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A labeled dataset for building HVAC 
systems operating in faulted and 
fault-free states
Jessica Granderson1 ✉, Guanjing Lin1, Yimin Chen   1 ✉, Armando Casillas1, Jin Wen2, 
Zhelun Chen2, Piljae Im3, Sen Huang3 & Jiazhen Ling4

Open data is fueling innovation across many fields. In the domain of building science, datasets that can 
be used to inform the development of operational applications - for example new control algorithms 
and performance analysis methods - are extremely difficult to come by. This article summarizes the 
development and content of the largest known public dataset of building system operations in faulted 
and fault free states. It covers the most common HVAC systems and configurations in commercial 
buildings, across a range of climates, fault types, and fault severities. The time series points that are 
contained in the dataset include measurements that are commonly encountered in existing buildings 
as well as some that are less typical. Simulation tools, experimental test facilities, and in-situ field 
operation were used to generate the data. To inform more data-hungry algorithms, most of the 
simulated data cover a year of operation for each fault-severity combination. The data set is a significant 
expansion of that first published by the lead authors in 2020.

Background & Summary
Fault detection and diagnostics (FDD) is a well-established field of study in building science and building tech-
nology applications. This is largely driven by the significant impact of equipment faults and control problems on 
building energy use and emissions, equipment life, and occupant comfort. Building HVAC systems in particular, 
afford a rich opportunity space for FDD algorithm development, given the multiplicity of system configurations, 
complex operations, and availability of monitored data. In addition, the recent push to decarbonize buildings 
and the electricity sector is increasing the importance of grid-interactive efficient buildings that can reliably 
provide load-flexibility services to the renewable supplied grid. This is making it even more critical to ensure 
that building HVAC systems are controllable and fault-free, providing further motivation for FDD technology 
development and deployment.

In buildings, FDD software tools employ operational data collected from building automation systems, 
sensors, and meters, to automatically detect equipment and control problems, or degrading performance in 
an HVAC system, and to diagnose potential root causes1. Using the results from FDD technologies, build-
ing operators can efficiently direct maintenance activities to address inefficiencies, or equipment and control 
malfunctions.

In the past thirty years, a large body of literature has been published documenting the development and 
application of FDD solutions for buildings. The active research covers a breadth of topics including: (1) the 
development and validation of hundreds of FDD methods2–4; (2) the development of experimental platforms 
or simulation software tools to generate fault inclusive models5–7, and the development of fault-inclusive data 
sets8–10; (3) quantification of the prevalence and occurrence rates of faults in buildings11–13; (4) analysis of the 
impact of faults on system operations14,15, energy consumption16,17, equipment maintenance and operational 
costs18,19, occupant thermal comfort15,20,21, and indoor air quality22; (5) FDD technology application, costs, and 
benefits, in existing buildings1,23; (6) FDD algorithm performance testing methodologies24,25; and (7) automated 
fault correction26,27 and maintenance activities28 after faults are diagnosed and flagged by FDD tools.

Although building control and automation systems are able to store and export large volumes of operational 
data, these data are often prone to data quality issues including erroneous sensors and gaps. Consistent naming 
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conventions are not used from one system to another, and semantic metadata to interpret the meaning and rela-
tionships between data are rarely used. A further complication is that the data reflect unknown and unlabeled 
presence of a wide variety of commonly occurring faults. Finally, while small collections of field data may be 
acquired by researchers, it is extremely difficult to amass a large-scale dataset that represents climate, HVAC 
system, and operational diversity. This presents tremendous barriers for innovation in FDD algorithm develop-
ment, and performance evaluation.

Extending the body of work focused on FDD algorithm testing methods and test datasets, this paper doc-
uments a significant expansion of the HVAC fault dataset presented in9. The expansion incorporates five new 
HVAC systems and configurations, an increased number of fault cases, and more extensive time spans for each 
fault-intensity combination, (in most cases reaching a full 365 days). The data were produced using simulation 
tools, laboratory experimental facilities, and field tests. Additionally, a semantic model for each system has been 
developed according to the Brick schema29 for improved usability and conformance with today’s commonly 
used building industry metadata schema.

