from different online food delivery apps and 

studying the factors affecting food delivery pricing 

b) Conducting conjoint analysis survey to build statistical utility functions and estimate   

individuals’ elasticity functions for food delivery 

c) Formulating dynamic zone-based pricing and presenting a solution framework based 

on simulation-optimization techniques    
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d) Evaluating the performance of dynamic zone-based pricing against static and myopic 

pricing 

e) Designing various scenarios in terms of pricing objectives as well as drivers’ fleet size, 

distribution, and preferences; and determining performance indicators to evaluate 

the pricing strategy 

f) Conducting a series of simulation scenarios to measure the impacts of pricing 

decisions on platform profitability and social welfare, drivers’ revenue, requesters’ 

experience, and environment in various contexts 

In particular, the study attempts to answer the following questions: 

1) Where are the influential factors in food delivery pricing? Does the pricing scheme 

vary by the platform provider, city, or region? Is there substantial evidence of 

temporal surge pricing in food delivery pricing? 

2) How do delivery fees, wait times, and time of the day affect requesters’ delivery 

decisions? Are these significant in their elasticity value? 

3) Is dynamic zone-based pricing better than static and myopic pricing strategies? Does 

it increase platform profitability and deliveries? 

4) How different are the social welfare and profit maximization scenarios regarding the 

number of deliveries, total profit, and price reliability for the platform? Are various 

settings for crowds of drivers affecting the system?  

5) How much is the change in general cost and time saved by switching from eat-out 

trips to online food delivery for different mode users (walkers, bikers, and drivers)? 
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1.5 Overview of the Structure 

This dissertation comprises seven chapters, each of which includes several sections and ends 

with a summary wherever appropriate. A broad literature review on crowdshipping is 

organized and provided in the next chapter, followed by an outline of research gaps and 

future directions. Chapter 3 focuses mainly on providing enough background information to 

support the methodology and materials used in the following chapters. It starts with a 

detailed description of current food delivery pricing and reviews the empirical data analysis 

and practices of other researchers in this field. Then, the dynamic pricing concept and 

foundations are clarified using examples in the transportation shared economy, followed by 

a paragraph about existing limitations and how this study intends to improve them. Chapter 

3 further presents fundamental theory and formulations for conjoint analysis, dynamic 

programming, and reinforcement learning, which are principles for the pricing model 

formulation and solution framework in this study. Chapter 4 exclusively describes data 

collection and analysis. It starts with a detailed explanation of the food delivery data 

collection case study and relevant preliminary data analysis. Similarly, the conjoint analysis 

survey and sample details are presented afterward and end with elasticity function 

estimation results. The pricing mathematical formulation model, the dynamic programming 

equivalent problem and simulation-optimization solution framework are presented in 

Chapter 5. Chapter 6 includes all results about pricing algorithm performance and relevant 

discussions to respond to study objectives and questions. Finally, this study ends in Chapter 

7 with an overall conclusion. References are attached. 
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2. Literature Review: Crowdshipping in Research 

Although crowdshipping is an emerging research area, several published studies are 

contributing well to the domain. The author has identified two major categories of studies, 

according to the employed approach: 1) Survey and data analysis, and 2) Matching and 

routing optimization. This section reviews the critical studies conducted within each 

category and presents the underlying methodology, assumption, and findings. Summary of 

reviews for each section are illustrated in separate Tables (Table 1 and Table 2). 

2.1 Survey and Data Analysis 

In this category, authors offered an exploration of a wide range of factors that affect the 

probability of an individual participating in crowdshipping, and measured service success 

by conducting Stated Preference (SP) or Revealed Preference (RP) surveys and pilot tests. In 

general, the behavioral studies can be further split depending on whether the work is 

concentrated on which actor: senders, crowdshipper, or receiver.  

Majority of papers studied the crowdshippers’ behavior and preferences. Marcucci, Le Pira 

et al. (2017) conducted an SP survey from college students in Rome and reported that 87% 

of respondents agree to work as a crowdshipper, while this rate decreases as the package 

size increases or the compensation fee decreases. Over 90% were willing to accept packages 

from a crowdshipper, but the rate decreases if there is no way to contact the shipper or to 

track the delivery task. Serafini, Nigro et al. (2018) used an SP survey for the city of Rome 

and discrete choice models to identify important factors impacting metro passenger’s 

willingness to be a crowdshipper by picking up parcels from lockers installed around the 
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metro stations and deliver them along their journey. 43.1% of the sample was not willing to 

modify their original path, while 39% and 15% accepted deviation up to 300 and 600 meters, 

respectively. Important factors impacting an individual’s willingness to participate were the 

location of locker to pickup parcel, compensation fee, income deposit frequency, and delivery 

booking type, in the order of mention. Ermagun and Stathopoulos (2018) explored a national 

dataset obtained from a leading crowdshipping company in the U.S. Preliminary analysis 

suggested that in 20% of cases, supply is less than the demand, and in 36.4% cases, they are 

equal. The authors developed a two-part supply model in which requesters are matched with 

drivers at an auction. authors found that drivers are less interested in deliveries with a 

restricted schedule. Built environment characteristics were more significant for origin than 

destination. Population and employment density were negatively correlated with receiving 

a request. On the other hand, job accessibility and diversity had a positive relationship with 

the available supply. The probability of receiving a bid was higher in trip origin with a higher 

percentage of families and auto ownership, while this was lower in origin and destination 

with low-income residents. 

Punel and Stathopoulos (2017) conducted an online SP survey in the U.S. to gain insights on 

potential crowdshipping senders. The findings indicated that 7% of the sample already used 

the service, expressing the service is inefficient and complicated to use. Millennials were 

more eager to use the service as opposed to the older age population who are unfamiliar 

with the overall concept. Higher-income and employment, as well as lower education also 

contributed to more crowdshipping usage. Multinomial Logit (MNL) models were estimated 

and revealed distinct trends for different shipping distances. Local shipments were time-

sensitive, while longer shipments focused on the management and control. Longer distance 
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delivery emphasized the driver training and experience in the platform, while the driver 

rating score more influenced shorter distance delivery decisions. Gatta, Marcucci et al. 

(2019) conducted a Stated Preference (SP) survey in Rome, Italy, to estimate the potential 

crowdshipping senders. Shippers were metro passengers who pick up the parcels from 

lockers located at the stations. Around 50% and 25% of the sample foresaw a successful 

implementation in urban and suburban areas, respectively. The majority of potential senders 

were metro passengers or those residing within surrounding areas. Among the included 

variables, a flexible delivery schedule was the most significant one. The simulated scenario 

showed a total annual savings of 239 kg particulates and 1,098 tons of carbon dioxide 

emission. However, economic costs always exceeded revenue for the platform. 

Meanwhile, there are a few studies which include more than one entity in their exploration. 

Le and Ukkusuri (2018) conducted SP and Revealed Preference (RP) surveys in the U.S. and 

Vietnam to understand the behavior of requesters and potential crowdshippers. The 

requesters were more likely to choose the service for items with shorter delivery times. 80% 

of individuals in the dataset were interested in being a crowdshipper, and having additional 

sources of income was the main motivation. A car represented the main mode of 

transportation (approximately 70%). The average accepted time deviation and average 

expected compensation fee for delivery tasks were around 12 minutes and $12, respectively. 

Authors developed a discrete-continuous model, including selectivity-bias terms on the U.S. 

dataset (Le and Ukkusuri 2018). They found that individuals who are more social media-

driven are more interested in the service. Experience of transporting freight in the past 

influences the willingness to be a crowshipper. Individuals transporting freight while 

commuting are less likely to make a long detour, while other trip purposes have flexibility. 
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The higher the payment, the longer the distance they are willing to travel. Respondents are 

more likely to travel longer once they transport items for friends, colleagues, relatives, or 

neighbors. Punel, Ermagun et al. (2018) explored the differences between crowdshipping 

users and non-users based on an online survey across four U.S. states, and estimated logit 

models. 7.88% of the sample already used the service. Non-users had stronger beliefs in cost-

saving and building a community, while users put more emphasis on the potential of being 

eco-friendly and efficient. Non-users were more conservative toward sharing information 

with drivers, which highlights the critical role of safety, privacy, and trust in attracting new 

users. Users were more among men, lower-income, and full-time employees. Crowdshippers 

were more interested in medium distance deliveries, while the service is prevalent for LMD. 

Dense residential and high job accessibility areas were identified as the best and worst areas 

for the service operation, respectively. Paloheimo, Lettenmeier et al. (2016) conducted a trial 

crowdshipping for library deliveries in Finland via the PiggyBaggy platform. Crowds were 

among library customers and locals; the compensation fee per delivery was 2-5 euros. 

Deliveries under 5 km were on bike, and the total estimated car distance traveled was 19 km 

(1.6 km per delivery). Scheduling the deliveries was a significant concern among 

participants. The main motivations for customers and couriers were “making life and 

transport routines easier” and “trying something new,” respectively. Health benefits and 

exercise were also among the encouragement factors for cyclists. The library played a vital 

role as a guarantor of the service credibility. 

In addition to above discussed methods, Rai, Verlinde et al. (2018) analyzed the externalities 

of a crowdshipping service based on data available from a platform and survey results of its 

users. Results from several scenarios showed that the crowdshipping is not sustainable 
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compared to traditional logistic shipments. Decreasing total delivery distance as well as 

detour distance and increasing number of deliveries per trip significantly decreased 

externality costs, among which reduced detour distance by 44% brought the most significant 

benefits.  
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Table 1 Survey and data analysis review summary 

Reference Case study Variables 
Sender Courier Receiver 

(Gatta, 
Marcucci et 
al. 2019) 

SP survey in Rome, Italy 
Public transit-based with 
automated lockers, e-
commerce parcels 

-
Sociodemographic 
information 
-Attitude and 
motivation 
-Residency 
location 
-Delivery schedule  
-Delivery time 
-Delivery fee 
-Delivery tracking 
option 
-Cost/benefit 
analysis  
-Emission analysis 

  

(Marcucci, 
Le Pira et al. 
2017) 

SP survey-Rome, Italy 
College student 

 -Willingness to 
work 
-Package size 
-Compensation 
fee 

-Delivery tracking 
option 

(Serafini, 
Nigro et al. 
2018) 

SP survey-Rome, Italy 
Public transit-based with 
automated lockers, e-
commerce parcels 

 -
Sociodemographic 
information 
-Attitude and 
motivation 
-Willingness to 
work 
-Willingness to 
detour 
-Locker location 
-Compensation 
fee 
-Bank credit 
frequency 
-Delivery booking 
type 

 

(Punel and 
Stathopoulos 
2017) 

SP survey in U.S. -
Sociodemographic 
information 
-Attitude and 
motivation 
-Delivery distance 
-Delivery cost 
-Package size 
-Experience 
-Driver expertise 
-Driver rating 
-Delivery 
management 
-Delivery time 
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Reference Case study Variables 
Sender Courier Receiver 
-Delivery schedule 

(Paloheimo, 
Lettenmeier 
et al. 2016) 

Trial operation for library, 
in Finland via PiggyBaggy 
platform, Library customers 
and locals to deliver books 
and media to customers' 

 -Attitude and 
motivation  
-Compensation 
fee 
-Delivery distance 
-Delivery schedule 

-Attitude and 
motivation  
-Delivery schedule 
 

(Le and 
Ukkusuri 
2018) (Le 
and 
Ukkusuri 
2018) 

SP and RP surveys in U.S. 
and Vietnam, Flyer 
distribution at TRB, Email to 
students at various colleges, 
schools, universities, and 
organizations, Social media 
advertisement, and Amazon 
Mechanical’s Tur 

 -
Sociodemographic 
information  
-Trip time 
(including detour 
time) 
-Profit 
-Package weight 
-Number of 
packages to 
deliver 
 

-
Sociodemographic 
information 
-Shipping cost 
-Delivery time 
-Delivery schedule 
-Delivery location 
-Platform ranking 
-Platform options 
-Payment method 
-Willingness to tip 

(Punel, 
Ermagun et 
al. 2018) 

Online survey for four U.S. 
states, namely: California, 
Florida, Georgia, and Illinois 

-Sociodemographic information 
-Attitude and motivation  
-Delivery quality 
-Delivery efficiency 
-Delivery distance 
-Delivery privacy 
-Spatial density, diversity, design, and accessibility at ODs 

(Ermagun 
and 
Stathopoulos 
2018) 

National dataset from one of 
the leading platforms in the 
U.S. including 16,850 
requests from 2070 cities in 
two years 

-Sociodemographic 
-Package size 
-Request time of day, day of week 
-Delivery distance 
-Delivery cost 
-Delivery schedule 
-Spatial density, accessibility, and 
employment at ODs 
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2.2 Matching and Routing Optimization 

Matching and routing studies concentrated on the development of algorithms to match the 

unused transportation capacity optimally with the potential requests and choose efficient 

routes for transportation, considering constraints in terms of capacity, location, and time.  

A number of studies considered public transit mainly or partially as the crowdshipping 

mode. Ghilas, Demir et al. (2013) introduced a static Pickup and Delivery Problem with Fixed 

transit Lines (PDP-FL) model for integration of passenger and freight and proposed a mixed-

integer program solved by CPLEX. Compared to traditional delivery, reductions up to 27% 

and 70% in operation cost and CO2 were recorded, respectively. However, the proposed 

system increased the total trip time for customers. In another study, Ghilas, Demir et al. 

(2016) designed an adaptive neighborhood metaheuristic algorithm to solve a Pickup and 

Delivery Problem with Time Windows and Scheduled Lines (PDPTW-SL) to deliver packages 

using fixed transit lines and pickup and delivery vans. Results proved the performance 

efficiency of the algorithm considering the spatial pattern of the requests and the 

configuration of the scheduled lines. The more clustered the demand points, the better the 

performance of the system. In particular, the integrated transportation system led to 5% and 

9% savings in operating costs and driving time, respectively.  

Second stream of studies considered bikers and pedestrians as crowdshippers. Kafle, Zou et 

al. (2017) designed a crowdshipping system where pedestrians and bikers bid over the 

delivery tasks and proposed a mixed integer non-linear program (MINLP) to formulate the 

bid selection, pick up point location with truck routes design. The model was applied to 

random instances. Crowdshipping total saved cost and truck Vehicle-Mile Traveled (VMT) 
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by 9% and 24%, respectively; however, total service time violated by 3%. Crowdshippers 

delivered 50% of tasks with total earnings of $184. Replacing cyclists by pedestrians reduced 

truck VMT by only 7%, while the total payment dropped to $29. This is because pedestrians 

have lower operating costs, speed, and capacity compared to bikers. Sensitivity analysis 

showed that truck operating costs and crowdshipper’s Value of Time (VOT) impact the 

service efficiency significantly. Akeb, Moncef et al. (2018) proposed a model where 

neighbors delivered parcels on foot to the final customer. They implemented a mathematical 

circle packing model to determine the required number of neighbors and their locations, 

balancing neighbors’ monthly gain. The proposed method is flexible enough to consider a 

wide range of delivery distances and monthly wages. 

In this last stream of works which includes most of the publications, motor vehicles are 

crowdshippers. Pan, Chen et al. (2015) solved a crowdsourced delivery system for returned 

items using taxis where priority was given to passengers. They tested two different matching 

strategies: 1) goods can only be transported by one taxi, and 2) goods are allowed to be 

transferred between taxis. They defined a simple network-based heuristic and applied to the 

taxi’s GPS trace database in China. Transshipment strategy generated 10 km more traveled 

distance per package compared to the other one. 90% of parcels were delivered within 24 

hours using the second strategy, while this was roughly 55% in the first strategy, where 5% 

of packages had delivery time longer than four days. Archetti, Savelsbergh et al. (2016) 

formulated and solved a VRP with Occasional Drivers (VRPOD) using a multi-start heuristic. 

Two compensation schemes were assumed: fixed per task and proportional to detour. The 

heuristic solved several Solomon instances within seconds. The cost reduction was 25% with 

low detour flexibility and a high compensation rate, while this equaled 29% in the opposite 
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case. Gdowska, Viana et al. (2018) solved a bi-level matching and routing LMD problem 

considering both crowdshippers and PF for delivery tasks. The probability of acceptance 

(rejection) of a delivery task by a crowdshipper followed a uniform random distribution. 

They modified the mathematical model proposed by Archetti, Savelsbergh et al. (2016) and 

solved it using a bottom-up heuristic. They examined the methodology on a set of random 

instances. In 24 of the 25 instances, total delivery cost was reduced by 9%. Arslan, Agatz et 

al. (2018) solved a dynamic capacitated pick-up and delivery problem with time windows 

considering both crowdshipping and dedicated delivery drivers. They developed an exact 

algorithm and a speed up heuristic within the context of an event-based rolling time horizon. 

Crowdshipping saved costs by 19- 37%. Making more stops per tour by crowdshippers 

reduced the number of dedicated drivers in the system who lost efficiency in terms of 

deliveries per mile. Sampaio, Savelsbergh et al. (2018) investigated the benefits of 

transshipments in crowdshipping using passenger cars. They designed a multi-depot pickup 

and delivery problem with time windows and proposed an adaptive large neighborhood 

search algorithm. Results indicated significant benefits where pick-up and delivery locations 

are far apart, and driver delivery shifts are short. They showed that the transshipment 

reduced the number of required drivers, while the number of requests per driver increased. 

Qi, Li et al. (2018) modeled a crowdshipping scenario where packages are transported from 

a central depot to a set of terminal points by truckers and then distributed among passenger 

car drivers who deliver them through open-loop routes. They developed a continuous 

approximation model to find the optimal size of the terminal service area minimizing the 

total wages paid to crowdshippers and truck drivers. Car drivers’ wage response behavior 

and interplay with passenger rideshare market (synergy and competition) were considered 
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in the model. They applied the model on 15 zip code area located at East Bay San Francisco, 

Bay Area. The findings indicated that shared mobility is not economically scalable compared 

to truck-only service except for short and low-density delivery areas. However, it saves asset 

costs related to fleet size and depot management. Yildiz and Savelsbergh (2019) studied a 

meal delivery problem using crowdsourced and company-provided drivers, to find optimal 

service areas for restaurants maximizing the profit. The findings indicated that the system's 

profitability highly depends on the location of the restaurant relative to its customers. 

Dedicated drivers could increase profit for rejected requests located closer to the restaurant, 

but not necessarily for furtherly located orders. Larger service areas increased dedicated 

drivers and dropped the crowds in the system. Allahviranloo and Baghestani (2019) 

explored the impact of crowdshipping on individuals’ activity patterns and travel behavior 

by developing a mathematical model for dynamic scheduling of activities minimizing total 

travel time and deviation from regular activity patterns. The model was examined using the 

2001 California household travel survey. Potential senders and couriers were identified and 

simulated based on their activity patterns. Results showed that a total of 167 (27%) tasks 

were successfully transferred to the carriers, the majority of which (46%) allocated to the 

evening period. Requesters saved a total of 5,130 minutes, while the carriers spent 2,316 

minutes to deliver the tasks.  

In addition of what was already discussed, there were a few papers which considered more 

than one mode for crowdshipping. Wang, Zhang et al. (2016) formulated a network min-cost 

flow model for crowdshipping service from pick-up parcel stations (pop-stations) to final 

customers. The compensation scheme was proportional to the detour distance. Several 

pruning strategies were evaluated to reduce network size for large scale experiments. The 
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proposed methodology was applied to travelers’ trajectories extracted from empirical data 

and a set of distributed pop-stations in Singapore and Beijing. The results confirmed the 

efficiency of the algorithm for large scale problems. Simoni, Marcucci et al. (2019) assessed 

crowdshipping impacts on congestion and emission in Rome, Italy using a dynamic traffic 

assignment model. They simulated three alternatives: 1) delivery truck, 2) car-based 

crowdshipping, and 3) public transit-based crowdshipping (Serafini, Nigro et al. 2018). 

Crowdshipping replaced truck deliveries where detour distance did not exceed a maximum 

threshold. Results showed that public-transit based crowdshipping benefits emission and 

congestion, while car-based alternative worsens them by 3-5% and 6-11%, respectively.  
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Table 2 Matching and routing optimization review summary 

Refere
nce 

Crowds  Model 
and 
Method 

Case 
study  

Objectiv
e 
function 

Decisio
n 
variabl
es  

Constrai
nts 

Pricing Dyna
mic 

Evaluati
on 
measur
es 

(Ghilas
, Demir 
et al. 
2013) 

Integrate
d 
passenge
r and 
freight 
on public 
transit 
and taxis 

MIP 
solved 
by 
CPLEX 
w/o user 
cuts 

Hypoth
etical  

Minimizi
ng 
operatio
n cost 
(transpor
tation, 
transship
ment and 
storage 
costs) 

Routing, 
matchin
g, 
scheduli
ng  

Arrival 
and 
departur
e time 
windows, 
vehicle 
capacity, 
service 
times 

Fixed 
per 
deliver
y 
distanc
e unit 

x1 Driving 
time and 
CO2 
emissio
n  

(Pan, 
Chen 
et al. 
2015) 

Integrate
d 
passenge
r and 
freight 
on a fleet 
of 
passenge
r taxis 

Simulati
on-
based 
matchin
g 
heuristic 

852 
shops 
and 
2,000 
rando
mly 
generat
ed 
packag
es with 
more 
than 
7,000 
taxi’s 
GPS 
trace in 
China.  

x Matchin
g  

Passenge
r priority 
in routing 
and 
matching 

x x Delivery 
time 
and  the 
total 
transpor
tation 
distance  

(Arche
tti, 
Savels
bergh 
et al. 
2016) 

Occasion
al and 
professio
nal 
drivers 

IP, 
CPLEX 
and 
multi-
start 
heuristic  

Solomo
n 
instanc
es  

Minimizi
ng total 
operatio
n cost 

Routing 
and 
matchin
g 

Vehicle 
capacity 

Fixed 
per 
task 
and 
propor
tional 
to 
detour 

x Comput
ation 
perform
ance, 
cost, 
number 
of 
occasion
al 
drivers 
and 
deliverie
s  

(Wang, 
Zhang 
et al. 
2016) 

Occasion
al 
crowdshi
ppers to 
deliver 
from 

Network 
min-cost 
flow 
model 
with 
several 

Simulat
ed 
based 
on 
trajecto
ries 

Minimizi
ng total 
delivery 
cost 

Matchin
g  

Delivery 
capacity 

Fixed-
rate 
propor
tional 
to 
detour 

x Comput
ation 
perform
ance 

 
1 Unapplicable  
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Refere
nce 

Crowds  Model 
and 
Method 

Case 
study  

Objectiv
e 
function 

Decisio
n 
variabl
es  

Constrai
nts 

Pricing Dyna
mic 

Evaluati
on 
measur
es 

pop-
stations 
to final 
custome
rs 

pruning 
strategie
s to 
reduce 
problem 
size 

extract
ed from 
empiric
al data  

(Ghilas
, Demir 
et al. 
2016) 

Integrate
d 
passenge
r and 
freight 
on public 
transit 
and taxis 

Adaptive 
neighbo
rhood 
metaheu
ristic 
algorith
m 

 
Hypoth
etical 

Minimizi
ng total 
operatio
n cost 

Routing, 
matchin
g, 
scheduli
ng 

Time 
windows, 
vehicle 
capacity, 
service 
times, 
transit 
departur
e time 

Fixed 
per 
deliver
y 
distanc
e unit 

x Comput
ation 
perform
ance, 
cost, 
driving 
time, 
number 
of 
vehicles 
and 
deliverie
s 

(Kafle, 
Zou et 
al. 
2017) 

Biker/pe
ds to 
receive 
packages 
from 
truckers 
at relay 
points 
and 
deliver 
to final 
custome
rs 

