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ABSTRACT	OF	THE	DISSERTATION	

Sensor	Validation	and	Digital	Biomarker	Exploration	for	Health	Monitoring	

by	

En	Fan	(Sophia)	Chou	

Doctor	of	Philosophy	in	Biomedical	Engineering	

University	of	California,	Irvine,	2023	

Professor	Michelle	Khine,	Chair	

We	live	in	an	era	where	advanced	technology	is	enhancing	the	quality	of	life.	With	

the	assistance	of	new	medical	devices	and	activity	trackers,	our	knowledge	and	awareness	

of	our	own	health	and	disease	state	have	grown	rapidly.	However,	existing	products	still	

suffer	from	severe	limitations.	For	instance,	hemodynamic	monitoring	is	essential	for	

specific	populations	with	conditions,	as	hypotension	and	hypertension	may	impair	vital	

organ	function.	Continuous	monitoring	provides	more	information	about	how	blood	

pressure	(BP)	and	heart	rate	(HR)	fluctuate,	but	current	sphygmomanometers	provide	only	

static	measurements.	While	current	medical-grade	continuous	BP	monitors	exist,	they	are	

limited	to	critically	ill	patients	due	to	their	bulkiness	and	price.	On	the	other	hand,	activity-

tracking	smartwatches	are	either	inaccurate	or	intermittent.	We	have	been	developing	soft	

conformal	pressure	sensors	that	are	lightweight,	inexpensive,	and	comfortable	to	wear.	The	

aims	of	this	work	include	validating	the	performance	of	the	sensor	in	tracking	beat-to-beat	

BP	and	exploring	how	the	data	can	be	understood	in	various	clinical	settings.	The	pressure	

sensors	were	compared	against	both	invasive	and	FDA-cleared	noninvasive	BP	devices.	In	

addition	to	the	beat-to-beat	absolute	systolic	and	diastolic	BP,	the	waveform	shape	
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analysis,	HR,	HR	variability	(HRV),	and	temporal	response	to	vasopressors	show	promising	

potential.	Yet,	how	the	data	is	interpreted	is	challenging	even	with	accurate	recordings	

from	devices.	For	this	reason,	we	explore	continuous	physiological	data	to	determine	its	

predictive	capabilities	in	well-controlled	clinical	settings.	

One	promising	digital	biomarker	that	has	been	widely	studied	for	the	past	several	

decades	is	heart	rate	variability	(HRV).	More	and	more	methods	of	evaluating	HRV	have	

been	proposed,	yet	its	prognostic	potential	remains	unclear.	Hence,	our	first	study	covers	

the	fundamentals	of	HRV	analysis,	including	investigating	the	proper	minimum	data	length	

of	each	common	HRV	measure	in	young	healthy	subjects.	Next,	we	explore	clinical	

applications	via	an	ongoing	sleep	study	and	electroacupuncture	(EA)	study	with	our	clinical	

collaborators.	The	apnea-hypopnea	index	(AHI)	is	commonly	used	to	diagnose	sleep	apnea	

in	clinical	practice.	A	counterargument	is	that	AHI	cannot	holistically	represent	the	

disorder	without	considering	the	full	picture	of	physiological	characteristics	such	as	the	

durations	and	depths	of	oxygen	desaturation	episodes.	To	discover	new	indicators	for	the	

severity	level	of	sleep	apnea,	we	demonstrate	that	the	nasal	airflow	signal	alone	could	

predict	arousal	using	a	deep	learning	method	with	an	accuracy	of	85%.	For	the	EA	clinical	

study,	we	seek	to	understand	how	this	therapy	regulates	BP	among	hypertensive	subjects.	

Throughout	8	weeks	of	EA	at	cardiovascular-specific	acupoints,	we	assessed	changes	in	

both	HRV	and	BPV.



INTRODUCTION

High-valued health care is inevitable in human society. The seeking of life-saving

medical breakthroughs never ends. The pandemic, COVID-19, brought many a higher level

of awareness of wellness while we mourn individual losses. To ensure quality of life,

healthcare nowadays is taking a step towards preventive healthcare, decentralized

monitoring, and data-driven science.

