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Identification of Gell Types from Single-Cell
Transcriptomic Data

Karthik Shekhar and Vilas Menon

Abstract

Unprecedented technological advances in single-cell RNA-sequencing (scRNA-seq) technology have now
made it possible to profile genome-wide expression in single cells at low cost and high throughput. There is
substantial ongoing effort to use scRNA-seq measurements to identify the “cell types” that form compo-
nents of a complex tissue, akin to taxonomizing species in ecology. Cell type classification from scRNA-seq
data involves the application of computational tools rooted in dimensionality reduction and clustering, and
statistical analysis to identify molecular signatures that are unique to each type. As datasets continue to grow
in size and complexity, computational challenges abound, requiring analytical methods to be scalable,
flexible, and robust. Moreover, careful consideration needs to be paid to experimental biases and statistical
challenges that are unique to these measurements to avoid artifacts. This chapter introduces these topics in
the context of cell-type identification, and outlines an instructive step-by-step example bioinformatic
pipeline for researchers entering this field.

Key words Single-cell RNA-sequencing, Transcriptomic classification, Cell-type identification, Cell
taxonomy, Clustering, Unsupervised machine learning, Cross-species comparison of cell-types

1 Introduction

The human body contains approximately 40 trillion cells, which
exhibit a breathtaking diversity of form and function [1]. Classifying
these cells into “types” is increasingly viewed as a foundational
requirement to gain a detailed understanding of how tissues func-
tion and interact, and to uncover specific mechanisms that underlie
pathological states [2]. Provisionally, cells of a particular type share
a common identity defined by multiple, measurable properties
pertaining to tissue location, function, signaling properties, mor-
phology, electrophysiological response, molecular composition,
and physicochemical interaction with other cell types (see below).
Knowledge of what cell types exist and what features distinguish
them will (a) facilitate genetic access to specific types so they can be
labeled and manipulated in model organisms and culture systems,
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1.1 WhatIs a Cell
Type?

(b) provide a framework to investigate the staggering cellular het-
erogeneity that abounds in organisms, (c) provide mechanistic
insight into the generation of this heterogeneity during early devel-
opment, (d) provide a framework for rationally improving in vitro-
derived cell types, (e) facilitate cross-species comparisons [ 3], and
(f) implicate roles for specific cell types and their interactions [4] in
complex diseases [5, 6].

Although the genomes of complex mammals contain ~30,000
genes (and their multiple isoforms), the expression patterns of these
genes are not all independent of each other. Gene regulatory pro-
cesses induce correlations between the expression levels of genes,
which in turn results in a “modular” structure of the transcriptome
[7]. One consequence of this modularity is that the molecular states
of cells occupy a low dimensional subspace (often referred to as a
“manifold”) within the full space of gene expression. Advances in
single-cell RNA-sequencing (scRNA-seq) technology have enabled
cell types to be defined using the transcriptomic state of thousands
of individual cells [8-10]. In addition, the development of single-
nucleus profiling techniques has allowed for thorough investiga-
tions of frozen and banked tissue, including challenging tissues
such as adult human brain sections [11, 12]. A flurry of recent
work has shown that unbiased classification of single-cell transcrip-
tomes using computational methods rooted in clustering and
dimensionality reduction not only recovers classically defined sub-
sets of cells, but also enables discovery of novel types with unknown
functional roles [ 13-15]. Our goal is to introduce the reader to the
conceptual [16] and computational [17] challenges of scRNA-seq
data analysis, followed by a description of a basic practical workflow
of scRNA-seq analysis using the R statistical language.

While every cell is unique, experience of biologists over many years
has suggested that cells can be organized into groups based on
shared features that are quantifiable. This categorization makes
possible systematic and reproducible analyses of complex tissues,
similar to the concept of “species,” which greatly simplifies the
diversity of organisms into an interpretable taxonomy, while not
denying the individuality of any single member [18]. Features used
to define cell types include lineage, location, morphology, activity,
interactions with other cell types, epigenetic state, responsiveness to
certain signals, and molecular composition (including mRNA and
protein levels) [16].

scRNA-seq-based cell classification involves partitioning the
data into “clusters” of single cells, wherein each cluster is defined
by a unique gene expression “signature” relative to other clusters,
and therefore, represents a putative cell type. It must be noted,
however, that a computationally defined cluster may not necessarily
correspond 1:1 to a cell type, as the molecular state of the cell
assayed by scRNA-seq may not necessarily reflect all of the features
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noted above. Moreover, certain molecular attributes are more tran-
sient than others during the lifetime of a cell, necessitating a dis-
tinction between a cell’s type (its principal identity) and its current
“state” (e.g., temporary changes in firing rate of neuron during
“up” and “down” states, or different levels of secretory activity of
endocrine cells). sScRNA-seq may resolve different “states” of the
same cell type if their transcriptional signatures are sufficiently
distinct, and collapse two distinct, but closely related types if the
molecules that specified their identities during early development
are no longer expressed during the stage of the experiment.

Thus, even when restricted to the molecular state, the diftfer-
ence between cell “types” and “states” is not resolvable through
RNA-seq alone, and may require examination in other modalities,
such as those that capture information about the cell’s epigenetic
state or its dynamical responses. Taken together, these caveats
warrant caution in the interpretation of scRNA-seq data, especially
in the context of identifying cell types exclusively from transcrip-
tomic information. The notion of cell types is being constantly
refined through ongoing work as part of large-scale projects such
as the Human Cell Atlas [2] and the BRAIN initiative [19].

scRNA-seq is not a single method, but a suite of protocols, each
with its strengths and limitations [20]. Currently, every scRNA-seq
protocol consists of three steps (Fig. 1): (1) single-cell capture and
barcoding, (2) library preparation, and (3) sequencing. Current
protocols isolate single cells by tissue dissociation, followed by
cither fluorescence- activated cell sorting (FACS) into separate
wells on a plate or capturing individual cells in microfluidic cham-
bers, microwells, or individual droplets. Prior to single-cell capture,
the dissociated cells can be optionally taken through a sorting step
using FACS or magnetic activated cell-sorting (MACS) to enrich or
deplete cells expressing a specific combination of markers. Library
preparation involves reverse transcribing mRNA into cDNA and
amplifying, either using polymerase chain reaction (PCR) or
in vitro transcription (IVT). Recently developed protocols tag tran-
scripts during the capture stage (step 1 above) with unique molec-
ular identifiers (UMIs), which are random nucleotide sequences
[21]. Every captured transcript is, in principle, tagged with a dis-
tinct UMI, which enables downstream correction of amplification
biases. The amplified cDNA is then fragmented, followed by the
addition of molecular adapters at the end of amplicon fragments
that allow for high-throughput sequencing. Libraries can either
retain the full length of every transcript or tag either the 3’ or the
5" end of each mRNA—the choice is informed by further consid-
erations. Sequencing is generally highly multiplexed, and can either
be single-end or paired-end depending on upstream choices. An
important consideration can be the depth of sequencing per cell,
which is often related to the number of cells profiled [22].
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Fig. 1 General experimental workflow for single-cell RNA-sequencing, as described in detail in the text,
starting from cell isolation and extending through to the generation of counts tables showing the detection of