MINLP,  
and  
tabu 
search 

Rando
m 
hypoth
etical  

Minimizi
ng 
operating 
cost, 
payment 
to 
crowds, 
and 
delivery 
time 
window 
violation 
cost 

Bide 
selectin
g, 
matchin
g, 
routing, 
and 
scheduli
ng 

Available 
trucks, 
time 
window, 
capacity, 
delivery 
distance, 
buildings, 
schedulin
g  

Biding  x Comput
ation 
perform
ance, 
total 
cost, 
VMT and 
service 
time 
violation 

(Gdow
ska, 
Viana 
et al. 
2018) 

Crowdsh
ippers 
(in-store 
shoppers
) and 
professio
nal fleet 
for 
delivery 

IP, 
Heuristi
c 

Rando
m 
instanc
es  
 

Minimizi
ng the 
total 
delivery 
cost  

Matchin
g and 
routing 

Capacity, 
Crowdshi
pper 
acceptan
ce rate 

Fixed 
per 
task 

x Cost 

(Akeb, 
Moncef 
et al. 
2018) 

Neighbo
rs collect 
and 
deliver 
parcels 
to the 
consume
r in the 

Surface 
packing 
model 

Real 
data on 
parcels 
requiri
ng a 
second 
deliver
y in 
Paris  

Balancin
g 
neighbor
s’ 
monthly 
gain 

Availabl
e 
neighbo
rs, and 
compen
sation 
fee 

Populatio
n density 
and 
delivery 
distance  

Fixed 
per 
task,  

x Interacti
on 
between 
monthly 
gain and 
service 
area 
radius 
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Refere
nce 

Crowds  Model 
and 
Method 

Case 
study  

Objectiv
e 
function 

Decisio
n 
variabl
es  

Constrai
nts 

Pricing Dyna
mic 

Evaluati
on 
measur
es 

neighbor
hood  

(Arsla
n, 
Agatz 
et al. 
2018) 

Ad hoc 
crowdshi
pper 
drivers 
and 
dedicate
d 
delivery 
vehicles 

Exact 
solution 
algorith
m and a 
speed up 
heuristic  

Rando
m 
instanc
es  

Minimizi
ng total 
delivery 
cost 

Matchin
g  

Capacity, 
time 
window, 
number 
of stops 
per tour, 
driving 
time, 
schedulin
g  

Fixed 
per 
deliver
y 
distanc
e unit 

Event
-
base
d 
rollin
g 
time 
horiz
on 

Cost, 
matchin
g rate, 
availabl
e 
drivers, 
delivery 
distance  

(Samp
aio, 
Savels
bergh 
et al. 
2018) 

Crowdsh
ipping 
with 
transshi
pment 
between 
drivers 

Adaptive 
large 
neighbo
rhood 
search  

Rando
m 
instanc
es 

Minimizi
ng cost 

Matchin
g and 
routing 

Time 
windows 
and 
synchron
ization  

x x Driving 
distance, 
availabl
e 
vehicles, 
computa
tion 
perform
ance, 
number 
of 
transfer
s 

(Qi, Li 
et al. 
2018) 

Passenge
r 
rideshari
ng 
drivers 
from a 
terminal 
point 
(freight 
only) 

Continu
ous 
approxi
mation 
optimiza
tion 

15 zip 
code 
areas 
located 
in SF  

Minimizi
ng the 
total 
wages  

Size of 
the 
terminal 
service 
area 

Car 
drivers’ 
wage 
response 
behavior 
and 
interplay 
with 
passenge
r 
rideshare 
market  

Base + 
per 
mile 
(Fixed) 
 

x Delivery 
cost and 
distance 

(Yildiz 
and 
Savels
bergh 
2019) 

Meal 
delivery 
with 
delivery 
drivers 

IP 
service 
area and 
coverage 
planning 
model 

Rando
m 
instanc
es 

Maximizi
ng the 
profit 

Service 
area 
radius 

System 
equilibri
um, 
service 
quality, 
available 
couriers,   

Fixed 
per 
deliver
y and 
per 
distanc
e rate 

x Profit, 
mean 
delivery 
time 
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2.3 Research Gaps and Limits 

According to the reviewed crowdshipping practices and research articles, limitations still 

exist in the field that must be addressed. A concise description of the gaps is presented 

below: 

Crowdshipper employment status: in response to the raising concerns over unfavorable 

work condition within the gig economy, it is necessary to understand the workers' issues, 

determine appropriate regulation and identify the right institution to enforce it to reach to a 

balance between employees’ basic labor protection and, feasibility of platforms operation. 

Crowdshipper wages: considering the unique features of the crowdshipping platform, 

there is a need for further work on formulating crowdshippers’ wages to include the costs 

associated with the required physical activity and wear-and-tear on the vehicle in addition 

to the standard distance-based fees present in ridesharing market. Moreover, exploring the 

possibility of sharing the unpredicted costs due to parking tickets, extra time delivery, or 

tolls between courier and firm is another promising area for future research. 

System reliability and security: many reviewed studies demonstrated the importance of 

reliability and credibility to attract enough requesters and shippers to the system. Thus, 

providing enough information about registered couriers, the option to track the delivery 

process as well as insurance in the case of damaged or stolen packages, fraud, or delayed 

delivery are necessary. Referring to users’ concerns over revealing their personal 

information such as home address to couriers, it is necessary to secure the system by 

presenting crowdshipper rating scores to users and enforcing background checks. Proposing 



28 
 

alternate solutions for delivery drop offs such as dropping off at lockers within the vicinity 

of customers worth to study. 

Service operation: crowdshipping supports sustainability goals assuming it operates 

through already existing trips. However, it is not clear if the current practices satisfy this 

assumption. Therefore, future studies must explore the strategies to ensure crowdshipping 

is happening through transportation excess capacity, and appropriate matching and pricing 

techniques are in place to avoid generating additional VMTs. Implementing the service along 

with passenger transportation and consolidating more deliveries per route are promising 

areas to support service efficiency and sustainability. Allowing transshipment between 

crowdshippers or multimodal crowdshipping is also among potential solutions to efficiently 

increase delivery distance and extend the service beyond short delivery within congested 

urban areas.   

Market competition: as pointed out before, many crowdshippers participate in several on-

demand services, including passenger rideshare market, which is more promising. Thus, it is 

necessary to study the factors impacting crowdshippers’ willingness to work and 

understand the differences that exist between passenger and parcel markets. Then, 

incorporate the learned lessons into the platform’s matching, routing, and pricing decisions 

to extract the most favorable condition for the platform’s operation. 

Infrastructure development: current croswdshippers have repeatedly raised concerns 

over difficulties finding parking space and long reception waiting time for delivery. This 

indicates the need to do more research on alternative infrastructural modernization to 
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facilitate last-mile delivery. Applications of lockers or dedicated boxes at the household’s 

place are among possible ideas. 

Pricing: the compensation fee dramatically influences the availability of crowdshippers and 

their flexibility to detour. However, there are restrictions over the payments to maintain a 

satisfactory profitable service and avoid additional VMT due to newly generated trips. An 

appropriate compensation scheme leads to high capital efficiency, sustainable operation, a 

reasonable number of agents willing to deliver, and prevents the system from turning into 

an on-demand delivery business. Reviewed studies employed fixed payment rates per task 

or proportional to delivery time and distance. Fixed pricing is simple to implement, but not 

necessarily fair or tempting enough to satisfy or attract existing and new shippers. Pricing 

based on detour distance seems promising. However, it needs the crowdshipper’s final 

destination to be known, which raises privacy concerns. Dynamic pricing has not been 

included in the reviewed crowdshipping papers, although some platforms (e.g., Instacart) 

implement surge pricing algorithm to match driver supply with demand during busy 

periods. Dynamic pricing practices in the passenger market showed to be highly effective in 

alleviating short-term demand fluctuations in a location. Additionally, spatial pricing which 

sets prices based on trip origin or both origin and destination has been studied in the 

passenger ride-sharing market, indicating significant profit gains for the platform from using 

spatial rate for the demand pattern to get more balanced across a network.  

Assignment models and algorithms: crowdshipping requires fast decision making as 

couriers are available for a short time to be asked to fulfill a delivery task. Thus, efficient 

optimization techniques are needed to give the optimal solution quickly, minimizing total 
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delivery cost. Additionally, the stochasticity and dynamics in demand and supply were not 

modeled in most of the implemented algorithms, while careful coordination of supply and 

demand is the key to maximize profit and ensure a target quality of service. Finally, each 

shipment is associated with a single parcel delivery in most models, although making 

multiple deliveries per trip increases its efficiency. Major retailers such as Amazon can 

consolidate three to five deliveries per trip due to their large quantity of orders. 

Behavioral analysis: there are five stakeholders involved in the crowdshipping; platform, 

sender, receiver, shipper, and trucker, among which platform and truckers were rarely 

studied. While many variables were already considered, the other factors such as shipper’s 

time availability, delivery urgency, package type, and value are not well understood. Further 

analysis is needed to capture the interaction among pairs of variables such as compensation 

fee, package type, crowdshipper’s willingness to detour, or trip purposes. 

Impact assessment: Although several reviewed studies analyzed the change in VMT, 

environmental footprints, and revenue resulted from crowdshipping, additional 

performance measures related to noise, accessibility, and public health, are still needed. 

Moreover, the distribution of impacts in society across different land-use types, as well as 

the population’s level of income, is not well understood yet. 

2.4 Summary 

This section reviewed several academic research articles on crowdshipping, categorized 

them in two groups and summarized their main findings. It is found that the success of 

crowdshipping depends highly on the number of participants in the system where trust plays 

a critical role in attracting both couriers and senders/receivers into the service. Public 
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responses to SP surveys indicate the appeal of monetary income as the primary motivation 

for crowdshippers to participate. Gaining health benefits and contributing to the social good 

were other possible motivations. Conversely, retailers implement crowdshipping as a part 

of their supply chain if it helps to reduce their LMD costs. Simulation and evaluation of 

hypothetical experiments and case studies revealed that couriers’ income and operation 

costs, the flexibility to detour, available capacity, and speed all affect service cost efficiency 

compared to traditional freight delivery. Besides, the delivery characteristics (such as 

distance and density) also matter. This study also identified contradictory findings as few 

studies believe in increased profit with crowdshipping over long distance, and others found 

short distance delivery in dense areas more fruitful. About environmental impact, simulation 

results based on empirical data verified the fundamentals behind crowdshipping: it 

mitigates externalities if it happens through already existing trips and/or with cleaner 

modes; Otherwise, it might increase VMT and emissions through induced trips and longer 

detours motivated by compensation fees.  

Most of the research articles published on crowdshipping either focus on behavioral analysis 

or matching and routing optimization. Except for a few studies, service externality evaluation 

(e.g., emissions and congestion) based on empirical data was not the focus of study. This 

indicates that many identified service challenges in practice, are still unresolved and 

represent potential research areas future. 
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3. Background 

This section presents the essential background about pricing strategies currently in practice 

in food delivery market as well as those reviewed in the literature. Principal theories that 

are fundamental to the subjects and methods used later in this study (conjoint analysis, 

dynamic pricing, and reinforcement learning) are also described. 

3.1 Pricing in Online Food Delivery 

Online food delivery users are growing rapidly in many countries including the US. COVID-

19 pandemic increased this rate of growth more than before. Since then, the platforms 

started charging higher prices and fees for delivery which have made them more expensive 

than before (Mike Pomranz 2021). While food delivery consumers agree to pay additional 

fees for convenience and time saving, the food delivery pricing system is confusing and 

unpredictable. At the same time, delivery companies compete to win the profitability and 

leadership in the market, thus looking for innovative ways to design their pricing scheme 

and charge consumers.  

Although there are many platforms for crowdshipping which differ based on their operation 

type, delivery type, and mode, platforms for food delivery share a lot in common when it 

comes to operation and pricing. Excluding the platforms that are private or exclusive to 

restaurants, almost all third-party online food delivery platforms, such as UberEats, 

Doordash, and GrubHub, belong to type b: the most common platform type in the 

crowdshipping market, in which platforms match crowds and senders, facilitate navigation, 
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tracking and setting prices (Pourrahmani and Jaller 2021). These food delivery platforms 

include the items below in their pricing scheme: 

• Menu item price: this is the price of food the customer ordered from the App.  In 

some platforms this item is subjected to busy or surge pricing. This price is often more 

than the actual menu price when you order at the place in the restaurant. Restaurant 

owners increase this price by about 30% to offset their loss due to delivery, such as 

commissions they pay to delivery apps. It is surprising to learn that some food 

delivery platforms list non partners restaurants in their App for which they might 

even increase the menu price and the added profit will directly go to the delivery 

platform itself (Noah Lichtenstein 2020). In this case, the driver makes an order to 

the restaurant in place of the actual requester and deliver the order. If the food quality 

degrades during the delivery process, this will harm restaurant reputation. Analyzing 

the interrelation between a restaurant and a delivery platform using a queueing 

model, Feldman, Frazelle et al. (2018) however showed in theory that restaurants still 

benefit from the presence of a delivery system within a decentralized system without 

a partnership contract. 

• Delivery fee: this refers to the price charged for the food to be transported from food 

place to the customer. This fee is fixed and varies based on region and restaurants. 

Delivery fees can be waived by some platforms if the order amount exceeds the small 

order limit. Several platforms such as Doordash, waive delivery fee for members or 

those orders exceeding the minimum amount threshold. This fee is also subjected to 
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surge (busy time) pricing that is implemented by some platforms when demand is 

high.  

• Service fee: this is the fee charged by delivery platform providing the delivery 

service. This fee is a percent of the cost of menu item price, added to the final bill. 

There is no clear or consistent percentage rate of service fee across platforms, it 

varies from 10-18%, while Seamless does not typically charge a service fee (Noah 

Lichtenstein 2020). 

• Taxes: sales taxes apply to the order according to the local laws and fees. 

Observations showed tax rate fluctuation across different apps is about 1.1% (Noah 

Lichtenstein 2020). 

• Gratuity or tips: this is an optional fee paid by customer that adds at the top of 

driver’s income. However, recently, Doordash and Instacart were criticized for using 

tips to partially cover the shipper’s base payment. Postmate drivers also 

stated there is a lack of clarity about which part of their payment comes 

from tips. In response to this criticism, Instacart updated its 

compensation policies so that tips from customers are always added to 

the company’s contribution to driver payment (Bernot 2019, Captain 2019). 

• Other fees: these are the fees charged by restaurants and platforms to customers 

which are included in some (but not all) of online food delivery Apps: 

o Merchant fees: an additional small fee imposed to each order in addition to 

actual food menu price by certain restaurants to help them offset the profits 
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lost because of food delivery. In some delivery platforms, this is included in 

service fees. 

o Small order fee: this additional fee applies to small or low-price orders to 

make it economically efficient for delivery. For some platforms, this fee even 

applies having a membership subscription.  

o Delivery minimum: a minimum number of order or price limit set by delivery 

platforms which must be met for delivery request to be approved. 

o Bag fee: a small fee charged per each reusable bag included with the order. In 

some delivery platforms, this is included in service fees. 

The variation in pricing scheme causes the delivery price for exactly the same item to vary 

by 20% or more in different platforms. In addition to price variation across Apps, empirical 

data collected in 2019 showed that consumers are paying 17-41% more when using online 

food delivery Apps compared to ordering directly from a restaurant (Kinetic 2019)(Figure 

1).    
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Figure 1 Share of each item in the pricing scheme for each platform (Kinetic 2019) 

In all these platforms, the menu price for food was similar and the difference in total cost 

comes from the additional fees. Depending on which App you order from, consumers might 

face fees that were 12-30% of the food total cost (Figure 2).  

 

Figure 2 Fees as % of food menu price for each platform (Kinetic 2019) 
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Pricing items discussed above are subjected to change due to membership and loyalty plans built 

by platforms to provide more predictable revenue and creating an exclusive network of customers. 

Such plans typically include a monthly membership fee in exchange for reduced service fees and 

zero delivery fee for orders value exceeding a certain minimum. Examples are Postmates 

Unlimited ($9.99/month or $99/year), DashPass from DoorDash ($9.99/month) and Uber program 

that integrates Eats, rides, bikes and scooter services. Kung and Zhong (2017) studied membership 

pricing strategy against transaction-based pricing for delivery market. They showed that the two 

strategies are equivalent in the absence of time discounting and presence of price insensitive 

customers in terms of order frequency. On the other hand, when the platform is impatient in 

receiving revenues or consumers’ order frequency is affected by the per-transaction fee, 

membership-based pricing is the most profitable strategy as it enables collecting revenue earlier 

and maximizing the price-sensitive order frequency by minimizing delivery transaction fees. 

3.2 Delivery Pricing in the Research   

Delivery fee refers to the price charged for the food to be transported from where it is 

ordered from (restaurant or any food place) to where it is requested by the consumer. Not 

enough information is available on the details of the pricing strategy employed by these 

platforms for delivery. For example, Uber Eats’ sometimes low delivery fees is the result of 

having an established fleet of drivers and logistics expertise derived from the company’s core 

ride-hailing business (Noah Lichtenstein 2020). In general, delivery fees fluctuate based on 

platform and market depending on location, restaurants, food type or other unknown 

factors. It might be subjected to surge (busy time) pricing that is implemented by some 

platforms when demand is high. Surge pricing is dynamic pricing in which the base price 
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increases in real time due to sudden change in proportion of demand and supply. While in 

passenger ridesharing platforms, surge pricing is explicitly communicated to the riders in 

the app through a surge factor displayed besides the offered price (e.g., 1.5X, showing that 

the base price is multiplied by this factor), most food delivery platform users only observe 

price fluctuations without any clear communication over the reason. This strategy is to 

stabilize the balance between demand and supply in one or multiple zones. The convention 

behind surge pricing is to set price in a way to encourage supply to be available where they 

are needed the most and allocate the limited supply to those demand having higher 

willingness to pay. Accordingly, the surge pricing increases the base price in zones and times 

when the demand far exceeds the available supply. It is assumed that this strategy promotes 

the welfare of the system in general (Guda and Subramanian 2017).  

In on-demand transportation services, namely, passenger ride sharing (e.g., Uber and Lyft) 

and delivery services (e.g., Doordash and Uber Eats), supply refers to the crowds of workers 

joining the system autonomously to fulfill assigned tasks using their available capacity and 

receive a compensation fee in return. Demand refers to requesters who submit request 

based on their mobility or delivery needs and expect their request to be fulfilled given a wait 

time and cost. The platforms manage the supply and demand by providing capabilities, such 

as matching, routing and rating, to guarantee efficient and effective service and generate 

revenue. Platforms typically charge a small percentage of each transaction generated from 

tasks fulfilled by workers as their commission.  

In on-demand transportation services, workers join the service voluntarily without 

commitment or informing platforms about their work schedule. On the other hand, 
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requesters price sensitivity depends on multitude factors that are susceptible with sudden 

change in weather condition, special events, or traffic accidents and congestion. These 

together cause fluctuations in proportion of demand and supply in the system. These factors 

are difficult to predict or completely unknown. Dynamic pricing strategies can account for 

the effect of all aforementioned factors without explicitly identifying them. To manage the 

supply and demand effectively and efficiently, platforms forecast patterns of supply and 

demand ahead of time, set surge multipliers per different zones accordingly, and 

communicate this information to drivers about their current and adjacent zones (Chen, 

Mislove et al. 2015, Rosenblat and Stark 2015). While this is expected to stabilize the system, 

improve balance between supply and demand and benefit all stakeholders (Cachon, Daniels 

et al. 2017), the findings from studies using empirical data or analytical models are not 

always consistent with this.  

Pricing studies for on-demand transportation of passengers and goods, surge pricing in 

specific, are mainly categorized into two domains: empirical or experimental studies and 

analytical studies. Selected papers and publications at each domain are reviewed briefly 

below. It is noted that due to smaller number of available research about pricing in delivery 

services, similar studies from passenger rideshare market are also included as appropriate. 

3.2.1 Empirical and Experimental    

In (Tong, Dai et al. 2020) the pricing strategy employed by three major food delivery markets 

in China was identified using empirical data.  They found that platforms employing dynamic 

pricing attract about 100 more orders per hour than static pricing. This gap increases during 

peak hours. They also indicated that factors such as delivery speed, weather condition, 
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special events and promotions significantly affect the level of demand. Svartbäck and Ekholm 

(2021) analyzed a sample of restaurant food delivery data and concluded that dynamic 

pricing of restaurant food delivery can decrease resource waste and improve producer 

profitability.  

While studies about surge pricing in food delivery is rare, there are several published papers 

about surge pricing in passenger ridesharing market. Using Uber data, Hall, Kendrick et al. 

(2015) showed the effectiveness of surge pricing in efficient allocation of supply to demand 

in one single zone in New York. In another study by (Diakopoulos 2015), it is found that surge 

pricing relocates drivers from adjacent zones rather than motivating new drivers to the 

system. Later, Chen and Sheldon (2016) found that drivers adjust their working hours to be 

more active during surge pricing periods. Chen, Mislove et al. (2015) collected Uber pricing 

and supply/demand data in San Francisco and New York for one week and concluded that 

this strategy makes drivers become idle in zones with surged price values and cause them to 

leave these zones. In a study by (Jiang, Kong et al. 2020), drivers relocation decisions were 

studied from a behavioral perspective. They found that factors such as communicating 

demand information as well as dynamic subsidies for drivers improve their relocation 

decisions and lead to system better off. On the other hand (Dholakia (2015) and Rosenblat 

(2018) raised concerns about the role of trust in the system. While the surge values are 

communicated to drivers and requesters through surge maps and App offered prices, 

respectively, significant portion of drivers ignore this information due to lack of trust in the 

platform. Requesters to leave the system and avoid paying surge price values.  
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3.2.2 Analytical 

Model assumptions and parameter variations distinguish analytical studies from each other. 

Some papers studied the system with deterministic pricing decisions for fixed spatial zones 

and considering the variation in supply and demand. Using queue models to consider the 

interaction between drivers and customers, Taylor (2018) and Bai, So et al. (2019) 

emphasized the importance of customers’ valuations of wait time and price as well as 

drivers’ opportunity costs on optimal price and wage. Choi, Guo et al. (2020) studied the 

impact of risk on optimal pricing in on-demand platforms. They found that when the 

customers are risk seeking, the consumer surplus and the platform’s expected profit are 

highest. Nikzad (2017) investigated the impacts of thickness and competition on the 

equilibria of ride-sharing markets. They found that when the market is sufficiently thick, 

wage and workers' average welfare decrease with size of the labor pool and vice versa. They 

showed that effective matching impacts labor like increasing the labor pool in a thin market 

otherwise reduces their wage and average welfare. Comparing the monopoly and duopoly 

equilibria, they found that competition benefits drivers, however, the effect of competition 

on customers' average welfare depends on thickness. When the market is not sufficiently 

thick, price is higher, and customers' average welfare is lower.  

Cachon, Daniels et al. (2017) studied different pricing schemes for Uber/Lyft platforms. 

