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RESEARCH ARTICLE
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3Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles,
California, United States of America, 4 Santa Fe Institute, Santa Fe, NewMexico, United States of America
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Abstract
Scientists have long sought to understand how vascular networks supply blood and oxygen

to cells throughout the body. Recent work focuses on principles that constrain how vessel

size changes through branching generations from the aorta to capillaries and uses scaling

exponents to quantify these changes. Prominent scaling theories predict that combinations

of these exponents explain how metabolic, growth, and other biological rates vary with body

size. Nevertheless, direct measurements of individual vessel segments have been limited

because existing techniques for measuring vasculature are invasive, time consuming, and

technically difficult. We developed software that extracts the length, radius, and connectivity

of in vivo vessels from contrast-enhanced 3D Magnetic Resonance Angiography. Using

data from 20 human subjects, we calculated scaling exponents by four methods—two

derived from local properties of branching junctions and two from whole-network properties.

Although these methods are often used interchangeably in the literature, we do not find gen-

eral agreement between these methods, particularly for vessel lengths. Measurements for

length of vessels also diverge from theoretical values, but those for radius show stronger

agreement. Our results demonstrate that vascular network models cannot ignore certain

complexities of real vascular systems and indicate the need to discover new principles

regarding vessel lengths.

Author Summary

Vascular networks distribute resources and constrain metabolic rate. Founded on a few
key principles, biological scaling theories predict characteristic patterns for vascular net-
works as they branch from large to small vessels. These theories also predict seemingly
unrelated phenomena, such as size limits on mammals. However, vascular networks are
difficult to measure because there are billions of vessels that range in size from meters to
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micrometers. To test the foundations of biological scaling theories, we developed software
that quickly measures thousands of in vivo vessels based on MRI. Data for vessel radii
match predicted patterns but lengths do not. Our work suggests the need for new theoreti-
cal principles and should facilitate comparisons across organisms, spatial scales, and
healthy and diseased tissue.

Introduction
Networks that supply resources are essential to the maintenance and growth of many natural
and engineered systems. These resource-distribution networks are pervasive throughout biol-
ogy. Examples include the tracheal system in insects, xylem networks in plants [1], foraging
trails of ant colonies [2, 3], and cardiovascular systems in animals [4–6]. Because the cardiovas-
cular system delivers resources and energy to the body, its structure at least partly determines
rates of growth and metabolism [4, 7, 8]. Moreover, the cardiovascular system plays a role
in many diseases—such as heart disease, stroke, inflammation, and malignant tumor growth
[9–11]. The pervasiveness and importance of material transport in biology motivates the search
for basic principles that help shape resource-distribution networks in general and the cardio-
vascular system in particular.

The theory of the structure of vascular networks has roots in the early 20th century [5, 7,
12]. More recent theories predict properties of the entire vascular network by assuming a hier-
archical structure and include those of West, Brown and Enquist [4] (henceforth the WBE
model), Banavar et al. [13, 14], Dodds [15], Huo and Kassab [16], and others [1, 17–21]. These
theories assume or predict how vascular structure, such as the radius of vessels, changes as the
network branches from aorta to capillaries. While early theories focused on vessel radius,
recent theories also incorporate how vessel length changes across the network [4, 14–16].
Many also assume symmetric branching—child vessels have identical properties [4, 16, 19, 20].
In symmetric, hierarchical models, knowledge of both radius and length enables derivations of
how metabolic rate varies with body size across species [4] and how organismal and tumor
growth rate change with body size [9–11].

Several theories predict vascular structures will be found to be self-similar—some aspect of
the network can be viewed as a rescaled copy of the whole [22]—across specific ranges of spa-
tial scale [4, 23]. Self similarity necessarily leads to relationships and distributions that are char-
acterized by power laws, whose exponents we call the scaling exponents [24]. Self similarity can
either be a strict or statistical property. Each new chamber of the nautilus is a larger exact copy
of the previous chamber, while along coastlines shorter segments exhibit rescaled statistical
properties of the longer segments [25]. Self similarity in nature suggests scale-free principles
that constrain structure. An organism may need to maintain a certain shape at all stages of
growth, use a common developmental program at all scales, or cope with physical processes
with no preferred scale—such as energy minimization or turbulence in fluids. Self similarity
greatly simplifies many calculations, with applications from cardiac physiology [26] to allome-
tric scaling [4].

Real vasculature is known to deviate from hierarchical, symmetric models in many ways,
leading to criticism and debate about leading models [27, 28]. Without reliable data, it is
impossible to determine whether these deviations can be ignored, so that existing theories can
accurately predict newly observed features such as curvature in scaling relationships [19]. Price
et al. [29] recently decried the lack of data for individual vessel segments that are needed for
tests of scaling theory. Direct measurements and tests may reject existing principles while
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laying the groundwork for the discovery of new patterns and principles in vascular architec-
ture. In addition, measurements can parameterize existing equations to obtain more exact pre-
dictions for metabolic rates and growth curves, and can be used to examine the natural
variation in the parameters across species, tissues, and tumor types. Vessel segment data pre-
serves the asymmetry, reticulation, tortuosity, and other features of real vasculature, and quan-
titative data about these features may inform future models. Furthermore, extreme values or
distinct patterns of variation may be signatures of pathologies that could eventually be used as
diagnostics. Recent work involving direct measurements of plant architecture has begun to
realize this potential [21, 30, 31].