each gene in each cell

1.3 Batch Effects

in scRNA-Seq Analysis

Data-driven identification of cell types can be confounded by batch
effects, which result from minor, but systematic differences
between experimental replicates prepared either at different times,
using different reagent batches, different experimenters, or a com-
bination of the three [23]. Batch effects can result in variation in the
transcriptomic state of identical cell types across different replicates
due to technical factors; when such effects are strong, cells can
cluster by batch identity rather than biological identity. Batch
effects can also arise if in addition to transcriptional differences,
the frequencies of specific cell types are different across batches
[24, 25]. If different biological conditions of interest (e.g.,
control vs. perturbation) or different sample sources (e.g., biopsies
from cancer patients) are processed in different batches, it is statis-
tically impossible to deconvolve biological versus technical effects.
While batch effects can be mitigated through careful experimental
design involving an even distribution of different biological condi-
tions across experimental batches (“block design”), although this
may not always be logistically feasible if delays in sample processing
can compromise quality. In such circumstances, cell-types and
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molecular signals identified in a single experimental batch must be
treated with suspicion and results should only be believed if they are
supported across multiple independent replicates, or in other data
modalities. Detecting and correcting batch effects is an ongoing
area of computational innovation, and a number of approaches
have been recently proposed [24-26].

Future promising avenues of research involve the integration of
scRNA-seq data directly with other data modalities. In particular,
recent developments linking RNA-seq to spatial location (such as
FISSEQ [27] and “Spatial Transcriptomics” [28]), combined with
the advent of high-resolution and expansion microscopy, are on the
verge of collecting transcriptome-wide information at the single-
cell level in situ, without the need for cell dissociation. Besides
removing any dissociation-related biases in cell type or transcript,
integration of transcriptomics and spatial location would create
tissue-based atlases of cell types, providing an unbiased version of
highly multiplexed in situ hybridization methods [29, 30]. Similarly,
other cross-modality technologies are also at various stages of
maturation: these include linking single-cell RNA-seq with electro-
physiological measurements (Patch-Seq [31]), gene perturbations
(CRISPR-Seq and Perturb-Seq [32]), protein expression (CITE-
Seq [33]), and lineage tracing (MEMOIR [34], scGESTALT
[35]). The large-scale use of all of these technologies, as well as
others, is on the horizon, and will result in new multi-modal
classification and characterization of cell types in complex tissues.
Ultimately, the power of single-cell transcriptomics, and its asso-
ciated computational methods, will continue to progress as a key
component in generating new hypotheses about the organization,
regulation, and function of complex tissues. Despite all of these
developments, the underlying approach to scRNA-seq data analysis
for cell type identification still rests on a basic framework, described
below.

2 Methods

The following workflow (overview in Fig. 2) describes basic
computational steps for identitying molecularly distinct cell types
from single-nucleus (sn) RNA-seq data. It does not, however, cover
any of the steps relating to the preprocessing, alignment, and
quantification of raw sequencing data, which have been described
elsewhere [36, 37]. We use the R programming language (https: //
www.r-project.org), which is a versatile platform for many kinds of
genomic analyses, and benefits from the availability of a wide array
of statistical and bioinformatic libraries. Over the years, a number of
software packages have been developed for single-cell transcritpo-
mic analysis (https://github.com/seandavi/awesome-single-cell),
and many of them are available through Bioconductor (https://
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Fig. 2 Standard computational workflow for identifying transcriptomic types from single-cell RNA-sequencing
data, as described in detail in the text, starting from counts tables through to cluster assignment and
differential gene expression identification. Although not every computational approach incorporates all of
these steps in this order, most involve variations on this set of procedures

www.bioconductor.org/), an open-source archive of bioinformatic
R libraries with an active user community. This workflow predomi-
nantly uses the Seurat package [38], an actively maintained set of
tools for scRNA-seq analysis (https://satijalab.org/seurat/).

Here, we analyze single-nucleus (sn)RNA-seq data covering
human frontal cortex (FC), visual cortex (VC), and cerebellum
(CB) [39]. While the main text mostly refers to single “cells,” the
methods below and the general concepts are equally applicable to
snRNA-seq data, and also to other single-cell level measurements,
such as epigenomic and protein (e.g., mass cytometry) data
(although statistical considerations differ).

Our workflow begins with the gene expression matrix X, whose
rows correspond to genes, and whose columns represent single
cells. Entries of the matrix represent digital counts of reads or
transcripts, depending on the scRNA-seq protocol that generated
the data. Although our presentation employs a specific example
dataset, the steps below can be carried out with any gene expression
matrix (Fig. 2). The following steps are implemented in RStudio, a
free and open source integrated development environment (IDE)
for R.
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2.1 Preprocessing: 1. First, we load necessary packages. utilities.Risascript that
Read the Count Matrix contains some custom functions written by the authors for this
and Setup the Seurat workflow (https: //github.com /karthikshekhar/
Object CellTypeMIMB).

library(Seurat)
require(ggdendro)
require(Rmisc)
library(Matrix)
library(MASS)
library(xtable)
library(Matrix.utils)
library(DOSE)
library(reshape2)
library(topGO)
library(randomForest)
source("utilities.R")

2. We then read in the individual data matrices corresponding to
the FC, VC, and CB downloaded from the Gene Expression
Omnibus submission of [39] (NCBI Gene Expression Omni-
bus, GSE97942) [39]. These are stored in a locally accessible
tfolder named Data. Since the majority of the entries of these
expression matrices are “0,” we immediately convert them to
the sparse matrix format using the Matrix package to reduce
the memory footprint.

FrontCor_counts = read.table("Data/GSE97930 FrontalCortex_snDrop-seq_UMI_Count
_Matrix_08-01-2017.txt.gz",

header = TRUE)
FrontCor_counts = Matrix(as.matrix(FrontCor_counts), sparse = TRUE)
VisCor_counts = read.table("Data/GSE97930@_VisualCortex_snDrop-seq_UMI_Count_Ma
trix_©8-81-2017.txt.gz",

header = TRUE)
VisCor_counts = Matrix(as.matrix(VisCor_counts), sparse = TRUE)
Cereb_counts = read.table("Data/GSE97930_CerebellarHem_snDrop-seq_UMI_Count_Ma
trix_08-01-2017.txt.gz",

header = TRUE)
Cereb_counts = Matrix(as.matrix(Cereb_counts), sparse = TRUE)

3. Next, we add a “tissue of origin” tag to the three tissue matrices
and bind them into a single matrix. The rows of the final matrix
correspond to the union of the genes in each of the three tissue
matrices. Genes that are missing in any matrix are assumed to
not be expressed. We use the rBind.fill function in the
Matrix.utils package to fill in the missing genes,
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colnames(FrontCor_counts) = paste®("FrontalCortex ", colnames(FrontCor_counts)

)

colnames(VisCor_counts) = paste@("VisualCortex ", colnames(VisCor_counts))
colnames(Cereb_counts) = paste@("Cerebellum_", colnames(Cereb_counts))
Count.mat_sndrop = Matrix.utils::rBind.fill(t(VvisCor_counts), t(FrontCor_count
s),

fill = @)
Count.mat_sndrop = Matrix.utils::rBind.fill(Count.mat_sndrop, t(Cereb_counts),
fill = @)
Count.mat_sndrop = t(Count.mat_sndrop)

4. Next, we initialize an S4 R object of the class Seurat. The
various downstream computations will be performed on this
object.