Although surge pricing is not optimal, they showed it achieves nearly the optimal profit and 

drivers and riders are better off with surge pricing with variations in supply and demand 

ratio. Banerjee, Riquelme et al. (2015) built a queueing-theoretic economic model to study 

optimal platform pricing and found that static pricing is near optimal when there are high 
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volume of demand and supply in the system. In studies by (Banerjee, Riquelme et al. 2015, 

Castillo, Knoepfle et al. 2017), it is showed that dynamic surge pricing supports system 

stability during supply and demand fluctuations. Tang, Bai et al. (2016) employed steady 

state equilibrium in a queuing model in which requesters and drivers’ arrival time depend 

on offered prices and wages.  Using a similar model, Banerjee, Riquelme et al. (2015) found 

that price is raised with increasing mismatch in supply and demand. They showed that 

dynamic pricing leads to a higher revenue than static pricing if only demand parameters are 

unknown to the platform. In another study by (Gurvich, Lariviere et al. 2019), independent 

working schedule reduces the supply in on-demand transportation services, which increases 

the offered prices to customers in return. In a recent study by (Garg and Nazerzadeh 2021), 

the authors studied the impact of a dynamic surge pricing model on drivers earnings. Based 

on numerical analysis and real data, they found that the additive surge is more incentive 

compatible compared to multiplicative surge. Prokhorchuk, Dauwels et al. (2019) combined 

the optimization of routing and pricing for same-day delivery considering uncertainty in 

travel time. A value function approximator was trained to estimate the opportunity cost of 

accepting a request by drivers.  Their findings emphasize the presence of travel time 

information on pricing decisions. When there was penalty for missed deliveries, the delivery 

prices were higher. The difference in prices between the penalty and non-penalty situations 

is significantly higher when supply level was low.  

In a location-based pricing study, Chen, Li et al. (2015) studied the competitive implications 

between firms where customers can move between locations and firms. They found this 

pricing strategy is effective to control price variation between zones and maintain 

reasonable consumers in the system. Guda and Subramanian (2017), and Guda and 
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Subramanian (2019) analyzed the role of surge pricing and forecast communication in an 

on-demand platform and showed that surge pricing is useful when there is a mismatch 

between demand and supply. Based on their finding, price distortion by platform eventually 

increase profit by incentivizing drivers to leave over supply locations. Afeche, Liu et al. 

(2018) studied the demand approval and drivers repositioning decisions using a queueing 

network model. They provided sufficient conditions under which it is optimal to cancel 

demand at a low-demand location and encourage drivers to relocate to a high-demand 

location. Besbes, Castro et al. (2021) proposed a two-dimensional framework where the 

platform sets different prices in different locations considering prices, travel costs, and 

driver congestion levels. They showed optimal pricing stabilize supply and demand in some 

locations, while congestion is induced in others. Also, less profitable locations are indirectly 

priced out to incentivizing the relocation of drivers towards regions that are more beneficial. 

According to reviewed studies, the majority of pricing strategies in transportation shared 

economy belongs to passenger rideshare market proposing highly analytical mathematics 

and economic models that might not be applied. They rarely consider supply and demand 

elasticities at the same time with pricing and matching decisions. Furthermore, they lack 

flexibility of simulation models that enables studying the behavior of different actors in the 

system and under different settings.  

This study formulates and solves a dynamic zone-based pricing for a many-to-many food 

delivery problem including demand elasticity and supply preferences while making pricing 

and matching decisions by platform. The simulation model provides enough flexibility to 

model three actors in the system: platform, delivery drivers and requesters and study the 
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impacts of their decisions in various scenarios. To estimate the requesters elasticity as a 

function of price and wait time, a conjoint analysis survey is conducted (Subsection 3.3). The 

dynamic zone-based pricing is formulated as a dynamic programing problem (Subsection 

3.4) and solved by building a simulation-optimization model based on reinforcement 

learning techniques (Subsection 3.5). The next three subsections present background for 

conjoint analysis, dynamic programing, and reinforcement learning.    

3.3 Conjoint Analysis   

Food delivery apps become increasingly popular among people as an average  person has two food 

delivery apps and use them three times per month (Lardieri 2019). While more people are using 

food delivery apps, there is a maximum amount they are willing to pay for the service and a limited 

time they are willing to wait for the food to be delivered to them. Speed of delivery is the key 

factor in customer satisfaction (Carsten Hirschberg 2016). A survey conducted by U.S. Foods 

(Lardieri 2019) found that more than 70% will spend  no more than $10 on delivery fees, service 

fees and a tip. Same survey found that most people don't want to wait longer than 40 minutes on 

average for their ordered food to be delivered. Accordingly, fees and wait time for food delivery 

play critical role in requesters’ decision to order food and eventually determine the level of service 

and sustainable use of such services. 

Conjoint analysis is a statistical strategy and decomposition method to study the joint effect 

of attributes in products/services influencing consumers’ choice decisions to buy a 

product/service based on trade-offs. This assumes that the utility of an alternative could be 

decomposed into partial utilities of its attributes (Rao, Rabinovich et al. 2014). In the 
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Conjoint Analysis survey, individuals express their preferences among alternatives 

characterized by a set of attributes.  

Conjoint theory was founded in the 1960s by (Luce and Tukey 1964) and since then, it has 

been developed by researchers working in the field of data analysis primarily in behavioral 

sciences for marketing research methods (Kruskal 1969, Jain, Mahajan et al. 1979, Acito and 

Jain 1980). To measure consumers’ preferences to choose product alternatives in behavioral 

research, there are two approaches: revealed preferences (RP) and stated preferences (SP), 

assuming that consumers’ preferences and perception depend on the process of utility 

maximization. In the former, consumers choice behavior is observed in a real context by 

researchers. For the stated preference, on the other hand, individuals respond what would 

they do when they are exposed to a given choice set in a hypothetical context. In both cases, 

a researcher can study the outcome of a choice set and discover the preferences of consumer 

by the outcome of a choice experiment.  

Conjoint analysis is a stated preference analysis of consumer’s preferences and tradeoffs 

among products/services. Respondents are presented with different hypothetical 

alternatives in a fractional factorial design, that are mutually exclusive and are asked to score 

or rank them according to their order of preference. The data from this type of study can 

provide information on the probability that the consumer will choose or not choose any of 

those hypothetical alternatives. The data can further be used to analyze factors that 

contribute to the willingness to pay for a chosen product. Multinomial logit models, such as 

binary and ordinal logit models, are helpful to analyze the data from a conjoint experiment. 
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Conjoint analysis is founded on Random Utility Model (RUM)(Lancaster 1966). Utility is an 

indicator of the value a potential consumer places on an alternative service/product. Under 

RUM, the utility of each alternative of a product is a linear function of the observed 

characteristics of the product plus the error term (Verbeek 2008). Thus, individuals’ utility 

for an alternative has two parts: a deterministic and a random part. The former depends on 

the attributes of a product/service and the latter is random and unpredictable precisely, 

indicating the effects of unobserved attributes or taste variations.  If individuals select the 

alternative with the highest utility, the probability of choosing an alternative could be 

examined by calculating the overall utility for individual s, 𝒖𝒔, as a function of preferences, 

using Eq. 3.1: 

𝒖𝒔 = ∑ ∑ 𝒂𝒊𝒋𝒙𝒊𝒋𝒔

𝒎

𝒋=𝟏

+ 𝜺𝒊𝒋𝒔

𝒏

𝒊=𝟏

                                                      (𝟑. 𝟏) 

where 𝒂𝒊𝒋 indicates the part-worth utility for jth level of attribute i. In other word, it 

measures the influence of the attribute i on the utility when it is at its jth level. Here, Levels 

are the 'values' that each attribute can take. For example, the attribute ‘time of the day' can 

have levels 'AM', 'MD', and 'PM'.  𝒙𝒊𝒋𝒔 is a binary variable indicating the presence of jth level 

of attribute i for individual s.    

Different types of conjoint analysis are available, the application of each depends on many 

factors such as the utility function type, sample size, and most importantly the number of 

attributes and their associated levels. Rating-based conjoint analysis is the most traditional 

one in which respondents indicate their preference toward a set of combined attributes by 

scoring with respect to a scale (e.g., 0-10, 0-100, etc.). In rating-based, analyses are usually 

based on linear regression. On the other hand, choice-based conjoint analysis is the most 
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popular type in which respondents are exposed to a set of potential products/services 

characterized by a combination of attributes. They complete  sets of choice tasks(less than 

the full profile) and the analysis is either based on Logistic Regression or Hierarchical Bayes 

(Louviere 1988). 

3.4 Dynamic Programming 

3.4.1 Description  

Dynamic programing (DP) is a multi-stage decision making process which attempt to solve 

the problem sequentially in multiple stages. DP has five main elements: stage, state, 

transition, reward, and recursive relation. Each stage either represent a time epoch or 

decision step. State is a critical component in DP which intends to provide enough 

information required to take an action at that state. The state variable varies by problem and 

must be selected carefully to communicate the necessary information for decision making. 

Size of state variable must be reasonable enough to solve the DP in reasonable time as it is a 

computationally intensive approach. Actions are selected at each state based on a given 

policy. Transition maps the current state to the next state because of action. Reward is the 

value gained by taking the action at that state. The rewards at each stage contribute to the 

total expected value of the followed policy.  

Recursive relation is fundamental to DP approach. In recursive procedure, DP attempts to 

solve the multistage problem by a N-stage solution created sequentially solving an 

optimization problem one stage at a time until the overall optimum is found. The 

optimization problem is solved with respect to minimizing/maximizing the problem 

objective. This recursive procedure can either be backward or forward. In the former, the 
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procedure starts with the last stage and continues backward, one stage at a time, until the 

total stages are included. The latter though starts from the initial stage and move forward 

solving each stage of problem sequentially at a time.    

In DP, the N-stage solution is a policy, which determines the optimal action at each stage with 

respect to problem objective. According to the principle of optimality, any current state is 

followed by actions constituting an optimal policy  (Čepin 2011). 

DP computes the optimal policies given a perfect finite Markovian Decision Process (MDP). 

In a finite MDP, the set of states, actions and rewards are finite. Transition rule which defines 

the problem dynamic is a model in the form of a function (deterministic) or probability 

distribution (stochastic) that maps the current state to the next state and reward, given the 

action to be taken at a decision step (Bellman 1957, Lapan 2018). Perfect Markov property 

means that the transition rule model completely includes the information necessary to make 

a decision from the current state and action, not a chain of earlier states and actions(Sutton 

and Barto 2018).  

3.4.2 Formulation  

The mathematical formulation of DP is presented here. The objective or value function of a 

typical multistage DP is defined as 𝑽(𝒔𝒏) at stage n. Transition function is defined as 

𝒑(𝒂𝒏, 𝒔𝒏) which indicates the dependency of next state entirely to the current state and 

action taken (Eq. 3.2). Here, an refers to the action taken from all available actions in set An 

and sn represents the state of the problem including necessary information for decision 

making and transition. 

𝒔𝒏+𝟏 = 𝒑(𝒂𝒏, 𝒔𝒏)                                                             (𝟑. 𝟐)                                                                                                                      
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In this equation p can represent a probability function such as 𝒑(𝒔𝒏+𝟏, 𝒓|𝒂𝒏, 𝒔𝒏) by which all 

possible next states and rewards are swept given the current state and action. Then the 

expected return at every stage and state is calculated as the sum of the value of all next 

transitions weighted by their probability of occurrence.  

At each stage n, given the current state sn, the aim is to select an action an from a set of 

possible actions An that optimize the immediate reward r and total value over the remaining 

stages, 𝑽(𝒔𝒏), and results in a new state, sn+1, using  𝒑(𝒂𝒏, 𝒔𝒏), with N−n stages to go. Thus, 

the optimal value function at stage n is given by Eq. 3.3 which is the principal of optimality. 

In this equation, 𝛄 ∈ (𝟎, 𝟏], is a discount factor to reflect the present value of a future reward. 

𝑽(𝒔𝒏) = 𝐦𝐚𝐱
𝒂𝒏+𝟏

(∑ 𝒑(𝒔𝒏+𝟏, 𝒓|𝒂𝒏, 𝒔𝒏)𝒔𝒏+𝟏,𝒓 [𝒓 + 𝛄 𝑽(𝒔𝒏+𝟏)])                                (𝟑. 𝟑)                                                

To solve this multistage problem, generalized policy iteration algorithms, known as classic 

DP algorithms, have been proposed. These algorithms generally are divided into two 

essential parts: policy evaluation and policy improvement. In the former, the aim is to 

evaluate the value of the current policy 𝝅 comprised of set of actions taken at consecutive 

states. This is done using Bellman equation (3.4) iteratively. This means to calculate the value 

of the next state by backing up the value of the current state from the previous iteration.  

𝑽𝒌(𝒔𝒏) = ∑ 𝒑(𝒔𝒏+𝟏, 𝒓|𝝅(𝒂𝒏|𝒔𝒏), 𝒔𝒏)𝒔𝒏+𝟏,𝒓 [𝒓 + 𝛄 𝑽𝒌−𝟏(𝒔𝒏+𝟏)]                    (𝟑. 𝟒)                

The latter, policy improvement, follows the policy evaluation and improves the current 

policy by acting greedily to the evaluated value function to find a better policy. These two 

parts run iteratively until policy is stable and convergence is achieved to optimal value 

function and optimal policy. The pseudo code of generalized policy iteration algorithm is 

displayed below in Figure 3.   
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1 Initialize V(S) and 𝜋(S) for all s∈S;  
2 Policy Evaluation: 
3     Repeat  
4           ∆  0 
5           For each 𝑆: 

6                 v  𝑉(𝑆) 

7                 𝑉(𝑆) = ∑ 𝑝(𝑠𝑛+1, 𝑟|𝜋(𝑎𝑛|𝑠
𝑛), 𝑠𝑛)𝑠𝑛+1,𝑟 [𝑟 + γ 𝑉(𝑠𝑛+1)])                                    

8                 ∆  max(∆, |v - 𝑉(𝑆)|) 
9     until  ∆  < 𝜃  (a small positive number) 
10 Policy Improvement:  
11     policy-stable  True 
12     For each 𝑆: 

13          old-action   𝜋(S) 

14           𝜋(S)  argmax a (∑ 𝑝(𝑠𝑛+1, 𝑟|𝑎𝑛, 𝑠𝑛 )𝑠𝑛+1,𝑟 [𝑟 + γ 𝑉(𝑠𝑛+1)]) 

15           If old-action at state 𝑆 ≠  𝜋(S), then policy-stable  False 

16  If policy-stable, then stop and return optimal V and 𝜋; else go to 2 
Figure 3 Generalized policy iteration algorithm (Sutton and Barto 2018)  

To solve DP using policy iteration algorithms, all states must be swept, and a small 

optimization problem must be solved at every iteration. While there are extension 

algorithms aiming to improve its efficiency, policy iteration algorithms are still 

computationally expensive and suffer from several shortages which limit their application 

on large real-world problems. For the problem to be solvable, action and state spaces must 

be discrete with reasonable size. Strategies such as state aggregation can mitigate the 

continuous state spaces issues, however, this came with loss of precision and additional 

hyperparameters need to be carefully tuned. Besides, DP requires the presence of a perfect 

probability transition function p which is not possible in many real problems contexts. 

Furthermore, estimating value functions by backing up the value of the current state using 

Bellman equations requires the MDP condition to meet, while in several problems this does 

not hold or only partially hold.  
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3.5 Reinforcement Learning 

Reinforcement Learning (RL) is a specific branch in machine learning (ML) which deals with 

optimal multi-stage decision making through automated learning from interactions in a 

changing environment over time. While DP and Bellman equation are fundamental in RL, it 

does not have their obligations. RL enables learning from experience without necessarily 

having a transition model which is called Direct RL. It features advanced methods to 

generalize learning in large continuous spaces without computational burden. Finally, while 

many RL algorithms still require MDP condition to hold, there are strategies available to 

detour. 

RL approach stands between supervised learning and unsupervised learning, which are two 

well studied fields in ML (Lapan 2018). The former refers to building a function that 

automatically maps some input into some output. The function is built by training its 

parameters given a set of labeled pairs of inputs and outputs. Regression is an example of 

supervised learning methods. Predicting car sales prices given the car features such as 

weight, engine type, model, etc. is an example of regression prediction. On the other hand, 

unsupervised learning assumes no labeled output exist and learning happens based on 

discovering hidden patterns in the data structures. Clustering customers based on a set of 

attributes in the marketing research is an example of unsupervised learning. 

To understand the state of RL with respect to the two ML strategies just described, let’s 

consider an example of a small robot navigation problem. In this problem, a robot aims to 

find the shortest path to a predefined destination. The robot can take actions including 

moving, such as turn left/right and move forward, and recharge at each decision step. At 
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every step, it can observe the state of the environment to decide about the actions to take 

next. The observations might include the level of its electric charge and the immediately 

connected nodes on the route. It is trying to find the shortest path to the destination. The 

reward can be defined as being proportional to the remaining distance to the destination 

given to the agent by the environment as feedback to its actions. The reward system is 

fundamental to RL and differentiates it from unsupervised learning in which no predefined 

label exist. This system enables the agent to learn automatically by relating the 

environment’s feedback to the actions taken and accumulate the learned experience to 

improve its next actions. Learning the relation between action and the feedback makes RL 

more difficult compared to supervised learning in which labeled pairs of input and output 

are already available.  

One challenge in RL is that the source of information depends on agents’ actions. Thus, 

persisting on inefficient actions by the agent returns bad impulse to the learning procedure 

and might realize wrong decisions. Sustaining the balance between exploration and 

exploitation is another important factor. While the agent needs to exploit actions that result 

in better reward, it also needs to actively explore the environment to find undiscovered 

regions which might possibly realize significantly improved actions and more rewards. 

Finally, the design of an effective reward system avoid excessive decision steps and 

accelerate the agent’s learning accomplishment (Lapan 2018, Sutton and Barto 2018).  

3.5.1 Elements 

To formally introduce RL, we need to define its elements. There are two fundamental entities 

in RL: Agent and Environment. Agent is an entity which is responsible of observing the 
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environment state at each decision step s , play roles during each simulation episode a, and 

receive a feedback from the environment r (Figure 4). The environment is the context where 

the agent is living and playing. These two entities interact with each other through three 

mechanisms: observation, action, and reward (Figure 5).  

 

 

Figure 4 Sample RL episodes 

 

 

Figure 5 RL diagram 

Observations is amount of information an agent receives from its environment. In other 

words, observation 𝒔𝒕 is an 𝑵 dimensional informational subset of environment 𝑬 at each 

decision step 𝒕 , required by the agent to act. Action 𝒂𝒕 refers to what agent executes in the 

environment to progress with each decision step 𝒕 . The consecutive sequence of actions 

{𝒂𝟎, 𝒂𝟏, 𝒂𝟐, … , 𝒂𝑻 } at time steps 𝒕 ∈ 𝑻 during an episode is determined by policy, 𝝅. In RL, 

policy is a set of rules to control the agent’s behavior. Policy tells the agent what actions to 
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take at each state. Policy can be deterministic and depend only on the current state 𝝅(𝒔𝒕) or 

can be in the form of  a probability distribution over actions at each state 𝝅(𝒂|𝒔𝒕). Both action 

and observation space can be discrete or continuous, finite or infinite, including any 

dimension. While more information about environment and actions can improve accuracy, 

it comes with high computation and maintenance cost. Thus, identifying critical features and 

an appropriate dimensional presentation are important factors to consider. 

In RL, reward is a scalar (negative or positive) that is obtained locally with the objective to 

reinforce agents’ behavior in a positive or negative way.  Local reward is obtained after the 

most recent action the agent has taken in a given state according to reward function 

𝛘(𝑺𝒕, 𝒂 
𝒕) and does not necessary guarantee it sustains in the next steps. The reward can be 

obtained periodically (not necessarily after each decision step 𝒕) depending on underlying 

problem definition and assumption. The quality of a policy is measured by the cumulative 

reward an agent gain across a sequence of decision steps in an episode. An agent aims  to 

maximize this cumulative reward in every episode (Eq. 3.5). At each decision step 𝒕, 𝑹𝒕 refers 

to the rewards gain from t up to terminal step, T. 

𝑹𝒕 = 𝒓𝒕 + 𝒓𝒕+𝟏 + 𝒓𝒕+𝟐 + 𝒓𝒕+𝟑 + ⋯ + 𝒓𝑻                                               (𝟑. 𝟓)                                            

The reward of next decision steps might have different present value. Thus, a discount factor, 

𝜸, might be applied. A scalar less than one (usually 0.9 or 0.99)  also provides a limit to the 

infinite decisions steps horizon we calculate values for (Eq. 3.6). 

𝑹𝒕 = 𝒓𝒕 + 𝜸𝒓𝒕+𝟏 + 𝜸𝟐𝒓𝒕+𝟐 + 𝜸𝟑𝒓𝒕+𝟑 + ⋯ = ∑ 𝜸𝒌𝒓𝒕+𝒌                 (𝟑. 𝟔)∞
𝒌=𝟎            

As discussed before, an agent can follow various policies in an episode, but not all policies 

are necessarily optimal. Value function is a way to measure the goodness of a policy. It can 

be ether a function of the states, V(S) (Eq. 3.7) or a function of both states and actions, Q(S, 
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A) (Eq. 3.8).  The value of a policy at each state 𝒔𝒕 is measured as the expected total rewards 

the agent gain following that policy 𝝅 from that state. 

𝑽𝝅(𝑺 = 𝑺𝒕) =  𝑬𝝅(∑ 𝜸𝒌𝒓𝒕+𝒌
∞
𝒌=𝟎 |𝑺 = 𝑺𝒕)                                            (𝟑. 𝟕) 

𝑸𝝅(𝑺 = 𝑺𝒕, 𝒂 = 𝒂𝒕) =  𝑬𝝅(∑ 𝜸𝒌𝒓𝒕+𝒌
∞
𝒌=𝟎 |𝑺 = 𝑺𝒕, 𝒂 = 𝒂𝒕)               (𝟑. 𝟖) 

An optimal policy, 𝝅∗, is the policy which has the better expected total reward compared to 

any other policy 𝝅, for every state: 𝑽𝝅∗(𝒔) ≥ 𝑽𝝅 (𝒔), ∀𝒔 ∈ 𝑺. The same thing applies using Q 

function (Eq. 3.9-3.10). 

𝑽𝝅∗(𝒔) = 𝐦𝐚𝐱
𝝅

𝑽𝝅 (𝒔), ∀𝒔 ∈ 𝑺                                                             (𝟑. 𝟗)                                                        

𝑸𝝅∗(𝒔, 𝒂) = 𝐦𝐚𝐱
𝝅

𝑸𝝅 (𝒔, 𝒂), ∀𝒔 ∈ 𝑺, ∀𝒂 ∈ 𝑨                                    (𝟑. 𝟏𝟎)                         

Using DP properties, Bellman optimality equations can be derived from Eq. (3.9-3.10) by 

recursive formulation as Eq. (3.11-3.12). 

𝑽 ∗(𝑺 = 𝑺𝒕) = 𝐦𝐚𝐱
𝒂

𝑬𝝅∗(∑ 𝜸𝒌𝒓𝒕+𝒌
∞
𝒌=𝟎 |𝑺 = 𝑺𝒕, , 𝒂𝒕 = 𝒂) 

= 𝐦𝐚𝐱
𝒂

∑ 𝒑(𝑺𝒕+𝟏 = 𝑺′|𝑺𝒕, 𝒂𝒕 = 𝒂)[𝛘(𝑺𝒕, 𝒂 
𝒕 = 𝒂) +

𝒔′

 𝜸 𝑽 ∗(𝑺𝒕+𝟏 = 𝑺′)]     (𝟑. 𝟏𝟏) 

𝑸 ∗(𝑺 = 𝑺𝒕, 𝒂 = 𝒂𝒕) = 𝑬(𝒓𝒕 + 𝜸𝐦𝐚𝐱
𝒂′

 𝑸 ∗(𝑺 = 𝑺𝒕+𝟏, 𝒂𝒕+𝟏 = 𝒂′)

= ∑ 𝒑(𝑺𝒕+𝟏 = 𝑺′|𝑺𝒕, 𝒂𝒕 = 𝒂)[𝛘(𝑺𝒕, 𝒂 
𝒕 = 𝒂) +

𝒔′

 𝜸 𝐦𝐚𝐱
𝒂′

 𝑸 ∗(𝑺 = 𝑺𝒕+𝟏, 𝒂𝒕+𝟏

= 𝒂′)]                                                                                                                    (𝟑. 𝟏𝟐) 

In the above equations, functions P and 𝛘 are transition probability and reward functions, 

respectively. Many of the algorithms that are used in RL are model free and assume these 

functions are unknown. These methods estimate policy and value functions by executing 

policies and simulating many episodes. The agent plays and evaluates many possible actions 

in different states to learn the optimal policy leading to maximum total expected reward. 