Besides the outbreak of COVID-19, society already exists tremendous healthcare

issues such as the prevalence of chronic conditions and the growth of the geriatric

population. Studies have shown that the elderly, especially with their comorbidities, tend to

experience more severe symptoms and have a  higher mortality rate with COVID-19.1,2 With

these concerns and the increasing consciousness of general health, the market of global

wearable medical devices and health sensors is anticipated to expand.3,4 Moreover,

smartwatch companies are gradually stepping foot into this market for consumer health

tracking. According to the International Data Corporation (IDC) report, Apple Watches had

6.6% year-over-year growth and dominated the wearables market with a 30.5% market

share in Q1 2022 followed by Samsung, Xiaomi, and Huawei.5 While more and more people

track their activities with smartwatches or other digital health gadgets as part of their

routine, the expectation of being capable to measure more sophisticated health metrics is

becoming the norm. Hence, the challenges are not only obtaining the health data accuracy

but also making it understandable.

The International Organization for Standardization (ISO) develops international

standards to help understand the performance of health measurements. Furthermore, the
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United States Food and Drug Administration (FDA) which regulates whether a medical

device is safe and effective enough to be sold in the United States adopts ISO standards.

With that being said, most of the commercially available products that support health

information have a guideline to follow. On the other hand, numerous research articles

reported the accuracy of medical devices and smartwatches.6–12 Take blood pressure (BP)

monitoring for example, a BP cuff, as a common piece of equipment in a doctor’s office, it’s a

simple and convenient device. It provides valuable information on patients’ cardiovascular

health. Nevertheless, a single pair of BP results from a BP cuff can’t truly assist this highly

dynamic system. The critically ill patients at the hospital are often given arterial catheters

for continuous BP monitoring. Unfortunately, only a select group of patients receive this

procedure regarding how invasive it is.13,14 Over the past decade, there has been growing

interest in developing devices that can measure BP continuously and noninvasively. Most of

these market-available BP monitors are very pricey, bulky, and not as accessible to the

general public. Hence, it’s not commonly used. On the other hand, wristwatch-like BP

monitoring devices are considered more comfortable for daily normal activities. However, it

is hard to find one with beat-to-beat BP tracking. Moreover, the accuracy of BP

measurements is questionable.

Khine Lab has developed a soft conformal capacitive pressure sensor that is able to

directly measure mechanical changes on the surface of the skin as the result of arterial

pulsations. The focus of this dissertation is on validating the accuracy of this type of sensor

for monitoring physiological signals from the cardiovascular system and investigating the

potential biomarkers for clinical events and diseases. The dissertation is divided into the

following parts. Chapter one discusses the advantages and disadvantages of existing BP

2
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monitors and the objective of the present study. Chapter two reports the performance of BP

monitoring between the Khine Lab pressure sensor and two FDA-approved NIBP systems.

Chapter three shows the validation of the Khine Lab pressure sensor in comparison with

the gold standard in a clinical setting. Besides the BP tracking ability of this system, it is also

important to understand how to appropriately interpret the acquired physiological data.

The following three chapters explore the usage of digital biomarkers and their potential to

indicate or predict disease states. Chapter four aims to find the appropriate data length

when it comes to calculating HRV measures. Chapters five and six show preliminary data

from two ongoing clinical studies, the sleep and electroacupuncture study, respectively.

3



CHAPTER 1: Objective of present study

Portions of this chapter appears in the journal Advanced Healthcare Materials.15

Chapter 1.1: Objective of present study

Inspired by the late 80s children’s toy, Shrinky Dinks, the wrinkled stretchable

sensors developed in Khine Lab have the advantage of being mechanically reliable and

low-cost. In addition, the elastomeric material of the sensors improves conformability to

the human skin. Hence, these sensors can potentially be used for health monitoring as

cheaper and easier-to-wear options.

