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Abstract State-of-the-art physics experiments require high-
resolution, low-noise, and low-threshold detectors to achieve
competitive scientific results. However, experimental envi-
ronments invariably introduce sources of noise, such as elec-
trical interference or microphonics. The sources of this envi-
ronmental noise can often be monitored by adding specially
designed “auxiliary devices” (e.g. microphones, accelerome-
ters, seismometers, magnetometers, and antennae). A model
can then be constructed to predict the detector noise based
on the auxiliary device information, which can then be sub-
tracted from the true detector signal. Here, we present a mul-
tivariate noise cancellation algorithm which can be used in
a variety of settings to improve the performance of detectors
using multiple auxiliary devices. To validate this approach,
we apply it to simulated data to remove noise due to electro-
magnetic interference and microphonic vibrations. We then
employ the algorithm to a cryogenic light detector in the
laboratory and show an improvement in the detector perfor-
mance. Finally, we motivate the use of nonlinear terms to
better model vibrational contributions to the noise in thermal
detectors. We show a further improvement in the performance
of a particular channel of the CUORE detector when using
the nonlinear algorithm in combination with optimal filtering
techniques.

a e-mail: kenneth_vetter@berkeley.edu (corresponding author)

1 Introduction

To meet increasingly demanding physical sensitivities, exper-
iments require low threshold detectors with low noise.
Despite the excellent energy resolutions and low thresholds
obtained for modern detectors, the intrinsic noise limit is
often far out of reach for many of these experiments. Regard-
less of the information carrier used (e.g. heat, light, charge),
detectors are often subject to unavoidable sources of noise
when deployed in the field. These may include vibrations
from nearby equipment, seismic activity, and/or electronic
interference from ground loops or cross-talk from other elec-
tronics used in the experiment. For example, gravitational-
wave data from the Laser Interferometer Gravitational-Wave
Observatory (LIGO) [1] and Virgo [2] experiments are sub-
ject to anthropogenic microphonic noise and are sensitive to
transient noise during earthquakes [3]. Analyses of these data
are typically conducted over a range of frequencies above
∼20 Hz [4], though this cutoff could be reduced with the
reduction of anthropogenic noise below 20 Hz [5]. In the
case of charge-collecting detectors used in modern gamma
ray spectroscopy experiments, vibrational disturbances can
change the capacitance of the system, leading to microphonic
noise which degrades the detector performance, including its
energy resolution [6]. In these cases, the signals of interest
can have rise times on the order of hundreds of nanoseconds
[7], resulting in signal bandwidths that are tens of MHz wide
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[8]. In the case of low-temperature calorimetric detectors,
non-negligible amounts of noise can arise from the vibra-
tions induced by the cryogenic facility which dissipate power,
thereby adding microphonic and thermal noise to the system
[9]. In experiments employing such detectors (e.g. [10–14]),
the relevant signal bandwidths range from tens to hundreds
of Hz [15]. Analyses of the CUORE data have already sug-
gested that a large component of the noise in several channels
is due to vibrations [16], warranting further study of micro-
phonic noise.

The aforementioned sources of noise can be monitored
with auxiliary devices which are specially designed to mea-
sure particular sources of interest. Deploying such devices
to monitor transient noise in an experiment is a common
practice. For example, the LIGO and Virgo collaborations
use seismometers, accelerometers, magnetometers, and other
devices to monitor non-Gaussian transient noise near their
detectors [3,4]. Compared to the cost of typical detectors
used in experiments today, these devices are typically afford-
able while providing sufficiently high fidelities to monitor the
relevant noise sources. When the auxiliary data is correlated
with the noise in the detectors of interest, denoising algo-
rithms can be applied to the data. The result is a relatively
low-cost way to reduce noise without major hardware inter-
ventions that can seriously impact an ongoing experiment.
Noise cancellation algorithms using data from accelerom-
eters have been demonstrated [8] for possible use in the
GRETINA [17] and GRETA [18] experiments. Noise can-
cellation techniques were also developed and applied to data
from the CUORICINO [19] and CUORE-0 [20] experiments
by decorrelating the noise from different detector channels
[21,22].

Here, we implement a denoising algorithm based on a
multi-input, single-output model. In Sect. 3, we demonstrate
the algorithm on simulated data. In Sect. 4, we apply the algo-
rithm to a cryogenic calorimeter operated as a light detec-
tor instrumented with neutron transmutation doped (NTD)
germanium [23,24] as our detector of interest. We use an
antenna, three accelerometers, and a separate NTD vibra-
tion sensor as auxiliary devices and demonstrate that our
algorithm improves both the signal-to-noise ratio (SNR) of
the detector and its energy resolution. Finally, in Sect. 5 we
expand this algorithm to include nonlinear terms and apply
this nonlinear version of the algorithm to a channel of the
CUORE experiment. Using accelerometers and seismome-
ters as auxiliary devices, we again show an improvement in
SNR and energy resolution of the detector.

2 Denoising algorithm

The starting point of this algorithm draws heavily from the
multiple-input, single-output model outlined in [25]. We

begin with n timestreams xi [t] digitized at a sampling fre-
quency of fs . Here i = 0, .., n−1 indexes the different inputs,
i.e. the auxiliary devices described in Sect. 1. We also require
that the timestream of the detector we seek to denoise, y[t],
be sampled at fs .1 The goal is to find the array of transfer
functions Hxi y[t] which describes the multiple-input single-
output system. In practice, y[t] will contain noise and sig-
nals of interest for the experiment. (Henceforth, we will refer
to this signal of interest as a pulse, while “signal” will be
reserved to refer to digital signals such as xi and y.) One
must therefore subdivide the timestreams xi [t] and y[t] into
events of length N = T fs , where T , the length of the filter,
is a tunable parameter of the algorithm. The subdivision is
done by triggering the raw data stream, after which we can
divide the data into two subsets. In the ideal case, one sub-
set contains only events which are free of pulses, {y(n)[t]},
which we will call noise events. The other subset, {y(p)[t]},
contains all of the pulses present in the data. We take the set
of noise events in the detector of interest as well as the cor-
responding set of events {x (n)

i [t]}, which occur at the same
times as the elements of {y(n)[t]}. We then take the discrete
Fourier transform of all noise events giving us the frequency
domain sets {Y (n)[ f ]} and {X (n)

i [ f ]}. With these two sets,
we construct the following objects:

Gyy[ f ] = 2

T

〈
Y (n)∗[ f ]Y (n)[ f ]〉 (1)

Gxi y[ f ] = 2

T

〈
X (n)∗[ f ]Y (n)[ f ]〉 (2)

Gxi x j [ f ] = 2

T

〈
X (n)∗[ f ]X (n)

j [ f ]〉 (3)

The expectation values are taken over the sets of noise
events from each device that occur at the same time. For
all these objects, f is defined within the range [0, fs) and
discretized into N bins of width � f = 1