Comprehensively characterizing vascular structure and obtaining reliable estimates for vas-
cular scaling exponents requires large numbers of measurements across orders-of-magnitude
in spatial scale—ranging from 0.004 mm to 15 mm for vessel radii in humans. Measurement is
complicated because vascular systems are intertwined with tissues throughout the body at a
wide range of spatial scales [32]. Even gross morphological measurements have historically
taken impressive and time-consuming efforts and required invasive methods such as casting
[33–36]. Zamir [36] and Kassab [35] constructed explicit descriptions of small regions of vas-
cular systems—such as the coronary artery—by perfusing fixed specimens with a silicone or
acrylic polymer, dissolving tissue away and examining each vessel segment under a microscope.
These approaches enabled the measurement of tens of thousands of vessels from fixed speci-
mens that were then used to test and develop vascular system models [35, 36].

However, the process of casting may enlarge or damage vessels, and little of this raw data is
publicly available for analysis. In addition, many more measurements across the range of scales
are needed to identify the principles that shape vascular architecture. Different physical princi-
ples may dominate at different scales, and mapping out different regimes will require large
amounts of data at each scale. In the WBE model [4], the dominant mechanism of energy loss
for blood flow in the arterioles (radius� 1 mm) is viscous dissipation, but near the heart (ves-
sel radius� 1 mm) pulsatile flow and reflection of pressure waves along vessel walls dominates
[26]. The transitions between these regimes are neither well-understood theoretically nor
described empirically [8]. The pulsatile regime—the focus of our measurements—has greater
variation in the number of branching orders and size of vessels across species and is thus the
primary determinant of scaling of metabolic and other vital rates with body size [8].

Large amounts of vascular data across all relevant spatial scales are contained within existing
angiographic images (e.g., MRI and X-Ray). These images are obtained non-invasively, thus
avoiding problems of damage to vasculature and allowing for the possibility of longitudinal
studies. The latent data within these images represents a tremendous opportunity. All that is
needed is a reliable and automatic method for extracting vascular data from angiographic
images.

We have developed novel software that imports 3D images, creates a topologically and spa-
tially explicit map of the blood vessel network, and measures the radius, length, and volume of
all visible vessels. We have applied this software to 20 magnetic resonance angiograms of living
humans to obtain 3015 data points that range in radius from 0.6–6.8 mm, representing an
order of magnitude. This range corresponds to large vessels in the pulsatile flow regime rele-
vant to allometric scaling [8]. We then analyzed these data based on the four distinct methods
(Eqs 1a–4) for measuring vascular scaling exponents described below.

Model
Vascular scaling exponents encapsulate how radius and length of vessels change across the net-
work. Virtually all scaling relationships for local or global properties can be expressed in terms
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of these vascular scaling exponents. Consequently, we view these scaling exponents as forming
the foundation of most modern biological scaling theory and make them the primary focus of
our analysis. We here describe four distinct methods for calculating vascular scaling exponents.

Because the radius of the vessel plays a primary role in determining both the flow rate and
resistance to blood flow through the vessel, theories for the vascular scaling exponent for vessel
radius often focus on the power to pump blood from the heart to the capillaries. It is argued [4]
that this power will have been minimized by natural selection to allow as much power as possi-
ble to be available for foraging, growth, and reproduction. One classical approach minimizes
power loss of blood flow due to viscous dissipation and due to cost of blood volume in order to
derive that flow rate, Q, depends on the cube of the vessel radius, r3. Combining this result with
conservation of fluid flow at a branching junction yields Murray’s law, r3p ¼

P
ir

3
c;i, where rp is

the radius of the parent vessel segment and rc,i is the radius of the ith child (distal) segment.
Another classical approach for the cardiovascular system is to minimize wave reflections in
pulsatile flow, as Womersley and West et al. have done [4, 6, 26]. This approach leads to area-
preserving branching (or Da Vinci’s Rule), so that the sum of the cross-sectional areas (/ r2) of
child vessels equals the cross-sectional area of a parent vessel at a branching junction. In the
WBE model, reflections dominate for large vessels while dissipation dominates for small vessels
(� 1 mm). Moreover, in the WBE model, a volume-servicing argument [4] is used to derive an
analogous relationship for vessel lengths, l3p ¼

P
il
3
c;i, while Huo and Kassab assume the same

relationship but allow the exponent to vary from length-preserving (exponent of 1) to volume-
servicing (exponent of 3).

Optimization has been a common approach to developing vascular models throughout the
past century, but it has been highly debated as to which properties are optimized and what are
the tradeoffs among them [4, 27, 28, 37–39]. For instance, Banavar et al. [40] optimize for effi-
cient transport within three-dimensional bodies and Dodds [15] minimizes network volume as
required to continually supply metabolites within a body. Indeed, different principles and
assumptions lead to a variety of relationships between the flow rate and vessel radius. Conse-
quently, we express a generalized form of Murray’s law

r1=ap ¼
X

i

r1=ac;i : ð1aÞ

in which we define the vascular scaling exponent, a, for vessel radius to be consistent with the
notation of Price et al. [1]. The analogous generalization for vessel length is

l1=bp ¼
X

i

l1=bc;i ð1bÞ

where b is the vascular scaling exponent for vessel length.
To ease computation, many models further assume that vascular networks are strictly self-

similar and symmetrically branching—child vessels all have identical properties within a
branching level. In this case, scale factors and associated scaling exponents can be defined for
each branching level, k, which represents the number of branching junctions from the heart
to that vessel. Following the notation of the WBE model, the scale factors are β = rk+1/rk and
γ = lk+1/lk. For dichotomous branching, we can solve for β and γ using Eqs 1a and 1b, to find

b ¼ rkþ1

rk
¼ 2�a and g ¼ lkþ1

lk
¼ 2�b: ð2Þ

Furthermore, for these idealized networks, the frequency distributions of radius and length
follow power laws with scaling exponents 1/a and 1/b. Because there are N = 2k vessels of radius
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r = r0 β
k, Eq 2 give the two power-law relationships