The expanded dataset documented in this article includes seven common HVAC systems: the single duct 
air handling unit (AHU) system, the packaged rooftop unit (RTU), the dual duct AHU system, the fan coil unit 
(FCU) system, the variable air volume fan power unit (FPU), the boiler plant, and the chiller plant. 257 fault 
cases are represented, spanning sensor-related faults, actuator-related faults, control faults (e.g., controller PID 
parameter settings), and component faults (e.g., cooling coil foiling fault). In total, that dataset comprises 8 bil-
lion data samples, and represents the largest known ground truth-verified data for HVAC faults. As noted in the 
2020 publication9 FDD researchers and developers can use the data to:

•	 Develop, evaluate, and compare performance across FDD algorithms;
•	 Identify performance gaps to focus future development efforts and resource investment;
•	 Develop an understanding of how FDD technology overall is improving over time; and
•	 Enable a better understanding of HVAC system performance under faulted and fault-free operation condi-

tions for educational purposes.

Prior work such as ASHRAE research projects RP-1312 and RP-1043, and National Institute of Standards 
and Technology (NIST) 10D243 project, represent early contributions of operational HVAC fault data. This 
research advances those early efforts by increasing the number and type of HVAC systems that are represented, 
by increasing the duration of fault-free and faulted operational span (one year in most cases), and by increasing 
the number and type of faults that are represented. This will significantly increase the usability of the dataset for 
FDD algorithm development and performance evaluation.

Methods
The newly expanded dataset contains experimental and simulated data across the seven HVAC systems types 
and configurations that are represented - the majority being simulated. Diverse facilities and simulation tools 
were used to create the data, and methods to impose the faults were created for each fault, given the specific 
HVAC system of focus, the control sequences that defined its operation. These facilities and tools, HVAC system 
details, and fault methods are described in the following, as is the metadata schema that was applied to the data. 
Provision of the metadata enables ease of interpretation of the data, and supports users of the dataset who wish 
to employ more automated procedures to interface FDD algorithm instances with the data.

Facilities and simulation tools.  The simulated datasets were created using HVACSIM+ and an 
EnergyPlus-Modelica co-simulation. HVACSIM + was developed by the US NIST30, the Modelica Buildings 
Library31 is developed by the Lawrence Berkeley National Laboratory, and EnergyPlus32 is developed by several 
contributors through funding from the US Department of Energy. Described with respect to other modeling tools 
in33, HVACSIM+, Modelica, and EnergyPlus are non-proprietary tools to model the behavior of building HVAC 
systems using physics-based approaches. In addition, Modelon’s air conditioning library was used to model the 
refrigerant side faults in the RTU system34. This library provides ready-to-use refrigeration cycle templates and a 
wide range of components to create a variety of air conditioning system configurations.

Four experimental research facilities were used to create data and to develop and validate simulation models:

	 1.	 FLEXLAB located at the Lawrence Berkeley National Laboratory in Berkeley, California, for the generation 
of the single-zone CAV data set and the variable-air-volume (VAV) AHU data set9.

	 2.	 The Flexible Research Platform (FRP) located at the Oak Ridge National Laboratory in Oak Ridge Tennes-
see, for the generation of RTU data sets9.

	 3.	 The Energy Resource Station facility was previously located at the Iowa Energy Center in Ames City, Iowa, 
for the development and validation of DD-AHU, FCU and FPU simulation models, and for creation of 
multi-zone VAV AHU data35.

	 4.	 The RTU facility is located in the Thermal Technology Facility (TTF) at the National Renewable Energy 
Laboratory in Golden, Colorado, for the validation of the RTU simulation model. NREL’s TTL is a flexible 
multipurpose laboratory that enables detailed evaluation and development of building and thermal 
energy systems. The TTF research space reaches 11,000 sq.ft. Two RTUs—a 5-ton/SEER 17 (RTU 1) and 
a 6-ton/IEER 23 (RTU 2) are installed in the TTL to develop comprehensive performance maps suitable 
for use with whole-building energy simulation computer programs. The SEER 17 contained a two-stage 
scroll compressor with R-410A, single-speed condenser fan, direct-drive variable-supply air fan with a 
high-efficiency motor, low leak dampers, hot gas reheat humidity control, and an economizer. The IEER 23 
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contained a variable-speed direct-drive compressor, variable-speed fans, and control logic that maintained 
the compressor and thermal expansion valve (TXV) within their performance limitations36.

Field data representing faulted and un-faulted rooftop unit operation is also included in the dataset. This 
data was collected from two RTUs, one in a restaurant building in Milford, CT and another one in a distribution 
center building in Colchester, CT. Table 1 summarizes these sites and the RTUs.