# Initialize the Seurat object with the raw (non-normalized data). Keep all
# genes expressed in >= 18 cells. Keep all cells with at least 500 detected ge
nes
snd <- CreateSeuratObject(raw.data = Count.mat_sndrop, min.cells = 20, min.gen
es = 300,

project = "snDropBrain")

snd@raw.data is a slot in the Seurat object that stores the
original gene expression matrix. We can visualize the first 10 rows
(genes) and the first 10 columns (cells),

snd@raw.data[1:10, 1:19]
## 10 x 10 sparse Matrix of class "dgCMatrix"

H#i [[ suppressing 18 column names 'VisualCortex_Ex1_occl7_AAGTGAGTGACC', 'V
isualCortex_Ex1_occ23_CCAGTACGCATC', 'VisualCortex_Ex1_occ24_ CCAGGCCTTTCG' ...

1]

##

##f AIBG-AS1 ., . . « o « o o o
## A1CF TS A
## A2M s e T
## A2M-AS1 N e
## A2ML1 B e e S e
## A2ML1-AS1 . . . . . . . 2.1
## A2MP1 3 00 D 0o 9 G O e
## A3GALT2 e e e
## AAGALT T R
## AAAS S S e

5. We then check the dimensions of the normalized expression
matrix and the number of cells from each sample. Here
snd@ident stores the sample ID’s of the cells, corresponding
here to their brain region of origin.
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Fig. 3 Sample-wise (x-axis) distribution of the number of genes per cell (Left, y-axis) and number of UMIs (i.e.,
transcripts) per cell (Right, y-axis) depicted as violin plots. Dots represent individual cells

VlinPlot(object

.use = 0.1)

2.2 Normalize
the Data

dim(snd@raw.data)
## [1] 23413 34324

table(snd@ident)

#4#

#it Cerebellum FrontalCortex VisualCortex
## 4637 10319 19368

Thus, we have 23,413 genes and 34,234 cells, with 19,368
cells from the VC, 10,319 cells from the FC and 4637 cells
from the CB, respectively. We can visualize common metrics
such as number of genes per cell (nGene) and number of
transcripts/UMIs per cell (nUMI) as “violin plots” (a fancier
version of the good old “box and whisker” plots) using the
Seurat plotting command V1nPlot (see Fig. 3).

snd, features.plot = c("nGene", "nUMI"), nCol = 2, point.size

1.

Because of technical differences in cell-lysis and mRNA capture
efficiency, the count vectors of two equivalent cells can differ in
the total number of transcripts/UMIs across all genes. This
makes it necessary to normalize the data first to attenuate these
differences, which is carried out in two steps.

(a) We rescale the counts in every cell to sum to a constant
value. Here, we choose the median of the total transcripts
per cell as the scaling factor. This is often referred to as
“library-size normalization.”

(b) We apply a logarithmic transformation to the scaled
expression values such that E «log(E + 1) (the addition
of 1 is to ensure that zeros map to zero values). This
transformation has two desirable properties,
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e It shrinks values such that the data are more uniformly
spread across its range of values, which is especially
beneficial if there are outliers.

e Since log(A) — log(B) = log(4), it converts distances
along a gene-axis to log-fold change values. This has
the consequence that expression differences across
cells/samples are treated equally, irrespective of the
absolute expression value of the gene. This might be
especially desirable for lowly expressed genes such as
transcription factors.

med_trans = median(Matrix::colSums(snd@raw.data[, snd@cell.names]))
print(med_trans)

snd <- NormalizeData(object = snd, normalization.method = "LogNormalize", scal
e.factor = med_trans)

2.3 Feature 1. It is common in analysis of high-dimensional data to choose
Selection: Identify features that are likely to be informative over features that
Highly Variable Genes represent statistical noise, a step known as “Feature Selection.”

In scRNA-seq data, this is accomplished by choosing genes that
are “highly variable” under the assumption that variability in
most genes does not represent meaningful biology. An addi-
tional challenge is that the level of variability in a gene is related
to its mean expression (a phenomenon known as heterosceda-
city), which has to be explicitly accounted for. We perform
variable gene selection using a recently-published Poisson-
Gamma mixture model [40], which was demonstrated to accu-
rately capture the statistical properties of UMI-based scRNA-
seq data (Fig. 4).

snd = NB.var.genes(snd, do.idents = FALSE, num.sd = 1.2)

## [1] "Identifying variable genes based on UMI Counts. Warning - use this onl
y for UMI based data"

## [1] "Using diffCv = 0.14 as the cutoff"”

## [1] "Considering only genes with mean counts less than 3 and more than ©6.00
5"

## [1] "Found 1307 variable genes"”

print(length(snd@var.genes))

## [1] 1307

Thus, we find 1307 variable genes in the data. We refer the
reader to other variable gene selection methods, e.g., M3Drop
[41], mean-CV regression [42] or Seurat’s in-build function
FindVariableGenes.



2.4 Z-Score the Data
and Remove Unwanted
Sources of Variation
Using Linear
Regression
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Fig. 4 Mean (x-axis) vs. Coefficient of variation (CV, y-axis) of genes (dots). Two
null-models of mean-CV relationship—Poisson (dashed-red line) or the Poisson-
Gamma mixture model—are also plotted

1. Variation in scRNA-seq data that is relevant to cell identity can
be masked by many unwanted sources of variation. A common
challenge is batch effects, which can be reflected in both tran-
scriptomic differences and cell-type compositional differences
between equivalent experimental batches. As mentioned ear-
lier, variations in lysis efficiency, mRNA capture, and amplifica-
tion can result in substantial differences between the
transcriptomes of equivalent cells. There can be additional
sources of variation resulting from biological processes such
as cell cycle, response to dissociation, stress, and apoptosis that
might dominate the measured transcriptomic state of the cell.