N ¼ ðr=r0Þ�1=a ¼ ðl=l0Þ�1=b
: ð3Þ

Similarly, for any vessel, its radius and length are related to the number of downstream end-
points (e.g. capillaries), Nd, by

r / Na
d and l / Nb

d : ð4Þ
Eqs 1a–4 constitute four methods of calculating vascular scaling exponents. Each method

relies on different types and levels of information. First, for each branching junction, the gener-
alizations of Murray’s law (Eq 1a) and volume servicing (Eq 1b) can be numerically solved for
the exponents a and b by Newton’s method. The solution provides a direct local measurement
of the scaling exponents at every junction that we call conservation-based scaling exponents.
The value is undefined if a child vessel has radius or length greater than its parent. Second, for
each parent-child pair of vessel segments, the ratio of vessel radius and length can be calculated.
By Eq 2, these scale factors can be used to compute a second local measure—our ratio-based
scaling exponents. Third, across all vessels and junctions, empirical distributions of radii and
lengths can be fitted to power laws to produce what we term the distribution-based scaling
exponents, as in Eq 3. Fourth, across all vessel segments, log-log regressions of radii and lengths
versus the number of downstream endpoints can be performed to derive regression-based scal-
ing exponents, following Eq 4. These latter two methods each provide single values for the vas-
cular scaling exponents, a and b, across the whole network, and they do not rely on
information about the geometry of individual branching junctions.

In the literature, these four methods for measuring scaling exponents are often used inter-
changeably [1, 29, 41, 42]. However, these are only proven to be identical for symmetrically-
branching, strictly self-similar networks. Furthermore, it is unknown whether measurements of
vascular scaling exponents using these four methods (Eqs 1a–4) will produce values that are
approximately similar or significantly different. If they differ, this raises questions about which
of these four measures of vascular scaling exponents, if any, best corresponds to the scaling rela-
tionships predicted by ideal networks or observed empirically for metabolic and growth rates.

Results
To begin to answer these questions, we now report results obtained by applying our new soft-
ware, angicart, to 20 contrast-enhanced 3D Magnetic Resonance Image volumes for human
head and torso. We collected 3015 segments across 1473 branching junctions. Of the junctions,
1422 were recorded as dichotomous and 51 as trichotomous. The number of branches on all
paths (subjects pooled) between the aorta and the smallest observable vessels was typically
between 3 and 10 (middle 68%). Each 3D image volume, corresponding to 151 segments on
average, took about 2.7 minutes of CPU time on a single 2.3GHz Intel processor. As described
in the Methods, we used an automated circularity criterion as an indicator of possible errors in
order to omit vessel identification errors. Our results are based on radius, length, and volume
measurements from only the 1240 segments for which we saw no indication of potential error.

The complete, raw output of our software before any filtering or analysis is available as S1
Dataset. The software source code and original imagery enabling the exact reproduction of this
dataset are available online as a repository in the git revision control system at https://github.
com/mnewberry/angicart.

Conservation-Based Exponents
We attempt to solve Eq 1a numerically at each branching junction. We label the parent at each
branching junction by traversing the vascular network starting at the vessel segment of greatest
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radius, which we assume is a segment in the aorta. If all children are smaller than the parent,
the equation is guaranteed to have exactly one solution, and numerical convergence to the solu-
tion is fast. Otherwise, the equation may have zero, one, or two solutions. Such cases may rep-
resent real anatomical variation, or misidentification of the parent vessel due to errors or
ambiguous topology such as the Circle of Willis. We consider only the simplest case, in which
children are smaller than their parent, because otherwise the solutions are difficult to interpret
in the context of existing vascular network models. All child radii are smaller than the parent
in 82% (222) of junctions, and all child lengths are smaller in only 35% (94) of junctions.

We show distributions of these measures of the vascular scaling exponents, a and b, across
branching junctions in Fig 1. The arithmetic mean and associated 95% confidence intervals for
these conservation-based measurements of a and b are presented in Table 1.

Ratio-Based Exponents
Topological information allows us to compute β and γ directly for each parent-child pair of
vessel segments. Our dataset contains 703 pairs of parent and child segments with dichoto-
mous branching. A small proportion of the β and γ values may be over-estimated due to mis-
identification of the parent-child relationship (see Methods). This bias would produce
underestimates in a and b, but because misidentification is very infrequent, the magnitude of
this bias is expected to be within the measurement error. The distribution of β and γ is dis-
played in Fig 2, and the arithmetic mean and associated 95% confidence intervals of the ratio-
based vascular scaling exponents calculated using Eq (2) are shown in Table 1.

Distribution-Based Exponents
For symmetrically branching, self-similar networks, the frequency of radius and length mea-
surements follow power-law distributions. We did a linear fit to the log-log transformed histo-
grams of radius and length measurements (the log of Eq (3)) using SMA regression. We
derived empirical 95% confidence intervals by resampling with different bin sizes and cutoff
values for the tail (see Data Fitting). The fits are shown in Fig 3. The scaling exponents obtained
from our fits are given in Table 1.