System configurations and control sequences.  The configurations and sequences for each system in 
the data set are comprehensively documented for users of the data in an inventory file. This information is often 
needed to specify controls-specific parameters in fault detection and diagnostic algorithms. To illustrate the form 
and content of this information, two examples are presented - the fan coil unit system, and the boiler plant.

Fan coil unit.  Figure 1 contains the schematic representation of the fan coil unit (FCU) system.
The FCU is scheduled for automatic operation on a time of day basis for occupied and unoccupied mode.

Occupied mode (Monday – Friday 6:00AM–17:59PM)
During these hours, the system is in Operate Mode. Five control sequences - control, outdoor air damper 

control, cooling coil valve control, heating coil valve control sequence, and zone temperature setpoints - were 
set during the simulation.

•	 Fan control
•	 3-speed fan with “Automatic On/Off ” (Auto) mode: the fan on/off and speed change is based on the cool-

ing proportional-integral-derivative (PID) output and heating PID output. The 10% dead band is given 
at each speed switchover level.

Site #

Building RTU

Location Space Type Floor Area (ft2) Capacity (Tons) EER

1 Milford, CT Restaurant 5,168 7.5 9

2 Colchester, CT Distribution Center 207,635 10 10.4

Table 1.  Summary of field sites and RTU characteristics.

Fig. 1  Schematic diagram of the FCU.

https://doi.org/10.1038/s41597-023-02197-w
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•	 Low speed condition: the PID outputs (the cooling/heating coil valve position) are higher than 0% and 
lower than 40%;

•	 Medium speed condition: the PID outputs (the cooling/heating coil valve position) are > = 40% and 
<80%;

•	 High speed condition: the PID outputs (the cooling/heating coil valve position) are > = 80% and < 100%;
•	 Off: no heating or cooling demand.

•	 OA damper control
•	 The OA damper maintains a minimum damper position at 30%.

•	 Cooling coil valve control sequence
•	 The PID control is used to adjust the cooling coil valve position. The setpoint dead band is 1 °F. If the 

actual room temperature is beyond 1 °F of the cooling setpoint, the FCU is in the “cooling” mode, and 
the cooling coil valve PID loop is enabled and the cooling valve position will be controlled by the cooling 
coil valve controller PID output. When the room temperature falls below 1 °F compared to the cooling 
setpoint, the cooling PID is disabled and the valve fully closed.

•	 Heating coil valve control sequence
•	 The PID control is used to adjust the heating coil valve position. The setpoint dead band is 1 °F. If the 

actual room temperature is beyond 1 °F of the heating setpoint, the FCU is in the “heating” mode, and 
the heating coil valve PID loop is enabled and the heating valve position will be controlled by the heating 
coil valve controller PID output. When the room temperature falls below 1 °F compared to the heating 
setpoint, the heating PID is disabled and the valve fully closed.

•	 Zone temperature setpoints
•	 Zone cooling setpoint: 72 °F;
•	 Zone heating setpoint: 68 °F.

•	 Shutdown mode
•	 The shutdown mode is only triggered by the low temperature protection described below. Under the 

shutdown mode, the fan is constantly off, and the OA damper is fully closed.
•	 Low Temperature Protection

•	 During the simulation, when the mixed air temperature is below 35 °F and persists for 300 seconds, the 
FCU system will switch to the shutdown mode to prevent freezing the coil. The shutdown mode will last 
until the end of the day. The system will be turned back to normal operation at the beginning of the next 
day.

Unoccupied mode
During these hours, the system is in Setback Mode. The operation is similar to the operation mode except 

two additional settings as:

•	 Outdoor air damper: The OA damper is fully closed
•	 Zone temperature setpoints

•	 Zone cooling setpoint: 85 °F;
•	 Zone heating setpoint: 55 °F.

Boiler plant.  Figure 2 illustrates the configuration of the boiler plant system. This system has two identical 
boilers and two hot water pumps and provides hot water to heating coils in the air-side system.

The boiler plant system is controlled by two supervisory controllers and two local controllers (Table 2). One 
supervisory controller determines the number of the operating boilers using a state machine and the calculated 
heat load, as shown in Fig. 3. The heating load is calculated from:

ρ° = ° −Q v C T T( ) , (1)hw p hw
ent

hw
lea

where vhw°  is the volumetric flow rate of the hot water, Thw
ent and Thw

lea are the temperature of the hot water entering 
and leaving the boiler plant system, respectively. The other supervisory controller determines the number of 
operating hot water pumps, as shown in Fig. 4.