Correcting for such effects continues to be an active area of
research, and many sophisticated approaches have been recently
introduced [24, 25], but a comprehensive overview is beyond our
scope. Here, for demonstrative purposes, we remove variation in
gene expression that is highly correlated with library size nUMI.
Seurat performs a linear fit to the expression level of every gene
using nUMI as a predictor, and returns the residuals as the “cor-
rected” expression values. Next, the expression values are z-scored
or standardized along every gene,
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E; — E;

O;

E

iy

Here E;;is the corrected gene expression value of gene 7 in cell
7, E; and o; are the mean and the standard deviation of gene #‘s
expression across all cells. The transformed expression values now
have a zero mean and standard deviation equal to 1 across all genes.

2. Removing the effects of nUMI and z-scoring are performed
together using Seurat’s function ScaleData, which then
stores the transformed gene expression values in the slot
snd@scale.data.

snd <- ScaleData(object = snd, vars.to.regress = c("nUMI"), genes.use = snd@va
r.genes, display.progress = FALSE)

2.5 The Curse 1. Analysis of high-dimensional scRNA-seq data presents numer-
of Dimensionality ous challenges, which are often collectively termed the “curse-
and Dimensionality of-dimensionality” (COD) [43]. For data that is high-
Reduction Using PCA dimensional and noisy, samples from the same and different

cell subpopulations (i.e., cell types) can appear equidistant from
each other, making it difficult to distinguish variability within
types and variability across types. Usually COD is dealt with in
two ways (Fig. 2). First, the number of features/genes can be
filtered to only include highly variable genes, as described in the
previous section. Second, the data can be projected to a lower
dimensional subspace using an algorithm that preserves some
important properties of the original data, including gene-gene
correlations, a choice that is usually informed by the underlying
biological question of interest.

There are multiple approaches to dimensionality reduction, such
as principal component analysis (PCA) [44], independent compo-
nent analysis (ICA) [45], non-negative matrix factorization (NMF)
[46], autoencoders, and diffusion maps (DM) [47]. Dimensionality
reduction results in the compression of raw gene expression data
into fewer “composite” variables, each of which is a complex com-
bination of the original gene features, which may be linear or
nonlinear depending on the algorithm. These composite features
encode the modular structure of the transcriptome alluded to
earlier, and may be interpreted as gene modules or “metagenes,”
with each metagene being defined by a weighted combination of
genes. Each cell’s observed expression profile can then be inter-
preted as an aggregate of each metagene weighted by its activity in
that particular cell. A situation where multiple metagenes are active
in some cells but not others can result in a separation of cells in gene
expression space. In this picture, every cell type is a well-separated
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cloud of points in the reduced dimensional space, whose location is
defined by the activity patterns of gene expression modules.

2. Here, we perform Principal Component Analysis (PCA), a
classical and extremely versatile dimensionality reduction
method that identifies a linear subspace that most accurately
captures the variance in the data [44]. Each of the individual
axes of this subspace, known as principal vectors (PVs), are
linear combinations of the original genes, and the projections
of the original data onto these axes are known as principal
components (or PCs.)

snd <- RunPCA(object = snd, do.print = TRUE, pcs.print = 1:2, genes.print = 5,
pcs.compute = 50@)

## [1] "PC1"

## [1] "KALRN" "PHACTR1" "PLCB1" "CHN1" "KCNQ5"

## [1] "

## [1] "QKI" “PLP1" "CTNNA3" "ST18" "RNF220"

## [1] ""

## [1] """

## [1] "PC2"

## [1] "PLP1"  "RNF220" "MBP" "MOBP"  "SLC44A1"

## [1] "

## [1] "ZNF385D" "FSTL5" "GRID2" "TIAM1" "UNC13C"

## [1] "

## [1] "™

Each PV is defined by a set of weights corresponding to the

genes (known as the “loadings”). A PV is said to be “driven” by
genes with high weights (positive or negative), and two PVs repre-
sent independent, orthogonal directions. The printed output of
RunPCA lists the genes with the highest magnitude loadings (posi-
tive and negative) along the top PVs.

2.6 Visualize PCA 1. Seurat allows multiple ways to visualize the PCA output, and

Output these are useful to gain biological intuition. VizPCA shows the

genes with the highest absolute loadings along any number of
user specified PVs (Fig. 5).

VizPCA(object = snd, pcs.use = 1:2)

2. pcAPlot allows plotting the cells in a reduced dimensional
space of PCs, and can often highlight subpopulation structure
(Fig. 6).

PCAPlot(object = snd, dim.1 = 1, dim.2 = 2, pt.size = 0.4)

3. Figures 5 and 6 show that the cells with high values of PC1 are
oligodendrocytes, characterized by the high loadings of char-
acteristic genes such as Proteolipid Protein 1 (PLPI) and Mye-
lin Basic Protein (MBP) (Fig. 5). Next, PCHeatmap allows for
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components, PC1 and PC2
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Fig. 6 Scatter plot showing the scores of individual cells (points) along the top two principal components, PC1

and PC2

easy visualization of the gene expression variation along each
PC in the data, and can be particularly useful when trying to
decide which PCs to include for further downstream analyses
(Fig. 7). Both cells and genes are ordered according to their
PCA scores and loadings respectively along each PC. Setting
cells.use to a number plots the “extreme” cells on both
ends of the spectrum. For example, here we see that genes with
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Fig. 7 Heatmaps showing expression of top 15 positive and negative loading genes in individual cells along
PC1-PC12

low values of PC3 are astrocytes, characterized by the expres-
sion of the transporters SLCIA2 and SLCIA3.

PCHeatmap(object = snd, pc.use = 1:12, cells.use = 500, do.balanced = TRUE, la
bel.columns = FALSE, use.full =
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Fig. 8 Standard-deviation (y-axis) accounted for by the top 50 PCs (x-axis) to
approximately identify the number of significant PCs based on the presence of an
“elbow.” Approximately 25 PCs are chosen for downstream analysis

While there are many formal methods to determine the number
of statistically significant PCs (e.g., see Shekhar et al., Cell, 2016
[13]), a particularly easy and popular method is to examine the
successive reduction in variance captured by increasing PCs, and
identify an “elbow” where inclusion of PCs is of marginal utility
(this is often called the “noise floor”). We do this using the Seurat
function PCE1lbowPlot (Fig. 8).

PCElbowPlot(object = snd, num.pc = 50)

2.7 Identify Clusters 1. We choose 25 PCs based on Fig. 8. Every cell in the data is thus
reduced from ~23,000 genes to 25 PCs (a ~1000 fold reduc-
tion in dimensionality!). Next, we determine subpopulations in
this data using Graph-based Clustering [48] using the Seurat
FindClusters function. Graph clustering has been widely
used in recently scRNA-seq papers and has many desirable
properties compared to other methods such as k-means clus-
tering, hierarchical clustering, and density-based clustering.
Here, we first build a k-nearest neighbor graph on the data,
connecting each cell to its k-nearest neighbor cells based on
transcriptional similarity. The nearest neighbors are determined
based on proximity in PC space using a Euclidean distance
metric. Next, similar to the strategy employed in Levine et al.
[49] and Shekhar et al. [13], the graph edge weights are refined
based on the Jaccard-similarity metric, which removes spurious
edges between clusters. FindClusters implements an algo-
rithm that determines clusters that maximize a mathematical
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function known as the “modularity” on the Jaccard-weighted
k-nearest neighbor graph. The function contains a resolu-
tion parameter that tunes the granularity of the clustering,
with increased values leading to a greater number of clusters.
We use a value of 1, but variations in this parameter need to be
tested to check for robustness.