Regression-Based Exponents
By taking the logarithm of Eq (4), we can estimate the vascular scaling exponents, a and b, by
performing regressions of the logarithm of the number of downstream tips ln Nd against the
logarithm of radius, ln r, and the logarithm of length, ln l, respectively [41]. Regression lines

Fig 1. Conservation-Based Exponent Distribution. Plots of (a) the frequency distribution of the vascular
scaling exponent a for vessel radius from solutions to Eq (1a) using empirical measurements of vessel radii
extracted frommagnetic resonance angiography using our software, and (b) the analogous frequency
distribution of vascular scaling exponent b for vessel segment length.

doi:10.1371/journal.pcbi.1004455.g001
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are shown in Fig 4. The measured slopes, which are the estimates of the vascular scaling expo-
nents, and associated 95% CI are shown in Table 1.

Sensitivity Analysis
As in all analyses based on experimental data, measurement errors affect uncertainties in quan-
tities calculated from the raw data. Consequently, we investigate the sensitivity of our calcu-
lated scaling exponents and entire analysis to the choice of threshold intensity in our algorithm
as well as to Gaussian noise in the image quality.

An intensity threshold is used in our algorithm to select the voxels from the image that
describe the shape of the vessel lumen. Lower thresholds reveal more vessels, so for our analysis
above, we used the minimum threshold that produced reliable segments, as described in Soft-
ware and Algorithm and S1 Text. Because the threshold affects the boundaries of the vessel
lumen, the vessel radius also depends on the threshold. For each image there is a minimum
acceptable threshold that we used above, and for our sensitivity analysis, we also chose a maxi-
mum threshold to be the largest value for which at least 30 vessel segments are visible. For our
plots in Fig 5, we normalized the threshold to range from 0 and 1. That is, 0 is the threshold
used for the results above, and 1 is the maximum threshold for which at least 30 vessel seg-
ments are visible. For each normalized threshold increment of 0.05 between 0.00 and 1.00, we

Table 1. Measures and theoretical values of the scaling exponents a and b. N denotes the number of measurements incorporated in the average or
slope. The 95%CI indicates the range of confidence on the average or slope. For node-level measures, σ indicates the standard deviation of measurements
made for individual junctions or parent-child pairs for conservation- and ratio-based measures respectively. For network-level (regression- and distribution-
based) measures, R2 denotes the correlation in the fit. For distribution-based measures, this correlation is between the natural log of bin size and mean vessel
dimension (i.e., radius or length) in the bin. For regression-based measures, this correlation is the correlation between the natural log of dimension and the
natural log of the number of downstream endpoints. For conservation-based measures,N counts all junctions of three or more well-segmented vessels (see
Software and Algorithm) for which Eqs 1a or 1b had a solution. For ratio-based exponents, N counts all parent-child pairs of vessels in which both the parent
and child are well-segmented. For distribution-based exponents,N counts the number of well-segmented vessel segments exceeding the minimum-size
threshold described in Data Fitting. For regression-based exponents, N counts all well-segmented vessels. The 95%CIs are derived in a manner appropriate
to each method: They are 1.96 times the standard error on the mean for conservation- and ratio-based measures and the confidence interval on the SMA
regression slope for regression-based measures. For distribution-based measures, they are the range of the middle 95% of slopes derived from alternative
binning as described in Data Fitting.

Radius Exponent Measures N a 95% CI σ R2

Conservation (Node) 222 0.49 ± 0.03 0.23 –

Ratio (Node) 703 0.43 ± 0.03 0.39 –

Distribution (Network) 657 0.30 ± 0.04 – 0.90

Regression (Network) 1240 0.41 ± 0.02 – 0.66

Theory

WBE Small Vessels – 0.33 –

WBE Large Vessels – 0.50 –

Banavar et al. [14] – 0.50 –

Huo and Kassab [16] – 0.33–0.50 –

Murray’s Law – 0.33 –

Length Exponent Measures N b 95% CI σ R2

Conservation (Node) 94 1.40 ± 0.20 0.98 –

Ratio (Node) 703 0.17 ± 0.12 1.57 –

Distribution (Network) 518 0.73 ± 0.10 – 0.68

Regression (Network) 1240 0.94 ± 0.05 – 0.19

Theory

WBE All Vessels – 0.33 –

Banavar et al. [14] – 0.50 –

Huo and Kassab [16] – 0.33–1.00 –

doi:10.1371/journal.pcbi.1004455.t001
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ran our entire analysis and calculated the four scaling exponents for radius and length (Fig 5).
The values of the scaling exponents at a normalized threshold of 0.00 recapitulate Table 1. Our
results remain qualitatively similar as we increase the threshold and include fewer segments.
However, at higher normalized thresholds, we can no longer resolve differences between some
exponents that are resolvable at normalized threshold 0.00, as expected from the law of large
numbers.