Fault scenarios and methods of fault imposition.  Tables 3–10 summarize fault profiles and how each 
fault was imposed for each of the systems and fault scenarios. For the simulated datasets, each fault type and 
intensity were imposed for a full calendar year of operation - the exception being the simulated RTU dataset that 
covered a 100-day cooling season. For the experimental and field test datasets, fault type-intensity combinations 
were captured for one to 183 days of operation.

The RTU dataset that was acquired from field measurements reflected a naturally occurring compressor 
staging fault and a refrigerant undercharging fault.

Method of Brick schema model development.  The Brick schema29 offers classes and subclasses, of 
which the equipment class was used to designate the HVAC system components represented in the fault dataset. 
Similarly, the point subclass was used to design sensor measurement and control system data points. In addition, 
the schema offers ‘relationships’, of which hasPart, hasPoint, and feeds, are relevant to describing the fault dataset. 
Figure 5 illustrates the 5-step process that was used to generate the Brick models for each HVAC system in the 
dataset. Among them, Step 4 is automated while the other steps are performed manually.

https://doi.org/10.1038/s41597-023-02197-w
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Step 1: Conceptualization of Brick relationships using mechanical drawing or schematic.  The 
schematic representations for each system were reviewed to identify the major components for the overall system, to 
develop compositional (“hasPart”) relationships. For each major component, we identify all of the associated sensor/
control points to develop “hasPoint” relationships. Lastly, we identify the order in which the given media (air, water, 
etc.) flow through the system to develop sequential (“feeds”) relationships between different equipment.

Step 2: Creation of hierarchical diagram to visualize Brick relationships.  After identifying the 
components and sensor/control points of the system in Step 1, we indicate which equipment has which compo-
nents (“hasPart”), which equipment or component has which sensor and control data points (“hasPoint”), and 
which equipment feeds into another equipment (“feeds”).

Step 3: Mapping system components to Brick classes.  All equipment, components, and sensor/con-
trol data points in the hierarchical diagram are mapped to a Brick schema class and tabulated. The equipment and 
the sub components are mapped to a subclass of the Brick “equipment” class (e.g., chiller, AHU, and RTU) and the 
sensors and the control points will be assigned a type subclass of Brick “point”.

For each row (i.e., each component), we designate the relevant relationships, other components it connected 
to and these components. This way, we are able to incorporate all the components, their types and how they are 
related to other components.

Step 4: Execution of script to create a .ttl file.  The tables generated in Step 3 are exported as CSV files 
and imported to a Python script that generates a Brick model in the form of a machine-readable .ttl file. The script 
iterates through each row of the table, assigning all components and points to a specific instantiation of a Brick 
class and corresponding relationships. The .ttl file can be accessed by an FDD algorithm (or other applications), 
enabling more efficient and standardized retrieval of system metadata using SPARQL queries. This streamlines 
the interpretation of data semantics within the FDD or other applications.

Step 5: Visualization of the Brick model to validate accuracy.  The generated Brick model is verified 
by visualizing it and comparing it to the hierarchical diagram in Step 2. We used Brick Studio for the visualiza-
tion and ensured that all the components in the data sets were present and the relationships between them were 
labeled correctly.

Fig. 2  Schematic of the studied boiler plant system.

No. Controlled Variables Description

1 Heating power of operating boilers The heating power of each operating boiler is controlled by a feedback loop to maintain the 
temperature of the water leaving each boiler to be a predefined value (176°F).

2 Speeds of operating hot water pumps
Hot water pump speed is controlled by a feedback loop to maintain the pressure difference in 
the hot water loop to be 17.5 psi. If two hot water pumps are running, both pumps operate at 
the same speed.

Table 2.  Local controllers in the boiler plant system.

https://doi.org/10.1038/s41597-023-02197-w
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Data Records
The data are stored on figshare37 and on an LBNL website10. The description for the expanded seven data sets can 
be found in Table 11. For each system, the FDD data are stored in individual comma separated value (CSV) files, 
and each file contains one fault type under one fault intensity. The data are stored at the 1-minute interval rate to 
reflect system operations. The 1-minute interval rate can be re-sampled to a 5-minute interval and a 15-minute 

Fig. 3  Staging control of boilers (ξ = 0.95 and waiting time: 30 min).

Fig. 4  Staging control of hot water pumps in the boiler plant system (waiting time: 30 min).