The objective of this dissertation is to evaluate the ability of continuous beat-to-beat

BP measurement using Khine Lab’s soft capacitive pressure sensor by comparing it against

the standard commercially available BP systems including both invasive and noninvasive

methods. To validate the sensing performance, not only the accuracy of beat-to-beat BP

values compared, but also the waveform similarity, heart rate (HR), and temporal response

to a vasopressor. Moreover, potential digital biomarkers obtained from physiological

measurements with the use of wearable sensors are explored. Specifically, the effect of data

length on various heart rate variability (HRV) measures among healthy young subjects is

discussed here.

Chapter 1.2: Standardization of BP monitor

Several organizations published the validation protocols for BP monitors:

4
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1.2.1 The American National Standards Institute, Inc/Association for the Advancement of

Medical Instrumentation/International Organization for Standardization (ANSI/AAMI/ISO)

As the standards development organizations, ANSI/AAMI/ISO provides a universal

guideline for validation procedure of noninvasive BP (NIBP) measuring devices accuracy

and performance.16

1.2.2 The Institute of Electrical and Electronics Engineers Standards Association (IEEE-SA)

In 2014, IEEE-SA published the standards focusing on wearable cuffless BP monitors

(IEEE-SA 1708™). The standard includes all types of BP measuring wearable devices such

as epidermal and unobtrusive ones. It is also not limited to intermittent or continuous BP

measurements.

Chapter 1.3: Measurement techniques for cuffless NIBP monitor

Undoubtedly, BP monitoring is an essential practice to understand cardiovascular

health. In the perioperative setting, acute fluctuations occurred often due to the changes in

hemodynamic status from anesthesia and pain. The arterial line (A-Line) and digital

sphygmomanometer are the two appropriate devices to monitor BP invasively and

noninvasively, respectively. A-Line is considered the gold standard which measures BP

directly through the cannulation of an artery. However, A-Line is associated with a variety of

medical complications17–20 and is required trained personnel to operate. There are less than

half of the critically ill patients received it.21 On the other hand, the digital

sphygmomanometer which uses the oscillometric technique, using automated inflatable

5
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brachial arm cuffs, is intermittent and only provides one systolic and diastolic BP value over

a duration of ≈30–40 s.22–24 The following sections discuss different techniques for BP

monitoring that are noninvasive and continuous.

1.3.1 The volume clamp method

In 1976, Penaz et al. proposed an indirect method to monitor BP called the volume

clamp method.25 With a combination of an inflatable cuff and a photodiode, the method

estimates the diameter of the artery and the pressure changes in the cuff. FDA-approved

devices ClearSight™ (Edwards Lifesciences, Irvine, CA) and CNAP® (Monitor 500,

distributed by BIOPAC® as NIBP100D) are based on this technique. These devices are

considered easy and convenient to use; however, they are fairly bulky and pricey. They are

mainly seen in a clinical setting but for one’s daily BP tracking.

1.3.2 Pulse wave velocity/pulse transit time-based estimation

In theory, pulse wave velocity (PWV) describes how fast the pressure pulses

propagate through an artery or the arterial tree whereas pulse transit time (PTT) provides

information about the arrival time of a pressure pulse between two different arterial sites.

It is often achieved using a combination of photoplethysmography (PPG) and

electrocardiography (ECG) or two PPG sensors placed on two different sites. PWV can be

viewed as the ratio of the distance between two regions of the human body ( ) and the𝐷

time that takes a pressure pulse to arrive from one arterial site to another (Equation 1-1)
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𝑃𝑊𝑉 =  𝐷
𝑃𝑇𝑇

(1-1)

While the implementation of this method does not require additional monitors, the

correlation between PWV/PTT and BP is yet fully developed. Although knowing they are

related, several studies have proposed models to show how PWV or PTT can estimate BP.

