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Abstract

In the present paper we deal with several violations
of normative rules in probability judgement: the
inverse-base-rate and the conjunction fallacy, among
others. To reproduce these failures, a sample of
subjects was asked to judge the probability of
several items according to what they had learnt in
a previous learning task on medical diagnosis. At-
tempts are made to explain the results within the
connectionist framework. We based our approach
in a simple network, designed by Gluck and Bower
(1988), which updates its weights using the LMS
rule.

Introduction

In this work we have attempted to explain some of
the typical errors produced during probability
judgment. Among others, we studied here the
conjunction fallacy and the base-rate-neglect.

We used the task designed by Gluck and Bower
(1988a) to study these errors. In this task, the
subjects had to learn to diagnose two diseases, a
rare and a common disease, given the presence or
absence of four symptoms. The task consisted of
two phases. During Phase 1, the subjects had to
diagnose some hypothetical patients according to a
given set of symptoms. After each diagnosis, they
received some feedback on the actual disease the
patient suffered from. Table 1 shows all the
probabilities that were programmed. The
probabilities of suffering from the disease given the
symptoms in isolation were fixed according to
Shanks (1990).
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Table 1. Programmed Probabilities of Each
Symptom Given Each Disease, and
Probabilities of Each Disease Given Each

Symptom

Symptom

1 2 3 4

P(symptom/common disease) 2 3 4 6
P(symptom/rare disease) 6 4 3 2
P(common discase/symptom) 5 698 9
P(rare disease/symptom) S 321
P(common disease/symp. isolated) 5 .66 .82 .95
P(rare disease/symp. isolated) S .34.18.05

During Phase 2, the subjects had to use what they
had learnt in the previous phase to make some
probability judgments.

The model and the hypotheses

The connectionist model designed by Gluck and
Bower (1988) has been used to explain the subjects’
responses to the task (see figure 1). The model has
two layers of units. The first level includes four
input units, one for each symptom, and the second
one includes an output unit taking different values
according to the disease suffered. All the input
units are connected to the output unit by links that
can take different values or weights. Each input unit
can take two values, 1 or 0, depending on whether
the symptom that it represents is present or absent,
respectively. The output unit takes an activation
value according to the activation values of the input
units, measured by the weights of the links between
the output and input units. This is the internal
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Figure 1. Simulation with the model by Gluck
& Bower (1988a).

input. Therefore, the spreading direction of the
activation always feeds forward. The output unit
also can receive an external input that will tell the
system the disease that the patient actually suffers
from. If the input is equal to + 1, the disease suffe-
red is the rare one and if the input is -1 the disease
is the common one.

The weights are updated after each feed-back
using the Delta rule (Widrow & Hoff, 1960),
equivalent mathematically to the Rescorla-Wagner
rule (Rescorla & Wagner, 1972; Sutton & Barto,
1981). This rule is applied to the difference between
the internal and external input in such a way that
expected errors are minimized.

We postulate that, as the task progresses, this
cognitive architecture appears as a base for the
knowledge acquired by the subjects. It is important
to explain that the processes underlying the
subjects’ predictions and probability judgments,
based on such an architecture, can be described as
single matching of patterns. We have an input
pattern, formed by the activation state of the set of
input units, and an output pattern, the value of the
output unit, standing for the diagnosis made by the
system. Our hypothesis derives from three central
ideas:

1. Given the nature of the learning algorithm of this
model, the final value of each weight depends on
the relative validity of each symptom. Symptoms
may be seen as cues that compete between them to
predict each disease. Thus, when symptoms jointly
appear in a hipothetical patient, the more valid
symptom subtracts importance to the less valid
ones, and this competition affects the magnitude of
weight changes.

2. The architecture described earlier imposes on the
subjects a series of limitations, such as the inability
of representing the absence of information, since
the input units take discrete activation values (1 for
the presence of a symptom and 0 for its absence).
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3. We also postulate that, given the limitation of
working memory, the subjects will try to economize
resources when solving an item. This means that the
subjects would try to respond to the items of our
tests with a single matching pair.