Input Scenarios

Method of Fault ImpositionFault Type Fault Intensity

Outdoor air temperature sensor bias 2 °C, 4 °C, −2 °C, and −4 °C Add a bias value to the sensor output

OA damper stuck Minimum position 10%, 25%, 75% and 100%* Override the OA damper position to indicate that 
the OA damper is stuck

Cooling coil valve leaking 10%, 25%, 40%, and 50% Adjusted the coil valve position value when the 
control signal is zero

Cooling coil valve stuck 10%, 25%, 50%, and 75% Override of the coil valve position to indicate that 
the valve is stuck

Table 3.  Methods of fault imposition for the SD-AHU dataset. *For the OA damper stuck at 100% open fault, 
the data is available from April 1 to Nov 1.

https://doi.org/10.1038/s41597-023-02197-w
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interval, which are also commonly used in the existing building automation system (BAS). Time stamps are in 
the first column of each file, and presented in the format of “yyyymmdd hh:mm”.

Input Scenarios

Method of Fault ImpositionFault Type Fault Intensity

Heating coil fouling water-side

Severe, moderate and minor

Increase the water flow pressure resistance by 50%, 30% 
and 10%; and decrease the heat transfer rate by 50%, 
30% and 10%, for the severe, moderate and minor levels, 
respectively

Heating coil fouling air-side
Increase airflow resistance by 200%, 50% and 10%; and 
decrease the heat transfer rate by 10%, 5% and 0% for the 
severe, moderate and minor levels, respectively

Cooling coil fouling water-side

Increase water flow pressure resistance such that the 
water flow rate decreases by 50%, 30% and 10% when the 
valve is fully open; and decrease heat transfer rate by 50%, 
30% and 10% for the severe, moderate and minor levels, 
respectively

Cooling coil fouling air-side
Increase the airflow resistance by 200%, 50% and 10%; 
decrease heat transfer rate by 10%, 5% and 0% for the 
severe, moderate and minor levels, respectively

Cold deck supply air temperature sensor bias −4 °C, −2 °C, +2 °C, and 
+4 °C

Add a bias value to the sensor output
Hot deck supply air temperature sensor bias

Cold deck supply air pressure sensor bias −0.4 inH2O, −0.2 inH2O, 
+0.2 inH2O, and +0.4 inH2OHot deck supply air pressure sensor bias

Cooling damper stuck

0%, 20%, 50%, 80% and 100% Assign a fixed device position

Heating damper stuck

Cooling coil valve stuck

Heating coil valve stuck

Outdoor air damper stuck

Heating sequence unstable control
NA Increase the proportional band until unstable 

(from −45.7 K to −4K)Cooling sequence unstable control

Table 4.  Methods of fault imposition for the DD-AHU dataset.

Input Scenarios

Method of Fault ImpositionFault Type Fault Intensity

Heating coil fouling air-side

Severe, moderate and minor

Increase airflow resistance by 200%, 50% and 10%; and decrease heat transfer rate by 10%, 5% and 0% 
for the severe, moderate and minor levels, respectively

Heating coil fouling water-side
Increase water flow pressure resistance such that the water flow rate decreases by 50%, 30% and 10% 
when valve is fully open; decrease heat transfer rate by 50%, 30% and 10% for the severe, moderate and 
minor levels, respectively

Cooling coil fouling air-side Increase airflow resistance by 200%, 50% and 10%; and decrease heat transfer rate by 10%, 5% and 0% 
for the severe; moderate; and minor levels, respectively

Cooling coil fouling water-side
Increase water flow pressure resistance such that the water flow rate decreases by 50%, 30% and 10% 
when valve is fully open; and decrease heat transfer rate by 50%, 30% and 10% for the severe; moderate; 
and minor levels, respectively

Filter restriction Increase air flow pressure resistance by 10%, 20% and 50%; and increase the outlet resistance by 23.45%, 
56.25% and 400% for the severe; moderate; and minor levels, respectively

Outdoor air inlet blockage Block 80% area Decrease the damper face area

Outdoor air damper leaking Leaking at +20%, +50%, and +80% Increase the damper face area

Zone air temperature sensor bias −4 °C, −2 °C, +2 °C, and +4 °C Add a bias to the sensor output

Heating coil valve stuck

0%, 20%, 50%, 80%, and 100% Assign a fixed simulated controlled device positionCooling coil valve stuck

Outdoor air damper stuck

Heating coil valve leaking 20%, 50%, 80% of the max flow 
(0.066 kg/s heating, 0.036 kg/s 
cooling)