T . For convenience,
we will drop [ f ] hereafter and it will be implied that we are
operating in the frequency domain unless otherwise noted. It
is worthwhile to describe these objects in terms of familiar
quantities. Gyy is the average noise power spectrum (ANPS)
of the output signal, which is a real non-negative 1×N vector.
Gxi y is a complex n×N matrix containing the cross-spectral
densities of each input with the output. Gxi x j is a complex
n×n×N 3-dimensional array. For each frequency it contains
a Hermitian matrix of the cross-spectral densities between
the input signals. The on-diagonal terms Gxi xi comprise the
ANPS of the input signals. After averaging over all noise
events, the transfer functions from the inputs to the detector

1 Technically, the common sampling frequency requirement is a simpli-
fication. Because the transfer functions are calculated in the frequency
domain, if the sampling rates differ, the transfer functions can still be
calculated by truncating the signal with higher the sampling rate in the
frequency domain.
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Hxi y can be calculated:

Hxi y = G−1
xi x j Gx j y . (4)

Hxi y is the same size as Gxi y and also complex. The
denoised signal, Y ′, is the difference between the original
signal and the sum of the auxiliary signals filtered with the
transfer function:

Y ′ = Y − HT
xi y Xi . (5)

This process can then be applied to pulse events to predict
the noise which is correlated with the input devices during
the event. Assuming that the noise in the detector of interest
has components which are correlated with the auxiliaries, the
result will be a denoised version of the original set of pulse
events. This assumption is usually true given a careful choice
of auxiliary devices used in the experiment, however in cases
where the matrix Gxi x j is dominated by uncorrelated noise
in the auxiliary devices, then this denoising technique will
not work.

One can verify the success of the algorithm by comparing
the noise power spectra of the output signal and the denoised
signal, Gyy and Gy′y′ . One can then proceed to analyze the
denoised data, leading to more precise measurements. It is
important to note that this algorithm is not a replacement for
other filtering techniques such as matched filtering. Rather,
this algorithm can be used first to improve the SNR, resulting
in new coefficients for the matched filter which can then be
applied to the data. This procedure and the implementation of
many common filters including the matched filter are linear
operations so the two can be combined into a single step [22].

3 Simulation of calorimeter data

To measure the efficacy of our multivariate algorithm under
known conditions, we simulate a multi-input, single output
system to generate mock data of a cryogenic calorimeter. This
mock signal of interest contains both noise and pulses. The
simulated auxiliary timestreams represent three accelerom-
eters measuring vibrations and one antenna measuring elec-
tromagnetic interference. We first create two signals which
represent the original sources of electrical and vibrational
noise. The electrical source signal is a sum of many sinusoids
at harmonics of 60 Hz, each with a randomized phase.2 The
vibrational noise is modeled as the sum of three independent
sources. The first source signal is a series of sinusoids at har-
monics of 1.4 Hz representing the noise from pulse tube (PT)
coolers such as the Cryomech PT 415 cryocooler [26], four of
which are used in the CUORE experiment. The second source

2 Here we are simulating electrical noise in data taken in North America,
where the standard AC frequency is 60 Hz. Later, in Sect. 5.1, we will
use data taken in Europe, where the standard AC frequency is 50 Hz.

signal is another sinusoid at 100 Hz, simulating a pump or
fan with a particular operating frequency. The third source
signal is a randomly distributed set of infrequent impulses
passed through band-pass filters at three low-frequency val-
ues. The impulses represent sudden disturbances in the sys-
tem, e.g. earthquakes, and the narrow-band responses repre-
sent mechanical resonances in the system that are excited by
these disturbances.

To create our mock antenna signal, x0[t], we add 1/ f
noise and Gaussian white noise to the electrical source sig-
nal. The addition of white noise simulates thermal noise
in the antenna, and the 1/ f noise represents the flicker
noise often present in electronic amplifiers. We generate
three accelerometer timestreams by individually passing
the vibration source signal through unique band-pass fil-
ters and adding 1/ f noise and white noise to each output.
The band-pass filters represent the response function of each
accelerometer, which we slightly vary for each signal. The
resulting signals x1[t], x2[t], x3[t], correspond to accelerom-
eter signals in the x̂ , ŷ, and ẑ directions. An example of each
input signal and their power spectra are shown in Figs. 1
and 2.

To create the mock detector signal, we again generate
random white noise and 1/ f noise. These terms are simi-
lar to some of the noise terms used in [15]. We then take the
vibrational source signal and pass it through a unique band-
pass filter. This models the detector’s response to vibrations,
which should be different from that of the auxiliaries. We
add the result and the electrical source signal to the detector
signal. Finally, we take a template pulse shape and generate
a train of pulses which are randomly distributed in time with
the caveat that the minimum time between pulses is longer
than the length of the template to prevent pileup events. The
pulse amplitude is randomly chosen to be 1 or 2 units with
equal probability. The pulse amplitudes represent physical
events with energies E0 and E1 = 2E0 assuming linearity of
the detector response. After generating the set of valid noise
events and pulse events, we apply the noise decorrelation
algorithm to the detector signal. Using the simulated antenna
and accelerometer signals as auxiliary inputs, we construct
the transfer functions Hxi y following Eqs. 2, 3, and 4, where
the expectation values are taken over 5-s long noise windows.
The results of the noise decorrelation on the output signal are
shown in Fig. 3.

We now seek to show that the amplitude reconstruction
and resolution of the simulated data is improved with the
addition of the denoising algorithm. To perform our ampli-
tude estimate, we use the detector noise power spectrum
and a time-domain average of the pulses from the detec-
tor timestream to construct the matched filter, also called the
optimal filter (OF) [27–30]. Applying the OF to the detector
signal produces a new signal for which the signal to noise
ratio is maximized [31]. Provided that the OF has unity gain,
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Fig. 1 a Simulated accelerometer signals. These signals simulate
vibrations in the laboratory from sources such as pulse tubes (PTs),
fans, and transient events such as earthquakes. b Simulated antenna
signal. The signal simulates electromagnetic pickup in the laboratory
with a large 60 Hz component

the maximum values of the filtered pulses are the optimal
estimators of the pulse amplitudes [32]. We can empirically
measure the OF noise resolution by choosing an amplitude
value from the same random time point within each noise
window. The standard deviation of these values is a good
approximation for the OF noise resolution of the detector.

To analyze the results of the noise decorrelation algorithm,
we run two analyses in parallel. First we construct the OF
using the original simulated signal and use it to reconstruct
the pulse amplitudes and OF noise resolution. Separately,
we construct a new OF using the denoised data and apply

Fig. 2 Average noise power spectra of simulated auxiliary input sig-
nals. The simulated antenna signal (black) measures electrical noise and
contains harmonics of 60 Hz. The simulated accelerometer accelerom-
eter signals (red, green, and blue) measure vibrational noise. The vibra-
tional noise is composed of harmonics of 1.4 Hz which represents PT
noise, and broader peaks below 100 Hz which represent the excitation
of mechanical resonances in the system due to sudden disturbances

it to the denoised data. The results before and after denois-
ing are shown in Table 1. One important ramification of the
algorithm is that it can change the mean value of the OF
amplitudes. This is expected because the denoising removes
non-stationary noise from the system and because the average
pulse created after the denoising is less correlated with the
remaining noise. In principle, the denoised average pulse is a
better representation of the physical pulse, and in practice the
algorithm serves to unbias the data. The amplitude resolution
is improved at the noise peak and both pulse amplitudes. In
this particular iteration of the simulation, the amplitude res-
olution consistently improves by 22–23%. Both before and
after denoising, the amplitude resolutions across all three
values are compatible with each other. This is also expected
because no energy-dependent resolution scaling is built into
the simulation.

