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A filtering approach for analyzing turbulent stratified shear flows

Robert E. Ecke1 and Philippe Odier2

1Condensed Matter and Magnetic Science and CNLS, Los Alamos National Laboratory,
Los Alamos, NM USA: ecke@lanl.gov

2Laboratoire de Physique, École Normale Supérieure de Lyon, Lyon France

Abstract
Stably stratified shear layers are present in many geophysical contexts from oceanic over-
flows to river estuaries and have been studied in many contexts in both laboratory exper-
iments and numerical simulations. We consider here laboratory experiments on a gravity
current where the current itself is turbulent [1] with a Reynolds number of a few thousand
(Taylor Reynolds number of about 100) whereas the surrounding fluid is quiescent. The
stability of the current is governed by the Richardson number Ri0 = g(δρ/ρ)H/U2

0 where
g is gravity, H is the current thickness, U0 is the current velocity, and ∆ρ << ρ is the
density difference between the two fluids. Evaluating this system at the exit of our wall-
bounded wall jet, we have 0.25 < Ri0 < 1.0. The interface between lighter and heavier
fluid can be disrupted by local instability, see Fig. 1(a), where turbulent kinetic energy
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Figure 1: Spatial fields of turbulent gravity current: (a) density ρ, (b) filtered ρ, (c) downstream velocity
u, and (d) filtered u. The filter length scale ` is indicated in (a) and (c). False color imaging where blue
is low, red is high and white is intermediate. The filtered fields are smaller by 2` in each direction than
the unfiltered fields.

resident in the current or generated by shear at the interface produces overturning and
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mixing. Alternately, at the larger range of Ri, the interface may oscillate vertically owing
to wave motion while remaining sharp in terms of its local width. This convolution of
effects causes problems for the conventional statistical analysis approaches of turbulent
flows. Typically, one employs a Reynolds-averaged Navier Stokes (RANS) method, es-
pecially useful for experimental data where one may have incomplete information about
the flow fields - perhaps measurements at a single point or along a vertical line. A RANS
averaging approach, however, convolves the effects of wave motion, large-scale coherent
structures and small-scale turbulent transport so a different statistical analysis method is
needed.

In cases where the experimental data consist of highly resolved spatial fields, it is
straight forward to obtain the spatial distribution of turbulent energy flux and of buoyancy
flux (as well as many other quantities) using a filtering approach [2, 3] that is utilized in
large-eddy-simulations as a computational tool but which can also be used as an analysis
method. Indeed, this filter approach has been used for analyzing experimental data in
two-dimensional turbulence and direct numerical simulation data in a number of situations
[4, 5, 6]; we extend it here to experimental data on stratified shear flows.

The system we consider is one of two miscible fluids undergoing a gravity current flow
[1] which consists of a jet of lighter fluid with density ρ0 exiting a nozzle of height H and
width W >> H into a reservoir of heavier fluid with density ρ1. The flow is constrained
from the top by a horizontal smooth boundary which imposes a no-slip boundary con-
dition. The density difference is small compared to the mean density so the Boussinesq
equations provide an appropriate description of the flow. We normalize velocity by a
characteristic velocity of the current U0, length by the characteristic height of the current
H, pressure by ρU2

0 , and density difference by ∆ρ = ρ1 − ρ0. The latter normalization
gives a dimensionless density θ (x, t) = (ρ1 − ρ (x, t)) /∆ρ such that θ = 1 for the pure
lighter fluid deep inside the current and θ = 0 for pure heavy fluid far outside the current.
With the condition of fluid incompressibility, the resulting non-dimensional equations are

∂tu (x, t) + u (x, t) · ∇u (x, t) = −∇P +Re−1∇2u (x, t) +Ri (1− θ (x, t)) ẑ

∂tθ (x, t) + u (x, t) · ∇θ (x, t) = Re−1Sc−1∇2θ (x, t)

∇ · u (x, t) = 0

where the dimensionless control parameters are the Reynolds number Re0 = U0H/ν, the
Richardson number Ri0 = g (∆ρ/ρ)H/U2

0 , and the Schmidt number Sc = ν/D with
kinematic viscosity ν and mass diffusivity D; bold variables indicate vectors.