Fig 2. Ratio-Based Exponent Distribution. Plots of (a) frequency distribution of scale factor β, the ratio of
child to parent radii, and (b) the analogous distribution of scale factor γ, the ratio of child to parent lengths.

doi:10.1371/journal.pcbi.1004455.g002

Fig 3. Distribution-Based Exponent Fits. Standard Major Axis regression (see Methods) of the natural log
of relative frequency (probability density) against (a) the log of radius, ln r, and (b) the log of length, ln l. Fit
lines and slope values are shown. The correlation coefficient (R2) for the log relative frequency versus the
logs of radius and length respectively are 0.90 and 0.68.

doi:10.1371/journal.pcbi.1004455.g003

Fig 4. Regression-Based Exponent Fits. Standard Major Axis regression (see Methods) of (a) the log of
radius, ln r, and (b) the log of length, ln l, against the log of the number of downstream tips, lnNd. Fit lines and
slope values are shown. Correlation coefficients (R2) are 0.66 and 0.19, respectively (P < 0.01 for each).

doi:10.1371/journal.pcbi.1004455.g004
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Noise in images may also cause errors in the identification of vessels or in estimates of the
radius or length of vessels. We conducted a sensitivity analysis similar to the above by adding
Gaussian noise that varied in magnitude from 0.47 (the measured baseline level of noise in the
foreground of one image) to 4.7% (10 times the baseline noise level) of the maximum voxel
intensity. Results (S1 Fig) show no significant changes in our results with higher levels of noise.

As another measure of uncertainty, we located vessels with radius estimates that differed
with threshold despite high reliability in vessel identification (vessel endpoints were similar
across at least 5 threshold values). We located 12 vessel segments from 9 different patients that
matched this criterion. Across these 12 vessels, the mean radius estimate varied from 0.9 to
6.7mm, but the coefficient of variation (= standard deviation/mean across thresholds) ranged
only from 0.02 to 0.08. Moreover, the coefficient of variation was uncorrelated with radius
(Pearson correlation = 0.07), suggesting that individual vessel radius measurements are precise
to roughly ±10% (2 times the coefficient of variation) regardless of vessel size. For a specific
threshold, we calculate how the measured vessel radius differs from the mean of the vessel
radius across all thresholds. At each threshold, this difference tended to be in the same direc-
tion (mostly positive or mostly negative) across the 12 vessels we measured. Moreover, the

Fig 5. Sensitivity of the measured scaling exponents to the threshold intensity values that select
which voxels are part of the vessel lumen.We normalized the threshold so that the minimum threshold
(0.0) is the value used in our results and figures above, while the maximum threshold (1.0) is the largest value
for which at least 30 vessel segments are visible. We re-scaled the threshold values because the raw value is
different for each image. The top left panel shows the number of vessel segments used to calculate the four
scaling exponents for vessel radius versus the normalized threshold value, as in theN column of Table 1. The
top right panel shows the number of vessel segments used to calculate the four scaling exponents for vessel
length versus the normalized threshold value, as in theN column of Table 1. For both of these top two panels,
the number of data points decreases with threshold value as it must. The bottom left panel depicts how the
four calculated scaling exponents for vessel radius vary with normalized threshold value. The bottom right
panel depicts how the four calculated scaling exponents for vessel length vary with normalized threshold
value. Horizontal lines indicate points of comparison to theory as described in Table 1.

doi:10.1371/journal.pcbi.1004455.g005
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magnitude of the difference was proportional to vessel radius (most R2 > 0.99). Consequently,
the ratio of vessel radii at any specific threshold is roughly equal to the ratio of the means of the
vessel radii across thresholds and also equal to the ratio of vessel radii at any other specific
threshold. That is, within the plausible range of thresholds that we explore here, the calculated
scaling ratios are largely independent of the choice of threshold value, implying that the choice
of threshold does not create any bias in the calculated scaling exponents or ratios.

Of course, our sensitivity analysis cannot exclude all possible sources of error or bias. In the
Methods sections, we discuss how our results might be affected by other possible sources of
error, such as tree topology identification, the patient population, small vessel censoring, vessel
lumen misidentification, skeleton line selection, centerline quantization, and vessel segment
misattribution.

The positional accuracy of MRI is high, so errors arise due to classification or interpretation
of voxels. Because the threshold parameter and noise in the image primarily control how we
classify voxels—the first step of analysis—these are the major determinants of subsequent
errors. In our analysis, as presented in Fig 5 and S1 Fig, no systematic biases are observable, so
we conclude that our results are highly robust to the largest and most notable sources of
uncertainty.

Comparing Measurements with Each Other and Predictions
The estimated values of vascular scaling exponents obtained using our four different methods
are all presented in Table 1. All pairs of measures are statistically significantly different
(Welch’s t-test, P< 0.01) except for the ratio-based and regression-based a (P = 0.18). Values
of a based on conservation rules at branching junctions, scale factors for parent-child pairs,
and regression of ln r versus ln N are all between a = 1/2 (the WBE prediction for large vessels)
and a = 1/3 (Murray’s law, the Banavar et al. prediction [14], and the WBE prediction for small
vessels), and the remaining distribution-based a includes a = 1/3 in its 95% CI. The conserva-
tion-based exponent a is not statistically-significantly different from a = 1/2.

Different measures for b range from 0.17 to 1.40 and all are statistically significantly differ-
ent (P< 0.01) from each other and from the volume-servicing and area-servicing values of
b = 1/3 and 1/2 respectively. It is notable, however, that the difference between regression-
based and distribution-based measurements of b is no longer resolvable at normalized thresh-
olds higher than 0. The distribution-based and regression-based exponents lie between area-
servicing and length-preserving. These discrepancies between measures suggest that vessel seg-
ment lengths are poorly modeled by strictly self-similar and symmetrically branching
networks.