4 Denoising experimental data

4.1 Experimental setup

We performed the measurements to demonstrate the denois-
ing algorithm in an Oxford Instruments Triton 400 dilution
refrigerator cooled with a cryogen-free PT cooler at an oper-
ating temperature of ∼10 mK. Inside the refrigerator, we
mounted a low-temperature light detector which serves as our
detector of interest in this demonstration. The light detector
is composed of a 45×45×0.5 mm3 silicon wafer that absorbs
the light increasing its temperature. This temperature change
is measured by a 3×3×1 mm3 NTD germanium thermistor
which is epoxied to the wafer. The silicon wafer was rigidly
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Fig. 3 a Simulated pulse event in the noisy detector signal (black) and
denoised signal (red), and the noise predicted by the algorithm (below).
b ANPS of the simulated detector signal before denoising (black) and
after denoising (red). The noise that is correlated with the auxiliary
devices is removed

connected to a square copper frame that was connected to the
experimental stage of the dilution refrigerator. The front-end
electronics used in this setup are identical to those used in
CUORE [33]. We ran a fiber-optic cable to near this detec-
tor with the axis of the cable approximately normal to the
substrate surface. We connected the fiber to a commercially
available LED with a wavelength of (600±12) nanometers to
generate a train of LED light pulses with durations and sepa-
ration times that can be easily controlled by a signal generator
with pulse width modulation (PWM). This allowed us to cre-

Table 1 Amplitude resolution and reconstruction error of noise events
and simulated pulse events after denoising technique is applied. The
reconstruction error is the difference between the measured pulse
amplitude and the simulated pulse amplitude. The denoising algorithm
reduces the magnitude of the reconstruction error and improves the
resolution at all amplitudes. The resolutions at all amplitudes are com-
patible before and after denoising. This is expected because no energy-
dependent resolution scaling is built into the simulation

Simulated pulse
amplitude [V]

0 (Noise) 1 2

Original
Reconstruction
Error [µV ]

9 ± 5 −210 ± 10 −460 ± 10

Denoised
Reconstruction
Error [µV ]

−7 ± 4 −8 ± 10 −40 ± 10

Original Resolution
[µV ]

684 ± 3 680 ± 10 680 ± 10

Denoised Resolution
[µV ]

527 ± 3 530 ± 10 520 ± 10

ate periodic light signals which we could use to characterize
our detectors.

Alongside the light detector, we also mounted another
NTD-Ge thermistor which was adhered to a small shard of a
silicon wafer. This “NTD vibration sensor” was not rigidly
connected to the copper frame, but instead left free to vibrate
during the data-taking. Because the NTD vibration sensor
was adhered to a relatively small wafer, we expected that the
rate of pulses it observed would be negligible compared to
that of the light detector. We could therefore use it as another
auxiliary device while making cuts to the data in the rare case
of a pulse event on the auxiliary device. This was a useful
addition to the setup because we expected that the vibrations
it measured would be closely correlated to those measured
in the light detector due to their close proximity. We also
expected that the electrical noise on each of the NTD signals
will be similar since they are being read out in identical ways.

To measure the electrical noise present in our system, we
attached an antenna to our DAQ and placed it inside the Fara-
day cage which houses the experiment. The antenna we used
was a hand-made Helmholtz coil with ∼ 50 turns and a radius
of ∼ 30 cm, and we amplified the antenna signal by a fac-
tor of 5000. To measure the vibrational noise, we used three
PCB 393B31 accelerometers [34] mounted triaxially to the
300 K plate of the dilution refrigerator. The accelerometer
signals were amplified with a PCB 482C15 signal condition-
ing pre-amplifier [35] and read out to the same DAQ system
as the antenna, NTD vibration sensor, and light detector. The
ANPS of the auxiliary devices are shown in Fig. 4.

As a starting ground for testing the algorithm, we collected
data while a ground loop persisted in our readout chain. This
gave rise to noise peaks at 60 Hz and subsequent harmon-
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Fig. 4 a ANPS of accelerometers used in the experiment. PT noise
at harmonics of 1.4 Hz and many other high-frequency peaks are visi-
ble. The noise power from ∼10 to 100 Hz is reduced in the ẑ-oriented
accelerometer because the experimental setup is equipped with damp-
eners that reduce vertical vibrations. b ANPS of antenna and NTD
vibration sensor used in the experiment. The antenna measured a signal
dominated by components at 35 Hz, 60 Hz, and their harmonics. The
NTD vibration sensor signal is dominated by the odd harmonics of 60
Hz, though there is also a source of broadband noise between 10 and
20 Hz

ics from the AC power line with sufficient power to domi-
nate the detector signal. In addition to the electrical noise,
we observe noise peaks at 1.4 Hz and subsequent harmon-
ics due to vibrations from the PT which vibrate the internal
cryogenic structure, including the detector and the cold elec-
tronics. To construct an average noise template, we first took
a long run of data without injecting any pulses to ensure
a sufficient number of noise events free of pulses. The data
from these runs were used to construct the transfer functions,
Hxi y , which are shown in Fig. 5. After, we acquired two runs
of data, each with a set of LED pulses at a fixed frequency
(1.7 Hz). The first set of LED pulses had a duration of 100
μs, and the second set had a duration of 200 μs and thus
twice the energy of the first set. We split the PWM signal
and acquired it with our DAQ to efficiently trigger on the
light pulses with few backgrounds. We denoised these LED
runs by applying the previously calculated transfer functions

Fig. 5 a Accelerometer transfer functions with light detector. The
peaks at the harmonics of 1.4 Hz, particularly in the ẑ-oriented
accelerometer, indicate a correlation between the PT noise observed
in the accelerometers and the microphonic noise in the light detector. b
Antenna and NTD vibration sensor transfer functions with light detec-
tor. Note the wide-band region of high gain near 60 Hz for both of these
devices. The large troughs at 35 Hz and 105 Hz indicate that the antenna
signal is not correlated with the light detector at these frequencies

to the auxiliary data from the LED runs and subtracting the
result from the light detector signal.

4.2 Analysis techniques

Since we were able to trigger the LED pulses, we could still
analyze our signal despite the low SNR in the system. We
used the same analysis procedure described in Sect. 3, but
this time we conducted three separate analyses. We again
analyze the original data and denoised data, but we also ana-
lyze the data after applying a notch filter centered at 60 Hz
to the signal. Since the signal is dominated by 60 Hz noise,
one might expect that notch filtering the data will lead to an
improvement comparable to that of the noise decorrelation
algorithm. We selected 0.5-s windows between LED pulses
and making RMS-based cuts to veto windows with spurious
events (e.g. caused by cosmic rays) either on the detector sig-
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Fig. 6 Light detector signal containing an LED pulse before and after
denoising. Before denoising, the pulse is almost completely washed out
by the noise which is dominated by a 60 Hz component. After denoising,
the pulse is visible by eye

nal or NTD vibration sensor. We then construct the average
noise power spectrum for each of the three signals. We use
the LED triggers to build an average pulse which is also 0.5 s
long. Together, the noise events and average pulse template
allow us to denoise the data and build the OF. We separately
construct the OF using the original data, the band-pass fil-
tered data, and the denoised data.