Filtering consists of applying a smoothing function to the velocity and density, e.g.,
u (x, t) =

∫
G` (x− r, t)u (x, t) dr (similarly for θ) where G` (r) = `−nG (r/`) and G(r) =

1√
2π
e−r

2/2 [2, 3, 6]. In Figure 1, we show example raw and filtered images, respectively, of

density, Figs. 1(a),(b), and downstream velocity, Figs. 1(c),(d), for a horizontal turbulent
gravity current with gradient Richardson number Ri0 ∼ 1. For these conditions the
interface is relatively stable and the instability is primarily Holmboe-like [7], see Fig. 1(a),
rather than the more energetic and overturning Kelvin-Helmholtz instability observed for
smaller Ri0 [1].

Applying filtering to the momentum and density equations results in dynamical equa-
tions for the large-scale (low-pass filtered) fields:

∂tu + u · ∇u = −∇P +Re−1∇2u +Ri
(
1− θ

)
ẑ

∂tθ + u · ∇θ = Re−1Sc−1∇2θ
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The linear terms produce averaged quantities of the same form as the unfiltered equation
(e.g., the incompressibility condition is the same) but the nonlinear terms produce addi-
tional terms that couple among spatial scales (scale transport) and between space points
(space transport):

∂tu + u · ∇u = −∇P +Re−1∇2u +Ri
(
1− θ

)
ẑ +∇ · τ`

∂tθ + u · ∇θ = Re−1Sc−1∇2θ +∇ · b`

where τi,j = uiuj − ui uj and bi = uiθ− ui θ with subscripts i and j indicating vector (or
tensor) components.

One can then obtain the energy budget from the filtered momentum equation and the
advection-diffusion transport from the θ equation:

∂t |u|2 /2 +∇ · J` = −π` +Re−1 |∇u|2 +Ri u · ẑ
(
1− θ

)
∂tθ +∇ ·

(
uθ − b`

)
= Re−1Sc−1∇2θ

where Jj (x) = uj |u|2 /2 + puj +uiτi,j − ν∂j |u|2 /2 represents the mechanisms that act to
redistribute energy in space owing to large-scale flow, large-scale pressure, turbulence, and
viscous diffusion, respectively. The term π` (x, t) = Si,jτi,j, where the large-scale strain
tensor Si,j = (∂jui + ∂iuj) /2, accounts for energy transferred between spatial scales less
than ` to/from scales greater than ` at any point in the flow at any instant of time. The
Galilean invariant property of π` implies that the energy cascade is independent of the
velocity of the observer.

(a) (b)

Figure 2: (a) The kinetic energy flux field π`(x, z) obtained from the filtering approach. (b) The vertical
component of the buoyancy flux field b` from filtering. The dashed black lines indicate contours of
constant density in the filtered density field and roughly brackets the location of the interface.

In this paper, we focus on the behavior of the energy flux π` and the point-to-point
transport of θ. The latter tells us something about the instantaneous transport of density
differences by small-scale (less than `) turbulent fluctuations. In Figure 2, we show the
resultant scale-to-scale energy flux π` and the vertical buoyancy flux b` obtained using
the filter approach with a representative value of filter length ` = 0.56 cm which is large
compared to the grid spacing 0.056 cm and small compared to the large scale dimensions
of the flow ∼ 5 cm. This type of analysis allows for a spatial correlation of specific
features of instability observed in Fig. 1(a) with energy flux and/or buoyancy flux. A
more complete analysis involves the variation of the the filter length ` and the resultant
dependence of quantities on this spatial scale.
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To illustrate some of the important characteristics of the weakly-unstable state at
larger Ri0 ∼ 1, we consider a series of 166 images spanning about 100 seconds taken at
a frame rate of 1.75 Hz. We determine the contour of normalized density θ = 0.5 in
the filtered field and use this criterion to divide the flow into a gravity current region
and an outer region. In Figure 3, we show 〈θ〉 = (1/A)

∫
A
θdxdz (the brackets indicate

the areal average) as a function of time with the area of the gravity current shown in
the inset. 〈θ〉 varies on several time scales: short term frame-to-frame variations, an
approximate 10-20 second variation associated with instability structures (see the upper
inset of Fig. 2), and an overall variation on the the 100 second time scale. The lower inset
shows that the gravity current area increases by about 50% over the 100 seconds, making
a RANS averaging problematic. We believe that this long time variation is related to
long-wavelength gravity waves at the interface but our experiment cannot determine the
properties of these structures directly.
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Figure 3: 〈θ〉 vs time. Lower inset shows the area of the current (blue), the area outside the current
(red), and the area of the interface (black) that brackets density contours 0.45 < θ < 0.55. Upper inset
shows a moving average (10 s) and linearly detrended 〈θ〉 vs time where vertical black lines show local
maxima associated with intermediate scale wave motion.