From these general hypotheses we elaborated the
following predictions or specific hypotheses about
the subjects’ answers:

1. Subjects will judge the probability of suffering the
rare disease greater than the programmed
probability in patients with symptom S, given in
isolation. This will be the case because symptom S,
lacks better competitors to predict the rare disease
and, on the contrary, is the worst competitor to
predict the common disease. This result could be
taken as analogous to the base-rate-neglect
phenomenon because these probabilities were
programmed to be the same (see table 1).

2. Subjects will judge the probabilities of suffering
from the disease given the symptom the same as the
probabilities of having the symptom given the
disease. Since the system only works in one direc-
tion, from the input units to the output one, sub-
jects will not be able to answer the items according
to the probability of a symptom given the disease.
Instead, they will respond to the probability of the
disease given the symptom.

3. As the architecture does not allow for the
representation of the absence of information, by
simple matching of patterns, when we ask the
subjects for the probability of suffering a disease
given a symptom, and with no information about the
other symptoms, they will be forced to treat the
absence of information about the rest of the
symptoms as the absence of the symptoms
themselves.

4. We expect the presence of a conjunction fallacy
in item P(S,S,/R) in relation to P(S,/R) since the
final weights obtained by the links between the units
representing the symptoms and the output unit are
those shown in figure 1. From this figure we can
deduce that the activation of the output unit is
higher when S, and S, are present than when only
S, is present. On the contrary, the conjunction
fallacy will not occur between items P(S,S,/R) and
P(S,/R) nor between items P(S,S,/R) and P(S/R).

Method

We carried out an experimental study to test these
hypotheses. The experiment was a 2 x 2 within-
subject factorial design, the sample size being 32
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Figure 2. Experimental design: 2x2 within-
subject factors.

subjects (see figure 2). The first factor (called the
inverse factor) had two levels. In the first level, the
subjects had to judge the probability of suffering
from the rare disease given the presence of a symp-
tom. In the second level, they had to make a
probability judgment of having certain symptoms
given the presence of the rare disease (this was
called the inverse probability condition). The
second factor included a complete information
condition and an absence of information condition,
depending on whether the subjects received
information on the presence or absence of all four
symptoms or only on the presence of one symptom
(the symptom involved in an item).

Concerning the first hypothesis, we only have to
compare the subjects’ response to item P(R/S,
isolated) with the relevant programmed probability
(see Table 1). According to the second and third
hypotheses, neither main effects nor interaction
between factors are expected. Concerning the
conjunction fallacy hypothesis, the same subjects
were administered two kinds of items: 1) items
referring to the conjunctions S,-S,, S,-S, and S,-S,
in patients with the rare disease; 2) an item
referring to the constituent S, in patients with the
rare disease.

Results

Subjects’ mean estimation on the probability of the
rare disease in patients with only S, is shown in
table 2. Other relevant statistics are also shown in
this table.

Subjects judged the probability of suffering from
the rare disease in patients with only S, greater than
0.5, i.e., the programmed probability. This result
replicates that obtained by Shanks (1990), and is

Table 2. Test of the first hypothesis

Item Mean Standard t Programmed alpha
error probability
P(R/S, is.) .61 .052 .52 ) 05

explained according to our first central idea above
mentioned. In figure 1 we can see that, as a result
of our simulation with the conectionist model, the
link between symptom S, and the output unit has a
positive value. So, if only S, is activated, the output
unit activation will approach a value of 1, which
represents the rare disease.

According to our hypothesis about how subjects
represent the absence of information about
symptoms, we expected the subjects would judge
the items referring to the presence of a symptom in
isolation to be as likely as the items referring to the
presence of that symptom, without specifying the
presence or absence of the rest of the symptoms. In
other words, we expected to find no main effect
asociated to the information factor.

In figure 3, on the X-axis, we have represented
eight items. Each of them is represented by two
bars: A) the one on the left, refers to the presence
of a symptom in isolation and B) the one on the
right, refers to the presence of the symptom and the
absence of information about the rest. The first four
show the probabilities of patients with symptoms S,,
S, S, S, suffering the rare disease. The last four
are related to the probabilities of suffering
symptoms S,, S,, S,, S, in those patients with the
rare disease. The Y-axis represents the means of
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Figure 3. Hypothesis of the Representation of
Absence of Information. MANOVA statistic
test (Inf. effect: F=1.28, Sig.=.302)



the estimated percentages.