To align the gains of the three filters, we perform a pseudo-
calibration assuming that the second set of LED pulses has
twice the energy of the first one. We align the LED pulse
amplitudes to arbitrary energy values of E0 and 2E0. We
construct histograms of the amplitudes obtained by each anal-
ysis of each LED event, then fit the amplitudes to a normal
distribution using an unbinned fit. We then use a second-
order polynomial fixed at the origin to align the measured
amplitude values to a common scale. Following the work
of [36], one can model the energy resolution of the detector

as σ(E) =
√

σ 2
0 + f (E)σ 2

E , where σ0 is the baseline res-
olution of the detector, σE is a scale factor that arises due
to the stochastic nature of the LED signals, and f (E) is a
monotonically increasing function. We expect this behav-
ior of the detector response because the magnitude of the
Poisson fluctuations in the number of photons captured by
the light detector will increase as the amplitude of the LED
pulse increases. With this model, we expect that the denois-
ing algorithm does not affect f (E) or σE , but does lower
the value of σ0. We thus expect to see the greatest relative
improvement in energy resolution at the noise peak where the
energy-dependent effects are small. We define the ratio of res-
olutions R(E) = σ̂denoised(E)/σ̂original(E) and calculate it
at each energy for the three signal processing techniques.

4.3 Results of denoising

After denoising, there was a visible improvement in the
signal-to-noise ratio of the detector as seen in Fig. 6. We
also observed a reduction in both vibrational and electrical

Fig. 7 a Average power spectrum of the light detector signal before
and after denoising. The events used to build these power spectra include
the data from the train of LED pulses which produces the evenly spaced
peaks separated by 1.7 Hz. Noise peaks across the frequency spectrum,
including the 1.4 Hz vibrational peak and the 60 Hz electrical peak,
are eliminated after denoising. b Same power spectrum zoomed to the
60 Hz noise peak. The peak is reduced by ∼33 dB and the FWHM of
the peak is reduced by approximately 10%. The evenly spaced peaks
due to the LED pulse train become more apparent after denoising. This
structure is largely unaffected by the denoising, indicating an improved
signal to noise ratio near 60 Hz

noise in the light detector power spectrum (see Fig. 7). The
vibrational peak at 1.4 Hz was eliminated, and many of the
electrical peaks ranging from 60 Hz to 5 kHz were signif-
icantly reduced. The 60 Hz noise peak was reduced by 33
dB, and the full width at half-max (FWHM) was reduced by
approximately 10%. This peak was extremely wide due to
small modulations of the ground loop frequency, but these
modulations were measured by the antenna and the NTD
vibration sensor so we could successfully remove them from
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Fig. 8 Average pulses constructed with the original, notch filtered, and
denoised LED pulses on the light detector. The notch filter produces a
ringing effect which can be seen in the plot of the residuals. The denois-
ing procedure removes 60 Hz noise as well as other high-frequency noise
from the average pulse, producing a smoother and more accurate pulse
template for later use in the OF

the data. This is reflected in the wide-band region of high gain
near 60 Hz in the transfer functions for both of these devices
as was shown in Fig. 5. Outside of this region, the main effect
of the denoising is a reduction in noise peaks. The algorithm
does not have an apparent effect on the broadband detector
noise. Before denoising, high frequency noise with a large 60
Hz component contaminates the average pulse. Applying the
notch filter induces a ringing in all pulses which coherently
add together when constructing the average pulse. When the
denoising algorithm is applied, the noise in the average pulse
is reduced without inducing any ringing (see Fig. 8).

We next examine the effect of the denoising algorithm
on the resolution of the noise and LED pulse events.
As expected, the resolution increases monotonically with
energy. At all amplitudes, the denoising improves the mea-
sured detector resolution (see Table 2). We see the greatest

Fig. 9 Energy resolution of noise events and LED events before and
after denoising or notch filtering is applied. The fact that the energy
resolution increases with energy is expected due to the Poisson fluc-
tuation of detected photons. At all energies, the denoising algorithm
improves the resolution of the detector. At all but the highest energies,
the algorithm out-performs the 60 Hz notch filtering of the data

relative improvement at lower pulse amplitudes, which was
also expected. It should be noted that the improvement in
amplitude resolution at the first LED peak (E = E0) is com-
patible with the improvement at the noise peak, though it has
a greater uncertainty.

We also observe that the denoising algorithm performs as
well as or better than the notch filtering approach (see Fig. 9).
This effect is especially visible at the noise peak, where the
improvement in the detector resolution from the denoising
(4.1%) is 1.7 times that of from the notch filtering (2.4%). At
the highest-amplitude peak, we do not expect the denoising
to have as much of an effect on the resolution, but we still
observe an improvement. At this amplitude, we see that the
denoising and notch filtering have similar effects on the data
These results are summarized in Table 3.

Table 2 Best-fit estimators of energy resolution with and without
denoising applied. Here σ̂0 is the best estimator of the energy reso-
lution of the detector noise events. All energies are scaled to that of the

first LED pulse amplitude. All energy resolutions are calculated from
the optimally filtered data

Signal type σ̂0(E = 0) σ̂ (E = E0) σ̂ (E = 2E0)

Original (2.89 ± .01) × 10−2 (3.15 ± .04) × 10−2 (3.16 ± .04) × 10−2

Notch filtered (2.82 ± .01) × 10−2 (3.13 ± .03) × 10−2 (3.10 ± .03) × 10−2

Denoised (2.77 ± .01) × 10−2 (3.00 ± .03) × 10−2 (3.10 ± .03) × 10−2

123



Eur. Phys. J. C (2024) 84 :243 Page 9 of 17 243

Table 3 Ratio of denoised and notch filtered energy resolutions to orig-
inal energy resolution. The denoising algorithm outperforms the notch
filter given its capability to remove noise across a large range of the
frequency domain. Note that the main effect of the denoising is in the
reduction in baseline resolution R0. This is expected given that the reso-
lution is dependent on the LED amplitude due to the Poisson fluctuation
of detected photons

Signal type R̂0 R̂(E = E0) R̂(E = 2E0)

Notch filtered 0.976 ± 0.003 0.99 ± 0.01 0.98 ± 0.01

Denoised 0.959 ± 0.003 0.95 ± 0.01 0.98 ± 0.01

It is important to note that the improvement in resolution
is ≤ 5% in all cases. This is also expected since the OF is by
definition the filter resulting in the highest SNR given a par-
ticular choice of noise and pulse template. The improvements
from the denoising are thus limited by the amount of noise
that can be removed from the noise and signal templates,
which can in turn be limited by the “SNR” of the auxiliary
devices, i.e. the ratio of the amount of noise correlated with
the detector of interest to the amount of uncorrelated noise.
Having verified the efficacy of the denoising technique on a
controlled experiment, we applied the method to data from
the CUORE experiment.