Some researchers presented methods based on linear regression.26–32 However, others

argued that the relationship was not always linear.33–35

7
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CHAPTER 2: Validation of soft wearable pressure sensors compared with

commercially available noninvasive BP systems

Portions of this chapter appear in the journal Advanced Healthcare Materials.15

We introduce soft capacitive pressure sensors that incorporate highly wrinkled Au

(wAu) thin films to develop soft stretchable electrodes for radial tonometry applications as

shown in Figure 2.1. The wrinkled structures of the Au thin film create mechanical

robustness for the thin film to repeatedly flex (Figure 2.1.b).

Figure 2.1. a) Image of how the pressure sensor is attached to the wrist. Photograph image of

the parallel wAu electrodes. b) Photographic image of a capacitive pressure sensor and a

scanning electron microscope (SEM) image of the wAu. c) Schematic illustration of the pressure

sensor when placed on the wrist above the radial artery. On the right, the pressure sensor is

deformed as blood pulses through the radial artery. A screw is used to add incremental pressure

to applanate the radial artery.

8
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This enables continuous arterial pulse pressure measurements with enough sensitivity

over a large dynamic range and fast response times of less than 10 ms to capture the details

of the pulse pressure waveform (Figure 2.2).

Figure 2.2. a) Example of arterial pulse waveforms measured by the capacitive pressure sensor

(top row) and the Clearsight™ device (bottom row). b) Inset of one pulse waveform indicating

cardiovascular features.

To assess the accuracy of these soft capacitive pressure sensors in continuous

measurements of beat-to-beat BP, two FDA-approved NIBP monitoring devices were used

as references. In the following sections of this chapter, we demonstrate the correlation

between pressure sensors and two references with different breathing maneuvers.

9



Chapter 2.1: Comparison between the pressure sensor and ClearSight™ with

alternative deep and normal breathing

2.1.1 Experimental setup for NIBP

To demonstrate beat-to-beat BP monitoring, we applied the soft capacitive pressure

sensors to healthy subjects under approval from the Institutional Review Board of the

University of California (IRB no.2016-2924). One soft capacitive pressure was tested on a

total of seven subjects to demonstrate robustness. Two additional soft capacitive sensors

were tested on Subject 1 to demonstrate reproducibility. The pressure sensor was attached

to the wrist over the radial artery. Afterward, the subjects were told to keep their palm

facing up and slightly hyperextended to help expose the radial artery on the surface of the

skin. Subjects were sitting up with the pressure sensor close to heart level during these

measurements. No allergic reactions or pain was reported by the subjects tested. For

arterial pulse measurements, the pressure sensor was mounted onto an acrylic backing

with a Velcro strap. A screw was attached to the acrylic backing such that the acrylic

backing can apply incremental pressure to applanate the radial artery. The incremental

pressure increased the baseline capacitance of the capacitive pressure sensor. The

schematic illustration for the pressure sensor device can be seen in Figure 2.1. Medical

tape, Tegaderm (3M Health Care) was also attached to the wrist to improve contact

between the pressure sensor and the human skin. Lastly, a polydimethylsiloxane (PDMS)

spacer (250 µm) was also used between the pressure sensor and the epidermis to further

compress the tissue and amplify the radial arterial pulse. As BP increases in the radial

10



artery, the radial artery expands deforming the surrounding tissue, subsequently deforming

the pressure sensor as seen in Figure 2.1.c. This pressure can be related to arterial BP as

long as the contact between the pressure sensor and the body is consistently maintained.

To evaluate the capacitive pressure sensor’s ability to measure beat-to-beat BP, the

pressure sensor was compared against an FDA approved finger volume clamp device,

ClearSight™. The ClearSight™ was attached to the right index finger of the subject.