# save.SNN = T saves the SNN so that the clustering algorithm can be rerun usi
ng
# the same graph but with a different resolution value (see docs for full
# details)
snd <- FindClusters(object = snd, reduction.type = "pca", dims.use = 1:25, res
olution = 1,

print.output = @, save.SNN = TRUE, force.recalc = TRUE)
table(snd@ident)
##
#H# (%] al 2 3 4 5 6 7 8 9 18 11 12 13 14
## 4058 3642 2877 2214 2061 1942 15932 1806 1805 1462 1432 1248 1232 977 931
## 15 16 17 18 19 286 21 22 23 24 25
## 771 673 654 624 599 399 325 285 215 139 30

2. Thus, we obtain 26 clusters in the data. We can visualize the
clusters using t-distributed stochastic neighbor embedding
(t-SNE) [50], a 2-d embedding of the cells that preserves
local distances (Fig. 9). The cells are colored according to the
cluster labels,

40
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Fig. 9 Visualization of Lake et al. data using t-distributed neighbor embedding (t-SNE). Cells are colored
according to their cluster membership
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Fig. 10 Dendrogram showing transcriptional relationships between clusters (nodes)

snd <- RunTSNE(object

TSNEPlot(object

snd, dims.use = 1:25, do.fast = TRUE)

snd, do.label = TRUE, pt.size = 0.4)

3. Next, we arrange the clusters on a dendrogram based on the

similarity of their average transcriptomes using Seurat’s
BuildClusterTree function (Fig. 10). This helps in visualiz-
ing relationships between clusters, and also reveals subgroups
of related clusters.

snd <- BuildClusterTree(snd, do.reorder = T, reorder.numeric = T, genes.use =
snd@var.genes, show.progress = FALSE)

4. At this point, it is important to note that whether or not we

have found the “optimal” number of clusters is open to inter-
pretation. Importantly, the criterion of what constitutes a cell
type cluster must be independent of the algorithm’s objec-
tive—it could be data driven, such as a minimum number of
differentially expressed genes enriched in that cluster compared
to the rest, or the ability of the algorithm to recover certain
well-known types (i.e., ground truth). Often, however, the
validation of scRNA-seq clusters requires aligning molecular
identity to other cell modalities such as morphology, location,
and function through experimental techniques.

Here we adopt a data-driven criterion to assess cluster stability.

Briefly, Seurat’s AssessNode function trains a classifier on each
binary node of the dendrogram, and calculates the classification
error for left/right clusters. We can use this information to collapse
any node that exhibits >15% classification error.
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node.scores <- AssessNodes(snd)

## Growing trees.. Progress: 74%. Estimated remaining time: 1@ seconds.
## Growing trees.. Progress: 49%. Estimated remaining time: 32 seconds.
## Growing trees.. Progress: 73%. Estimated remaining time: 11 seconds.
## Growing trees.. Progress: 98%. Estimated remaining time: @ seconds.

node.scores <- node.scores[order(node.scores$oobe, decreasing = T), ]
print(head(node.scores))

## node oobe
## 20 49 9.11187095
## 19 48 ©.099380741
## 21 50 0.07690141
## 16 46 ©.07390206
## 17 47 ©.85475130
## 5 34 ©9.03921569

2.8 Gompare 1. Here, we see that the maximum “out of bag classification
Clusters with Original error” (OOBE), is less than our threshold. Thus, we retain
Cell Type Labels from all 26 clusters. Next, we compare our clustering result to the
Lake et al. [39] cluster labels published in Lake et al. [39], which nominated

33 clusters in their analysis. While we have obviously fewer
clusters, it would be interesting to examine how they compare
to Lake et al.’s results. We first read in their cluster labels,

lake_clusters = unlist(lapply(strsplit(colnames(snd@data), ), function(x) x

[2]))
names(lake_clusters) = colnames(snd@data)
length(table(lake_clusters))

## [1] 33
head(table(lake_clusters))

## lake_clusters
## Ast End Ex1 Ex2 Ex3a Ex3b
## 2409 218 5669 310 588 1089

Here, Ast refers to astrocytes, End refers to endothelial cells,
Ex1 refers to Excitatory neuron group 1, and so on. To compare
our cluster labels against Lake et al.’s, we plot a “confusion matrix,”
where each row corresponds to one of Lake et al’s 33 clusters, while
each column corresponds to our cluster (Fig. 11). The matrix is
row-normalized to depict how each cluster of Lake et al. distributes
across our clusters.
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Fig. 11 Transcriptional correspondence between clusters determined from the Lake et al. dataset in this study
and in the original study. Circles depict the percentage of cells of a given Lake et al. cluster (row) assigned to a
cluster determined above (column)

A = table(lake_clusters, snd@ident)
# we post-hoc specify the row order to make the matrix diagonal
row.order = c("Purkl", "Purk2", "Gran", "In7", "In8", "In6a", "In6b", "In4b",
"Inlc",

"INz, “In3%,. “Inla®,. “Inlb™, “Inda®, “OPCY, *EX6bY, “Ex6a, "“Ex8", “EX3a*
, "Ex3b",

TEX3ct; “Ex3d"; "Ex3e®, “Ex4Y; "Ex5af; MEx5bh?; TExIV, UEx2®; MMich,: "Pert;
"End",

"Ast", "01li")
a = plotConfusionMatrix(A[row.order, ])

2. Encouragingly, we see that although our analysis workflow was
agnostic to the results reported in the original paper, many of
our clusters exhibit a 1:1 correspondence with the clusters of
Lake et al. For example, Cluster 21 (% = 624) corresponds to
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Fig. 12 Cluster composition of each brain region. Circles indicate the proportion of each cluster (columns)
within each region (row). Each row sums to 1

Microglia (Mic), while Cluster 25 (#» = 4058 cells) corre-
sponds to Oligodendrocytes (011). In cases where multiple
Lake et al. clusters map to our clusters, these are related. For
example, Purkinje cell clusters Purk1 and Purk2 map to Clus-
ter 1 (» = 977), while inhibitory neurons In6a and In6b map
to Cluster 6 (n = 1462). It is likely that a second round of
iterative clustering might be necessary to resolve differences
between closely related types such as In6a and In6b. While
all of this is encouraging, we also note some discrepancies—
Clusters 2 (n = 390), 24 (n = 139) and 26 (» = 30), do not
really correspond to any of the Lake et al.; clusters, while
clusters 18 (z = 20061) and 19 (» = 2877) appear to nonspe-
cifically map to many Lake et al. clusters.