5 Denoising CUORE data

5.1 The CUORE experiment

CUORE (Cryogenic Underground Observatory for Rare
Events) [10] is an ongoing experiment at the Gran Sasso
National Laboratory (LNGS) primarily searching for the lep-
ton number violating process of neutrinoless double beta
decay (0νββ) [37,38]. The discovery of such a process would
be a clear experimental signature of physics beyond the Stan-
dard Model and may provide insight into the nature of the
absolute neutrino mass scale [39–42]. The sensitivity to such
a discovery requires detectors that have very good energy res-
olution. For example, in the case of a finite, non-zero number
of expected background counts, the sensitivity to the half-life

of 0νββ scales as (�E)− 1
2 [43], where �E is the energy res-

olution of the system at the expected peak energy Qββ .
CUORE employs cryogenic calorimeters consisting of a

5 × 5 × 5 cm3 TeO2 crystal, a silicon resistive heater, and an
NTD-Ge thermistor that measures the small temperature rise
in the crystal when energy from a nuclear decay or particle
interaction is deposited in it. Each of these calorimeter sig-
nals is then read out as an individual channel and digitized
with a sampling frequency of 1 kHz. As mentioned before,
CUORE uses four Cryomech PT 415 cryocoolers with fun-
damental frequencies of 1.4 Hz to cool the cryostat. The

vibrations induced by the PTs are a large source of noise due
to CUORE’s relatively small bandwidth (∼80 Hz), and active
steps are already taken to reduce this PT noise during data-
taking [44]. Nonetheless, this noise persists in many channels
in the CUORE data.

To measure sources of microphonic noise, we installed
three triaxially-oriented accelerometers identical to the ones
described in Sect. 4.1 on the structural support frame of the
cryostat and read the three signals out to the CUORE DAQ
system. We also installed a triaxial Sara Electronics SS-10
seismometer [45] to the CUORE suspension system and read
it out to the same DAQ. We use these devices as the six input
signals when we apply the noise decorrelation algorithm. We
also motivate the use of a nonlinear version of the algorithm
for thermal detectors. Using 24 h of data from one CUORE
detector channel, we demonstrate both the linear and nonlin-
ear versions of the denoising algorithm using the accelerom-
eter and seismometer signals as inputs. We then analyze the
noise events and so-called “pulser” events to evaluate the
performance of the algorithm.

5.2 CUORE pulser events

To account for changes in the detector response due to ther-
mal fluctuations, short pulses of known voltages are applied
to the CUORE detector at regular intervals using the sil-
icon heaters mentioned in Sect. 5.1. This results in pulser
events in the CUORE channels. Since the injection method
is practically identical for each pulser event, we expect their
resolutions to be comparable to the noise resolution of the
channel, so they make good candidates for verifying the per-
formance of the denoising algorithm. The particular channel
we choose has pulser amplitudes during this run. The two
amplitudes are comparable to physical pulses with energy
depositions of 960 keV and 3500 keV. These energy values
were determined during the online CUORE data analysis.
We will use the two pulser event energies and the noise peak
to calibrate the detector.

5.3 The nonlinear algorithm

It is expected that quadratic mixing of acceleration signals
should occur in the CUORE thermal detectors. This is moti-
vated both by the non-zero bicoherence observed in CUORE
(see Appendix A) and also from first principles. A simpli-
fied explanation for this is that any power incident on the
detector due to vibrations heats a thermal detector regardless
of directionality of the vibration. This power is non-trivially
related to the square of the waveform describing this vibra-
tion (see Appendix B for a detailed explanation). Here we
use the square of each auxiliary signal x2

i [t] as a proxy for
the thermal response to vibrational noise. Approaches sim-
ilar to this which analyze nonlinear systems by including
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higher-order powers of the input signals are well described
in [46,47]. We still keep the original auxiliary signals xi [t]
since they may be separately correlated with the detector
noise, for example due to capacitive pickup in the detector
wiring. We proceed with the denoising algorithm using the
new set of input signals, which is twice as large as the origi-
nal set. In practice the Fourier amplitudes Xi [ f ] and X2

i [ f ]
can be strongly correlated, so one must ensure that the matri-
ces are well-conditioned before proceeding. While we do not
expect this model to capture the full nonlinear behavior of
the thermal response to the input signals, we do expect to see
an improvement in the noise decorrelation over the linear
model.

5.4 Results of denoising

The CUORE data have a much higher SNR than the data used
to demonstrate the algorithm in Sect. 4. We are therefore able
to trigger on pulse events directly and create a set of noise
events. The only possible contamination of this set is from
very low-amplitude pulses not detected by the CUORE trig-
gering algorithm. This effect is expected to be small because
the pulse rate is small (∼3 mHz) and the small amount of
signal power due to these pulses is negligible. We first run
the algorithm with 50-second long noise windows using the
accelerometer and seismometer signals as inputs, then we
repeat the algorithm on the original data using the same sig-
nals and their squares as inputs. We conduct an indepen-
dent analysis after each of the different denoising methods
is applied to the raw data. We show that the denoising pro-
duces a cleaner pulse template as well as a reduced noise
power spectrum. Comparing the noise power spectra, we see
that the denoising performs excellently on the PT noise, but
does not substantially impact the noise below 1 Hz and does
little to change the broadband continuum noise below the
various peaks (see Fig. 10). The nonlinear method is more
effective than the linear one, though this is limited to specific
bands in frequency space. The most noticeable differences
between the linear and nonlinear algorithms are seen at the
harmonics of 1.4 Hz and in a region around 280 Hz with
many noise peaks (see Fig. 11). This suggests the presence
of a nonlinearity in the system from the auxiliary devices
to the CUORE channel. This result is discussed further in
Appendix A.

To evaluate the performance of the different denoising
methods, we first examine the distributions of noise events
which are shown in Fig. 12. Before the OF is applied, the
denoising algorithm reduces the RMS of a typical noise event
by more than a factor of 2. We build the OF using a 10-s long
signal template. To make the calculation of the OF coeffi-
cients as straightforward as possible, we also use 10-s long
noise windows to construct the OF as opposed to the 50-s
long noise windows we use to perform the denoising. The

Fig. 10 Effects of linear and nonlinear denoising techniques before
constructing the OF. a Average pulse created using the original, lin-
early denoised, and nonlinearly denoised data. The denoising procedure
removes noise containing many harmonics of 1.4 Hz from the average
pulse. b ANPS of a CUORE channel before denoising and after the
two versions of the denoising algorithm. The linear version removes
noise across the signal band, from less than 1 Hz to several hundred Hz.
At several frequencies including 2.8 Hz, the nonlinear version of the
algorithm further reduces the noise

OF naturally further reduces the RMS noise, but combin-
ing the OF with the denoising produces a smaller mean noise
event RMS. This value is further reduced when the OF is com-
bined with the nonlinear algorithm. We confirm this effect by
building the ANPS of the detector after each signal process-
ing technique is applied (see Fig. 13). Taking the square root
of the integral of each of the ANPS gives the expected RMS
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Fig. 11 a ANPS of a CUORE channel in the region dominated by PT
noise at the harmonics of 1.4 Hz. The nonlinear version of the algorithm
reduces the noise peaks only slightly more than the linear version. This
difference is most noticeable at 2.8, 4.2, and 5.6 Hz.bThe same CUORE
ANPS around 280 Hz. Here, there are many peaks where the noise is
reduced noticeably more by the nonlinear algorithm than by the linear
one

detector noise, the values of which are tabulated in Table 4.
The denoising improves the noise RMS of the OF signal by
1.0 mV (∼8%). The quadratic version of the algorithm again
out-performs the linear one, improving the noise RMS by 1.2
mV (∼10%).