Discussion
Our software acquired direct measurements of a large number of connected vessel segments
from in vivo angiography. We calculated vascular scaling exponents in these data using four
methods to directly compare values from real vascular networks with each other and with theo-
retical values from the WBE model, Murray’s Law, Banavar et al. [14], and Huo and Kassab
[16]. Intriguingly, our results lead to contrasting conclusions for the changes in vessel radius
and length across scale.

For the vascular scaling exponent a that quantifies changes in the radius, the conservation-
based and ratio-based estimates are closer to a = 1/2 than a = 1/3. These estimates support
work on large vessels by West et al., Zamir and Banavar [4, 14, 43], in contrast to Murray’s law,
which does not distinguish large and small vessels. West et al. derive that the dominant source
of power loss for large vessels (estimated to be r� 1 mm) is the reflection of pressure waves at
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branching junctions, while for small vessels, power loss is dominated by viscous dissipation
between blood and the vessel walls. Because of the resolution of our MRI volumes, we are able
to extract data mostly for vessels with a radius greater than 1 mm, corresponding to the large
vessel regime in the WBE model. Consequently, our results for the scaling of radii are support-
ive of the area-preserving branching of large vessels, corroborate recent findings for plants
[41], and reject the possibility that Murray’s law might apply, either generally or on average, to
junctions of large vessels. This result demonstrates that minimizing energy-dissipation due to
blood flow does not capture the guiding principles that shape the vascular system across all
scales. Future studies using higher resolution angiography (e.g., micro-CT) to obtain data for
small vessels are needed to test Murray’s law and the WBE prediction for small vessels and to
determine if minimizing energy dissipation is a relevant principle at any scale.

For the vascular scaling exponent, b, for vessel lengths, the discrepancies between predicted
and estimated values are more difficult to reconcile and interpret. None of the four measures of
b agree with each other or provide support for volume- or area-servicing branching, while only
the regression-based method provides support for length preservation. Within the WBE
model, b is predicted to be 1/3 based on an argument that the vascular network must be vol-
ume-servicing for the entire body [4]. This volume-servicing argument has been questioned on
theoretical grounds [28], and here we provide empirical evidence that volume-servicing or any
other conservation law for length does not hold locally at branching junctions. Indeed, for the
conservation-based exponents, 65% of branching junctions violate the model so severely that
exponent values are undefined. The volume-servicing argument is supposed to apply across at
least the vast majority of scales and is a key element of the WBE explanation for the 3/4 allome-
tric scaling relationship between metabolic rate and body size. The breakdown between this
argument and the real vascular networks we measured may occur because, contrary to the
WBE argument, the length of a vessel segment is not a reliable indicator of the volume it ser-
vices. The correlations between length and number of downstream endpoints, a proxy for vol-
ume serviced, is very low compared to the same correlation for radius (0.2 versus 0.7).
Considering only the largest vessels, this is not surprising. The ascending aorta is only a few
centimeters in length and services most of the body, while the carotid artery is much longer (at
least 10 cm in length) and services only half the head. Our results imply that either modifica-
tion of the volume-servicing argument is needed or some new principle yet to be discovered
guides the distribution of vessel lengths as the vascular network branches throughout the body.
These new developments could lead to corrections to the power-law predictions of the original
WBE theory that may agree better with recent findings of “curvature” in the allometric rela-
tionship [19].

Beyond the differences discussed thus far, vessel lengths and radii also differ in their distri-
butions for vascular scaling exponents and scale factors. Measurements of a and β exhibit a
strong central tendency (Figs 1 and 2), while the scale factor for length, γ, has a highly skewed
distribution with typical values that are not well-described by the mean. Thus, a derivation
implicitly based on a mean-value approximation may be successful for predicting vessel radii
but fail to predict scaling relationships involving vessel lengths. Thus, while hierarchical sym-
metric models may fail outright to adequately describe vessel lengths, the discrepancies
between vessel radii in real networks and idealized models, such as the WBE model, may only
result in minor corrections to model predictions. This may help explain the success of the
WBE model in predicting a wide range of phenomena.

Differences in results for vessel radius and length could be tied to different strengths of the
constraints on vessel geometry. Radii and length distributions have previously been observed
to differ in the external branching of plants and leaves [41, 44]. One explanation for this is that
viscous power loss depends much more sensitively on vessel radius (as a 4th power,/ r4) than
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on vessel length (linearly,/ l). Thus, the strength of selection for optimal vessel radius is much
stronger than for optimal vessel length, implying evolution has more often sacrificed vessel
length when negotiating tradeoffs in anatomy. Another potential explanation is that vessel
radii are self-similar due to a local constraint at each branching junction, whereas vessel lengths
may be constrained only at larger scales—organs and organisms—that more accurately capture
how the vascular network needs to span and feed a spatially inhomogeneous body.

Disagreement about the value of the length scaling exponent between our four methods
indicates that assumptions of the simplest model must be violated so strongly as not to hold
even approximately. That is, strict self similarity, symmetric branching or both must be
strongly violated for the real vascular networks we measured. Our data reveal pervasive asym-
metry in both radius and length between child vessels. How far the results for symmetric net-
works generalize to asymmetric networks has been explored very little [45]. The differences we
observe between different measures of vascular scaling exponents could be explained by the
inability of existing theories to account for the asymmetry of real vascular networks. Develop-
ing a theory to account for asymmetric branching may be challenging. For instance, accounting
for asymmetry would require at least two scale factors for radii (e.g., βbig and βsmall) and two for
lengths (e.g., γbig and γsmall). These additional scale factors and associated scaling exponents
would necessarily change our analysis and our estimates for the ratio-based scaling exponent,
and would potentially change our interpretation of the distributions of β and γ. Rather than
thinking of distributions of β and γ, we would think of joint distributions of βbig and βsmall, for
example. For similar reasons, our interpretation and analysis of the frequency distribution of
radius and length could be altered, thus affecting the estimates of the distribution-based expo-
nents as well. Angicart outputs β and γ values for each vessel pair, and can provide the detailed
information required for future studies of multiple scale factors for length or radius and asym-
metric branching.