The MANOVA test for repeated measures did
not show any significant difference between the
levels of the information factor, as we predicted.
The results shown in the last four pairs of items are
especially revealing since they clearly show some
difficulties for normative models and for those
models committed to a bayesian and frequentialist
approach such as some exemplar models and
feature frequency models.

One of the predictions derived from our
hypotheses was that subjects would judge the
probability of suffering the rare disease given a
symptom as being the same as the inverse
probability, that is, the probability of suffering the
same symptom given the rare disease. In figure 4 we
see again 8 pairs of bars. The left bar of each pair
shows subjects’ estimation of the probability of
suffering the rare disease given the symptom below.
The right bar of each pair shows the same subjects’
estimations of the probability of having the symptom
below in patients suffering the rare disease, that is,
the inverse probability. The first 4 pairs of items
refer to isolated symptoms, whereas the last four
refer to items in which no information is included
about the other symptoms. As our hypothesis
maintained, no significant differences were found
between the two levels of the inverse probability
factor. In this case, the four first pairs are those
which provide suggestive information, since they are
hardly consistent with other alternative models, such
as exemplar models or any other models engaged
with the calculus of mathematical probability from
relative frequencies.

Finally, we also predicted that no interaction
effects between factors would take place. In figure
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Figure 4. Hypothesis of the Inverse
Probability. MANOVA statistic test (F=1.65,
Sig.=.188)
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Figure 5. Information By Inverse Effect.
MANOVA statistic test (F =.56, Sig. =.691).

5 we show the differences, for each symptom,
between the levels of the inverse probability factor
in the complete information condition and the same
difference in the absence of information condition.
As we can see, the differences are very small. The
MANQVA test for repeated measures did not show
any interaction effect.

Figure 6 illustrates the results of the conjunction
fallacy test. The graph shows the results
corresponding to the comparisons between judging
the probability of suffering symptom S,, in patients
with the rare disease, and judgments made
regarding to the different possible conjunctions
between symptom S, and one of the other
symptoms in patients with the rare disease.

The T-test for related samples revealed that only
the probability of the conjunction S,S, was judged
significantly higher than the probability of S, - with
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Figure 6. Test of the Conjunction Fallacy. T-
paired test. Statistics, in the same order, are
(t=2.6; 1-Tail Prob.=.007), (t=.04; 1-Tail
Prob. =.48), (t=1.34; 1-Tail Prob. =.094).
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Figure 7. Connextionist Model Outputs and
Subjects’ Responses. Free parameter C=1.4;
SEd =7.86; rp=.8748.

a significance level of .05. 67% of the subjects
committed the conjunction fallacy when S, was in
conjunction with S,. On the other hand, when other
symptoms where in conjunction with S,
approximatly 50% of the subjects committed the
conjunction fallacy. Again, the results in our work
corroborate our hypothesis.

Finally, in figure 7 we show the results of our
simulation. As can be appreciated, the connectionist
model designed by Gluck and Bower fits very well
the judments made by the subjects concerning the
probability of suffering from the rare disease given
all posible symptom configurations. Both the
outputs of the model and the subjects’ probability
estimations were obtained at an asymptotic level of

learning.

Conclusions

One of the most interesting contributions of this
work is having proposed, through a precise and
falsifiable model, both how learning is related to the
nature of probability judgments and how it
determines our representations, in working memory,
of the items to which we respond in tasks of
probabilistic estimations.

Another conclusion of interest that greatly
surprised even us, concerns the explanatory and
predictive power of such a simple model as that by
Gluck and Bower. Something specially remarkable
about this model is the fact that, without making
substantial variations, it is able to accurately
account for the results from different fields of study,
such as biases in probability judgments |,
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contingency judgments (Chapman & Robins, 1990),
associative learning (Shanks, 1991), concept learning
(Shanks, 1990; Gluck & Bower, 1988b), elc.
Finally, we think that this is a suggestive work
since it shows a way of thinking about biases in
probability judgment. Perhaps this approach does
not cover the whole phenomena of biases in
probability judgment, but it allows for accurate
predictions and solutions to the problem of how
content domains affect probability judgment.
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