We now analyze the noise events and pulser events
together using the same analysis techniques as described in
Sect. 4.2. Fitting the OF amplitude spectrum and calibrating
using the known pulser energies gives us our final energy
spectrum. The obtained resolutions are reported in Table 5,
while the ratios of resolutions are reported in Table 6. Look-
ing at the noise peak, where the statistical uncertainty on the

Fig. 12 Distribution of RMS of noise events before any signal pro-
cessing, after denoising, and after applying the OF. The lowest noise
RMS is achieved when the data are denoised with the nonlinear version
of the denoising algorithm then optimally filtered

Fig. 13 Effects of the denoising and the OF on the noise in the CUORE
channel. The original and denoised curves (before the OF) are the same
as those in Fig. 10, but with a coarser binning. This is because the denois-
ing algorithm uses 50-second noise windows, while the OF uses 10-s
signal and noise windows. Note the reduction of notches at 1.4 Hz
and subsequent harmonics when the data are denoised. Since the OF
is normalized to ensure unity gain, reducing the notches has the effect
of lowering the continuum of the noise, resulting in lower total noise
power in the system

Table 4 Average noise RMS of the CUORE channel after applying
different combinations of processing techniques. As expected, the OF
alone outperforms the noise decorrelation, but the combination of the
OF with the denoising gives the best performance. The noise RMS is
minimized when the quadratic denoising algorithm is used along with
the OF

Signal type Noise RMS [mV]

Raw signal 7.52

Linearly denoised signal 3.16

Quadratically denoised signal 3.12

Optimal filtered (OF) signal 1.19

OF linearly denoised signal 1.09

OF quadratically denoised signal 1.07
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Table 5 Energy resolution of noise events and pulser events after lin-
ear and nonlinear denoising techniques are each applied. The denoising
improves the resolution by ∼10%. The quadratic version of the algo-
rithm adds another ∼1% improvement, though this improvement is not

statistically significant. Pulser energies were determined during online
CUORE data analysis. All energy resolutions are calculated from the
optimally filtered and calibrated data

Signal type σ̂0 (keV) σ̂ (E = 960 keV) (keV) σ̂ (E = 3500 keV) (keV)

OF original 2.09 ± 0.02 2.1 ± 0.4 2.5 ± 0.2

OF linearly denoised 1.89 ± 0.02 1.9 ± 0.3 2.2 ± 0.2

OF quadratically denoised 1.88 ± 0.02 1.9 ± 0.3 2.2 ± 0.2

Table 6 Ratio of denoised energy resolution to original energy resolu-
tion using linear and nonlinear versions of the algorithm. The denoising
algorithm reduces the noise resolution and the pulser energy resolution
by compatible amounts. This is expected because the main contribu-

tion to the pulser resolution is the noise. The quadratic version of the
algorithm further reduces the resolution, though this reduction is not
statistically significant. The resulting resolutions are again compatible
across all energies

Signal type R̂0 R̂(E = 960 keV) R̂(E = 3500 keV)

OF linearly denoised 0.91 ± 0.01 0.91 ± 0.14 0.90 ± 0.07

OF quadratically denoised 0.90 ± 0.01 0.87 ± 0.13 0.89 ± 0.07

resolution is smallest, the relative improvement in resolution
is 9% when the linear denoising is applied and 10% when
the nonlinear version is applied. This again shows the better
performance of the nonlinear method. This 10% improve-
ment in energy resolution is similar to the improvement in
the noise RMS, verifying that the calibration method does
not qualitatively change the effects of the denoising. The
pulser resolutions are comparable to the noise resolution as
expected, though the resolution of the 3500 keV pulser is
slightly worse than expected. Even so, the relative improve-
ment in energy resolution is compatible at all energies (see
Fig. 14). Together, these results support the hypothesis that
the resolution of the pulsers is approximately the same as
that of the noise. An energy-dependent contribution to the
pulser resolution should not be removed by the denoising
algorithm because the auxiliary device signals are completely
uncorrelated to the pulse energy. If a non-negligible energy-
dependent contribution were present, then the relative change
in the resolution of the pulsers after denoising would be dif-
ferent as a function of energy. We observe that the improve-
ments in pulser resolution are compatible at all measured
energies, which suggests that the energy-dependent contribu-
tion to the pulser energy resolution is negligible. In summary,
the denoising algorithm consistently improves the energy res-
olution of noise events and pulser events by ∼10%. The non-
linear version of the algorithm adds another ∼1% improve-
ment, though this improvement is within the uncertainty of
the measurement.

We can also estimate the timing resolution of the detector
before and after the denoising techniques are applied. For a
signal of amplitude A, the timing resolution of the digital

Fig. 14 Energy resolution of noise events and pulser events before
and after the different denoising techniques are applied. The energy
resolutions of the pulsers are similar to that of the noise. At all energies,
the denoising algorithm improves the resolution of the detector and the
nonlinear version further improves the resolution

signal is given by [32]:

σt0 = 1

A

⎡

⎣T
N/2−1∑

n=−N/2

(2π fn)
2 |s( fn)|2
N ( fn)

⎤

⎦

− 1
2

(6)

where T is the length of the signal in seconds, s( fn) is
the Fourier transform of the average pulse, and N ( fn) is the
ANPS. The timing resolution is inversely proportional to the
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Table 7 Estimated timing resolution of the CUORE channel after
applying different combinations of processing techniques. The esti-
mated timing resolution is minimized when the quadratic denoising
algorithm is used along with the OF. The improvement is of order 1%
after the denoising

Signal type Timing resolution (keV ms)

Optimal filtered (OF) signal 26.91 ± 0.11

OF linearly denoised signal 26.54 ± 0.11

OF quadratically denoised signal 26.41 ± 0.11

amplitude of the signal, and it is a single number for a given
average pulse and ANPS. We therefore use this proportion-
ality constant Aσt0 as our figure of merit for the different sig-
nal processing techniques. We calculate it using the average
pulse with amplitude 1 mV and multiply by the value of the
calibration function at A = 1 mV to report the value in keV·s
(see Table 7). We find that the linear denoising improves
the timing resolution by 1.4% while the quadratic version
improves the timing resolution by 1.9%. We note that the
improvement in timing resolution is significantly less than
that of the energy resolution. This suggests that in this chan-
nel, vibrational noise does not contribute significantly to the
timing resolution.