All of the models discussed in this paper ignore any reticulation or loops in the vessel topol-
ogy, in contrast to recent work on leaf venation networks [46–49]. Our analysis also follows this
assumption. However, loops are known to occur anatomically in healthy (Circle of Willis) and
diseased (tumors, arteriovenous malformations) tissue. Extensions to our software and to theory
could address this issue. Such an extension could be used to investigate abnormal tumor vascu-
lature [9], or allow new theory to be developed to explain the normal anatomical function of
reticulation. There are also other spatial aspects that have received theoretical attention, such as
branching angle, that our software is already capable of recording. Many more tests could be
performed with data on microvasculature. For instance, Huo and Kassab [16] have published
scaling relationships for how crown volume and length change with stem radius. Testing these
requires knowledge of the full crown, down to the microvasculature. Similarly, Dodds [15]
makes predictions for virtual vessels that coincide with real vessels only at the smallest scales.

We developed new software and applied it to MRI of human head and torso to obtain one
of the most detailed datasets for examining branching architecture in vascular networks. In
addition, we conducted a comprehensive data analysis that uses both local and global methods
to measure scaling exponents. Together, this new software, data, and analysis provides valuable
information for answering fundamental questions about vascular system morphology. The
public release of our imaging software, angicart, should enable researchers to ground future
vascular network theories in empirical data. The software facilitates comparison across spatial
scales and between studies by operating uniformly on all tomographic imaging methods.
Because imaging can be done non-invasively, our method affords the opportunity to record all
spatial information of in vivo vasculature through time or across development.

We explain four different methods to estimate vascular scaling exponents from spatially-
explicit data. Although researchers use and sometimes interchange these four methods, we
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found that all four methods can lead to different results, and that for scaling exponents for ves-
sel lengths, these differences can be dramatic. This result is in stark contrast to theoretical cal-
culations for idealized, symmetric networks that predict all methods will give identical values.
We advise caution when interpreting different methods and estimates as the same scaling
exponent because this could lead to misperceptions and disagreements among studies. For
instance, regression-based estimates are the most common across levels of biological organiza-
tion while distribution-based estimates are used for forests [42], so comparing these estimates
to each other must be done with care. The differences we observe call for a new understanding
of the relationships between the local geometry of vessels and the global properties of vascular
systems. New theory should be developed to accommodate the anatomical variation and asym-
metric branching we observe in real networks.

Methods and Materials

Ethics Statement
After local institutional review board approval and written informed consent had been
obtained, 20 consecutive adult patients with clinically suspected supraaortic arterial occlusive
disease were prospectively enrolled to evaluate new MRI methods for the study of carotid ath-
erosclerosis [50].

Image Acquisition
Although other data was recorded in that study, we use only the images. In that study less than
0.5% of observed vessel segments had notable luminal narrowing, so we conclude patient selec-
tion and enrollment did not affect our results. We acquired contrast-enhanced magnetic reso-
nance angiograms (CEMRA) of the upper torso, neck, and head in the 20 human subjects
(N = 20) using a 3 Tesla Siemens Trio scanner (Siemens Medical Solutions, Erlangen, Ger-
many). The data acquisition details have been previously described [50]. In brief, the CEMRA
images were acquired after an antecubittal vein injection of gadolinium based contrast agent
(Gd-DTPA, Magnevist, Bayer Shering Pharma AG, Berlin, Germany). The image volumes
have dimensions that are typically close to 380 × 640 × 128 voxels, with each voxel nearly iso-
tropic and between 700 × 700 × 800 μm and 800 × 800 × 900 μm. The resolution and imaged
volume are typical of high-quality 3T MRI. The point-spread-function for MRI is known to be
precise and equivalent to the programmed pixel size [51]. In practice, the geometric accuracy is
known to be sub-millimeter [52]. The vessel networks in each image are clearly visible due to
the sharp image contrast provided by the presence of the contrast agent, which makes the
blood appear bright relative to dark non-blood tissues. We averaged each 2 × 2 × 2-voxel cube
of adjacent voxels into a single 1.4–1.8 mm voxel to remove noise, reduce processing time, and
match conventionally-acquired resolutions. This reduced noise-induced errors without sub-
stantially changing the number of vessel segments represented. In two of our 20 image vol-
umes, segmentation failed because bright, non-blood tissues were present very close to the
blood volume, so that no threshold value excluded all non-blood objects as described in S1
Text. We did not record any vessel segments from these image volumes. We saw no relation-
ship between failure of segmentation and vascular system geometry.