Assign a water flow rate when the valve fully closed
Cooling coil valve leaking

FCU unstable control

NA

Decrease both heating and cooling proportional bands to 10% of normal value, respectively

Heating control reverse acting
Modify simulated control strategy to allow reversed action

Cooling control reverse acting

Fan outlet blockage
A 80% flow rate reduction at 
the same pressure difference 
(corresponding to outlet resistance 
by 2400%)

Increase air flow pressure resistance by 2400%

Table 5.  Methods of fault imposition for the FCU dataset.

https://doi.org/10.1038/s41597-023-02197-w
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Each system dataset is accompanied with a .ttl Brick model and also a data ‘inventory’ file that describes the 
key information necessary to understand the content and scope of each data set, including:

Input Scenarios

Method of Fault ImpositionFault Type Fault Intensity

Room temperature sensor bias −4 °C, −2 °C, +2 °C, and +4 °C
Add a bias to the sensor output

VAV airflow sensor bias −400CFM, −200CFM, +200CFM, and +400CFM

VAV box fan restricted flow FPU resistance is 1000% of the normal value Increase plenum resistance (for PFPU) or VAV outlet resistance 
(for SFPU)

Hydronic reheat coil fouling water-side

Severe, moderate and minor

Increase water flow pressure resistance such that the water flow 
rate decreases by 50%, 30% and 10% when valve is fully open; 
and decrease heat transfer rate by 50%, 30% and 10% for the 
severe, moderate and minor levels, respectively

Hydronic reheat coil fouling air-side
Increase airflow resistance by 200%, 50% and 10%; and decrease 
heat transfer rate by 10%, 5% and 0% for the severe, moderate 
and minor levels, respectively

Reheat valve stuck
0%, 20%, 50%, 80%, and 100% Assign a fixed simulated controlled device position

VAV damper stuck

Reheat valve leaking 20%, 50%, and 80% of the max flow Assign a 20%, 50%, and 80% of the max flow, respectively, when 
the valve is fully closed

Room air temperature control sequence unstable (PI1) NA Increase the proportional gain from 100 to 0.1 (for the PFPU) 
and 30 to 0.3 (for the SFPU) until the control is unstable

Room VAV damper control (PI2) NA Increase the proportional gain from 9.99 to 99999 until the 
control is unstable

Table 6.  Methods of fault imposition for the VAV fan power unit dataset.

Input Scenarios

Method of Fault ImpositionFault Type Fault Intensity

Chiller 1: the chilled water leaving temperature sensor bias
−2 °C, −1 °C, 1 °C, and 2 °C

Add a bias to the sensor outputCooling tower 1: the condenser water leaving temperature sensor bias

In the secondary chilled water loop: the differential pressure sensor bias −20%, −10%, 10%, and 20%

The condenser water leaving the three-way valve leakage 25%, 50%, and 75% Increase the default minimum position setting

The condenser water leaving the three-way valve stuck 50% and 75% Assign a fixed device position

Cooling tower 1: heat exchanger fouling 95%, 80%, and 65% Multiply intensity value by heat transfer coefficient

Controller PI for condenser loop supply temperature setpoint 
inappropriate tuning NA Modify the gain value of controllers

Table 7.  Methods of fault imposition for the chiller plant dataset.

Input Scenarios

Method of Fault Imposition**Fault Type Fault Intensity

OA damper stuck Half of minimum position (5%), Minimum position (10%), 
50% open, and fully open (100%)

Stuck the OA damper position at 5%, 10%, 50% and 100%; 
and stuck the RA damper position at 95%, 90%; 50% and 
0%

Incorrect economizer setpoint* 6 °C, 8 °C, 12 °C and 12 °C Modify the economizer setpoint in control programming

Biased supply air temperature sensor 2 °C, 4 °C, −2 °C and −4 °C Modify the supply air temperature setpoint in control 
programming

Table 9.  Methods of fault imposition for the experimental RTU dataset. *The correct economizer setpoint is 
10 °C (50 °F) **Faults were imposed in Fall 2020, Spring 2021, Summer 2021, and Winter 2022

Input Scenarios

Method of Fault ImpositionFault Type Fault Intensity

In the boiler 1, the hot water leaving temperature sensor bias
−2 °C, −1 °C, 1 °C, and 2 °C

Add a bias to the sensor outputIn the hot water loop, the hot water leaving temperature sensor bias

In the hot water loop, the differential pressure sensor bias −20%, −10%, 10%, and 20%