The main limitations of the algorithm are likely related to
the auxiliary devices. First, it is important that the auxiliary
devices be sensitive to noise in relevant signal bands. The
magnitude of the OF applied to the raw timestream peaks
near 1.4 Hz, where the PT noise is very well measured. At
frequencies below ∼1 Hz, the accelerometer responses roll
off significantly, thus the accelerometers are not sensitive to
the sub-Hz noise observed in the CUORE data. The seis-
mometers used in CUORE are designed to measure sub-Hz
noise with better sensitivity, so the algorithm can reduce the
sub-Hz noise peaks in the CUORE data. These peaks are
reduced by 4–5 dB and are far from eliminated. The perfor-
mance of the denoising is also directly tied to the coherence
of the auxiliary devices with the CUORE channel, i.e. the
fraction of the power in the auxiliary signals that is corre-
lated with the detector at a particular frequency. It is possible
that the coherence of sub-Hz noise between the seismome-
ter signal and detector noise can be increased by moving the
seismometers elsewhere on the cryostat, as their locations
have not yet been optimized. It is also likely that the algo-
rithm can be improved by introducing auxiliary devices in
close proximity to the CUORE detector. This suggests that
introducing cryogenic vibration sensors into future cryogenic
bolometric experiments is to be investigated further. A basic
version of this technique using an NTD vibration sensor was
demonstrated in Sect. 4.1.

Finally, it is instructive to compare the effects of this
denoising technique with the noise decorrelation technique

used in CUORICINO [21]. In CUORICINO, neighbor-
ing bolometer channels were used as auxiliary devices to
remove noise that was correlated between them. The CUORI-
CINO technique effectively removed sharp peaks from the
noise power spectrum much like the technique presented
here. However, the CUORICINO technique was effective at
removing continuum noise below 1 Hz, which our technique
fails to do. This suggests that the noise measured in the aux-
iliary devices used in CUORE is not correlated with the con-
tinuum noise in the CUORE detector. In [21], it was found
that most CUORICINO channels do not exhibit more than a
5% improvement in OF noise resolution, though the largest
improvements were more than 50%. It is unclear whether the
CUORE channel showed here is one of the most-improved
or least-improved CUORE channels using our noise corre-
lation algorithm, but the 10% improvement in OF resolution
we report here out-performs the vast majority of channels in
the CUORICINO analysis.

It should also be noted that the CUORICINO noise decor-
relation was done using 11 bolometer channels as auxiliary
channels. In practice, this creates a problem due to “side-
pulses,” i.e. pulses present on neighboring bolometer chan-
nels. The presence of side-pulses creates difficulties as one
must find a way to remove them, either by fitting the pulses
on the auxiliary channels and subtracting them or by remov-
ing the channel(s) containing side-pulses and re-computing
the transfer functions between the remaining channels. The
probability of encountering side-pulses grows as the number
of channels used in the decorrelation increases. Furthermore,
neighboring bolometer channels are the most likely to have
correlated noise, but they are also the most likely to have coin-
cident pulses due to multi-site physics events. The denois-
ing technique presented here does not incur such problems
since there are no side-pulses on the auxiliary devices used
in CUORE. Furthermore, this technique denoises bolome-
ter channels against auxiliary devices, which has not been
attempted before in bolometric experiments, and it introduces
nonlinear terms motivated by detector response.

6 Conclusions

We presented an algorithm based on a multi-input, single-
output model which can be used in a variety of settings
to remove noise from detector signals using multiple auxil-
iary devices such as microphones, accelerometers, and seis-
mometers. The algorithm can be applied to detectors with
a wide range of bandwidths and offers an inexpensive way
to reduce noise without major experimental interventions.
We validated the approach by implementing the multivari-
ate noise decorrelation algorithm on simulated calorimeter
data with simulated noise contributions from electromagnetic
interference and microphonic vibrations. We then imple-
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mented the algorithm on a low-temperature light detector
using accelerometers, an antenna, and an NTD vibration sen-
sor as auxiliary devices. The result was a reduction in the
noise RMS of the detector and a 4% improvement in energy
resolution at the noise peak. We then presented the case for
using a nonlinear algorithm which accounts for quadratic
mixing terms from the auxiliary device signals to denoise
thermal detectors. We demonstrated the nonlinear version of
the algorithm with one channel from the CUORE experiment,
showing an improvement in the OF noise RMS and the energy
resolution of noise events and pulser events. The denoising
algorithm improved these by approximately 10%. The non-
linear version of the algorithm outperformed the linear ver-
sion, adding a further improvement of 1–2%. The main effect
of the denoising was a reduction in noise peaks but there was
no clear reduction in the broadband noise. The timing resolu-
tion of the channel was also estimated to improve by 1–2%,
with the greatest estimated improvement again coming from
the nonlinear version of the algorithm.

Work is ongoing to integrate this denoising algorithm into
the analysis framework of CUORE in future searches for rare
processes such as neutrinoless double beta decay. Looking
ahead, we plan to conduct a rigorous study of the effects of
the denoising algorithm, particularly its impact on the tim-
ing resolution, energy resolution, and energy threshold of the
entire CUORE detector over multiple years of data-taking.
This will allow for a better comparison of the denoising tech-
nique outlined here with the technique used in CUORICINO.
We are also in the process of expanding our array of auxiliary
devices in the CUORE experiment by adding antennas and
more accelerometers to our DAQ system. Beyond this, we
will further investigate the use of bicoherence and higher-
order frequency mixing terms to more accurately model the
effects of vibrations in thermal detector signals, extending
the model proposed in [16]. This will lay the ground work as
we build toward a multivariate nonlinear adaptive filter based
on the single-input model demonstrated in [6]. Active filters
such as these have the potential to be integrated into the online
data-taking of future experiments including CUPID [48].

Acknowledgements The authors would like to thank Dr. Steven M.
Kay for his guidance and suggestions regarding the spectral analy-
sis of nonlinear systems as well as Dr. Arnaud Allézy for his work
on modeling the vibrational modes of the CUORE cryostat. We also
thank the CUORE Collaboration for helping to make this work possi-
ble. This work was supported by the US Department of Energy (DOE),
Office of Science under Contract No. DE-AC02-05CH11231, and by
the DOE Office of Science, Office of Nuclear Physics under Contract
No. DE-FG02-00ER41138. This work was also supported by the Isti-
tuto Nazionale di Fisica Nucleare (INFN). This work makes use of both
the DIANA data analysis and APOLLO data acquisition software pack-
ages, which were developed by the CUORICINO, CUORE, LUCIFER,
and CUPID-0 Collaborations.

Data availability statement The CUORE data used in this paper are a
small subset of the much larger CUORE dataset which will be analyzed

in future works. The code used to complete this analysis and the raw data
analyzed here (including waveform data from the NTD-Ge detector, the
CUORE channel, and all auxiliary devices) are not currently publicly
available but they can be made available upon request.

Code availability statement Code/software will be made available on
reasonable request. [Author’s comment: The code/software generated
during and/or analysed during the current study is in fact available from
me on reasonable request].