These methods are further discussed next. 
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3.5.2 Algorithms 

In the history of RL, various methods and strategies are developed featuring different 

characteristics. Value-based methods estimate the value of return for each action and 

determine the best action to take at every step accordingly. Policy-based methods aim to 

approximate the policy for the agent to make decision about which actions to carry out at 

each step. In policy-based methods, policy is usually represented as a probability 

distribution over actions at each state. Another distinguishing feature among various 

methods lies in their update strategy. On-policy methods update the value function based on 

the current most recent policy which is also used to guide agents’ behavior. On-policy 

methods require fresh data to be collected from the environment or simulation in real-time. 

On the other hand, off-policy imposes the ability to learn from old historical data. Off-policy 

choses a different policy than the agent’s policy to update the value function.  

As mentioned earlier in Section 3.5, exploration and exploitation play important roles for 

action selection in RL methods. The challenge is over the decision to exploit an already found 

rewarding region or to explore unknown regions to discover better policies. Maintaining an 

appropriate balance between these two decisions highly improves the agent’s learning 

process. Some methods are employed so far respecting exploration-exploitation balance.  

The simplest and the most used method is 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 in which the next action is selected 

greedily with probability of 1- 𝜺 (𝜺 ∈ [𝟎, 𝟏]) and it will be chosen randomly, otherwise. An 

effective modification to this strategy is to decrease the value of 𝜺 during training process to 

reinforce explored learning during initial episodes and prioritize exploitation over 

exploration during later episodes. Another modification strategy for exploration-
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exploitation is Boltzmann, or the soft-max selection method which uses the following 

equation (Eq. 3.13) as an alternative probability of selection to 1- 𝜺: 

𝒑(𝒂𝒕|𝒔𝒕, 𝑸𝒕) =
𝒆𝒙𝒑

𝑸(𝒔𝒕,𝒂𝒕)
𝝉

∑ 𝒆𝒙𝒑

𝑸(𝒔𝒕,𝒂) 

𝝉𝑨

                                                                             (𝟑. 𝟏𝟑)                                                 

where τ is Boltzmann temperature from thermodynamics, which decreases proportionally 

with episodes progress. Higher values of τ lead to equiprobable actions and random 

selection, to emphasize exploration during initial episodes. As τ decreases, selection 

becomes greedier, giving higher chance to better actions. 

3.5.2.1 Value based methods 

Monte Carlo 

Monte Carlo (MC) methods learn value functions and optimal policies from experience in the 

form of sample episodes. They originally follow the overall procedure of generalized policy 

iteration algorithm explained in Section 3.4.2. As an alternative to use a model, MC performs 

policy evaluation by interacting with the actual or simulated environment and accumulate 

the total reward gained over the entire episode. Keeping track of the observed states, the 

expected return for each state is estimated as the simple average of many returns that start 

in that state. MC methods require large number of simulation executions to converge to the 

optimal value function and policy due to high variance (Sutton and Barto 2018). 

In addition to the freedom to learn from model or sampled experiences, MC has other 

advantages to classic DP methods. MC enables efficient learning by focusing on a subset of 

states which are useful rather than going to the expense of accurately estimating the rest of 

states which are not important. Moreover, MC is less vulnerable to Markovian property 
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violation. This is because it estimates the value function at each state using the total reward 

gained over the entire episode, rather than bootstrapping from estimated values of successor 

states.    

Temporal difference  

Temporal difference (TD) modifies the idea behind policy evaluation part of MC to form 

another procedure in the generalized policy iteration framework.  Instead of using the total 

accumulated reward in an episode (same as in MC), TD computes the difference of the new 

estimate of the value function at any observed state and its old value for the same state, 

calling it temporal error, to update the value function (Eq. 3.14).  

𝑽(𝒔𝒕) = 𝑽(𝒔𝒕)+∝ [𝑹 + 𝜸𝑽(𝒔𝒕+𝟏) − 𝑽(𝒔𝒕)]                                         (𝟑. 𝟏𝟒)                                            

where st and st+1 are the current and next states, respectively. R is the immediate reward 

gained by transitioning to the new state, and ∝ is the learning rate. Since TD updates the 

value functions at every transition (or in other words, with respect to shorter decision steps), 

discount factor 𝜸 can be set to 1. TD methods converge faster than MC due to lower variance, 

but it increases the bias in the estimate of the value function (Sutton and Barto 2018).  

SARSA algorithm (Figure 6), which has its name from State-Action-Reward-State-Action, is 

an on-policy strategy that has been used widely in RL and has adopted TD method to update 

the action-state value function, Q (Eq. 3.15). 

𝑸(𝒔𝒕, 𝒂𝒕) = 𝑸(𝒔𝒕, 𝒂𝒕)+∝ [𝑹 + 𝜸𝑸(𝒔𝒕+𝟏, 𝒂𝒕+𝟏) − 𝑸(𝒔𝒕, 𝒂𝒕)]           (𝟑. 𝟏𝟓)                

1 Initialize Q(S,A) for all s∈S; a∈A(s);  
2 Repeat for each episode: 
3     Initialize S0 

4     Choose a0 from S0 using Q  
5     For t = 0, 1, 2, … ,T: 

6            Take action at, observe R and St+1 
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7            Choose at+1 from St+1 using Q  

8            𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡)+∝ [𝑅 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 
9            St  St+1, at  at+1 

Figure 6 SARSA (on-policy TD method) 

In 1989, Watkins proposed a slight modification to SARSA by redefining its value function 

update rule and called this new version as Q learning (Figure 7)(Watkins and Dayan 1992). 

Unlike SARSA, Q-learning is off-policy since Q function is approximated greedily, 

independent from the current policy it is executing. In its update rule, Q-learning replaces 

the next state Q value, which was derived from the current policy execution experience [st, 

at, rt+1, st+1, at+1] in SARSA, by the maximum future value (Eq. 3.16).  This maximum value is 

usually computed by employing 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy. 

𝑸(𝒔𝒕, 𝒂𝒕) = 𝑸(𝒔𝒕, 𝒂𝒕)+∝ [𝑹 + 𝜸 𝐦𝐚𝐱
𝒂

𝑸(𝒔𝒕+𝟏, 𝒂𝒕+𝟏) − 𝑸(𝒔𝒕, 𝒂𝒕)]     (3.16) 

1 Initialize Q(S,A) for all s∈S; a∈A(s);  
2 Repeat for each episode: 
3     Initialize S0 

4     For t = 0, 1, 2, … ,T: 

5            Choose at from St using Q  

6            Take action at, observe R and St+1 

7            𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡)+∝ [𝑅 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 

8            St  St+1 
Figure 7 Q-learning (off-policy TD method) 

Function approximation 

The value functions estimated using any of the above discussed methods are stored in a 

tabular format for every state or every pair of state and action. These methods can only 

handle problems with reasonable size with low dimension states and actions. Otherwise, it 

will be memory inefficient to store all cases or it will be computationally expensive to sweep 

all possible combinations of states and actions to estimate the value function. Additionally, 

not every pair of states and actions will be realized in the environment, thus sweeping all 
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combinations might be waste of time. On the other hand, if the states and actions are of 

continuous spaces, it is impossible to use tabular format.  

To deal with the above-mentioned cases, parametrized function approximators replace the 

traditional tabular format storage and representations. In this way, the value function 

depends on features defined according to states and actions. These features are weighted by 

a vector of parameters θ = (θ1, θ2, . . . , θn)T and ultimately is denoted as V(s; θ) or Q(s,a; θ), 

depending on the problem model. The function approximator projects from a vector of 

parameters, θ in n dimensions, to the space of the value function.  The size of parameter 

vector is smaller than the entire state or state-action features. This parameter vector must 

be trained based on enough simulation episodes to generalize information from samples of 

experiences. Machine learning algorithms such as linear function approximators or Neural 

Network (NN) might be used in this regard to approximate value functions. Strategies such 

as tile coding and radial basis function can be employed to further aggregate the state space. 

However, these strategies often make more problems than they solve as there are more 

hyperparameters to decide about the level of aggregation, and ranges of parameters to 

distinguish different states and actions. Compared to the other methods, NN is capable in 

representing complex functions with less parameters. While NN are widely used as non-

linear function approximators nowadays, they are not promised to be converged.  

3.5.2.2 Policy based methods 

Methods discussed in the previous section were value oriented. They iteratively estimated 

the value of state or state-action pair and guide the agent behavior by acting greedily in terms 

of value (Eq. 3.17). Thus, the selected action at each state is the one with the largest Q value. 



61 
 

𝑽𝝅∗(𝒔𝒕) =  𝑸𝝅∗(𝒔𝒕, 𝒂𝒕) = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒂

𝑸𝝅 (𝒔𝒕, 𝒂𝒕),                

                 ∀𝒔𝒕 ∈ 𝑺, ∀𝒂𝒕 ∈ 𝑨      (𝟑. 𝟏𝟕)                               

Value based methods determine the policy indirectly using values. On the other hand, policy-

based methods parametrize the policy 𝝅𝜽 , usually in terms of the probability distribution of 

actions, with respect to a vector of parameters θ = (θ1, θ2, . . . , θn)T. Policy evaluation is 

performed by executing current policy and update the total reward. Gradient descent, 

algorithms family are used to find the parameters in the direction to increase the probability 

of actions with better total rewards. 

Policy search has better convergence properties compared with value-based approaches. 

Their major drawback is that their policy evaluation step imposes large variance and fails in 

learning good policies. Thus, it requires a large number of interactions with the environment 

which makes it undesirable. Several methods have been proposed in the literature to reduce 

the variance in policy search strategies (Lapan 2018). 

3.6 Summary 

This chapter presented background knowledge about the current pricing in online food 

delivery and reviewed the literature about surge pricing in transportation shared economy. 

While the empirical data analysis was eye opener about various items in delivery pricing in 

four large delivery apps, more insights are needed about temporal change in delivery fees 

and the impact of delivery region on price in various food apps. Research papers about 

pricing in transportation shared economy were highly analytical or hypothetical. They lack 

the flexibility needed to evaluate various scenarios and observe the interaction among actors 

in the system. While dynamic surge pricing supposed to benefit the system in theory, 
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empirical findings indicate that drivers are idled in the surge zones and there is lack of trust 

in announced surge multipliers from users to follow. The reviewed studies rarely evaluated 

the service externality on environment and health.  

This chapter also described the RL background and clarifies its place among other ML 

methods, similarities, and differences. Then, it introduced the general RL framework and 

describes its basic elements and operation mechanisms. Later, various fundamental 

algorithms to solve some RL problems are introduced and summarized. 
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4. Data Collection and Analysis 

 

As part of this study, data was collected from food delivery apps to gain more insight into the 

pricing strategies in various online food delivery platforms. In addition, a survey was 

conducted on a sample of individuals to understand their food delivery habits and 

preferences and eventually estimate their elasticity function. These functions are later used 

in the pricing model. 

4.1 Food Delivery Data Collection and Analysis 

To better understand online food delivery pricing and how the mechanism differs in 

different platforms, regions, and restaurants, this study collected 1,080 data records 

manually (using personal smart phones) from four food delivery apps in the U.S.: UberEats, 

Doordash, Postmates, and GrubHub. Data was compiled from mid-July to mid-August 2021 

from 15 restaurants and cafes available on aforementioned apps located in the northern 

California regions of Davis, Sacramento (Sac), and San Francisco (SF). Davis is a small city 

with educated and environmentally aware residents. On the other hand, SF is a large 

metropolitan area and the birthplace of many on-demand crowdshipping services (e.g. 

Doordash and Uber). SF is globally known as a center for innovation and internet technology. 

Finally, Sac is the Capital of the State, stands between Davis and SF in terms of population 

size. Sac is a fast-growing major city in the State with culturally diverse population.  For each 

region, three fixed locations were chosen as food delivery requesters to capture the effect of 

delivery distance and time on price and wait time. These locations are selected in different 

regions within the city. Pricing details and wait time data were collected for all pairs of 
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requesters and restaurants at different times of the day (morning [AM], midday [MD], and 

evening [PM]) on weekends and weekdays. To explore the effect of food type, we selected 

five types of popular meals for data collection: Mexican, Indian, American fast casual, 

American fast food, and café drinks (e.g., coffee and tea). While the initial goal was to consider 

exactly the same restaurants for each food type, not all restaurants of interest were available 

in all regions or apps. For example, Panera Bread was not located in the core area of SF, and 

Starbucks was not operating on GrubHub app. Thus, other similar restaurants were 

considered as replacements for these cases. Table 3 summarizes the restaurants  for which 

food delivery data was collected. Note that this study did not validate items such as food 

menu cost or restaurant working hours physically in place and that all reported numbers are 

based on what data the apps provided. 

Table 3 Restaurant information 

Food 
Type 
 

Restaurants 

UberEats Doordash Postmate GrubHub 
Davis Sac SF Davis Sac SF Davis Sac SF Davis Sac SF 

Mexican Chipotle Chipotle Chipotle Chipotle  Chipotle  Chipotle  Chipotle  Chipotle  Chipotle  Chipotle  Chipotle  Chipotle  

Indian The halal 
guys 

Preethi 
Indian 
cuisine 

The halal 
guys 

The 
halal 
guys 

Preethi 
Indian 
cuisine 

The 
halal 
guys 

The 
halal 
guys 

Preethi 
Indian 
cuisine 

The 
halal 
guys 

The 
Halal 
Guys 

Tandoori 
grill 

The 
halal 
guys 

American 
(Fast 
casual) 

Panera 
bread 

Sourdough 
and Co 

Boudin 
café and 
bakery 

Panera 
bread 

Sourdough 
and Co 

Boudin 
café and 
bakery 

Panera 
bread 

Sourdough 
and Co 

Boudin 
café and 
bakery 

Panera 
bread 

Sourdough 
and Co 

Boudin 
café and 
bakery 

American 
(Fast 
food) 

Subway Subway Subway Subway Subway Subway Subway Subway Subway Subway Subway Subway 

Café 
drinks 

Starbucks Starbucks Starbucks Peet’s 
coffee 

Peet’s 
coffee 

Peet’s 
coffee 

Philz’s 
coffee 

Jamba 
juice 

Philz’s 
coffee 

Temple 
coffee 

roaster 

Temple 
coffee 

roaster 

Sextant 
coffee 

roaster 

 

While the number of locations is limited to three per city, the various selection of food places 

in each city as well as measurement variation in time and day resulted in total of 1080 data 

records that is sufficient to conduct statistical analysis. 

Before diving into data analysis, there were a few observations during data collection that 

are worth mentioning:  
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• In one case, Postmates increased the delivery fee more than five times when there 

were no couriers around to be matched with a request during an evening weekend in 

Davis. This observation was removed from the dataset for further analysis. 

• Some restaurants might close earlier on some apps while it was still open on others. 

In Davis, for example, Halal Guys was open on UberEats but was closed on Doordash 

later in the morning. 

• In some cases, GrubHub and Doordash changed the level of pricing details presented 

to the requesters in the receipt temporarily. While they break the taxes and fees into 

relevant items in most cases, they show only the total value in a few others. 

• Apps differ in a few ways: GrubHub allows requesters to choose from different 

locations available in a region for the same restaurant. Others automatically choose 

one for the requesters, depending on their locations or working hours. In general, 

UberEats and Postmates apps crash more times when requesters frequently change 

a current order. 

• Several restaurants in SF close operations earlier in the evening (about 5:00–6:00 

PM) on all apps than in Davis and Sacramento. Moreover, some branches of the same 

restaurants in a city have variable working hours: some might start the day earlier, 

whereas others close later in the evening. 

4.1.1 Menu Cost 

Menu cost refers to the price indicated for the food available on the app, excluding any other 

fees such as taxes, service, and delivery fees. Data analysis on the collected sample from Davis 
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showed that the menu cost of one specific food is the same across all multiple locations of 

chain restaurants and cafes (e.g., Subway and Starbucks) offering the same food on the apps. 

However, this is not the case in Sac and SF, where the same food price varies between 

restaurants within the same chain. For example, the menu price of a small Italian salad from 

Sourdough and Co. varies between $7.49 and $8.79, depending on which branch you order 

from in Sac. Similarly, a foot-long regular oven-roasted turkey Subway sandwich ranges in 

price from $9.50 to $10.39 on the menu at different Sac branches on Postmates. In SF, the 

same Subway sandwich menu price can be somewhere between $9.99 and $11.49 in various 

restaurants operating on Doordash and GrubHub. Whereas requesters can select their 

restaurant of interest to order from in GrubHub, the other apps choose it automatically 

regardless of their menu price. Analyzing the menu cost of food versus delivery travel time 

and distance between requesters and restaurants and time of day on weekdays or weekends 

did not show a particular trend or relationship. However, a larger sample might be necessary 

to derive more conclusions. 

Although the food menu cost might differ based on the branch for which the request is made, 

ordering a specific food from the same restaurant or branch is the same in almost all apps in 

each city. Table 4 displays more details on a subset of data collected on the food menu for those 

foods and restaurants available in at least two cities. 

Table 4 Food menu price fluctuation for various foods, apps, and cities 

 
Restaurant 

 
Food 

Food Menu Price ($) 

UberEats Doordash Postmate GrubHub 
Davis Sac SF Davis Sac SF Davis Sac SF Davis Sac SF 

Chipotle Burrito bowl 9.05 9.05 10.95 9.05 9.05-
9.20 

10.95 9.05 9.05 10.95 9.05 9.05 10.95 

The Halal Guys Chicken and 
beef gyro 

platter 

12.99  14.99 12.99  14.99 12.99  14.99 13.99  14.99 

Subway Oven roasted 
turkey 

footlong 
regular 

10.59 10.37-
10.39 

10.29-
10.99 

10.59 9.50-
10.37 

9.99-
11.49 

10.59 9.5-
10.39 

10.29-
10.99 

10.59 9.5-
10.39 

9.99-
11.49 
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Starbucks Iced matcha 
tea latte 

4.35 4.55 5.15    

Peets Coffee Matcha 
strawberry 

frappe 

 6.60 6.50 6.50-
6.55 

  

Philz Coffee Iced mint 
mojito 

  6.40  6.40  

Temple Coffee 
Roasters 

Drip coffee     4.40 4.40  

 

4.1.2 Delivery fee 

Delivery fee refers to the compensation fee paid by the requester for food transportation 

from the restaurant to the requester location. Either the total or a percentage of the delivery 

fee is paid to the couriers, depending on platform commission rate and setting. The delivery 

fee is independent from other fees such as Drivers benefit or regulatory response fees, which 

will be discussed later.  

According to the additional data analysis, delivery fees might vary depending on delivery 

distance, time of day, and weekends or weekdays. Figure 8 presents the mean of standard 

deviations in delivery fees observed when delivering various food types across the day for 

every app and city. Although UberEats and GrubHub delivery fees are subject to change by 

time and day, PostMates and DoorDash have more stable and static delivery fees. Davis 

rarely experiences changes in delivery fees on most apps and in most food types. Café drinks 

and American fast-food types have more variety than the rest.  Note that, except for Davis, 

café-drinks and American fast-food types represent more variation in locations (i.e., multiple 

branches for the same food type) than Mexican or Indian food types.  
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Figure 8 Average delivery fee variation per day for different food types and apps 

Analyzing data revealed that from about 60 times the delivery fee was changed from the 

average price in the sample, 17 cases were switched to another branch for the same food and 

restaurant. For most of the remaining cases, changes in delivery time (AM, MD, or PM) or day 

of the week (weekday or weekend) were observed in addition to changes in delivery fees. 

The change in delivery fees was within the range of $0.5–2.00 from the usual delivery fee1 

for the same origin and destination. The change in the delivery fee and choice of branch, 

which eventually caused a change in the usual delivery fee for the requester, may have 

resulted from restaurant working hours restrictions, traffic congestion, variations in 

restaurant demand, and supply density. To study the reasons and make conclusions more 

carefully, support data on real-time traffic conditions, data regarding restaurants’ temporal 

workloads and drivers’ distribution density are necessary. 

 
1 Delivery fee observed most of the time for a pair of requester and restaurant locations. 
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4.1.3 Other fees 

In addition to menu cost and delivery fees, additional items are commonly categorized as 

other fees in the receipt. Table 5 lists these items along with details on their implementation. 

Not all fees are included for all apps and cities. Regulatory response fees are paid by UberEats 

and Doordash users to help the platform recover revenue loss due to recent caps on fees the 

platform could charge restaurants per transaction. Drivers’ benefit fees are included in all 

apps except Doordash, whose drivers get the full delivery fee, tips, and any boosts to their 

earnings (Helling 2021). Whereas other apps are consistent with their service fees, GrubHub 

differentiates its pricing with other factors such as delivery distance and destination. In SF, 

it uses separate service fee rates for different restaurants. Tax rates on orders are about 8–

9% of menu cost with variations for some restaurants in UberEats and Doordash. Analysis 

of our sample showed that the tax rate might apply on a combination of menu cost and 

delivery fee and any small order fee in GrubHub.  

Table 5 Other fees information for all apps and cities 

Other fees UberEats Doordash Postmate GrubHub 
Davis Sac SF Davis Sac SF Davis Sac SF Davis Sac SF 

Service fee1 
(% of menu cost) 

16% 
(min: 

$3, 
max: 
$5) 

16% 
(min: $3, 
max: $5) 

16% 
(min: 

$3, 
max: 
$5) 

17%, no 
more 

than $15 
 
Chipotle 
(17%), 

All others 
(15%) 

while not 
exceeding 

$15 

17%, no 
more 
than $15 
 
Chipotle 
(17%), 

All others 
(15%) 

while not 
exceeding 

$15 

15%, no 
more 

than $15 
 
Chipotle, 

Halal, 
and 

Boudin 
(15%), 

subway, 
and café 
drinks 
(13%) 

 

21%, 
min: 

$3 
 
 
 

21%,  
min: $3 

 
It can 

increase 
up to 40% 

to meet 
the $3 

minimum 
(e.g., 

Jamba 
juice) 

 

21%, 
min: $3 

 
It can 

increase 
up to 

47% to 
meet the 

$3 
minimum 

(e.g.,  
Philz 

coffee) 
 

5-23% 
 
 

It varies 
based on 
unknown 
factors. It 
generally 
increases 

with 
delivery 
distance 

2-23% 
 
 

It varies 
based on 
delivery 

destination 

Chipotle 
(15%), 
Boudin 
(10%), 
Halal 
(7%), 

subway 
(10%), 
Sextant 
coffee 
(21%) 

 

Taxes 
GrubHub: (% of 
menu cost + 
Small order fee + 
Delivery fee) 
 
All others: (% of 
menu cost) 

8% Subway 
(12-

13%), 
Starbucks 
(0%) and 
All others 

(9%) 

9% Halal 
(9%), 
Peets 
coffee 

(0%) and 
All others 

(8%) 

Peets 
coffee 

(0%) and 
All others 

(9%) 

Chipotle 
and 
Halal 
(8%), 
Boudin 
and 
Subway  
(9%) 
and 
Peets 
coffee 
(0%) 

8% 9% 9% 10-13% 
 

10-13% 10-13% 
 

 
1 This is a convenience fee that helps the App continue to operate and maintain its platform 



70 
 

Small order fee 
($) (condition) 

   3 (under 
$12) 

3 (under 
$12) 

3  
(under 

$12) 

   2  
(under 

$10) 

2  
(under 

$10) 

2 
(under 

$10) 

Driver benefit1 
($) 

2 2 2    2.5 2.5 2 2.5, 3.52 
 

2.5, 3.5 
 

2.5 

Regulatory 
response fee3 ($) 

  1   1       

 

To observe the share of each item on total price per order and compare it among various 

apps in different cities, this study selected two restaurants present on all apps and cities: 

Subway and Chipotle and the average results are presented in Error! Reference source not 

found..  