. We can visualize the cluster composition of each of the three

brain regions (Fig. 12),

# Each row 1is normalized to a 100%
plot_sample_dist(snd, row.scale = TRUE)

2.9 Identify Cluster-
Specific Differentially
Expressed Genes

As can be seen Clusters 1-4 and 26, which include Purkinje

neurons and Cerebellar granule cells, are exclusive to the CB sam-
ple, while majority of the remaining clusters are derived from the
FC and VC samples.

1. Next, we find cluster-specific markers by performing a differ-

ential expression (DE) analysis between each cluster and the
rest using Seurat’s FindMarkers function. FindMarkers
supports the use of multiple statistical approaches for DE (spe-
cified in the test.use parameter, see Seurat documentation).
Here, we use the Student’s t-test, as it is computationally
efficient. However, we note that there are many limitations to
using the t-test for single-cell RNA-seq data, particularly its
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inability to account for zero inflation. Readers must explore
other methods such as MAST and tweeDEseq supported by
Seurat (for a comprehensive review on DE methods, see Sone-
son and Robinson [51]).

# find markers for every cluster compared to all remaining cells, report only

the
#p

snd.markers <- FindAllMarkers(object

hre

hea

H##
##
##
Hi
##
H#i#
##

ositive ones

sh.use = 0.25,
test.use A MaX.
d(snd.markers)

p_val
GRID2 ©.000000e+00
RORA 0.000000e+00
INPP4B 4.623397e-308

GRM1 5.438182e-270
UNCS5C 5.279446e-252
SYN3 1.012546e-197

2.

= snd, only.pos = TRUE, min.pct = 0.25, t
cells.per.ident = 1000)
avg_logFC pct.1 pct.2 p_val_adj cluster gene
2.283338 0.999 0.422 0.000000e+00 1 GRID2
1.760396 ©.991 ©.588 0.000000e+00 1 RORA
1.120327 ©.878 ©.228 1.082476e-303 1 INPP4B
0.964801 0.831 0.164 1.273242e-265 1 GRM1
1.826785 ©.889 ©.339 1.236077e-247 1 UNC5C
©.825126 ©.820 ©.308 2.370674e-193 1  SYN3

The output is a data.frame object summarizing the cluster-
specific markers. Here, each row is a gene that is enriched in a
cluster indicated in the column cluster. pct.1 is the pro-
portion of cells in the cluster that express this marker, while
pct. 2 is the proportion of cells in the background that express
this marker. We can examine markers for a given cluster as
follows,

clust = 25 # Oligodendrocytes

hea

H##
##
##
##
##
##
##

d(subset(snd.markers,

p_val
PLP11 ©.000000e+00
MOBP1 2.972597e-177
TF 7.315453e-133
FRMD4B1 2.7608596e-125

CLDN11 1.497425e-117
TMEM144 4.327291e-105

3.

cluster == clust & pct.2 < 0.1))

avg_logFC pct.1 pct.2 p_val_adj cluster gene
1.6572808 ©.873 0.084 ©.000000e+00 25 PLP1
1.0967866 ©.660 0.057 6.959740e-173 25 MOBP
0.8444486 0.513 0.6039 1.712767e-128 25 TE
©.7469469 ©.519 0.084 6.463384e-121 25 FRMD4B
©.7452380 0.483 0.6851 3.505920e-113 25 CLDN11
0.6684642 ©.434 0.0648 1.013149e-100 25 TMEM144

As expected, the top two genes are PLPI (Proteolipid Protein
1) and MOBP (Myelin-Associated Oligodendrocyte Basic Pro-
tein), classical markers of Oligodendrocytes. Next, we examine
cluster 12 (an excitatory neuronal cluster), which corresponds
to Ex6a, and is marked by multiple genes including HTR2C
and NPSRI1-ASI (Fig. 13).



SLC17A7

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Identity

HTR2C
2.0 '
151 3 )
104 N . B N %
051" ‘ ‘ - 4 L |
0.0 {—==m L-

1 2 3 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Identity
NPSR1-AS1

1.5

é 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Identity

Fig. 13 Cluster-expression of a pan-excitatory neuronal marker SLC17A7 (top) and markers specific to cluster
12 HTR2C (middle) and NPSR1-AST (bottom)

head(subset(snd.markers, cluster == 12 & pct.2 < 0.1))

H# p_val avg_logFC pct.1l pct.2 p_val_adj cluster
## HTR2C 2.715453e-67 1.0524759 0.842 0.018 6.357689%e-63 12
## RP11-420N3.3 4.584219%e-39 0.6270714 0.702 0.095 1.073303e-34 12
## NPSR1-AS1 4.002079%e-37 0.6707752 0.651 0.013 9.370068e-33 12
#i# IFNG-AS1 2.622851e-35 0.6828199 0.623 0.011 6.140881e-31 12
## PCP4 1.398067e-22 0.4261675 0.535 0.080 3.273294e-18 12
## CRYM 1.012721e-21 ©.3684937 0.507 0.068 2.371085e-17 12
## gene
## HTR2C HTR2C
## RP11-420N3.3 RP11-420N3.3
## NPSR1-AS1 NPSR1-AS1
## IFNG-AS1 IFNG-AS1
## PCP4 PCP4
## CRYM CRYM

VlnPlot(snd, c("SLC17A7", "HTR2C", "NPSR1-AS1"), nCol = 1, point.size.use = @.
01)
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2.10 Examine

Clusters

for Enrichment
of Biological

Processes

Examining the identity of these clusters in detail is beyond the
scope of this workflow. Readers are encouraged dig deeper, and
attempt to test variations in the methods outlined above. We end by
demonstrating two common approaches to interpret results:
(a) Examining gene-set enrichments, and (b) aligning clusters to
alternative datasets.

1. After identifying markers, we can evaluate whether cluster-
specific genes are enriched for any Gene Ontology (GO), Dis-
ease Ontology (DO), or Disease Gene Network (DGN) gene
lists or categories. Each of these calls has multiple parameters,
reflecting stringency of statistical overlap, but they are useful
tools to evaluate clusters for functional or disease relevance.