Measurements were taken simultaneously where the pressure sensor measured the

pressure exerted by the radial artery and the ClearSight™ measured brachial arterial

pressure. An example of the radial arterial pulse waveforms measured from the pressure

sensor and the ClearSight™ is presented in Figure 2.3.a. As seen in Figure 2.3.b, the quick

response time and pressure sensitivity allowed for detection of the unique features in the

radial arterial pulse waveform including the late systolic peak, which is not easily

discernible in the ClearSight™ signal. The parameters that were investigated included

systolic (SBP), diastolic (DBP), and mean arterial pressures (MAP). These parameters are

the most common when evaluating a person’s cardiovascular health. The SBP is the BP

against the arterial walls when the heart has contracted, the DBP is the BP against the

arterial walls when the heart has relaxed, and the MAP is the average pressure throughout

one cardiac cycle and can be calculated using Equation 2-136

𝑀𝐴𝑃 =  𝐷𝐵𝑃 +  1
3 𝑃𝑃 (2-1)

where PP is the pulse pressure, which is equal to SBP minus DBP.
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Figure 2.3. a) Example of the four 70-beat sections from Subject 1 that were used to compare

between the capacitive pressure sensor and the ClearSight™. Arterial pulse waveforms are

shown in black and highlighted in red indicate the SBP and DBP. b) Linear regression analysis of

SBP, DBP, and MAP between the pressure sensor and the ClearSight™.

2.1.2 Beat-to-beat BP data analysis

When the ClearSight™ begins taking measurements, the ClearSight™ measures 10

cardiac cycles before a calibration step begins. After self-evaluation in accuracy, the

ClearSight™ then measures 20 cardiac cycles and repeats the calibration step. The

ClearSight™ will continue to measure additional cardiac cycles until it has reached 70

cardiac cycles at which the ClearSight™ is considered to be the most accurate and precise

in measuring BP. These epoch regions were where the capacitive pressure sensors were

compared against the ClearSight™. In addition, subjects were asked to alternate between

breathing deeply and normally after each subsequent 70-beat section, respectively. By

breathing deeply, it is possible to increase BP due to slight heart compression from lung

expansion.37 Subjects were asked to breathe deeply to assess the soft capacitive pressure

sensor’s ability to track larger changes in BP. Figure 2.3.a,b illustrates the data collected for
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one subject. The remaining subject data can be seen in Tables 2.1-2.3. In Figure 2.3.a,

qualitative analysis shows that the two devices measured similar trends in BP. This is

apparent during the deep breathing sections where low frequency BP changes are reflected

in both the pressure sensor and ClearSight™. The SBP, DBP, and MAP were subsequently

plotted against each other and analyzed using linear regression, as seen in Figure 2.3.b.

The goodness of fit between the pressure sensor and ClearSight™ device showed strong

correlation with R2 = 0.765 for SBP, R2 = 0.902 for DBP, and R2 = 0.839 for MAP. As stated

earlier, previous studies show that the ClearSight™ device has difficulties in measuring

accurate and precise SBP values, which could explain the lower R2 between the pressure

sensor and the ClearSight™.22,38–40

Table 2.1. R2 of SBP in each 70-beat section and four sections combined for seven young healthy

subjects.

Table 2.2. R2 of DBP in each 70-beat section and four sections combined for seven young

healthy subjects.

13

https://www.zotero.org/google-docs/?FFGkIX


Table 2.3. R2 of MAP in each 70-beat section and four section combined for seven young healthy

subjects.

To further assess the accuracy and precision of the pressure sensor’s ability to

monitor beat-to-beat BP, the pressure sensor was calibrated to the ClearSight™ to generate

a model for the pressure sensor and cross validated. To create the model, three consecutive

cardiac cycles were first averaged together. After averaging, 75% of the data was randomly

selected to generate a linear regression model for the pressure sensor. The remaining

withheld dataset from the pressure sensor was converted to units of BP–millimeters of

mercury (mmHg). An example of this calibration from one subject is shown in Figure

2.4.a–c.