According to Figure 9(a), GrubHub is the cheapest option in all cities, whereas DoorDash has 

the highest total cost in Davis and SF due to its high delivery fees. Excluding the fixed fees 

such as driver’s benefits and regulatory response fees, GrubHub has the lowest fees in almost 

all categories except taxes, which could not prevent the app from being the cheapest means 

to order a Subway sandwich online. On the other hand, ordering from Chipotle tells a 

different story (Figure 9 [b]). Although GrubHub is still the cheapest option in all cities, 

UberEats has the highest total cost thanks to its higher delivery fees in this scenario. Another 

observation is that the same food’s menu cost is about $2 higher in SF than in two other cities. 

Moreover, delivery fees are lower in SF for all apps except GrubHub when ordering from 

Chipotle.  

Assuming the item menu cost announced on the online food delivery app is the same as its 

price when you order in place at the restaurant, requesters must pay the additional delivery 

and other fees when ordering online. Depending on which city or app one chooses to order 

 
1 The is intended to help cover benefits granted to drivers under Proposition 22, such as healthcare stipend, insurance  
and guaranteed minimum wages calculated based on local minimum wages 
2 In addition to cover aforementioned benefits, GrubHub drivers receive 30 cents per active mile driven. 
3 These fees go directly to the App platform to recover the lost revenue from the 15% commission cap imposed by at least 
68 cities, counties, and states.  

https://www.restaurantbusinessonline.com/technology/what-proposition-22-could-mean-restaurants
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from, they, on average, might pay an extra amount of $7–11 and $8–10 for a $10 subway 

sandwich and $9–10 for a chipotle burrito bowl, respectively (Figure 9). These extras can 

equal or even exceed the menu cost at the high end. 

 
(a) 

 
(b) 

Figure 9 Average share of fees for a typical order from (a) Subway (regular oven-roasted turkey sandwich, foot long) and (b) 
Chipotle (chicken burrito bowl) 

4.2 Conjoint Analysis Process 
 

The implementation of conjoint analysis involves several phases and a process of 

subsequent, interdependent decisions: conceptual model, the definition of attributes and 
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levels, communication mechanism, research population and sampling, research design, 

survey validation, and market simulation estimation. These are further discussed in the 

following subsections. 

4.2.1 Implementation 

4.2.1.1 Conceptual model 

According to this study’s literature and empirical practices, delivery waiting time and fees 

are two critical attributes in requester satisfaction. This study aims to evaluate the impacts 

of these two attributes on the requesters’ decisions. The study also measures the effect of 

time of the day on the requester’s decisions given a pair of prices and waiting time. Data on 

sociodemographic characteristics of the requester (e.g., age and income) are also collected. 

The conceptual model, depicted in Figure 10, consists of independent attributes at left (i.e., 

delivery wait time and delivery fee) and dependent variable at right (i.e., customer decision). 

Control variables are inserted in the box connected to the dependent variable, which consists 

of demographic characteristics and delivery time of day. 

 

Figure 10 Conceptual model 
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4.2.1.2 Definition of attributes and levels 

Initial attributes and levels are defined according to the previous decision. Next, a focus 

group was formed with eight participants (five female, mean age = 23.4 years) from students 

at the University of California, Davis. The focus group was intended to validate the initial list 

of attributes and levels and further translate or redefine terms into the fluent language of the 

participant. The final list of attributes and levels is presented in Table 6. 

Table 6 Survey attributes and levels 

Attribute Attribute Level 
Delivery time Morning (7-10 AM); Afternoon (11 AM- 4 PM); Evening (5-9 PM) 
Delivery price Less than $5; $5-10; $10-15; More than $15 
Delivery wait time Less than 15 minutes; 15-30 minutes; 30-45 minutes; More than 45 

minutes 
Food delivery habit  
(Frequent: more than 
twice a week?) 

Yes; No 

Age 16-25; 26-35; 36-45; 46-55; 56-65; 65+ 
Gender Female; Male 
Education level High school; Colleges; Bachelors; Masters; Doctorate 
Employment level  Unemployed; Paid employed; Self-employed; Temporary laid-off; 

Retired 
Annual income Less than $10,000; $10,000-29,999; $30,000-49,999; $50,000-69,999;  

$70,000-89,999; $90,000-149,999; $150,000 or more  

 

4.2.1.3 Communication mechanism 

This study uses Amazon’s Mechanical Turk (MTurk) (Amazon’s Mechanical Turk (MTurk) 

2005) to distribute an online survey to crowds of workers to complete the tasks and receive 

a small compensation fee in return. In large crowdsourcing marketplace, the requester 

submits a Human Intelligence Task (HIT) to Amazon Mechanical Turk for workers to 

perform. A HIT represents a single, self-contained task available to workers for a limited 

period, specified by the requester. A HIT is also associated with a time duration, which is the 



74 
 

amount of time to complete a task after accepting it. The requester specifies how many 

workers can work on a task. Amazon Mechanical Turk guarantees that a worker can work 

on each task only once. Workers are paid per task by the requester only for satisfactory work. 

4.2.1.4 Research population  

This study considers individuals as units of analysis and adults (older than 16) living in the 

case study region (United States) as the target population. Amazon Mechanical Turk does 

not provide the option to specify this group of workers. To avoid a biased sample, it is best 

to use probability sampling. However, given this project’s limited budget and time 

availability, a nonprobability sampling method is used to choose the population sample from 

Amazon Mechanical Turk workers.  

Although MTurk can be beneficial for gathering a diverse sample in an abbreviated length of 

time with low cost, it suffers from a few sources of bias. MTurk workers are younger, more 

educated, less religious, and more likely to be unemployed than the general population. As 

MTurk works on some web-based platforms, it requires the availability of technology that 

logically might not be possible for older adults or low-income populations (Dupuis, Endicott-

Popovsky et al. 2013, Difallah, Filatova et al. 2018). Amazon Mechanical Turk provides 

options to overcome the embedded sampling biases to some degree. One option is a clear 

specification about target population characteristics of interest in the HIT title and 

description section. Moreover, the platform has recently provided options to send out the 

tasks to only workers with qualifications specified by the requester (e.g., certain age or 

location). Another option for the requester is to add a question before administering the 
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research questionnaire asking the worker to check some specification of interest (e.g., age) 

before fulfilling the task. 

In our case study, food delivery requests are made through apps or web-based services. 

Thus, the potential limitations of age or technology dependency inside the MTurk sample 

might not skew the outputs. Also, the survey setup clarified the target population 

characteristics of interest (e.g., age and location) in the questionnaire title and description 

section. However, attributes such as employment status and income level might still affect 

individuals' willingness to pay and rating.  

4.2.1.5 Research design 

The survey questionnaire had several sections. It starts with a brief introduction and 

acknowledgment for being a U.S. resident (given the case study and consistency in monetary 

units) and older than 16. Then, the respondents are presented with two questions about 

their food delivery habits and order frequency. The third part is the most important and 

includes conjoint analysis rating-based tables asking individuals to rate each combination of 

the delivery price and wait time on a scale of 0–100 based on their preference Figure 11. This 

study assumed delivery price and wait time as the only important attributes in elasticity 

estimation. Because of the limited number of attributes, each with four levels, rating-based 

conjoint analysis is appropriate and enables implementing the full factorial design 

(displaying every level of every attribute in all sets) more efficiently. Three tables 

representing three times of the day (morning, afternoon, and evening) were included in the 

survey. Last, several questions were asked about respondent sociodemographic information. 

The survey was designed using the Qualtrics platform (Qualtrics 2002). 
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Figure 11 Conjoint rating-based table 

4.2.1.6 Study validation 

Validation of the data collected by survey is important to accept the results. In this study, the 

participant scores given to different cells inside rating tables are compared with each other 

to assure validity. The reliability of data collected from MTurk has not been significantly 

different from data collected by other means (Kim and Hodgins, 2017; Sheehan, 2017; 

Mortensen and Hughes, 2018). Participants who respond using MTurk generally answer 

reliably and consistently, as evidenced by high test–retest reliability rates (Difallah, Filatova 

et al. 2018).  

4.2.2 Results  

The study collected data following the methodology previously discussed using the MTurk 

online platform. A total of 131 individuals initially participated in the study. Of them, 23 were 

dropped from further analysis because they were incompatible with survey requirements 

(e.g., age and residential location) or demonstrated internal validity violation (e.g., 

inconsistent ratings across wait and price combinations).  
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The summary of the final sample of 108 individuals is illustrated in Figure 12. It shows that 

more than 50% of individuals are among younger age groups and females covered 59% of 

the total sample. The geographical distribution of participants shows that the sample mostly 

consists of residents living in dense urban areas where food delivery services are more 

popular. Most participants (78%) indicated that they frequently use online app-based food 

delivery services. About 74% of participants have university degrees and are employed. 

More than 50% of the sample have an annual income of more than $70,000. Of these, 11% 

have an estimated income of more than $150,000 per year. 

 

Figure 12 summary of the final sample 

Furthermore, Table 7 shows the part-worth utilities (regression model parameters) for all 

variables and respondents. The model is fitted with F-statistics; F(9, N=5,184), equals 516.1 

and p<2.2e-16.  The last level of each attribute is determined as the reference category. As 

shown, apart from Time of Day_MD, all regression coefficients are statistically significant 

based on t tests. The intercept is positive and large (47.3457), indicating a positive effect on 
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the utility when all other attributes are set to their reference category. Price <$5 and wait 

time <15 minutes represented the highest part-worth utilities.   

Table 7 Part-worth utilities for all variables estimated, including all the respondents 

Attributes Levels of 
Attribute 

Utility Value of 
Estimate 

95% Confidence 
Interval (CI) 

p-Value 

Intercept  --- 47.3457 [46.70, 48] <0.001 ** 
Time of Day   AM -3.1495 [-4.07, -2.23] <0.001 ** 

MD 0.2677 [-0.65, 1.19] 0.632 
Waiting 
Time 
 

<15 min 16.4421 [15.32, 17.57] <0.001 ** 
15-30 min 7.0687 [5.94, 8.20] <0.001 ** 
30-45 min -5.5579 [-6.68, -4.43] <0.001 ** 

Delivery 
Fare 
 

<$5 29.8125 [28.69, 30.94] <0.001 ** 
$5-10 10.2562 [9.13, 11.38] <0.001 ** 
$10-15 -13.3750 [-14.50 -12.25] <0.001 ** 

 

The relative importance of the attributes is displayed in Figure 13. This is calculated in two 

steps: First, the importance ratio of each attribute for each individual is calculated as the 

range of preference for each attribute divided by the total range of preference for all 

attributes. Then, the preference ratios are averaged across individuals to estimate the 

relative importance ratio for each attribute in sample. As shown, the price had the highest 

relative importance to the service’s overall appraisal (54.51%), followed by wait time 

(33.91%). Time of day was revealed to have the lowest relative importance (11.58%). 
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Figure 13 relative importance of attributes 

To estimate the elasticity function, the study predicts the individuals’ choice of delivery 

service using their part-worth utility estimated by conjoint analysis and selection of the 

service with the highest utility. Then, a binomial logit model is estimated using their choice 

of delivery as the outcome , and the results are displayed in Table 8.  The model is fitted such 

that Akaike information criterion (AIC) equals 1191.2, and all the estimates are significant 

except the intercept, which is positive, meaning a positive impact on total utility, setting all 

the rest of the attributes to zero. This means that shifting time from AM to MD and PM 

increases the utility for food delivery choice slightly. On the other hand, delivery wait time 

and fare both are negative and significant, wherein delivery fare is more impactful than wait 

time. 

Table 8 Binomial logit model summary 

Attributes Utility Value of 
Estimate 

95% Confidence 
Interval (CI) 

p-Value 

Intercept  4.083 [3.53, 4.63]          0.407 

Time of Day   0.66727 [0.49, 0.84] <0.001 ** 

Waiting Time -0.84985 [-1.03, -0.67] <0.001 ** 

Delivery Fare -1.24398 [-1.40, -1.08] <0.001 ** 
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4.3 Summary 

In this chapter, empirical analysis results from data collected from four food delivery apps 

in three Californian cities are discussed. Pricing schemes comprise several items; inclusion 

or exclusion of each depends on the app and the city where the service is operating. Same as 

the total cost of food delivery varied by app and city, the food price also differed.  GrubHub 

was the cheapest in most cases, although it lacked the variety in food types and restaurant 

options of others such as DoorDash. Although delivery fees showed a general increasing 

trend with delivery distance, the relation was unclear within each app. Delivery fees might 

vary by time of day, but they might be negligible or moderate depending on the app, food 

type, and city. This temporal change in delivery fees happens because of either change in 

restaurant work hours, peak in delivery demand, or traffic congestion. These finding confirm 

the lack of transparency in pricing discussed earlier in Chapter 1. More data is needed to 

make better estimates of pricing decisions for each app. 

To estimate the requesters' elasticity functions for delivery, conjoint analysis and survey 

were conducted based on rating table designs for different combinations of the delivery fee 

and wait time at three times of the day: AM, MD, and PM. Among the measured variables, 

delivery fees were the most effective parameter in requesters elasticity, followed by wait 

time and day. Time of the day positively affected requesters’ elasticity values (from AM to 

MD and PM), whereas impact for delivery fee and wait time were negative. 
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5. Materials and Methods 
 

According to the findings from previous chapters, delivery pricing and wait time play critical 

roles in service performance and requesters’ preferences. Different platforms have different 

pricing routines and might even operate differently in different cities. Excluding menu cost, 

items such as service and small order fees are almost fixed and might depend on the 

interrelations between platforms and restaurants. However, delivery fees vary depending 

on factors such as delivery travel time or distance, time of the day, or region or spatial zone 

of food place. Moreover, delivery fees represent one core item of the food delivery pricing 

scheme and include drivers ‘compensations. In this chapter, a dynamic zone-based pricing 

model is formulated and solved as a multistage decision-making problem using DP and RL 

techniques discussed before. In this model, surge multipliers are determined per spatial zone 

and vary across sequence of time stages to adjust according to supply and demand 

distributions.  

At the beginning of each time stage, the platform, as the central control, receives the real-

time distribution of drivers and potential requesters. It then determines the optimal zonal 

surge multipliers for that time stage and announces it to the drivers. Depending on the 

platform setting, drivers then decide if they would like to participate in the delivery and 

enter the matching pool with requesters. Finally, the estimated wait time, based on the 

driver’s participation decisions, and offered prices are communicated to requesters when 

they order through the app. Requesters evaluate the order according to their elasticity and 

confirm or cancel the request based on the final price and wait time. Using the actual pool of 

requesters and drivers, the platform performs the same zone matching and calculates the 
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average earning per zone, which is then communicated to drivers who remained in the 

system without being matched at the current time step. These drivers then decide to relocate 

or remain in the current zone considering their service time window scheduled. This 

framework is illustrated in Figure 14. 

 

Figure 14 Pricing model implementation overview 

This problem is formulated based on the DP framework. Unlike the myopic policy where the 

problem is solved based on deterministic information available at each time step, 

disregarding the potential future events (Lugtigheid, Banjevic et al. 2008), DP follows a 

policy where the future state of the problem depends on decisions made at different states 

during downstream steps (Powell, Simao et al. 2012).  

5.1 Problem Definition 

This section describes the mathematical formulation of the dynamic zone-based pricing 

model for a food delivery service. The platform would like to determine the optimal pricing 

decisions with respect to its objective for the entire time horizon. The network is partitioned 
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into disjoint zones where supply and demand vary at every time stage. At the beginning of 

each time stage, the mass of drivers available at each zone is determined by tracking their 

repositioning decisions and accounting for new drivers’ arrivals. The platform will declare 

drivers’ approximate zonal earning at each time stage, and drivers decide whether to 

participate or not, considering their value of time. The aggregated zonal delivery origin-

destination (OD) demand is given for each time interval from which the fraction of potential 

requests is determined with respect to the elasticity function. Here, request/trip origin is the 

restaurant/food place where any requester places the order, and the destination is the food 

delivery location from which the order is requested.  

5.1.1 Platform 

The platform sets prices for requests and decides the matching between requests and drivers 

for the food delivery. The incremental pricing rule is adopted, comprising a fixed rate per 

unit of delivery distance. Depending on the supply and demand relation, dynamic surge 

multipliers are determined to adjust the price at each zone in the system. Same-area 

matching is implemented where drivers are matched with requests within the same zone. 

The platform charges a fixed percentage of the fare as its commission rate. Neither the driver 

nor the requester can reject the trip after they have been matched by the platform and 

requesters that are not assigned to any driver leave the platform.  

The platform has two objectives: 1) maximizing platform profit by maximizing the total 

earning from deliveries and 2) maximizing requesters social welfare by maximizing the total 

deliveries. In the latter case, author makes two additional assumptions in the model to 

improve the system equity for both requesters and drivers: 1) the domain of surge 
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multipliers is expanded to also include values less than one to lower the original base fare; 

and 2) the priority is given to drivers with the lowest number of completed trips during the 

assignment process to increase the working drivers in the system. 

5.1.2 Requesters 

The network is partitioned into N disjoint zones. Each request is represented by <i, j, t>, in 

which i and j are origin and destination zones, respectively, and t is the request 

announcement time. This study assumes the total potential demand per zone is given for 

each t. Aggregated requests in zone i at time t, 𝑫𝒊
𝒕, is estimated as a fraction of total demand 

𝒅𝒊
𝒕,𝒌, given the price 𝒑𝒊

𝒕,𝒌 and waiting time 𝒘𝒊
𝒕,𝒌 offered by the platform, proportional to the 

elasticity function 𝝋(𝒑𝒊
𝒕,𝒌, 𝒘𝒊

𝒕,𝒌). This is presented in Eq. 5.1. Here, Kit refers to total demand 

announced in zone i, at time t.  

𝑫𝒊
𝒕 =  ∑ 𝝋(𝒑𝒊

𝒕,𝒌, 𝒘𝒊
𝒕,𝒌)𝒅𝒊

𝒕,𝒌            ∀𝒊 ∈ 𝑵

𝑲𝒊
𝒕

𝒌=𝟏

, ∀𝒕 ∈ 𝑻                                             (𝟓. 𝟏)  

𝒑𝒊
𝒕,𝒌 =  𝒙𝒊

𝒕𝜷𝒅𝒊𝒔𝒕𝒌                ∀𝒊 ∈ 𝑵, ∀𝒕 ∈ 𝑻, 𝒌 ∈ 𝑲𝒊
𝒕                              (𝟓. 𝟐)  

𝒘
𝒊

𝒕,𝒌
=  𝜼

𝒊

𝒕
+ 𝒕𝒕𝒊𝒎

𝒌
+ 𝝍           ∀𝒊 ∈ 𝑵, ∀𝒕 ∈ 𝑻                                      (𝟓. 𝟑)              

𝜼
𝒊

𝒕
= 𝟑. 𝟎𝟏𝒇

𝒊

𝒕
− 𝟎. 𝟑𝟏              ∀𝒊 ∈ 𝑵, ∀𝒕 ∈ 𝑻                                      (𝟓. 𝟒)          

In Eq. 5.2, 𝜷 equals the fixed delivery rate per unit of distance and 𝒙𝒊
𝒕 is the surge multiplier 

in zone i at time t. Also,  𝒅𝒊𝒔𝒕𝒌 refers to the delivery distance to fulfill request k; In Eq. 5.3, 

waiting time equals the summation of driver’s en route time 𝜼𝒊
𝒕 (time for the driver to arrive 

at order pickup point located in zone i, at time t, after being matched) 𝒕𝒕𝒊𝒎𝒌 (delivery 

distance to fulfill request k) and matching time window 𝝍. Using UberX data, (Castillo, 

Knoepfle et al. 2017) estimated drivers’ en route time as a function of drivers’ density in zone 
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i at time t, 𝒇𝒊
𝒕, which is presented in Eq. 5.4. This study adopts this function for drivers’ zonal 

en route time because estimating this requires available data on delivery drivers’ itinerary 

and is out of scope.   

5.1.3 Drivers  

Each driver is defined by <i, t1, t2>, where i is the zone where they are available and t1 and t2 

correspond to driver arrival and departure time from the system, respectively. Three states 

are defined for drivers: 1) open to be matched, 2) assigned (en route to pick up or deliver the 

order) 3) relocating. At the beginning  of each time interval, drivers’ status is updated, and 

only open drivers are considered for  matching decisions. The platform declares the surge 

multiplier per zone, then drivers decide whether to participate or not considering the 

expected earning and their value of time (Eq. 5.5). 

𝒑𝒊
𝒕𝒅𝒊𝒔𝒕̅̅ ̅̅ ̅̅

𝒊
𝒕𝝁𝒊

𝒕 − 𝒄𝒓𝒕𝒕𝒊𝒎𝒕 
𝒊

̅̅ ̅̅ ̅̅ ̅̅ ̅ > 0                       ∀𝒊 ∈ 𝑵, ∀𝒕 ∈ 𝑻, 𝒓 ∈ 𝑹                    (𝟓. 𝟓) 

𝝁𝒊
𝒕 = 𝐦𝐢𝐧 (

𝒅𝒊
𝒕

𝒔𝒊
𝒕 , 𝟏)                                         ∀𝒊 ∈ 𝑵, ∀𝒕 ∈ 𝑻                              (𝟓. 𝟔) 

In Eq. 5.5, 𝒄𝒓 represents driver’s  value of time, and 𝒕𝒕𝒊𝒎𝒕 
𝒊

̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average delivery time from 

zone i, at time t. 𝝁𝒊
𝒕 denotes the probability that a driver participates in zone i at time t. If 

demand  𝒅𝒊
𝒕 exceeds the supply  𝒔𝒊

𝒕, the demand is randomly rationed, and all drivers 

participate as long as 𝒑𝒊
𝒕𝒅𝒊𝒔𝒕̅̅ ̅̅ ̅̅

𝒊
𝒕𝝁𝒊

𝒕 exceeds the second term. Otherwise, 𝝁𝒊
𝒕 fraction of drivers 

participates. Here, 𝒑𝒊
𝒕 is the offered price per mile of delivery distance from zone i at time t. 

Drivers’ VOT that is randomly distributed between $6 and $12 per hour, consistent with the 

range of mean VOT for different population groups in the Bay Area Travel model.   

The drivers that are not matched with any request decide to either remain idle in their 

current zone or relocate to another, constrained to their session end time t2. This decision is 
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made at each time t by comparing average earned profit at the previous time step in the 

current zone i, 𝑷̅𝒊
 𝒕−𝟏, with the average profit gained in other zones considering driving cost, 

𝜹  (Eq.5.7): 

           𝒋∗ = 𝒂𝒓𝒈 𝐦𝐚𝐱
𝒋∈𝑵

{(𝑷̅𝒋
 𝒕−𝟏 − 𝜹𝒊𝒋) − 𝑷̅𝒊

 𝒕−𝟏}                     (𝟓. 𝟕) 

𝒔. 𝒕.   𝒕 + 𝒕𝒕𝒊𝒎𝒊𝒋 < 𝒕𝟐 

After the initial time interval, w external drivers enter the system choosing the zone with the 

highest average profit earned by drivers at the previous time interval (Eq. 5.8). It is assumed 

that w follows a Poisson probability distribution with the parameter proportional to the 

number of matched requests n in the target zone at the previous time interval (Eq. 5.9).  