#### evaluate for each cluster##t

require(org.Hs.eg.db)

## Loading required package: org.Hs.eg.db

H##

x = as.list(org.Hs.egALIAS2EG)
genelist = rep(@, nrow(Count.mat_sndrop))
names(genelList) = rownames(Count.mat_sndrop)
genelList = genelist[intersect(names(genelList), names(x))]
newallgenes = names(genelList)
for (ii in 1:length(genelList)) {

names(genelList)[ii] = x[[names(geneList)[ii]]][1]

}

gene_enrichment_results = list()

for (cl in as.character(unique(snd.markers$cluster))) {
print(paste@®("Running cluster ", cl))

genes = subset(snd.markers, cluster == cl)$%gene

gene_enrichment_results[[cl]] = list()

#i### Run against topGO#it#

genelList = genelist

testgenelist[which(newallgenes %in% testgenes)] = 1

genegene_enrichment_results = list()

test

test

tabl

= ¢c()

for (ont in c("BP", "MF", "CC")) {

e sessio

annot =

”elim”,

sampleGOdata
n“!

ontology
annFUN.org,

mapping =

<- suppressMessages(new("topGOdata", description = "Simpl
= ont, allGenes = as.factor(testgeneList), nodeSize = 180,

"org.Hs.eg.db", ID = "entrez"))

resultTopGO.elim <- suppressMessages(runTest(sampleGOdata, algorithm =

statistic
resultTopGO.c

= "Fisher"))
lassic <- suppressMessages(runTest(sampleGOdata, algorith
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m = "classic",
statistic = "Fisher"))
## look at results
tabl <- rbind(tabl, GenTable(sampleGOdata, Fisher.elim = resultTopGO.e
lim,
Fisher.classic = resultTopGO.classic, orderBy = "Fisher.elim", top
Nodes = 200))

}
gene_enrichment_results[[cl]][["topGO"]] = tabl

#### Run against DOSE#i#
X <- suppressMessages(enrichDO(gene = names(testgenelList)[testgenelList ==
11,

ont = "DO", pvalueCutoff
estgenelist),
minGSSize = 5, maxGSSize = 500, qvalueCutoff = 1, readable = T))
gene_enrichment_results[[cl]][["D0"]] = x
dgn <- suppressMessages(enrichDGN(names(testgenelList)[testgenelist == 1]))
gene_enrichment_results[[c1]][["DGN"]] = dgn

1, pAdjustMethod = "BH", universe = names(t

}

## [1] "Running cluster 1"
## [1] "Running cluster 2"
## [1] "Running cluster 3"
## [1] "Running cluster 4"
## [1] "Running cluster 5"
## [1] "Running cluster 6"
## [1] "Running cluster 7"
## [1] "Running cluster 8"
## [1] "Running cluster 9"
## [1] "Running cluster 10"
## [1] "Running cluster 11"
## [1] "Running cluster 12"
## [1] "Running cluster 13"
## [1] "Running cluster 14"
## [1] "Running cluster 15"
## [1] "Running cluster 16"
## [1] "Running cluster 17"
## [1] "Running cluster 18"
## [1] "Running cluster 19"
## [1] "Running cluster 20"
## [1] "Running cluster 21"
## [1] "Running cluster 22"
## [1] "Running cluster 23"
## [1] "Running cluster 24"
## [1] "Running cluster 25"
## [1] "Running cluster 26"

save(gene_enrichment_results, file = "gene_enrichment_analysis.rda")

2. As an example, view the GO, DO, and DGN categories
enriched for genes distinguishing cluster 1 (Purkinje Neurons).
Note that the categories are arranged by adjusted p-value, and
many are not significantly enriched.
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gene_enrichment_results[["1"]][["topGO"]][1:5, ]

H# GO.ID Term Annotated
## 1 G0:0035235 ionotropic glutamate receptor signaling ... 25
## 2 G0:0071625 vocalization behavior 17
## 3 G0:0007612 learning 131
## 4 G0:1904861 excitatory synapse assembly 10
## 5 G0:0051965 positive regulation of synapse assembly 63
##  Significant Expected Rank in Fisher.classic Fisher.elim Fisher.classic
## 1 6 0.14 6 4.1e-09 5.1e-89
## 2 4 0.09 16 2.0e-06 2.3e-06
## 3 7 0.73 24 8.4e-06 1.1e-85
## 4 3 0.06 31 2.0e-05 2.2e-05
## 5 5 0.35 32 2.6e-05 3.1e-05

gene_enrichment_results[["1"]][["DO"]][1:5, ]

Eicis iD Description
## DOID:0060037 DOID:0060037 developmental disorder of mental health
## DOID:1827 DOID:1827 idiopathic generalized epilepsy
## DOID:0860041 DOID:0060041 autism spectrum disorder
## DOID:12849 DOID:12849 autistic disorder
#i# DOID:0060040 DOID:0060040 pervasive developmental disorder
## GeneRatio BgRatio pvalue p.adjust gqvalue

## DOID:0060037
## DOID:1827

## DOID:0060041
## DOID:12849
## DOID:0060040

12/57 344/7041 1.474101e-05 ©.002046357
4/57 20/7641 1.698221e-05 0.002046357
7/57 171/7041 4.187781e-04 ©.025231379
7/57 171/7041 4.187781e-04 ©.025231379
7/57 180/7041 5.704404e-04 ©.027495225

0.001921672
0.001921672
0.023694023
0.023694023
©.025819932

##

genelD

## DOID:0060037 AUTS2/CACNA1A/CNTNAPS/GRIA3/MACROD2/NBEA/NLGN1/NOS1AP/NRXN1/SH
ANK2/SYN3/XKR4

## DOID:1827
D2/HCN1/KCNMA1

## DOID:0060041
1/NOS1AP/NRXN1

## DOID:12849
1/NOS1AP/NRXN1

## DOID:0060040
1/NOS1AP/NRXN1

H## Count
## DOID:0060037 12
## DOID:1827 4
## DOID:0e60041 7
## DOID:12849 7
## DOID:0060040 7

CACNA1A/GA
AUTS2/CNTNAP5/MACROD2/NBEA/NLGN
AUTS2/CNTNAPS/MACROD2/NBEA/NLGN

AUTS2/CNTNAPS/MACROD2/NBEA/NLGN

gene_enrichment_results[["1"]][["DGN"]][1:5, ]

# iD Description GeneRatio
## umls:C1272641 umls:C1272641 Systemic arterial pressure 19/89
## umls:C1271104 umls:C1271104 Blood pressure finding 18/89
## umls:C0236969 umls:C0236969 Substance-Related Disorders 10/89
## umls:C1510586 umls:C1510586  Autism Spectrum Disorders 10/89

## umls:CO0B7758 umls:COLLT7758 Cerebellar Ataxia 6/89



HH
##
H##
Hit
##
Eas
Hit

umls
umls
umls
umls
umls

genelD
## umls:C1272641 105/26053/129684,/64478/728215/9758/442117/23072/3778/140733/2
3026/30010/5592/6446/57419/23345/84216/440279/114786

## umls:C1271104
733/23026/30010/5592/57419/23345/84216/440279/114786
## umls:C0236969
3899/64478/55691/2893/10207,/140733/9369/23345/114786
## umls:C1510586
53/776/1804/140733/26960/22871/9378/9369/22941/26137
## umls:COBB7758
773/2259/2572/2895/2911/23345

it
#H#
H#it
Hit
H#
Hit

umls
umls
umls
umls
umls

:C1272641
:C1271104
: 0236969
:C1518586
:Ceea7758

2.11 Compare
with Mouse Cortical
Cell Types
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BgRatio pvalue p.adjust qvalue
:C1272641 442/17381 7.549992e-13 3.439175e-10 3.250238e-10
:C1271104 386/17381 8.367822e-13 3.439175e-10 3.250238e-10
:C0236969 167/17381 1.354158e-08 3.710394e-06 3.506557e-06
:C1510586 246/17381 5.129828e-07 1.054180e-04 9.962667e-05
:Ceea7758 107/17381 1.815118e-05 2.984054e-03 2.820120e-03

Count
19

18

10

10

6

105/26053/129684/64478/728215/9758/442117/23072/3778/140

105/

260

1. One of the many challenges in cell type classification studies is

that of aligning clusters across different datasets, which might
include different batches, different conditions (e.g.,
normal vs. disease), or even different species. Here we attempt
to map clusters from a dataset of visual cortex (VC) neurons
isolated and profiled from adult mouse using the Smart-seq
method [15] to our Human CB, VC, and FC clusters using a
supervised learning algorithm. We use a multiclass classification
approach described previously [13].