We can also characterize the turbulent properties of the gravity current and its outer
field complement. In Fig. 4(a), we show the area-averaged mean energy flux 〈π`〉 for
both regions versus time. 〈π`〉 varies considerably with time indicating natural variability
in fluctuations generated at the wall and those produced by interfacial instability. The
average over the full time series is positive (as are areal averages of a single field) indicating
a net forward transfer of energy to small scales with a higher value of the flux for the
gravity current 〈π`〉 = 0.045 (σπ ≈ 9〈π`〉) compared to the outer region 〈π`〉 = 0.015
cm2/s3 (σπ ≈ 15〈π`〉) where turbulent fluctuations arise primarily from the perturbing
effects of the current itself. In Fig. 5, we show the probability distribution functions
(PDF) for π` inside and outside of the current. Both show the characteristic positive
skewness of forward energy transfer and large forward and backscatter contributions -
average forward turbulent transfer results from the small difference of large positive and
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negative quantities. We next consider the advective transport of density using the filter
approach.
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Figure 4: (a) 〈π`〉 vs time. (b) 〈b`〉 vs time. Blue curves in both indicate averages over the region of
the current whereas red curves show values for outside the current. Mean values of the time series are
indicated on the plot in the corresponding color.

One of the important quantities in stably stratified shear flows is the entrainment of
fluid by the gravity current. We can also analyze this quantity through the filter equations.
Ignoring the diffusion term in the equation for θ and integrating over a constant density
contour in the filtered θ field [1] yields three terms:

∂t

∫
A

θdA = −
∮
ς

(
u θ − b`

)
· dς,

where ς is a contour enclosing the area A. This method is very similar to the conditions
considered using the RANS approach in [1]. In principle, we can evaluate all of the
terms above so that we separate the time dependence of the area-averaged normalized
density (see Fig. 3, the transport (stirring) by the mean flow B` = uθ, and the point-to-
point transport of density by small scale turbulent fluctuations b`. For simplicity, we only
consider the vertical transfer component as a demonstration of the power of the approach.
In Fig. 4 (b), we show the areal average over a narrow contour band 0.45 < θ < 0.55 for
B and b. For the case considered here, B is significantly larger, probably indicating that
the main vertical transport is by localized coherent structures arising from interfacial
instability (e.g., Holmboe instability). In this example, we have not included the dot-
product with the contour normal or the contribution of the horizontal component of
velocity [1]. A full density transport budget would also include the flux into and out of
the current area through the lateral contours (x = x0 and x = x0 + L).

Finally, we show in Fig. 5(b) the PDF of the turbulent vertical flux field 〈b`〉 for the
gravity current region. This PDF has very wide tails and is more symmetric than the
energy flux PDFs. More detailed interpretation of the form of the buoyancy flux PDF is
outside the scope of the present work and will be discussed elsewhere. Nevertheless, one
observes that as with energy transfer there is very large forward and backward fluctuations
with very small mean values.

In addition to energy flux and buoyancy flux, one can evaluate some of the other
turbulent transport terms that arise in the filtering formalism. This approach may also
be quite useful in understanding the spatial structure of turbulent instability, going beyond
the RANS approach: the filtering approach was used in this way to elucidate the physical
mechanisms of enstrophy and energy transfer in two-dimensional turbulence[4, 5]. The

8th Int. Symp. on Stratified Flows, San Diego, August 29 - September 1, 2016 5



π
l 
/σ

π

P
(π

l 
/σ

π
)

10-5

10-0

10-1

10-2

10-3

10-4

-10 0-5 5 10 15 20

(a)

P
(b

l 
/σ

b
)

10-5

10-0

10-1

10-2

10-3

10-4

-20 0-15 5-10 1510-5

b
l 
/σ

b

(b)

Figure 5: (a) PDF of π` normalized by σπ for the gravity current (blue, dashed) and outside the current
(red, solid). (b) PDF of buoyancy flux field b` normalized by σb for inside the gravity current.

point of this short paper is to illustrate the types of quantities that one can obtain
using the filter approach and how it provides a complementary analysis approach to
traditional RANS averaging. To summarize, the filtering approach presents a powerful
analysis method when high-resolution data fields are available.

This work was carried out under the auspices of the National Nuclear Security Ad-
ministration of the U.S. Department of Energy at Los Alamos National Laboratory under
Contract No. DE-AC52-06NA25396.
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