Software and Algorithm
We created a free, open source software package—angicart—to read tomographic images of
vascular networks, to automatically decompose a vessel lumen into vessel segments, and to
measure the geometry and topology of the segments (Fig 6). The software and data used in this
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study are available on the internet (https://github.com/mnewberry/angicart/) under a GNU
Public License. Our software starts by classifying voxels in a 3D image as part of the vessel
lumen if they are within the largest connected group of voxels that exceed an intensity thresh-
old [30, 53], as with other level set or thresholding methods. We use a manual binary search to
select the threshold value that best matched visual identification of vessels. The result is a 3D
binary image, called the network mask. Next, we use spatial criteria to find the endpoints of the
vessel network, where the vessels become too small to detect. Given these endpoints, we find
the centerline and branch points of vessels by skeletonization [54, 55] (See S1 Text). We imple-
ment skeletonization using an erosion technique—successively removing voxels until no more
are removable without disconnecting the endpoints in the mask [56]. The voxels that remain
after erosion lie within approximately 1 voxel-width of the true centerline.

This information allows us to partition the network mask into segments by attributing each
voxel to the segment whose centerline is closest to it. We record how vessels are connected and
measure the length of each segment’s centerline and the volume of each segment. Following a
geometric argument (see S1 Text), quantization error leads us to overestimate length. We com-

pute radius as r ¼ ffiffiffiffiffiffiffiffiffiffi
V=pl

p
. Radii are therefore underestimated on average due to the quantiza-

tion error in length measurements. This bias affects the accuracy of individual length and
radius measurements, but does not bias estimates of scaling exponents (relative measures) as
long as the percent error does not change systematically with vessel size, which it does not. As a
final filter of possibly misclassified vessels, we omit vessels in which more than 20% of the

Fig 6. Images from each step of the automatic vessel segmentation process implemented by our
software, angicart. 1. Midplane 2D slice fromMRI input (original imagery). The input to the software is any
tomographic imagery, regardless of imaging method. MRI, CT, and MicroCT are all possible data sources. 2.
The network mask (3D rendering of included points). This is the largest group of connected pixels that exceed
an intensity threshold. 3. The skeleton. Angicart skeletonizes the vessel network by removing any (red) points
that do not disconnect the endpoints (pale blue). The points that remain after this process is completed are
the centerline (yellow). Branch points are those with more than two neighboring voxels, and endpoints are
those with only one neighboring voxel. 4. Vessel segment decomposition. Angicart partitions the skeleton into
vessel segments. Each segment is colored randomly, and black lines are used as a simple map of the
endpoints of each segment. Some segments (depicted translucent and indicated by black arrows) are
ignored by the analysis, in this case due to reticulation present in normal human anatomy.

doi:10.1371/journal.pcbi.1004455.g006
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voxels lie further than (r + 1) from the centerline, or whose total volume is less than 4 voxels.
Further details of each step are presented in the S1 Text.

Data Fitting
We determined the conservation-based node scaling exponents by solving Eq (1a) numerically
using Newton’s method implemented in OCaml [57] and iterated until the sum of powers was
within 0.00001 of 1. We estimated the regression-based scaling exponents using Standard Major
Axis (SMA) regression of the natural log of radius (length) against the natural log of the number
of downstream endpoints [58]. We used SMA regression because the variability and uncertainty
in the y-axis (vessel radius or length) is as large as the variability and uncertainty in the x-axis
(number of downstream endpoints). Furthermore, SMA is appropriate because our goal is to
obtain the best estimate of the scaling exponents (slopes) and not the best prediction of y given x.

We estimated distribution-based scaling exponents by fitting the tail of the probability distri-
bution of radius and length to a power law. That is, we binned log-transformed data and deter-
mined the slope of the log of probability density versus the log of radius and length using SMA
regression [58]. We used 20 bins and discarded 5 and 7 initial bins of radius and length respec-
tively. Blood vessels near the resolution limit of MRI may not be visible. Although dimensions
measured from observed small vessels are used in our other methods, counts of small vessels are
unreliable due to censoring. Thus, we discarded initial bins in order to exclude vessel sizes
where non-uniform censoring of values might occur. We computed standard errors by varying
bin size and the number of initial bins discarded (up to ±3 each) and using the middle 95th per-
centile of these values. By binning our data and fitting the power law using SMA regression, we
avoid problems that can arise when using maximum-likelihood estimators to fit our power-law
distributions. Specifically, the maximum-likelihood estimators are derived with specific assump-
tions and support choices such as smooth and continuous or discrete and integer, as in Clauset
et al. [59]. In contrast, our distributions may be somewhere in between: continuous with an
increased likelihood to take values near certain points, such as powers of β times the aorta
radius. Our SMA regression on bins of simulated vessel data produced stable estimates with rel-
atively little bias in comparison to fits based on published maximum-likelihood estimators.

Supporting Information
S1 Text. Detailed Methods and Sensitivity Analysis.
(PDF)

S1 Fig. Sensitivity of the measured scaling exponents to added image noise ranging from 1
to 10 times the baseline rate (0.47%). The top left panel shows the number of vessel segments
used to calculate the four scaling exponents for vessel radius versus the magnitude of the added
noise. The top right panel shows the number of vessel segments used to calculate the four scal-
ing exponents for vessel length versus the magnitude of added noise. The bottom left panel
depicts how the four calculated scaling exponents for vessel radius vary with the magnitude of
added noise. The horizontal lines indicate the WBE predictions for large and small vessels. The
bottom right panel depicts how the four calculated scaling exponents for vessel length vary
with the magnitude of image noise. The horizontal line indicates the WBE prediction.
(PDF)

S1 Dataset. Vessel Segment Dataset. The complete, raw output of angicart on the 18 images
used in the study, in tab-separated values (tsv) format.
(TSV)
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