              𝒋∗ = 𝒂𝒓𝒈 𝐦𝐚𝐱
𝒋∈𝑵

{(𝑷̅𝒋
 𝒕−𝟏}                                                (𝟓. 𝟖) 

            𝒘 ≈ 𝒑𝒐𝒊𝒔𝒔𝒐𝒏(𝒏. 𝑷̅𝒋∗
 𝒕−𝟏)                                                (𝟓. 𝟗) 

The platform’s objective to maximize the profit is indicated by Eq. 5.10.a, where 𝚷 is the total 

earning from deliveries by matching and pricing decisions considering all zones and time 

intervals (Eq. 5.11.a). 

𝐦𝐚𝐱
𝒙 

 
𝚷(𝒙 

 )                                                                                 (𝟓. 𝟏𝟎. 𝒂) 

𝚷(𝒙 
 ) =  ∑ ∑ 𝐦𝐢𝐧 (𝑫𝒊

𝒕, 𝑶𝒊
𝒕)𝒅𝒊𝒔𝒕̅̅ ̅̅ ̅̅

𝒊
𝒕

𝑵

𝒊=𝟏

𝑻

𝒕=𝟏

𝒙𝒊
𝒕    

                            (𝟓. 𝟏𝟏. 𝒂) 

The platform’s objective to maximize social welfare is indicated by (Eq. 5.10.b), where 𝚷 is 

the total deliveries in all zones and time intervals (Eq. 5.11.b).  

𝐦𝐚𝐱
𝒙 

 
𝚷(𝒙 

 )                                                                                  (𝟓. 𝟏𝟎. 𝒃) 

𝚷(𝒙 
 ) =  ∑ ∑ 𝐦𝐢𝐧 (𝑫𝒊

𝒕, 𝑶𝒊
𝒕)

𝑵

𝒊=𝟏

𝑻

𝒕=𝟏

                                               (𝟓. 𝟏𝟏. 𝒃) 
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In Eq. 5.11.a and 5.11.b, 𝑶𝒊
𝒕 presents the total available supply of drivers at time interval t 

which comprises of remaining drivers, relocated drivers, and external drivers who agreed to 

participate in zone i according to Eq. 5.5 and Eq. 5.6. Reminder that both 𝑫𝒊
𝒕 and 𝑶𝒊

𝒕 are in 

terms of 𝒙𝒊
𝒕, according to Eq. (5.1–5.2, 5.5–5.9). The term 𝐦𝐢𝐧 (𝑫𝒊

𝒕, 𝑶𝒊
𝒕) defines the number of 

deliveries in zone i at time interval t. Accordingly, when there are more requests than 

drivers, requests are randomly rationed. Conversely, the drivers are randomly rationed 

when there are more drivers than requests.1 Average delivery distance in zone i at time 

interval t is represented by 𝒅𝒊𝒔𝒕̅̅ ̅̅ ̅̅
𝒊
𝒕.  

5.2 Dynamic Programming 

DP solves for optimal policy in a dynamic environment, considering the system's current 

state, which is essential for decision making. DP executes a decision and observes a reward 

once it acquires the full state information. Then, the system transitions to a new state. The 

outcome of DP is the optimal policy that determines what decision to make for each system 

stage. A DP is formulated to solve the pricing problem defined in Section 5.1. Each time step 

t represents a decision stage. Surge multipliers per zone 𝒙 
𝒕 are decision variables that are 

continuously distributed within an interval of [𝒙𝒎𝒊𝒏
 , 𝒙𝒎𝒂𝒙

 ]. Each state is characterized by the 

zonal distribution of demand and supply as well as average delivery distance, 

𝑺𝒕(𝑫 
𝒕, 𝑶 

𝒕, 𝒅𝒊𝒔𝒕̅̅ ̅̅ ̅̅
 
𝒕). The transition rule between consecutive states is defined by new demand 

arrivals and drivers’ decisions. While the former is independent of the previous stage, the 

latter is directly defined by the state and decisions in the preceding stages. Pricing decisions 

at each stage affect the matched drivers and earned zonal profits, which in return affects the 

 
1 In social welfare scenario, priority is with drivers having lower deliveries until time interval t 
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drivers' repositioning decisions and external arrivals for the next stage (Eq.5.5–5.9). Thus, 

these must be considered in the transition rule (Eq. 5.12).  

               𝑺𝒕+𝟏 = 𝑺𝑻(𝑺𝒕, 𝒙 
𝒕; 𝑫 

𝒕+𝟏)                                                     (𝟓. 𝟏𝟐) 

Given the 𝑺𝒕 and 𝒙 
𝒕, the reward function 𝛘(𝑺𝒕, 𝒙 

𝒕) is Eq 5.10.a (maximizing total earning) or 

Eq. 5.10.b (maximizing social welfare), which performs matching decisions between the final 

requesters and drivers (Eq. 5.1–5.6) in all the zones and outputs the resulting profit or 

deliveries (if it is the social welfare scenario). 

Ultimately, Bellman’s principle of optimality recursion rule of the above-described DP is 

represented by Eq. 5.13, which demonstrates that we are interested in finding optimal zonal 

surge multipliers to maximize the objective for all stages, or the time horizon.  

𝚷(𝒕, 𝑺𝒕) =  𝐦𝐚𝐱
𝒙 

𝒕
{𝛘(𝑺𝒕, 𝒙 

𝒕) +  𝚷(𝒕 + 𝟏, 𝑺𝒕+𝟏)}                                 (𝟓. 𝟏𝟑) 

The solution for this problem comprises optimal decisions at each decision stage. This is 

usually determined by classic DP recursive computation (e.g., generalized policy iteration 

algorithm explained in Section 3.4.2). However, the complexity and the scale of the described 

problem present a challenge here. Considering large dimensional state space and continuous 

decision variable domain, the cardinality of this problem is not finite. If A and S are decision 

and state spaces, respectively, the computational complexity per iteration for policy iteration 

is 𝑶(|𝑨||𝑺|𝟐 + |𝑺|𝟑) and for value iteration is 𝑶(|𝑨||𝑺|𝟐)  (Kaelbling, Littman et al. 1996). 

Thus, the problem is intractable to be solved by these algorithms. Even if we assume a bound 

over the state space and discretize the decision variable (e.g., N = 100, 𝑫𝒎𝒂𝒙
𝒕  = 20, 𝑺𝒎𝒂𝒙

𝒕  = 10, 

𝒙 
𝒕 ∈ {𝟎. 𝟓, 𝟏, 𝟐}: the state has 20,000 dimensions and the decision space has 𝟑𝟏𝟎𝟎 dimensions 
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at each decision stage t), it still suffers from the curse of dimensionality and becomes 

computationally expensive to solve. 

5.3 Reinforcement Learning 

To solve this problem, a macro simulation-optimization solution framework is introduced in 

this section. For the simulation, a RL agent plays in a built macro simulation environment by 

following the defined DP rules and simulate a given pricing policy including state transition 

and reward accumulation sequence for the entire time horizon, T, satisfying constraints and 

assumptions defined in Eq. 5.1–5.11. During each simulation run, the states, decisions and 

rewards are recorded for every decision stage as trajectories and are transferred to the RL 

function approximator. Here, they are used as training sets to estimate a linearly weighted 

function V, in terms of decision states and decision variables to approximate the total profit 

or deliveries for all time steps T, following the sequence in the training set (Figure 15). More 

details about the value function approximator is provided later in section 5.3.1. 

 

Figure 15 Solution approach step 1 
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After the value function approximator is trained through enough episodes, it  is employed to 

estimate the optimal pricing policy and value  for various distributions of demand and supply 

in the case study. For each time step, the zonal distribution of demand, supply, and delivery 

distances are given to a multi-start point optimization algorithm to optimize the value 

function approximator and find the optimal set of zonal multipliers with respect to the given 

objective (maximizing total profit or deliveries) (Figure 16).  

  

Figure 16 Solution approach step 2 

5.3.1 Value Function Approximation and Algorithm 

This study performs a function approximation technique to train a parametrized linear 

function in state features by generating simulated experiences. The objective is that the 

function takes the state features as inputs at each decision step and returns the optimal 

decision as output. The process applies RL techniques to train a linear function approximator 

effective for large continuous state-decision spaces when training data is unavailable. 
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Learning is done through the real-time agents simulated interaction in the environment to 

update the function parameters and generalize the learnings to future practices.  

Contrary to classic DP methods, the process explicitly specifies an objective function, V, to 

train episodically and minimize the prediction error by finding an optimal weight vector 𝒘∗ 

for which 𝑽(𝒘∗) ≤ 𝑽(𝒘 ) for all possible w. The approximate function depends on both 

states, and actions/decisions where it is represented by 𝑽(𝒂, 𝒔|𝒘 ), including a set of n 

features defined to represent the state and action decisions (Eq. 5.14). 

𝑽(𝒂, 𝒔|𝒘 ) =  𝒘𝟏𝒇𝟏(𝒂, 𝒔) + 𝒘𝟐𝒇𝟐(𝒂, 𝒔) + 𝒘𝟑𝒇𝟑(𝒂, 𝒔) + … + 𝒘𝒏𝒇𝒏(𝒂, 𝒔)          (𝟓. 𝟏𝟒) 

This problem requires defining an N dimension vector to represent the N zonal state 

𝑺𝒕(𝑫 
𝒕, 𝑶 

𝒕, 𝒅𝒊𝒔𝒕̅̅ ̅̅ ̅̅
 
𝒕) and decision at each decision step t. Accordingly, the feature vector includes 

one component per zone 𝒇𝒊(𝒂, 𝒔)  ∀𝒊 ∈ 𝑵 that depending on the problem objective measures 

the expected profit (for maximizing total profit) or number of deliveries (for maximizing 

social welfare) with respect to state 𝒔𝒕 and decision variable in that specific zone 𝒂𝒕 (Eq. 

5.15).  

𝑽(𝒂𝒕, 𝒔𝒕|𝒘 ) =  ∑ 𝒘𝒊𝒇𝒊(𝒂𝒕, 𝒔𝒕)

𝑵

𝒊=𝟏  

        ∀𝒕 ∈ 𝑻                                         (𝟓. 𝟏𝟓) 

For maximizing total profits, this study assumes that the expected profit  (comprising the 

immediate profit at time t and discounted future earnings till the end of the time horizon) at 

each zone i is proportional to the average delivery distance for matched requesters and 

drivers, 𝐦𝐢𝐧 (𝑫𝒊
𝒕, 𝑶𝒊

𝒕)𝒅𝒊𝒔𝒕̅̅ ̅̅ ̅̅
𝒊
𝒕, multiplied by its corresponding surge pricing decision, 𝒂𝒕 

 . 

Hence, our approximated value function is presented as in Eq. 5.16.a: 

𝒇𝒊(𝒂𝒕, 𝒔𝒕) = 𝐦𝐢𝐧(𝑫𝒊
𝒕, 𝑶𝒊

𝒕) 𝒅𝒊𝒔𝒕̅̅ ̅̅ ̅̅
𝒊
𝒕𝒙 

𝒕       ∀𝒊 ∈ 𝑵,   ∀𝒕 ∈ 𝑻                       (𝟓. 𝟏𝟔. 𝒂) 
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For the social welfare objective, this study assumes that the expected deliveries (comprised 

from the immediate number of matches at time t and future matches until the end-of-time 

horizon) at each zone i is proportional to the matched trips at the current state, 𝐦𝐢𝐧 (𝑫𝒊
𝒕, 𝑶𝒊

𝒕). 

Hence, our approximate value function is presented as in Eq. 5.16.b: 

𝒇𝒊(𝒂𝒕, 𝒔𝒕) = 𝐦𝐢𝐧(𝑫𝒊
𝒕, 𝑶𝒊

𝒕)       ∀𝒊 ∈ 𝑵,   ∀𝒕 ∈ 𝑻                         (𝟓. 𝟏𝟔. 𝒃) 

The V function is constructed to estimate the value of being at state s, taking decision a. The 

weights must be determined in a way to minimize the difference between the estimated 

value by function approximator, 𝑽̂, and U which can be the actual return of the state and 

decision, an estimated average, an erroneous version of V or one of its equivalent TD 

versions. Thus, the value function approximation mean squared error is denoted by Eq. 5.17: 

𝑱𝒘 = ∑ (𝑼 −  𝑽̂

 

𝒂𝝐𝑨,𝒔∈𝑺 

(𝒂, 𝒔|𝒘 ))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝟐                                                   (𝟓. 𝟏𝟕) 

The stochastic gradient descent (SGD) algorithm is well suited for solving real-time 

optimization problems. In gradient-descent methods, the weight comprises a fixed number 

of real-valued components w = (w1, w2, …, wn), and the approximate value function V is a 

differentiable function concerning all weights. Each episode has a single series of 

observations from successive states and their corresponding decisions and rewards, 

occurring at discrete time steps, < s1, a1, r1, s2, a2, r2, … , sT, aT, rT >. This trajectory is sampled 

from agents’ interaction with the environment. At the end of each episode, SGD modifies the 

weights by adjusting the weight vector to reduce the error for that observation (Eq. 5.18 and 

5.19).  

𝒘𝒕+𝟏 = 𝒘𝒕 −
𝟏

𝟐
𝜶𝛁[𝑼𝒕 −  𝑽̂(𝒂𝒕, 𝒔𝒕|𝒘𝒕)]

𝟐
                                                    (𝟓. 𝟏𝟖) 

𝒘𝒕+𝟏 = 𝒘𝒕 + 𝜶[𝑼𝒕 − 𝑽̂(𝒂𝒕, 𝒔𝒕|𝒘𝒕)] 𝛁𝑽̂(𝒂𝒕, 𝒔𝒕|𝒘𝒕)                                  (𝟓. 𝟏𝟗) 
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where 𝜶 is the learning rate and 𝛁𝑽̂ is the partial derivative with respect to the weight vector 

component, which is the direction that error falls most rapidly (Eq. 5.20).   

𝛁𝑽̂(𝒂𝒕, 𝒔𝒕|𝒘𝒕) = [𝒇𝟏(𝒂𝒕, 𝒔𝒕), 𝒇𝟐(𝒂𝒕, 𝒔𝒕), … , 𝒇𝒏−𝟏(𝒂𝒕, 𝒔𝒕), 𝒇𝒏(𝒂𝒕, 𝒔𝒕)]                  (𝟓. 𝟐𝟎) 

In each episode, the SGD makes little progress in reducing the overall error. According to 

(Sutton and Barto 2018), there is no way to reduce error for all the states and actions by 

examining a sample of trajectories. Instead, there is a need to approximate a function to 

balance the error and generalize the training to other trajectories not observed in the 

samples.  

In this study, the transition rule between states cause the Markovian property to not hold 

because the pool of available drivers at each state depend on a series of decisions made 

during previous stages rather than only the current stage.  According to this and the finite 

episodic feature of the pricing problem in this study, MC actual return is considered as the 

target value Ut. At each stage, the true value of taking decision a at state s is the expected 

value of the outcome following it. In other words, it equals the summation of the immediate 

reward earned at that specific decision stage and the expected discounted value gained in 

later stages following the fixed policy until the end-of- time horizon (Eq. 5.21).  

𝑼𝒕 = 𝒓𝒕 + 𝑬 (∑ 𝜸𝒊𝑼𝒊

𝑻

𝒕+𝟏

)                                               (𝟓. 𝟐𝟏) 

In Eq. 5.21, 𝒓𝒕 is the immediate reward gained at stage t and 𝜸 is the discount factor imposed 

on the value gained at every other stage afterwards. Accordingly, MC target Ut =: Gt is by 

definition an unbiased estimate of the true value and good alternative for Ut. With this choice, 

the MC version of SGD is guaranteed to converge to a locally optimal approximation of V(at, 
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st) (Sutton and Barto 2018). The MC version of the SGD algorithm implemented in this study 

is presented in Figure 17. 

1 Initialize value-function weights w0 as appropriate (e.g., w0 ← 0) 
2 Repeat for each episode: 
3 G ← 0 
4 Generate a trajectory s0, a0, r0; s1, a1, r1; : : : ; sT, aT, rT;  following a pricing policy π 
5 For t = T-1, T-2, … ,0: 
6         G ← 𝜐G + 𝑟t 

7         𝒘𝑡+1 ← 𝒘𝑡 + 𝛼[𝐺 −  𝑉̂(𝑎𝑡 , 𝑠𝑡|𝒘𝑡)] ∇𝑉̂(𝑎𝑡 , 𝑠𝑡|𝒘𝑡) 
Figure 17 MC-based SGD pseudocode (Sutton and Barto 2018) 

SGD optimization requires that the training data be independent and identically distributed 

(I.I.D)(Lapan 2018). Here, the state transitions within training trajectories collected by 

interacting with the environment belong to the same episode. Maintaining memory replay is 

one potential solution in the literature to train on more-or-less independent data. Memory 

replay refers to a large queue of experienced trajectories in full episodes to sample training 

data out of it rather than using the most recent trajectory. The queue structure of memory 

replay enables the recent data added to its end as it pushes the oldest one out of it.  Memory 

replay strategy enables using previous experiences more efficiently by learning from them 

multiple times in later episodes.  

In this study, the learning process is on-policy and requires training data to be sampled 

according to the currently updated policy. However, memory replay samples from old data 

that is not identical to the current distribution. While reducing the size of memory replay 

might be a possible solution for simple environments, this study implements the parallel 

training environment idea. In this strategy, the algorithm communicates with m independent 

simulation environments starting from m different random pricing policies which are 

improving concurrently. At each iteration, one trajectory is randomly sampled from the m 
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environments for training the function. It is worth mentioning that randomly sampling from 

m independent environments also decreases the high variance from MC-based algorithms.  

The study implemented the MC-based SGD algorithm combined with multiple concurrent 

environments (Figure 18). In this strategy, each environment initiates by a random pricing 

policy.  

1   Initialize value-function weights w0 as appropriate (e.g., w0 ← 0) 
2   For each m environment: 
3          Generate a random pricing policy πm 

4          Simulate a trajectory <s0, a0, r0; s1, a1, r1;  : : :  ; sT, aT, rT>  following the given pricing policy πm 

5          Add the trajectory and the discounted total reward Rm to batch B 
6   Repeat for each episode: 
7        Randomly select an environment from B and unpack its trajectory <s0, a0, r0;  : : :  ; sT, aT, rT>   
8        G ← 0 
9        For t = T-1, T-2, … ,0: 
10           G ← 𝜐G + 𝑟t 

11           𝒘𝑡+1 ← 𝒘𝑡 + 𝛼[𝐺 −  𝑉̂(𝑎𝑡 , 𝑠𝑡|𝒘𝑡)] ∇𝑉̂(𝑎𝑡 , 𝑠𝑡|𝒘𝑡)   
12      For each m environment: 
13            π’m , Rm’ ← PolicyImprovement(πm, Rm) 
14            Add the trajectory and the discounted total reward R’m to batch B 
15      Go to 6 

Figure 18 MC-based SGD algorithm pseudocode 

Randomly interacting with the environment is not guaranteed to find optimal policies. 

Random selection is suitable at the beginning of the training when the agent needs to explore 

more. Still, exploration must be efficient to avoid exploring the policies already visited or 

states having low chance to occur. One alternative to random policy selection is to use the 

function approximator being trained to guide the pricing policy selection. However, the 

function approximator might not perfectly represent the environment, particularly at the 

beginning of the training.  

This study designs an evolutionary strategy (ES) policy improvement algorithm to guide the 

policy selection and improvement tasks in concurrent environments (Figure 19). This 
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algorithm comprises of two parts. First it starts from a given random pricing policy (Figure 

18, line 3) for each environment; the policy is executed in the simulation environment 

(Figure 18, line 4); then, the current policy 𝝅 and its expected return, R, are stored in the 

batch (Figure 18, line 5). In subsequent episodes, the pricing policies evolution for each 

environment using the ES policy improvement function (Figure 18, line 13). The function 

attempts to locally modify the current policy randomly in the direction of the best policy 

found so far (Figure 19, line 5-6).  The newer policy is compared with current policy (Figure 

19, line 7-8): if it improves the expected return, it both replaces the current and the best 

policy (Figure 19, line 9-11); otherwise, it will be selected based on stochastic Boltzmann 

probability function (Figure 19, line 13–17). This algorithm gradually improves the selected 

pricing policy for all concurrent environments independently; simultaneously, it enables the 

algorithm to throw away bad policies and train on better ones. Given its stochasticity, it 

maintains the balance between exploration and exploitation, which works based on the 

Boltzmann temperature parameter, starting from high values and decreasing gradually. This 

leads to more exploration at the initial training and more exploitation at the end. The policy 

and trajectories generated at each episode replace those in the batch, then a single/mini 

batch trajectory is randomly sampled to update the weights.  

1     Initialize Boltzmann Constant, T, direction, W(𝜔1, 𝜔2), Hrate, Drate 
2     Initialize old policy and best policy, to empty m-size lists 
3     Initialize old value, and best value to m zero variables 
4     PolicyImprovement(π, R) { 
5            π′ ← π + direction 
6           Simulate a trajectory <s0, a0, r0; s1, a1, r1;  : : :  ; sT, aT, rT> following the given pricing policy π’  
7           ∆ ← 𝑅′ − 𝑅 
8           If  ∆>0: 
9                 [policy,value] ← π’, R’ 
10                 If  R’ > best value: 
11                         [best policy, best value] ← π’, R’ 
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12          Else  
13                 Probability ← Exp(∆/Boltzman Constant*T) 
14                  If random(0,1) < Probability : 
15                      [policy, value] ← π’, R’ 
16                 Else  
17                      [policy,value] ← π,  R 
18         direction ← 𝜔1. 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + 𝜔2. 𝑟𝑎𝑛𝑑𝑜𝑚(0,1). 𝑏𝑒𝑠𝑡 𝑝𝑜𝑙𝑖𝑐𝑦 
19         T ← Hrate*T 
20        W ← Drate*W 
21     Return(policy, value) 

Figure 19 ES policy improvement algorithm pseudocode 

5.3.2 Computational complexity 

Time and space complexity are important factors to evaluate an algorithm performance and 

scalability. The methodology in this study comprised of two parts: simulation and training. 

In the former, the pricing is simulated in the environment considering decisions by platform, 

drivers, and requesters in T consecutive time steps (Section 5.1). In the latter, the data 

collected from the simulation is used to train a linear value function according to the MC-

based SGD algorithm (Figure 18). These two steps are executed following one another 

iteratively till convergence achieved. The time and space complexity of these two procedures 

are O(BTMN2) and O(TN2), respectively. Here, B is the batch size, T is the number of time 

steps per episode, N is the number of zones, and M is the maximum number of drivers per 

zone. The quadratic term contributes the most to the complexity which occurs at the steps 

such as drivers relocation decisions between any pair of zones. While time complexity is true 

in the worst case, strategies such as sorting the candidate zones based on their expected gain 

in profit and compatibility with drivers’ service time reduces the execution time in most of 

the cases.  This is comparable to DP approach discussed before which has exponential 

complexity solving the problem in discrete space.  
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Quadratic complexity in term of input size does not hinder the real-time application of the 

methodology. The simulation and training are implemented using either historical available 

data or simulation environment. Then, the trained function is employed to make pricing 

decision in real time without a need for batch training and convergence. Any single update 

of function weights using real-time data costs O(N) and O(BTN), in time and space 

complexity, respectively.  