In the boiler 1, the heat exchanger fouling 65%, 80%, and 95%, Multiply the intensity by the heat transfer coefficient

Controller PI for boiler supply temperature setpoint is inappropriate tuning NA Modify the gain value of controllers

Table 8.  Methods of fault imposition for the boiler plant dataset.
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•	 An overview of the data set, who created it, and whether it was generated through simulation or physical 
experiment

•	 Building and system information
•	 Model or experimental facility description
•	 System type and physical configuration diagram
•	 Control sequences

•	 Brick schema model diagram
•	 Data points

•	 The unit for each measurement
•	 The basic data points which existing BASs use are labeled

•	 Input scenarios for faulted and fault-free conditions represented in the data
•	 Fault types
•	 Fault intensities
•	 Method of fault imposition

Technical Validation
Granderson et al.9 documented that the validity of the dataset can be assessed according to three dimensions: 
(1) accuracy of the sensors and measurement infrastructure in the experimental facilities that were used; (2) 
accuracy of the simulation models that were used; and (3) accuracy of the ground truth labels that indicate the 
presence and severity of the faults, presence or absence of faults and their severity9.

Facility measurement.  Granderson et al. describes the measurement calibration process at the FLEXLAB, 
FRP, and Iowa Energy Center facilities9.

Simulation models.  Granderson et al. described the simulation model validation for the 
EnergyPlus-Modelica models9, and both Granderson et al. and Wen et al. describe model validation of the 
HVACSIM + models9,35. These publications describe a host of methods including empirical validation, exper-
imental calibration, comparative testing (vs other tools), and analytical verification (with respect to exact 
solutions).

Fig. 5  Flow of the Brick Schema model development.

Input Scenario

Method of Fault ImpositionFault Type Fault Intensity

Refrigerant overcharging

10%, 15%, and 20%

Lower refrigerant enthalpy. Less enthalpy results in 
higher charge because liquid has lower enthalpy, and 
high density

Refrigerant undercharging
Increase refrigerant enthalpy. More enthalpy results in 
lower charge because liquid has higher enthalpy, and 
low density

Condenser fouling Reduction of airflow through the condenser 
(10%, 20%, 30%, 40%, and 50%) Reduce condenser fan mass flow rate

Evaporator fouling

Refrigerant liquid-line restriction Pressure drops due to liquid-line restriction: 
(1 bar, 4 bar, 8 bar, and 10 bar)

Increase the pressure drop just after the condenser 
outlet (cold liquid refrigerant)

Refrigerant suction-line restriction Pressure drops due to suction-line 
restriction: (1 bar, 3 bar, 6 bar, and 9 bar)

Increase the pressure drop just after the evaporator 
outlet (hot gas refrigerant)

Table 10.  Methods of fault imposition for the simulated RTU dataset.
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Fig. 7  Example of FCU fault present operational data (zone air temperature sensor bias +2 °C (3.6 °F), July 17).

Fig. 6  Example of FCU fault free operational data (July 17).

System Type System Description Data Provenance Number of Files Total Data Size

Single-duct AHU 5 faults at various severity levels in a single-duct  VAV AHU Simulation using EnergyPlus-
Modelica 23 593 MB

Chiller plant 7 faults at various severity levels in a chiller plant Simulation using EnergyPlus-
Modelica 22 1.14 GB

Boiler plant 5 faults at various severity levels in a boiler plant Simulation using EnergyPlus-
Modelica 17 330 MB

Rooftop unit 10 faults at various severity levels in 5 RTUs
Simulation using EnergyPlus-
Modelica, experimental facilities, 
and field-measures

84* 293 MB

Dual-duct AHU 15 faults at various severity levels in a dual-duct VAV AHU Simulation using HVACSIM+ 58 1.65 GB

Fan-powered VAV terminal unit 10 faults at various severity levels in a parallel fan power 
unit and a series fan power unit, respectively Simulation using HVACSIM+ 66 2.04 GB

Fan coil unit 17 faults at various severity levels in a fan coil unit Simulation using HVACSIM+ 51 518 MB

RTU and AHU systems 
documented in Granderson et al.9

4–9 faults at various severity levels in single zone and 
multi-zone, constant and variable air volume AHUS, and 
in a rooftop unit

Simulation using HVACSIM+, 
EnergyPlus-Modelica, and an 
experimental facility

6 40.1 MB

Table 11.  Files and size of each file in the full dataset, as well as system of focus and provenance. *The RTU 
system includes three .ttl file and one inventory file.
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For the sake of brevity, the reader is referred to these prior publications for details on facility measurement 
and simulation model accuracy.