First, we read in the mouse VC data comprised of 1679 cells

and create a Seurat S4 object. To match the gene ID’s to Human
data, we capitalize all gene names—note that a more exact, albeit
lengthier approach, would be to match genes based on an appro-
priate orthology database. We also read in the cluster assignments
of each cell. Tasic et al. identified 49 transcriptomic types, compris-
ing 23 inhibitory, 19 excitatory, and 7 non-neuronal types [15]. We
next select features to train our classifier. We identify variable genes
using Seurat’s FindVariableGenes function (Fig. 14), which is
more appropriate for Smart-seq data [40]. After expanding the set
of variable genes in the snRNA-seq data using NB.var .genes, we
compute the common variable genes to train a multi-class classifier.
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Fig. 14 Identification of highly variable genes using Seurat’s F indvar iableGenes function (see documen-
tation for details). This is an appropriate strategy for feature selection on scRNA-seq that does not contain UMIs

tasic_data = Matrix(as.matrix(read.csv("tasic_2016/genes_counts_2.csv", header
= TRUE,
row.names = 1)), sparse = TRUE)
# Change gene name format to match to Human
rownames(tasic_data) = toupper(rownames(tasic_data))
mouse_vc <- CreateSeuratObject(raw.data = tasic_data, min.cells = 10, min.gene
s = 500,
project = "tasic")
mouse.clusters = read.csv("tasic_2016/cluster_assignment_simple.csv", row.name
s = 2)
mouse.labels = mouse.clusters$primary
names(mouse.labels) = rownames(mouse.clusters)
mouse_vc@meta.data$type = mouse.labels[rownames(mouse_vc@meta.data)]

mouse_vc = SetAllIdent(mouse_vc, id = "type")
mouse_vc <- NormalizeData(object = mouse_vc, normalization.method = "LogNormal
ize”,

scale.factor = 10000)
mouse_vc <- FindVariableGenes(object = mouse_vc, mean.function
ersion.function = LogVMR, x.low.cutoff = 0.0125, x.high.cutoff
0.5, set.var.genes = TRUE)

ExpMean, disp
3, y.cutoff =

var.genes_snd = NB.var.genes(snd, do.idents = FALSE, num.sd = 0.8, do.plot = F
ALSE, set.var.genes = FALSE)

## [1] "Identifying variable genes based on UMI Counts. Warning - use this onl
y for UMI based data"

## [1] "Using diffCV = 0.11 as the cutoff"

## [1] "Considering only genes with mean counts less than 3 and more than ©.00
5Il

## [1] "Found 1977 variable genes™

var.genes = intersect(var.genes_snd, mouse_vc(@var.genes)



Identification of Cell Types from Single-Cell Transcriptomic Data 73

2. Next, we train a Random Forest (RF) model [52] on the
snRNA-seq data and use that to assign cluster labels to mouse
VC data. Given a cell, the classifier maps it to one of 26 clusters.
To account for scale differences between the snRNA-seq (3-
'-biased, UMI-based) and Smart-seq (full-length, non-UMI-
based), we standardize the two datasets (z-score values along
each gene). After training it on the snRNA-seq data, we apply
this classifier to each cell from the mouse VC data, and assign it
to one of 26 snRNA-seq clusters.

rf_model = RF_train(snd, var.genes, do.scale = TRUE)

## [1] "Using mininum of 5@ percent cells or 700 cells per cluster for trainin
g"
## [1] 13067

pred.labels <- predict(rf_model, t(t(scale(t(mouse_vc@data[var.genes, ])))))
pred.labels <- factor(as.numeric(as.character(pred.labels)) + 1)
names (pred.labels) = colnames(mouse_vc@data)

3. How do the cluster assignments compare with the cluster labels
obtained from Tasic et al. [15]? Note that the latter labels were
not used in any way to either construct the classifier, or to
influence the cluster assignment of cells. It would therefore
be interesting to see if there is any correspondence between
mouse cortical cell types, and their assigned “Human” type
based on an unbiased classifier. We examine the confusion
matrix, as before (Fig. 15),

a = plotConfusionMatrix(table(mouse.labels, pred.labels), order = "Row")

The rows correspond to the Tasic et al. clusters, while each
column corresponds to an snRNA-seq cluster. The matrix is
row-normalized, such that each row adds up to a 100%. First, we
see that Clusters 1-4 and 26, which are of Cerebellar origin, receive
very few matches from mouse VC data, which largely map to
Human clusters originating from VC and FC samples. Among
non-neuronal cells, we see that mouse astrocytes and oligodendro-
cytes map to clusters 23 and 25, which are Human astrocytes and
oligodendrocytes, respectively. Inhibitory neuronal groups expres-
sing parvalbumin ( Pralb), Somatostatin (Sst), and Vasoactive intes-
tinal peptide (V7p) map to clusters 6, 5, and 8 respectively.
Examining the expression of these markers in the snRNA-seq data
validates the RF cluster assignments (Fig. 16). Thus, despite the
fact that these two data sets differ in species (human vs. mouse), cell
fraction profiled (cytoplasmic vs. nucleus-only), profiling method
(Smart-Seq vs. droplet-based sequencing), and clustering method
(gene clustering vs. PCA-based methods vs. PCA-Louvain cluster-
ing), the overall results are comparable and interpretable, suggest-
ing that the transcriptomic space these cells occupy is being
appropriately parsed into subtypes.
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This concludes the basic workflow. We can save files from the

analysis as follows.

3 65 6 7 8 910 11 12 14 15 16 17 18 20 21 22 23 24 25
San

1

c(“snd”,“snd.markers

Fig. 15 Transcriptional correspondence between mouse cortical clusters reported in Tasic et al. [15] (rows)

and those in this study (columns). Representation as in Fig. 11

VinPlot(snd, c("PVALB",
isObject.Rdata”)

save(list
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Fig. 16 Expression of three classic markers known to distinguish inhibitory neuronal categories PVALB (top),
SST (middle), and VIP (bottom)
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