5.3.3 Implementation 

The RL-based simulation model and training described in the previous section are 

implemented following OpenAI Gym’s Env class API (Brockman, Cheung et al. 2016) and 

executed using Python 3.7.4 scripting language. The Gym environment provides a 

standardized interface for the RL process. Our simulation environment, called “Shared 

Mobility Environment,” uses several internal and external classes and functions to model 

crowds of drivers and delivery tasks. 

Figure 20 shows how the environment works and interacts with other components. 

Functions named Initialize, Reset, and Step are the basic operands in most Gym 

environments. Initialize is used at the very beginning of the simulation to initialize the 

environment. Reset is used to reset the environment at the initial stage or when an episode 

is finished. Step is used to execute a given action in the environment and feedback its reward 

and next state observation to the agent. The action at each stage is selected using the policy 

selected randomly from concurrent environments. The concurrent environment policies are 

updated iteratively by the policy improvement ES function. When the required number of 
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experienced episodes is collected (i.e., batch size), training the value function is implemented 

as the next step following the MC-based SGD algorithm. 

 

Figure 20 RL implementation in Python 

5.4 Summary 

In this chapter, the pricing mathematical model and simulation model framework is 

presented, and the mathematical formulation behind its RL function approximation 

modeling is described step by step. Based on the characteristics of our problem, the MC-

based function approximator has been presented as the solution algorithm, and several 

improvement strategies such as ES policy improvement, memory replay, and concurrent 

environments have been discussed. 
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6. Results and Analysis 

6.1 Case Study Description 

This study considers San Francisco as a case study to evaluate the methodology. San 

Francisco, one of the largest metropolitan areas in the country, is undoubtedly the birthplace 

of many shared economy companies (e.g., DoorDash and Uber) that has transformed its 

industry and, in some cases, changed the world. Sharing economy companies have presented 

challenges to the city, particularly regarding how it manages transportation. On the other 

hand, it benefits thousands of residents and visitors. Regulators seek to find solutions to 

balance these positive and negative impacts on the city. 

One vital resource to provide inputs for the model of this study is the San Francisco Bay Area 

Metropolitan Transportation Commission activity-based model (MTC-ABM). The activities 

or day patterns that drive individuals’ need to make travel-related choices in time (hourly, 

24 hours) and space (1454 TAZs) are based on MTC’s 2000 Bay Area Travel Behavior Survey 

(Jaller, Pourrahmani et al. 2019).  

Food delivery requests are derived selecting the home-based eat-out trips from the MTC 

travel model. Trips are selected from those featuring “eat-out” activity as the primary tour 

purpose, and the duration of the “eat out” activity does not exceed 60 minutes. Each trip is 

associated with a set of features such as a pair of origin (i.e., home zone) and destination 

zones (i.e., food place zone), departure hour of the day, and trip transport mode. For each 

potential request, a minute is a random number generated from a uniform distribution. The 

figure below shows the trip mode and distance distribution (Figure 21). The number of trips 
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is the highest for midday (MD), followed by the morning (AM) and afternoon (PM). A high 

proportion of trips are made in active modes (walk/bike) and car. The walk/bike trip 

distance is less than 1.5 miles, and car trips are within 6 miles of travel distance. The fraction 

of active modes decreases from AM to PM, while that of trips made by car increases from AM 

to PM. 

 

 
Figure 21 Eat out trip distribution description 

Figure 22 shows the distribution of the eat-out destinations for a sample of 1 hour period. 

The trip destinations vary by time of day, expanding from the northern part to the center and 
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middle of the city. Zones covering downtown areas and city centers have relatively higher 

demand than the rest of the zones. 
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Figure 22 Eat-out trip destination distribution 

 

6.2 Algorithm Parameter Settings 

The algorithm has different sets of parameters that must be initialized to calibrate the model 

and method to this case study. The proposed MC-based SGD algorithm is characterized by 

several variables, among which learning rate, 𝜶 , is very important. Specifically, the learning 

rate (lr) is a configurable parameter in learning algorithms with a small positive value, often 

in the range of 0 to 1. While it can remain fixed to a value, it is recommended to be decreased 

gradually in RL for better performance (Sutton and Barto 2018). Four scenarios were 

considered: in the first two scenarios, 𝜶  is fixed at 0.3 and 0.1. In the remaining two 

scenarios, it decreases across episodes, either continuously (by a factor of 0.99) or discretely 

(three intervals: 1 (episodes 1-1300), 0.3 (episodes 1300–2000), and 0.1 (episodes 2000–

2500)). For the latter case, the cut-off episodes were chosen by repetitive examination of 

several alternatives and by observing algorithm performance. Each scenario is executed for 

the food delivery sample case study in San Francisco. The simulation time is one hour (9–10 

AM), which comprises four steps (15 minutes each). The initial vehicle fleet size, 500, is 
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randomly distributed in the zones. The parameters (i.e., time interval, wait time, speed, 

operation cost) are normalized between 0 and 1. The discount rate 𝜸=0.9 is chosen. Each 

scenario has been repeated for 10 simulation seeds, and the prediction cost, mean square 

error (Eq. 5.17), and confidence interval per iteration are computed. The results are 

averaged over the last 500 iterations and depicted in Figure 23.  

 
(a) 

 
(b) 

 
(c) 

Figure 23 Algorithm convergence behavior 



105 
 

Up to about iteration 600, scenarios corresponding to =0.3 and 0.1 feature relatively larger 

confidence intervals than other scenarios. Starting from iteration 700, the prediction cost 

diverges for 0.99*𝜶 and its confidence interval grows. Among the three remaining scenarios, 

the discretely decreasing 𝜶 scenario performs better with the least average cost and the most 

acute confidence interval and stable convergence behavior across all the episodes.  

Two other important parameters are the number of episodes and the number of 

environments, m. For the former, the experiments showed that the total number of episodes 

in the range of 1,500–2,500 is appropriate for convergence. Later, a similar analysis was 

conducted to set the environment size parameters: m=5, 10, , and 15 were examined.  The 

convergence behavior and the policy value did not show a meaningful trend. Thus, m=10, 

was selected for future analysis. 

To demonstrate the effect of the ES policy improvement algorithm and the multiple 

concurrent environments, three sets of 10 simulation seeds were executed with the same 

parameters and case study: 1) policy improvement and concurrent environments; 2) policy 

improvement and memory replay, and 3) random policy generator. Policy improvement 

parameters are set empirically as T = 100, Boltzman_constant = 1, Hrate = 0.99, Drate = 

0.95, and W = [1, 2]. Figure 24 shows the current and average discounted cumulative value 

of the policy examined per episode.  
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Figure 24 Policy value progress using the proposed policy improvement algorithm (VFA+PI), memory replay, concurrent 
environments, and random policy (VFA) 

Although all scenarios show enough variations in the examined policies for training, the 

policy improvement heuristic has dramatically increased the policy values and provided a 

better training set than random policy generators. Also, implementing concurrent 

environments has improved the quality of the policy training set and converged to the value 

= 7 faster than using memory replay for more than 1,000 episodes.  

To examine the dynamic zone-based pricing strategy performance, two other pricing 

strategies, static and myopic pricing, are also implemented. In the static pricing, the delivery 

rate per mile is fixed at the base rate, without any variation across zones and time. The 

myopic strategy, however, varies the price only in temporal dimension. It determines one 

surge multiplier for all zones, potentially varying from time to time. As might already be clear 

from its name, the difference lies in the fact that in the myopic strategies, the future 

discounted reward is disregarded and only the immediate reward is considered in value 

estimation per time stage. 
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The policy improvement algorithm introduced previously is used to solve the problem for 

myopic strategy in the form of generalized policy iteration algorithm. In this way, the 

algorithm starts with one random policy and improves it iteratively until the difference 

between two consecutive policies is small enough. The policy values are total earning and 

deliveries for profit and social welfare scenarios, respectively. Here, no SGD and value 

function learning is conducted. 

6.3 Food Delivery Scenarios 

To perform the analysis for food delivery, 9-10 AM eat out trips (1,202 trips) were 

considered as case study. In next sections, the results from different scenarios are evaluated 

considering various features and measures. The results are organized into four groups: 

platform, drivers, requesters, and system. This enables to evaluate the model and results 

from different perspectives. 

All results and data points presented in this chapter are the average of 35 simulation runs. 

There are abbreviations sometimes used to display the results in tables and graphs. Table 9 

provides full definitions for each of these abbreviations and words for more information. 

Table 9 Abbreviations and definitions 

Abbreviation Definition  
SW Dynamic zone-based pricing strategy with social-welfare maximization 

objective 
My-SW Myopic pricing strategy with social-welfare maximization objective 
Pr Dynamic zone-based pricing strategy with profit maximization objective 
My-Pr Myopic pricing strategy with profit maximization objective 
R Random driver distribution 
W1 Weighted driver distribution 

 
1 Initial pool of drivers is distributed with respect to a probability function weighted by presence of demand in the region and time 
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W-NC1 Weighted driver distribution with no choice to reject participation 
GC General cost 
TT Travel time 
TD Travel distance 
PC Parking cost 
PT Parking time 
OC Operation cost for cars 
VOT Value of time 
FDF Food delivery fare 

 

6.3.1 Platform 

This section compares several pricing strategies and algorithms: static pricing, myopic 

pricing, and dynamic zone-based pricing schemes.  The total platform deliveries and profit 

for various fleet sizes and distributions are displayed in Table 10 and Similar trends are 

observed for the total profit in Table 11. An increase in fleet size and transitioning from 

a random distribution increase the total earning in all scenarios. Pr surpassed the 

other two scenarios, which is clearer between Pr and static. T-tests confirmed the 

significance of the difference in these results for all the scenarios. 

Table 11.  

In Table 10, the number of deliveries for all strategies increases with fleet size. Also, 

transitioning to weighted distribution from random increases the deliveries 

significantly. Implementing no choice strategy for drivers has also slightly increased the 

number of deliveries for most of the scenarios. Comparing the three pricing schemes, we 

observe that the number of matches is higher for SW than for myopic and static 

schemes in almost all distributions. This change for some scenarios is large, although it 

 
1 Similar to the W distribution, only that in this scenario the drivers have no choice to reject participation in the matching pool. In other 

words, Eq. 5.5 and 5.6 are relaxed from the mathematical model. 
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might be negligible in quantity compared to other schemes for some scenarios. As the 

numbers seem close for some scenarios, standard t-tests were conducted to verify the 

significance of difference in average deliveries between SW and two other pricing schemes. 

The results confirmed the difference's significance for most scenarios at a 95% confidence 

interval level (Appendix A). 

Table 10 Total deliveries for different fleet size, drivers’ distribution, and pricing schemes 

Fleet 
size 

R W W-NC 

SW My-SW Static SW My-SW Static SW My-SW Static 
50 66 49 46 94 87 89 109 87 89 
100 119 111 110 165 160 163 167 160 161 
400 335 284 324 541 523 531 561 523 545 
800 490 432 483 819 746 813 839 749 823 
1200 609 567 593 957 891 941 997 899 996 
1400 668 622 637 990 971 952 1,055 982 1,042 
1800 745 709 709 1,034 1,006 1,005 1,117 1,034 1,110 

 

Similar trends are observed for the total profit in Table 11. An increase in fleet size and 

transitioning from a random distribution increase the total earning in all scenarios. 

Pr surpassed the other two scenarios, which is clearer between Pr and static. T-tests 

confirmed the significance of the difference in these results for all the scenarios. 

Table 11 Total profit for different fleet size, drivers’ distribution, and pricing schemes 

Fleet 
size 

R W W-NC 

Pr My-Pr Static Pr My-Pr Static Pr My-Pr Static 
50  311   301   104   466   419   131  477   419   131  
100  629   619   199   767   734   249   766   734   247  
400  1,659   1,608   653   2,724   2,696   859   2,713   2,696   890  
800  2,277   2,224   947   4,120   3,873   1,528   4,122   3,909   1,596  
1200  2,927   2,879   1,152   4,829   4,712   1,791   4,879   4,741   1,907  
1400  3,208   2,973   1,233   5,044   4,793   1,855   5,112   4,844   2,048  
1800  3,760   3,544   1,358   5,229   4,973   2,056   5,374   5,095   2,277 
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Figure 25 presents the total earning/profit and deliveries for Pr and SW across a range of 

fleet sizes (50–1800). The total earning for Pr ranges from $500 to more than $5,000, 

whereas the maximum is about $3,500 for SW. On the other hand, the total deliveries range 

from less than 100 to more than 1,000 for SW as fleet size increases. In Pr, the largest total 

delivery is about 900, achieved by a fleet size of 1,800. In both Pr and SW, the random 

distribution of drivers is inefficient in terms of total earning and deliveries achieved. 

Another difference between these two scenarios is evident in the impact of no-choice 

strategy for drivers on deliveries and earnings. In Pr, this impact is hardly noticeable as 

it almost overlaps with the weighted distribution scenario. On the other hand, no choice 

implementation for SW has increased both the total earnings and deliveries for all fleet sizes, 

compared with the weighted distribution scenario.  
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(a) 

 
  (b) 

Figure 25 Total earning and deliveries for (a) Pr and b) SW scenarios 

To evaluate the stability of price per zone in time, the standard deviation of prices in 

consecutive time steps is measured for each zone, and the average of this zonal price 

deviation is presented for different scenarios across fleet sizes in Figure 26. Accordingly, 

prices are more stable for the Pr scenario as the average deviation mainly stands 
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between 0 and 0.2, while this value grows to 0.6–0.9 in SW. An increase in fleet size 

slightly mitigates the deviation in both scenarios.  

 

Figure 26 Average temporal price deviation per zone 

Error! Reference source not found.Figure 27 displays the surge multipliers versus 

delivery distance for sample scenarios. Here, according to the results, two scenarios were 

selected for Pr and SW, representing worst (R, 50) and best (W–NC, 1800) cases. It is 

observed that surge multipliers are highest and almost constant in Pr, while there are many 

variations in SW. This confirms the finding from Figure 26. Also, SW has increased the 

delivery distance compared to Pr in both worst and best cases. 



113 
 

 

Figure 27 Surge multiplier vs. delivery distance for matched requesters and drivers 

6.3.2 Drivers 

In this section, the model is evaluated from the drivers’ perspective. To measure the model 

performance effectively for drivers only, we set the demand side as fixed by turning off the 

elasticity function in the model. In other words, equations 5.1–5.4 are relaxed from the 

mathematical model, and total potential demand equals the total actual requesters. It must 

be noted that the level of earning/profit is higher here compared to the section 6.3.1. 

Figure 28 presents the total drivers’ profit gain and loss across various scenarios and 

settings. Here, profit refers to the drivers earning from deliveries minus the cost from 

relocations when they are not matched with any requester and decide to relocate. The 

drivers’ gain shows the total drivers’ profit only for those drivers with positive profit, in 

other words, for those who are earning rather than losing money by participating in the 

system. On the other hand, drivers’ loss shows the profit for drivers with negative profit for 

the same scenarios and settings.   
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)   

(a) 

  
(b) 

Figure 28 Drivers’ profit gain and loss in (a) Pr and (b) SW scenarios 

The rate of increase in gain surpasses the loss between equivalent scenarios. An 

increase in fleet size and transitioning from random to weighted distributions 

improves drivers' earnings and decreases their loss. Gain follows a logarithmic trend in 

all scenarios, whereas loss for those has a linear trend for random and weighted 

distributions and exponential trend for the weighted (no choice) case. This indicates that if 

the fleet size increases dramatically in the long run, loss surpasses gain. Note that 

weighted (no choice) cases in both Pr and SW have the highest and lowest gain and loss, 

respectively. Similar to the observation we had for the platform, weighted (no choice) 
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overlaps the weighted distribution in gain for Pr, while this increased the gain over for SW. 

In general, the Pr framework benefits drivers more than SW, as it poses higher gains 

and lower losses for drivers. 

Figure 29  displays the relocation distances driven by drivers when they were not assigned 

to a delivery task in their current zone. Here, the no-match relocation indicates the relocation 

driven to another zone which did not eventually result in a delivery task in the destination 

zone. It is observed that random distribution has the highest relocation among 

scenarios. Weighted distribution of drivers and no choice strategy implementation 

have decreased the relocation distances for drivers by guiding drivers to more fruitful 

zones and increasing the matching rates. SW has lower relocation and no-match 

relocation distances than in the Pr scenarios. We also observed that SW has more deliveries 

than Pr; however, it is worse than Pr in terms of drivers' gain and loss. This indicates that 

higher offered prices in Pr benefit drivers more and compensate for larger relocations 

and smaller number of matches when considering all participating drivers.  
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Figure 29 Drivers relocation distances  

6.3.3 Requesters 

This section attempts to evaluate the system from requesters' perspectives. Figure 30 

presents the share of requesters and deliveries from total demand for various scenarios and 

settings. The rate of change in the number of deliveries grows fast up to fleet size 1,000 and 

then becomes relatively stable in scenarios with the weighted distribution. The SW grows 

the portions of requesters and deliveries more compared with Pr; however, it is more 

successful in increasing the requesters rather than the deliveries. Increasing the fleet 

size, driver weighted distribution and no choice implementation are effective in 

converging the portion of requesters and deliveries.  
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Figure 30 Portions of requests and deliveries  

Although the pricing model is a macro simulation model and its outputs are aggregated at 

the zonal level, it is still possible to gather results at the individual level but with wider 

confidence intervals. Our results showed that the average delivery fare per individual 

requester is about $5–6 and $3–3.50 for Pr and SW scenarios, respectively. Similarly, wait 

times are 6–7 minutes for Pr users and 7–8 minutes for SW users. These values vary 

according to fleet size and drivers ‘distributions in the system. Z-tests are conducted to 

understand the significance of the difference between mean wait time and delivery fare 

values in equivalent Pr and SW scenarios. Z-tests were conducted in two levels: one among 

different fleet sizes for the same scenario and settings to understand the effect of fleet size 

on individual wait times and fare and another between Pr and SW results for the same fleet 

size and distributions to understand the significance of delivery fare and wait time 

variations. Results revealed that fleet size does not affect individual delivery fares in Pr, but 
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it only affects their wait time for W and W-NC distributions when a fleet size increase to 

about 800 or more. A similar analysis for SW shows that increase in fleet size affects 

individuals’ delivery fare. Next, the second category compared Pr with SW. Both delivery fee 

(R: starting from fleet size 100; W: starting from fleet size 200; W-NC starting from fleet size 

600) and wait time (R: starting from fleet size 600; W: starting from fleet size 400; W-NC 

starting from fleet size 200) are significantly different between these two scenarios within 

equivalent settings. 

A series of general cost analyses were conducted for various scenarios to evaluate 

requesters’ experience switching to online food delivery from original eat-out trips (Figure 

31). Here, general cost (GC) is calculated for each requester mode. 

GC car-trip = (TT in-bound + TT out-bound + PT food-place)*VOT + (TD in-bound + TD out-bound )*OC + PC food-place          (6.1) 

GC bike-trip, walk-trip = (TT in-bound + TT out-bound)*VOT                                                                                                         (6.2) 

GC food-delivery  = FDF                                                                                                                                                                 (6.3) 

In equations 6.1-6.2, restaurants' service fees and waiting times are not included. It is also 

assumed that taxes and tips are equal in both online and in-place food order requests.  

The change in GC resulting from switching to online food delivery for requesters is shown in 

Figure 31. Here, R and W-NC distributions are considered, as they previously were found to 

be the worst and best settings according to total deliveries and earnings per fleet size. The 

left and right figures display the total gains (those with positive GC) and losses (those with 

negative GC) in GC for all matched requests in the system. The loss in GC surpasses the 

gain for all scenarios. SW has higher gains and lower loss amounts than Pr due to its 

lower offered delivery fees and more matched requests. Comparing Figure 31 with what 

we have for drivers' gain and loss in Figure 28, it is noted that SW and Pr have the opposite 
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effect on requesters and drivers' gain and loss. Whereas Pr is more suitable for drivers in 

that it enables larger gains and smaller losses, it is expensive for requesters, whose losses 

and gains are the worst.  

($
) 

  
 

Figure 31 Requesters’ change in general cost after switching from eat-out trip to online food delivery 

To get more insights on requesters’ experience, total and per capita values of time saved and 

change in GC are summarized in Table 12. To estimate an interval for each measure, two 

scenarios, Random distribution: fleet 50 and Weighted (no choice) distribution: fleet 1800 are 

considered. More requesters are bikers for both Pr and SW, followed by cars and walkers 

(we disregarded the public transit users for this analysis). The per capita of saved time and 

GC are highest for walkers. Each walker, on average, was able to save from 30 minutes 

up to about an hour by switching to online food delivery. Also, they saved $3–4 in GC 

in the SW context.  For the cars and bikers, the estimated intervals for GC are always 

negative: cars lost 30 cents to $4, and bikers lost $1-3 on average, varied by scenarios. Based 

on utility theory (if the impact of all other factors are fixed), drivers' and bikers' value 

of comfort for food delivery must at least equal these estimated changes in GC to 

choose this option over an eat-out trip. 
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Table 12 Delivery requesters experience 

Scenario  Mode  Number of deliveries 
 

Time Saved General Cost Saved ($) 

Total (hr) Mean (min) Total Mean 

L1 U2 L U L U L U L U 

Pr Car 16 295 3 54 11 11.5 -(61) -(1,222) -(4) -(4) 

Bike 38 621 5 108 7.5 10.5 -(82) -(1,846) -(2) -(3) 

Walk 3 9 1.5 6 28 41 -(3) -(22) -(1) -(2.5) 

SW Car 24 374 5 79 12 13 -(6) -(151) -(0.3) -(0.5) 

Bike 39 623 5.5 108 8.5 10.5 -(24) -(541) -(1) -(1) 

Walk 4 12 3 12 46 57.5 11 45 3 4 
  

Below, the change in GC against requesters' VOT is depicted for those two scenarios (Figure 

32). Increasing the fleet size and transitioning to WNC distribution increases the deliveries 

for both Pr and SW. In Pr, no negative GC is observed when requesters’ VOT exceeds 

$30–$40 per hour, increasing fleet size from R: 50 to WNC: 1800. This cut-off range of 

VOT decreases to $20–30 in SW.  

 

Figure 32 Change in general cost versus value of time for requesters 

 
1 Lower bound 
2 Upper bound 
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6.3.4 System and Environment  

In this section, the service impact is evaluated from system and environment points of view. 

According to Figure 33, the driving distance increases, and the active transport time 

decreases for all scenarios. The increase in driving distance is dramatic for profit-

maximizing scenarios. This change indicates that the total delivery and relocation 

distances driven by delivey drivers can be more than that driven by requesters' 

personal cars during eat-out trips. Replacing bike and walk eat-out trips, which 

demonstrate the significant portion of requesters, has decreased active transport time by 

delivery cars. This impacts individuals health in the long term. On the other hand, online food 

delivery generated additional productive time for individuals by saving their travel times to 

food places. This saved time might enable individuals to incorporate physical activity in ways 

they prefer, such as doing exercise at home and gyms or walking/bike for leisure.  

 
(a) 

 
(b) 

Figure 33 Change in total driving distance, active travel time, and total saved time by switching to online food delivery in a) 
Profit and b) Social-Welfare 

Figure 34 shows the financial status of three major actors in the service. In all scenarios, 

drivers are the winners despite their loss due to relocations. Platforms come in second place. 

Here, platforms’ commission is estimated as 20% of each delivery fare, and no further cost 
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is assumed. Repeating the findings observed in the previous section, requesters are losers 

whose monetary loss surpassed the potential benefits from saving time in all scenarios at 

the aggregated level. This loss expands in Pr where the platform offers higher delivery fares.  