Granderson et al.9 describes a ground truth validation process that applies functional testing and engineering 
logic9. Functional testing verifies that system operation is consistent with the designed control sequences, and 
reflective of fault-free operational behavior. Engineering logic and the specified control sequence are combined 
to confirm that the data trends do indeed reflect the behaviors of the fault free and faulted scenarios.

Figure 6 provides a few examples for the fan coil unit system. First the data trends are inspected to confirm 
that the system is operated according to the defined schedule of occupied hours corresponding to 6:00–17:59, 
and to the defined setpoints specified in the sequence (as shown in section System configurations and control 
sequences). This is verified in the profile of the cooling setpoint and heating setpoint trends, which respectively 
modulate from 85 °F to 72 °F, and from 55 °F to 68 °F, and back at the 6:00 and 17:59 timestamps. Next, the data 
trends are inspected to verify that the modeled PID parameters for the cooling valve controller are configured 
to output proper control signals. This is confirmed through smooth trend and absence of any significant oscilla-
tions in the plotted signal for the cooling coil valve command. Finally, inspection of the zone temperature trend 
confirms that the control objective, i.e., a cooling setpoint of 72 °F, was maintained throughout the occupied 
period of operation.

Following verification of the fault-free operational state, additional tests were conducted for each of the 
faulted scenarios. These tests considered (a) whether the imposed fault condition was correctly reflected in the 
data, and (b) whether the anticipated symptoms of the fault were reflected in other operational trends.

Figure 7 illustrates these two types of tests for the FCU system fault - zone air temperature sensor bias of 
+2 °C (3.6 °F). The biased condition is confirmed by comparing the 2 °C offset between the data trend from the 
‘spoofed’ faulted model output point (solid line), and the unaltered output point (dashed line). This is clearly 
discernible and annotated in the righthand portion of the plot. The symptoms of this bias are observed in com-
paring the cooling coil valve position in the faulted case (the black solid line) to that from the unfaulted case 
(dashed black line). The position in the faulted case is significantly higher because the controller was attempt-
ing to provide an increased amount of cooling commensurate with the erroneously high zone air temperature 
reading.

Figure 8 illustrates another FCU system fault - cooling coil valve stuck at 20%, imposed during the cooling 
season. Here, the faulted condition is confirmed by observing that the valve position signal (black solid line) is 
fixed at 0.2, while the valve command signal (black dashed line) is adjusted. The symptom of this fault is that the 
zone temperature (purple solid line) significantly exceeded the 72 °F cooling setpoint during the occupied hours 
even though the cooling coil valve control signal (black dashed line) reached a value of 1 (i.e., 100% position) in 
the controller’s attempt to provide maximum cooling.

Similar verification tests steps were performed for each fault type at each intensity level in experimental data 
sets and simulation data sets. For the simulated data sets that spanned a full year of operation, a sample of at least 
three days was selected for inspection from each of three operational seasons - summer/cooling season, winter/
heating season and a transitional/swing season. This sampling enabled validation of the data and faulted system 
behaviors under different weather conditions and operational modes38.

Usage Notes
A complete inventory of the data was developed to support users in interpreting the content and form of the 
data, and the corresponding HVAC systems, controls, and faults. The data itself comprise time series that can be 
analyzed with whatever software tools the user elects to implement. The data are provided at 1-minute intervals, 
and can be resampled as needed to fit the needs of specific applications.

Fig. 8  Example of FCU fault present operational data (cooling coil valve stuck fault at 20% position, July 17).
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Code availability
The Modelica Buildings Library and EnergyPlus are freely available for download39,40. EnergyPlus runs on 
Windows, Mac OSX, and Linux operating systems. A Windows or Linux-based computer and Dymola solver 
are required to run Modelica, and Dymola can be licensed from Modelica Buildings Library. HVACSIM + is 
also freely available, upon request from NIST, and has no operating system requirements. The Modelon air 
conditioning library that was used to model the faults in the RTU refrigerant side, was accessed from Modelon’s 
library suite34. The Modelica-based library is used to design, analyze and optimize air conditioning systems.

A custom Python-based script was developed to create Brick model .ttl files for each system in the dataset, 
following the process described in Method of Brick schema model development. The .ttl files are included in the 
data repository.
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