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: Bicoherence

Using the same notation as in Sect. 2 where possible, we
define the bispectrum of a signal x[t]:
B[ fi , f j ] = 〈

X∗[ fi ]X∗[ f j ]X [ fi + f j ]
〉

(A1)

and we define the bicoherence, b using the following nor-
malization convention:

b[ fi , f j ] = |B|
√〈|X [ fi ]X [ f j ]|2

〉〈|X [ fi + f j ]|2
〉 (A2)

where the expectation values are taken over the same noise
samples used to compute the denoising transfer function. The
bicoherence is restricted to be between 0 and 1, and it mea-
sures the proportion of the signal power at any frequency pair
that is phase coupled to its sum frequency. This is sometimes
interpreted to be a measurement of the nonlinearity present
in a system, however there are subtleties related to this. Con-
sider a signal of the form:

xL(t) =
∑

i

Ai cos(2π fi t + φi (t)) (A3)

where Ai are all real coefficients. There is no nonlinear mix-
ing in this system. Now consider three frequencies fi , f j , fk
where fi + f j = fk . If there is no phase coupling between
fi , f j , and fk , then b2( fi , f j ) approaches 0 after averaging
over a sufficiently long period of time. If the phases are cou-
pled such that over a long time

〈
φk − (φi + φ j )

〉 �= 0, then
b2( fi , f j ) > 0. This phase coupling is expected in systems
that are driven by an external periodic source of noise. The
PTs in CUORE are an example of such an external source,
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so we expect non-zero bicoherence at harmonics of the fun-
damental PT frequency (1.4 Hz) even without the presence
of a nonlinear mixing term.

Now we analyze the bicoherence of a system with a
quadratic mixing term. Consider a simple signal of contain-
ing two frequencies with a nonlinear mixing term. Using
ωi = 2π fi , we have:

xNL(t) = A1 cos(ω1t + φ1) + A2 cos(ω2t + φ2)

+ 2A12 cos(ω1t + φ1) cos(ω2t + φ2)

= A1 cos(2πω1t + φ1) + A2 cos(ω2t + φ2)

+ A12 cos((ω1 + ω2)t + φ1 + φ2)

+ A12 cos((ω1 − ω2)t + φ1 − φ2)

(A4)

The bicoherence of this signal at (ω1, ω2) is:

b( f1, f2) =
〈
A1eiφ1 A2eiφ2 A12e−i(φ1+φ2)

〉

A1A2A12
= 1 (A5)

In this system, all of the power at f = f1 + f2 is due to the
mixing of the signals at f1 and f2, so the bicoherence attains
the maximum possible value.

Analysis of these two signals shows that while a non-zero
bicoherence is a natural consequence of a quadratic non-
linearity in a system, it does not guarantee the existence of
such a nonlinearity. The bicoherence is therefore useful for
examining the phase-coupled components of a signal, but one
should be cautious before attributing such phase coupling to
an underlying nonlinearity. We discuss why this quadratic
mixing model may still be appropriate for the CUORE sys-
tem in Sect. 5.3 and Appendix B.

The bicoherence of a single CUORE channel is plotted
in Fig. 15 for regions of frequency space where the bicoher-
ence is non-negligible. Note that the bicoherence is an auto-
quantity; it only depends on the bolometer signal, not a pair
of signals. We see a large amount of bicoherence between the
different PT frequencies, but we expect the harmonics of the
PT phases to be coupled already. An interesting region exists
around f1 ≈ 280 Hz, f2 < 10 Hz. There, we see several
points with a large bicoherence term. The distances between
these points are integer multiples of 0.6 and 1.4 Hz, both of
which appear on their own in the bolometer ANPS. Here,
there is no obvious harmonic effect that could contribute
to the bicoherence, so a nonlinear mixing term may be at
play. We also note that it is at these frequencies near 280 Hz
where we see the greatest difference in noise power between
the linearly denoised and quadratically denoised signal, as
discussed in Sect. 5.4 and shown in Fig. 11. This is further
evidence that the noise power at these frequencies is due to
a nonlinear effect.

Fig. 15 a Region of non-zero bicoherence in CUORE data at harmon-
ics of 1.4 Hz induced by the PT phase coupling. b Region of non-zero
bicoherence in CUORE data indicating mixing of frequencies up to ∼12
Hz with frequencies near 280 Hz

Appendix B: Frequency mixing in power signals

Consider an object of massm vibrating in 1-dimension whose
acceleration is described by a discrete signal a[t]. The power
supplied by this oscillation is equal to p[t] = ma[t]v[t] =
ma[t]∑t ′<t a[t ′]dt ′. (We will drop the m so that p has units
of t (a[t])2. Taking the Fourier transform of the power, we
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have:

P[ω] = A[ω] � A[ω]
ω

= i
∑

ω′ �=ω

A[ω′]A[�ω′]
�ω′ (B6)

where �ω′ = ω − ω′ and � represents the convolution.
One can replace (�ω′) with (2π fs + �ω′) if ω′ > ω when
working on the non-negative frequency domain. Now con-
sider the square of the acceleration signal (a[t])2. Its Fourier
transform is:

A2[ω] =
∑

ω′ �=ω

A[ω′]A[�ω′] (B7)

The transfer function from this signal to the power signal
is:

Hx2P =
〈 (
A2[ω])∗

P[ω]〉
〈 (
A2[ω])∗ (

A2[ω]) 〉 (B8)

Plugging in, we see the transfer function is averaged over
all mixing frequencies, the P[ω] term of which is averaged
in a frequency-weighted way:

Hx2P =
i
〈 (∑

ω′ A∗[ω′]A∗[�ω′])
(∑

ω′ A[ω′]A[�ω′]
�ω′

) 〉

〈| ∑ω′ A[ω′]A[�ω′]|2〉

= i
〈 ∑

ω′
∑

ω′′ A∗[ω′]A∗[�ω′]A[ω′′]A[�ω′′]
�ω′′

〉

〈| ∑ω′ A[ω′]A[�ω′]|2〉
(B9)

The bispectrum B2[ω′,�ω′] of the original acceleration
signal is now a useful quantity, since it tells us which fre-
quency pairs will contribute to the expectation value of the
above sum. If the matrix is sparse, then the number of fre-
quency pairs over which one must sum becomes significantly
smaller, and evaluating the sum for each ω becomes sig-
nificantly less computationally expensive. Nonetheless, the
transfer function Hx2P still provides a “frequency-smeared”
approximation of the expected value of the power signal
given the square of the accelerometer signal. In the limit that
a single frequency pair (ω0, ω − ω0) dominates the sums in
Eqs. B6 and B7, we can approximate the signals as:

P[ω] = i A[ω0]A[ω − ω0]
(

1

ω0
+ 1

ω − ω0

)

= iωA[ω0]A[ω − ω0]
ω0(ω − ω0)

(B10)

A2[ω] = 2A[ω − ω0]A[ω − ω0] (B11)

Plugging this into B9, the factors of
〈
(A[ω0]A[ω −

ω0])∗(A[ω0]A[ω −ω0])
〉
cancel assuming there is no uncor-

related noise in the acceleration signal at ω. The transfer
function is:

Hx2P = iω

2ω0(ω − ω0)
(B12)

In this case, the transfer function accurately describes the
frequency mixing behavior while accounting for the differ-
ence in units between P and (a[t])2. Of course, this approx-
imation of a single perfectly bicoherent frequency pair con-
tributing to the sum in B9 is not valid in the CUORE sys-
tem since there are multiple frequency pairs exhibiting bico-
herence that sum to the same frequency (see Fig. 15). Still,
using the frequency-smeared coefficients from the squares of
the auxiliary signals in the denoising algorithm results in an
improvement over the linear version.
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