As the drivers and platform gains grow, requesters' loss exacerbates.  

 
(a) 

 
(b) 

Figure 34 Total drivers’ profit, platform’s commission, and requesters’ change in general cost across fleet sizes for a) Pr and b) 

SW 

6.4 Summary 

This chapter presents and discusses the results and analysis for a sample case study. In 

summary, a dynamic zone-based pricing scheme is more effective in increasing the 

platform's total earnings and deliveries than static and myopic strategies.  The increase in 

fleet size and distribution of the drivers based on demand density increases the matching 

between drivers and requesters, thus increasing the deliveries and earnings dramatically in 

return. Profit maximizer scenario (Pr) achieved larger earnings for every fleet size than the 

social welfare scenario (SW) while having fewer deliveries. This is because Pr decides higher 

surge multipliers than SW, which might use lower surge multipliers to increase the potential 

requesters and matches. Thus, Pr can maximize the total earnings with fewer deliveries. 
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Implementing a no-choice strategy for the SW forces drivers to remain in the matching pool 

even though the surge multipliers are lower than expected earnings. This increases the 

number of deliveries by matching more drivers with requesters encouraged by the lower-

level delivery fees offered by the platform. 

On the other hand, no-choice strategy did not make a distinctive impact in the Pr case. This 

is because Pr offers higher level prices; thus, drivers are more interested in participating in 

the matching pool and being matched though they can choose to reject. Zonal price 

deviations indicate more stability pricing decisions for Pr than SW, where there are many 

variations. Delivery distance has been increased up to twice the one for Pr by SW in some 

cases. Dynamic zone-based pricing works based on per mile fees. Thus, lower surge values 

offered in SW make delivery possible for requesters with longer delivery distance within 

reasonable price satisfying their elasticity constraints.  

Drivers’ experiences demonstrate that transitioning to weighted distributions and no-choice 

strategies can mitigate the loss and improve the benefits. Relocation distances for drivers 

were highest in random distributions where supply does not match the demand needs 

efficiently. In general, the portion of no-match relocation distances was lower for SW, where 

the matching rate is slightly higher. However, the higher offered prices for drivers in Pr still 

can compensate the relocation costs, referring to higher benefits and lower costs in Pr versus 

SW. Another point is the effect of the no-choice strategy on drivers: the results showed that 

forcing drivers to participate in the matching pool increases deliveries and earnings in total 

and benefits drivers by increasing their gain and decreasing their loss. 
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Regarding demand, SW has increased the potential pool of requesters based on its lower 

offered prices. However, not all attracted requests have received a delivery. Increasing fleet 

size, the weighted distributions, and the no-choice strategy improved the number of 

deliveries. Analyzing users' experiences showed that general cost is negative for most 

requesters as their delivery cost exceeds their value of time saved by avoiding eat-out trips. 

Users’ VOT determines their preference to replace eat-out physical trips with online food 

delivery.  

From a system point of view, transitioning to food delivery has increased the driving distance 

in the system, resulting not just from delivery distances but also the relocations. Substituting 

the active mode trips has contributed to an increase in driving mileage and decreased the 

physical activity time for these users. On the other hand, time saved for all users might enable 

them to get their physical activity needs in other non-transportation forms. Analyzing the 

proft of each actor in the system demonstrates that drivers have the highest profit in all 

scenarios, followed by a platform that earns 20% per delivery without bearing any loss. 

Requesters are losing in general cost, which is the reverse of drivers' and platforms' 

earnings. 
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7. Conclusion 
This study explored crowdshipping applications in the context of online food delivery 

services. Through a literature review of crowdshipping research, it identified pricing as an 

important understudied factor in the service operation. Subsequently, the pricing schemes 

of four food delivery platforms were explored by analyzing sets of empirical data on online 

food deliveries. Several items in pricing were detected and formalized for various online food 

delivery apps. According to a sample of delivery requests, the fees paid by users in addition 

to the food price account for 30-50% of the total food delivery price. 

Delivery fees, referring to the money charged for transporting the food from the place where 

it was made to the requester’s location, were identified as an important item in the pricing 

schemes of apps that can affect the total cost. While delivery fees are assumed to be paid to 

the drivers as compensation for their fulfillment of the delivery tasks, there is no 

transparency regarding how these fees are determined by the respective platforms. The fees 

may, for example, depend on factors other than the delivery distance or the time of the day. 

In contrast, in the passenger rideshare market the pricing is proportional to the 

transportation distance or time, with variations in time and region accounting for real-time 

changes in supply and demand. Setting the price in proportion to the delivery distance/time 

is psychologically appealing to users and mitigates pricing confusion. Thus, introducing a 

variation in delivery fees based on changes in demand across time and space potentially 

enhances the service performance in terms of the number of deliveries and profitability. 

However, while surge pricing based on travel distance or time has been well studied in the 

passenger rideshare market literature, it is still under-explored in delivery pricing studies. 
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This study formulated and solved a dynamic zone-based pricing model for a many-to-many 

food delivery service using crowds of car drivers. Delivery fees were assumed to be 

proportional to delivery distance. To account for the variation in pricing across region and 

time, it was modeled as a dynamic programing multistage decision-making problem wherein 

the zonal surge multipliers are updated at each time interval. The state of the problem 

transitions between time intervals following drivers’ assignment and relocation decisions as 

well as new drivers’ arrival, depending on the driving operation cost, expected zonal 

earnings, and drivers’ service time window in the system. Drivers’ preferences and 

requesters’ elasticities were incorporated in the mathematical model. Optimal zonal surge 

multipliers were determined for each time interval considering the total expected returns 

for the entire time horizon. The problem was solved separately for two objective functions: 

1) total profit maximization and 2) total delivery maximization.   

Considering the problem size and complexity, a simulation-optimization solution framework 

was presented. First, a reinforcement learning agent plays in a macro simulation 

environment developed in Python following the dynamic programing model rules. The agent 

takes pricing actions and collects batches of sample experience data from environmental 

feedback to train a linear action value function approximator using the Monte Carlo and 

Stochastic Gradient Descent methods. To maintain a balance between the exploration and 

exploitation of the pricing policy, an evolutionary strategy is designed and employed in a 

concurrent environment. Next, the optimal action value function is optimized to find the 

optimal pricing scheme in scenarios designed by varying the fleet size as well as drivers’ 

distribution and preferences.  



127 
 

The proposed model and method were applied for a sample of eat-out trips in San Francisco 

as the case study. The performance of the proposed dynamic zone-based pricing was 

compared to that of static and myopic pricing strategies. The results indicated that the 

pricing model in this study increased the total profit and deliveries for almost all scenarios 

compared to the static and myopic strategies. Increased fleet size and the efficient 

distribution of drivers increased the deliveries and profits for both platforms and drivers. 

However, increasing the fleet size, i.e., the market thickness, increased the idle drivers in the 

system by decreasing the probability of their being matched with requesters. Drivers’ 

participation decisions affected the system only when the pricing level was low or the fleet 

size was significantly lower than the demand in the system. Forcing drivers to accept the 

matches offered by the platform increased the supply and total deliveries in the social 

welfare scenario, where low surge multipliers were unable to tempt drivers to stay. High 

relocation distances increased the driving mileage in the system. Efficient driver distribution 

and relocation guidance were identified as some of the remedies to mitigate excess driving 

distance in the system. The analysis of requesters’ experiences revealed that they mostly lost 

in terms of general cost when shifting from personal eat-out trips to online food delivery. 

The gain in general cost usually happened to those individuals who had a high VOT or long 

travel time from their home to the restaurant; for such individuals, saving time represented 

the main advantage of online food delivery compared to personal eat-out trips.  

In general, the findings indicated that the dynamic zone-based pricing increases the earning 

for both platform and drivers compared to static pricing, however it might limit the requests 

with longer delivery distance or lower willingness to pay.  Absence of an accurate short-term 

demand/price level prediction system causes the drivers to bear the operation cost of 
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repositioning which might not lead to a delivery assignment. This in return increases the 

driving mileage and its’ traffic externalities in the system. Thus, there is a need for efficient 

driver distribution and repositioning decisions to reduce the relocation distances for 

motorized vehicles. Replacing delivery vehicles with clean and environmentally friendly 

transport modes was identified as an alternative solution. For food delivery to be 

competitive with other options, such as physical trips to restaurants, strategies to reduce the 

wait times and delivery fees or providing food price discounts might be the most effective. 

Membership subscription programs could also help platforms implement these strategies 

for loyal users while still making a profit through regular membership fees. Finally, the 

proposed simulation-optimization model provides flexibility and benefits the researchers, 

platform providers, and policy makers to examine various pricing schemes and evaluate the 

results from different perspectives.  

This study can be improved in several ways. First, the empirical data collection can be 

expanded to capture a larger sample size as well as possible additional sources of data on 

restaurants’ temporal workloads and traffic conditions. The conjoint analysis can be 

replicated using other types of conjoint surveys, such as choice-based models, and variables 

such as income level can be included in the elasticity function estimation. Meanwhile, 

equipping the pricing model with effective demand prediction models, introducing penalties 

for unmatched requests, and adding uncertainty to drivers’ repositioning decisions can all 

enhance the model’s applicability. Examining matching strategies other than same-area 

matching and allowing for multiple deliveries per vehicle are also suggested additions to 

further develop the model in future studies. Finally, implementing deep reinforcement 
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learning techniques or other nonlinear function approximators for pricing shows good 

potential for improving the simulation accuracy and speed.  

7.1 Summary 
 

This section summaries the findings from this dissertation in several categories.  

7.1.1 Platform provider 

1. Dynamic pricing model increased the total profit and deliveries compared to that of 

static and myopic strategies in most of the scenarios (Appendix A). The magnitude 

of the increase in deliveries and profit are presented in Tables 1 and 2, respectively. 

The rates vary depending on fleet size (50-1800).  

 
Table 13 Increase in deliveries by dynamic pricing versus alternative pricing strategies in SW scenarios 

 
Alternative 
strategy 

Driver distribution 

Random distribution Weighted distribution Weighted distribution 
with driver no choice   

Static  1-48% 1-6% 0-22% 

Myopic 5-35% 2-10% 4-25% 
 

Table 14 Increase in profit by dynamic pricing versus alternative pricing strategies in Pr scenarios 

                    
Alternative 
strategy 

Driver distribution 

Random distribution Weighted distribution Weighted distribution 
with driver no choice   

Static  2-3 times  2-4 times 2-4 times 

Myopic 2-8% 1-11% 1-14% 

    

2. In dynamic pricing strategy, deliveries (in SW), and profit (in Pr) increase by 0.3% 

with a 1% increase in fleet size. Also, efficient distribution of drivers (from random 

distribution to weighted distribution) increases the deliveries (in SW) and profits (in 

Pr) by 40-70% and 20-80%, respectively. 
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3. Eliminating the option for drivers to decide to participate in the matching pool 

significantly increases the total deliveries in the SW by about 2-16% (t test results 

are attached). 

4. Surge multipliers per zone are more stable across time for the Pr scenario as the 

average deviation from the mean stands between 0 and 0.2, while this is within the 

range of 0.6–0.9 in SW.  

5. SW scenarios cover deliveries up to 6 miles and more, while deliveries rarely exceed 

3 miles in Pr scenarios due to higher rage of prices. 

6. Compared to PR, SW increases the requesters and deliveries by 21% and 14%, 

respectively; however, since the rate of increase in demand is higher than deliveries, 

the ratio of delivery to demand is still higher for Pr.  

7.1.2 Drivers 
 

1. An increase in fleet size and transitioning from random to weighted distributions 

improves drivers' earnings and decreases their loss. 

2. Increasing the fleet size, i.e., the market thickness, increases the idle drivers in the 

system by decreasing the probability of their being matched with requesters. This 

indicates that if the fleet size increases dramatically in the long run, loss in general 

cost surpasses gain for drivers. 

3. Weighted distribution of drivers and implementing no choice strategy decrease the 

relocation distances for drivers by guiding them to zones with higher matching rates. 
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7.1.3 Requesters  
 

1. According to a sample of delivery request data collected from Davis, Sacramento and 

San Francisco, the extra fees paid by requesters in addition to the food price account 

for 30-50% of the total food delivery cost. 

2. Whereas Pr is more suitable for drivers in that it enables larger gains and smaller 

losses, it is expensive for requesters, whose losses surpass gains. 

3. The per capita of saved time and generalized cost are highest for those who walk to 

restaurants for their meal in the case study. They, on average, was able to save from 

30 minutes up to about an hour by switching to online food delivery. Also, they saved 

$3–4 in general cost in the SW scenario which includes lower surge multipliers. 

4. For the car drivers and bikers in the case study, the estimated change in general cost 

is always negative: drivers lose 30 cents to $4, and bikers lose $1-3 on average. 

5. In Pr, no negative general cost is observed when requesters’ VOT exceeds $30–40 

per hour. This decreases to $20–30 in SW in the case study. 

7.1.4 Environment and health 
 

1. Total delivery and relocation distances driven by delivery drivers can be more than 

that driven by requesters' personal cars during eat-out trips in the case study. 

2. Replacing bike and walk eat-out trips, which demonstrate the significant portion of 

requesters in the case study, decreases active transport time in the system. This 

impacts individuals’ health in the long term.   
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Appendix A T-test results 
Table 15 T test results for number of deliveries resulted from different pricing strategies with random distribution 

Fleet size Algorithm Mean Std t-stat p-value 

50 SW 65.89426 6.97615 13.96563 7.54E-16  
Static 46.34117 0.758947 

  

 
SW 65.89426 6.97615 12.09472 5.51E-14  
My 48.80817 0.634683 

  

100 SW 118.7391 7.133645 7.745639 4.79E-09  
Static 110.1441 0.579655 

  

 
SW 118.7391 7.133645 6.957459 5.03E-08  
My 111.1332 0.203117 

  

400 SW 334.8235 15.45603 4.666028 4.57E-05  
Static 324.1778 0.903327 

  

 
SW 334.8235 15.45603 20.1068 1.67E-20  
My 284 0.647643 

  

800 SW 489.7969 11.89771 3.427369 0.001557  
Static 482.7408 2.526658 

  

 
SW 489.7969 11.89771 25.90954 2.45E-24  
My 432 1.44714 

  

1200 SW 608.6226 5.557777 15.24435 3.38E-23  
Static 592.5963 5.128743 

  

 
SW 608.6226 5.557777 40.68041 2.17E-39  
My 567 2.483706 

  

1400 SW 668.4154 6.847546 19.4896 1.22E-27  
Static 636.8517 5.433231 

  

 
SW 668.4154 6.847546 35.84474 9.44E-29  
My 622.1332 0.441285 

  

1800 SW 745.03 14.16569 15.64751 2.28E-17  
Static 708.7743 1.436663 

  

 
SW 745.03 14.16569 15.65258 3.15E-17  
My 709 1.036847 
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Table 16 T test results for number of deliveries resulted from different pricing strategies with weighted distribution 

Fleet Size Algorithm Mean Std t-stat p-value 

50 SW 94.31713 4.109609 8.276138 3.27E-11  
Static 89.17623 2.31862 

  

 
SW 94.31713 4.109609 12.43202 6.02E-16  
My 86.74331 1.403094 

  

100 SW 165.4677 5.715476 3.514536 0.001095  
Static 162.7743 1.436663 

  

 
SW 165.4677 5.715476 6.768213 8.70E-08  
My 160.1332 0.198737 

  

400 SW 540.5629 6.683313 7.129384 1.34E-09  
Static 530.6913 5.221494 

  

 
SW 540.5629 6.683313 15.54152 2.75E-17  
My 523 0.835293 

  

800 SW 818.9941 8.831761 3.92 0.000407  
Static 813.422 2.101428 

  

 
SW 818.9941 8.831761 48.93 1.52E-32  
My 746 0.680127 

  

1200 SW 957.0775 6.548961 14.39469 2.00E-20  
Static 941.1817 4.081176 

  

 
SW 957.0775 6.548961 62.74976 2.13E-45  
My 891 2.914695 

  

1400 SW 989.6146 7.318166 29.98775 3.19E-30  
Static 952.3998 2.297825 

  

 
SW 989.6146 7.318166 15.74848 4.25E-18  
My 971 1.927386 

  

1800 SW 1033.762 15.10703 10.78947 7.01E-13  
Static 1004.548 3.227382 

  

 
SW 1033.762 15.10703 10.2989 5.15E-12  
My 1006 0.873861 
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Table 17 T test results for number of deliveries resulted from different pricing strategies with weighted-No choice distribution 

Fleet Size Algorithm Mean Std t-stat p-value 

50 SW 108.89 2.494438 40.54686 2.67E-49 

 Static 89.17623 2.31862   

 SW 108.89 2.494438 45.33678 1.91E-52 

 My 86.74331 1.807383   

100 SW 167.07 3.399346 12.27476 3.02E-17 

 Static 160.5951 1.594992   

 SW 167.07 3.399346 15.24808 8.25E-17 

 My 160.1332 0.138464   

400 SW 561.35 4.642796 20.77516 2.03E-26 

 Static 544.9457 2.168871   

 SW 561.35 4.642796 48.50689 1.56E-37 

 My 523 1.268478   

800 SW 838.78 1.885618 5.187243 9.01E-06 

 Static 823 15.19963   

 SW 838.78 1.885618 73.8425 7.55E-44 

 My 749 7.875325   
1200 SW 996.89 10.7082523 0.973490545 0.337086046  

Static 995.7603872 1.095445077 
  

 
SW 996.89 10.7082523 45.90339898 3.19E-32  
My 899 0.437762648 

  

1400 SW 1055.02 9.201449 12.31703 3.81E-15 

 Static 1041.624 1.922499   

 SW 1055.02 9.201449 58.91688 9.71E-37 

 My 982 0.885189   

1800 SW 1116.65 7.483315 3.592431 0.001003 

 Static 1109.778 0.903327   

 SW 1116.65 7.483315 54.77534 3.98E-35 

 My 1034 0.703801   
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Table 18 T test results for earnings resulted from different pricing strategies with random distribution 

Fleet Size Algorithm Mean Std t-stat p-value 

50 Pr 311.0521 12.35008 98.04248 5.68E-45 

 Static 104.4435 1.918078   

 Pr 311.0521 12.35008 5.567427 3.07E-06 

 My 301.05 0.863058   

100 Pr 628.5033 48.67123 63.4225 5.35E-37 

 Static 198.9678 1.976133   

 Pr 628.5033 48.67123 2.173234 0.036814 

 My 619.12 1.089068   

400 Pr 1658.692 21.08378 317.2889 6.34E-65 

 Static 652.9727 3.350349   

 Pr 1658.692 21.08378 15.82029 1.44E-17 

 My 1608.46 2.966073   

800 Pr 2276.687 7.037198 1000.065 7.12E-126 

 Static 947.3814 5.189642   

 Pr 2276.687 7.037198 42.77769 2.04E-42 

 My 2223.6 3.518976   

1200 Pr 2926.642 22.51545 354.8896 1.92E-96 

 Static 1152.004 14.53837   

 Pr 2926.642 22.51545 10.54107 2.83E-12 

 My 2879.3 1.160022   

1400 Pr 3208.411 24.93598 396.9135 1.86E-86 

 Static 1233.293 11.70314   

 Pr 3208.411 24.93598 52.47812 3.38E-34 

 My 2972.66 0.852251   

1800 Pr 3760.498 5.971806 1681.804 1.36E-158 

 Static 1357.741 5.662206   

 Pr 3760.498 5.971806 201.7195 2.60E-61 

 My 3543.94 1.969388   
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Table 19 T test results for earnings resulted from different pricing strategies with weighted distribution 

Fleet Size Algorithm Mean Std t-stat p-value 

50 Pr 466.0975 8.728761 203.2166 8.30E-82 

 Static 131.1633 6.027423   

 Pr 466.0975 8.728761 27.77847 6.34E-36 

 My 419.05 5.675832   

100 Pr 766.543 7.313751 455.5789 3.04E-79 

 Static 249.3001 2.251615   

 Pr 766.543 7.313751 30.5646 2.53E-26 

 My 733.91 0.135374   

400 Pr 2723.526 15.7238 641.5226 4.84E-124 

 Static 859.054 12.97096   

 Pr 2723.526 15.7238 8.938172 3.86E-12 

 My 2695.71 7.707444   

800 Pr 4119.634 19.5306 616.2672 3.91E-111 

 Static 1527.666 13.02436   

 Pr 4119.634 19.5306 68.82159 2.93E-39 

 My 3873.01 3.05741   

1200 Pr 4828.973 12.35375 1238.136 5.27E-133 

 Static 1790.892 7.316854   

 Pr 4828.973 12.35375 54.79535 1.06E-40 

 My 4711.83 3.695038   

1400 Pr 5043.654 0.960914 5099.845 8.96E-113 

 Static 1854.753 3.921225   

 Pr 5043.654 0.960914 625.657 8.86E-90 

 My 4793.44 2.214689   

1800 Pr 5229.27 11.46156 956.6133 8.00E-142 

 Static 2055.864 12.64061   

 Pr 5229.27 11.46156 96.3601 4.01E-59 

 My 4973.24 8.688418   
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Table 20 T test results for earnings resulted from different pricing strategies with weighted-No choice distribution 

Fleet Size Algorithm Mean Std t-stat p-value 

50 Pr 477.1424 11.65222 174.6296 2.02E-81 

 Static 131.1633 6.027423   

 Pr 477.1424 11.65222 35.13179 1.41E-28 

 My 419.05 0.772615   

100 Pr 766.0307 11.9571 290.4382 2.56E-71 

 Static 246.9514 3.796881   

 Pr 766.0307 11.9571 19.91322 3.71E-22 

 My 733.91 3.072888   

400 Pr 2713.385 16.42027 705.5262 9.03E-121 

 Static 890.4463 7.553633   

 Pr 2713.385 16.42027 7.692981 6.04E-09 

 My 2695.71 0.00599   

800 Pr 4122.104 14.94131 823.2119 5.76E-77 

 Static 1593.539 2.385206   

 Pr 4122.104 14.94131 68.31493 4.13E-38 

 My 3908.82 0.755589   

1200 Pr 4879.444 12.47817 1458.886 9.16E-92 

 Static 1907.331 2.733379   

 Pr 4879.444 12.47817 67.59558 1.47E-38 

 My 4740.62 1.198254   

1400 Pr 5112.286 14.51307 1108.448 8.60E-86 

 Static 2047.761 3.52328   

 Pr 5112.286 14.51307 96.71927 4.10E-46 

 My 4844.22 3.006909   

1800 Pr 5374.119 4.143501 4121.125 3.59E-103 

 Static 2276.851 0.674008   

 Pr 5374.119 4.143501 373.6875 1.32E-64 

 My 5095.05 0.505014   
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Table 21 T test results for number of deliveries resulted from weighted and weighted-no choice distribution 

Fleet Size Algorithm Mean Std t-stat p-value 

50 SW-W 94.31713 4.109609 17.93 < .00001  
SW-WNC 108.89 2.494438 

  

100 SW-W 165.4677 5.715476 1.42 .164713  
SW-WNC 167.07 3.399346 

  

400 SW-W 540.5629 6.683313 15.11 < .00001  
SW-WNC 561.35 4.642796 

  

800 SW-W 818.9941 8.831761 12.96 < .00001  
SW-WNC 838.78 1.885618 

  

1200 SW-W 957.0775 6.548961 18.76 < .00001  
SW-WNC 996.89 10.7082523 

  

1400 SW-W 989.6146 7.318166 32.91 < .00001  
SW-WNC 1055.02 9.201449 

  

1800 SW-W 1033.762 15.10703 29.08 < .00001  
SW-WNC 1116.65 7.483315 
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