Bland–Altman analysis was then used to assess the agreement in measurements of

BP between the pressure sensor and ClearSight™.41 Bland–Altman looks at the difference in
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BPs that were measured at the same time plotted against the average of the BP measured at

the same time. Larger differences would indicate larger disagreement between the two

devices. As shown in Figure 2.4.d, all seven subjects are compiled into one Bland–Altman

plot including data sets from Subject 1 that was tested with two additional sensors. Mean

bias and standard deviation calculated was −0.054 ± 2.09 mmHg. The ISO 81060–2 set by

the AAMI has indicated that a NIBP is deemed interchangeable with an arterial catheter if

mean biases are less than 5 mmHg with standard deviations of less than 8 mmHg.22,42 The

Bland– Altman analysis here shows that the mean bias and standard deviation are well

below the requirements indicated by the ISO standards. This suggests that the capacitive

pressure sensor is highly accurate and precise in measuring BP when calibrated to the

ClearSight™ device. However, it is important to note that the ISO standards require that

NIBP devices be directly compared against an arterial catheter and not against other NIBP

devices. Future studies are therefore required to compare against the gold standard,

arterial catheter. The soft capacitive pressure sensors show strong evidence that radial

tonometry is a feasible method for beat-to-beat NIBP monitoring. The capabilities to

accurately monitor a wide range of pressures are enabled by the electromechanical

properties of the pressure sensor. In addition, the quick response times of the capacitive

pressure sensors allowed for detecting the radial arterial pulse waveform with high fidelity

allowing for accurate and precise measurements of BP.
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Figure 2.4. Example of pressure sensor calibration model from Subject 1 for a) SBP b) DBP, and

c) MAP. d) Bland–Altman plot for all subjects combined. Data includes the different sensors

used on Subject 1 for a total of nine independent tests. Dashed lines indicate two standard

deviations and solid indicates mean bias.
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Chapter 2.2: Comparison between the pressure sensor, ClearSight™, and CNAP®

2.2.1 Experimental setup for NIBP

To understand the performance of the pressure sensors comparing against FDA

approved NIBP monitors, beat-to-beat BP measurements were collected using soft

capacitive pressure sensor and two FDA approved NIBP monitors, ClearSight™ and

CNAP®, simultaneously. The pressure sensor was set up following same instruction in

chapter 2.1.1. ClearSight™ and CNAP® were placed on the index and middle fingers of

opposite hands. Lastly, a wireless upper arm BP monitor, Evolv® (Omron Corporation,

Kyoto, Japan) was placed on the upper arm as the initial BP reference for the NIBP devices.

A total of three healthy young participants were recruited. They were asked to sit

quietly before and during the test. The NIBP systems acquired signals at the same time

while the participants resting in a sitting position with normal breathing.

2.2.2 Beat-to-beat BP data analysis

Similar to chapter 2.1.2., the correlation of beat-to-beat SBP and DBP of every two

NIBP systems were assessed using the goodness of fit in linear regression (Figure 2.5).

Table 2.4 shows the R2 values in SBP, DBP, and combined results of three participants.
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Figure 2.5. Linear regression analysis of a combination of SBP and DBP between two continuous

NIBP devices from Subject 1. The black circles and the red line represent the beat-to-beat SBP

and DBP values and the linear regression line of the two systems, respectively. The linear

regression analysis between two systems: a) the pressure sensor and the ClearSight™ system,

b) the pressure sensor and CNAP®, and c) the ClearSight™ system and CNAP®.

Table 2.4. The R2 values of SBP, DBP, and the combination of SBP and DBP between two

continuous NIBP systems from each participant.
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CHAPTER 3: Clinical validation of a soft wireless continuous blood

pressure sensor during surgery

Portions of this chapter appears in the journal Frontiers in Digital Health.43

With the confidence that the soft capacitive pressure sensors can be used as NIBP

monitors after certain calibration methodologies, we further compared the sensors against

an arterial catheter during surgery as a clinical validation.

Chapter 3.1: Abstract

We test a new wireless soft capacitance sensor (CAP) based on applanation

tonometry at the radial and dorsalis pedis arteries against the gold standard, invasive

A-Line, for continuous beat-to-beat BP measurements in the Operating Room (OR) during

surgical procedures under anesthesia in 17 subjects with the mean age and body mass

index (BMI) of 57. 35 ± 18.72 years and 27.36 ± 4.20 kg/m2, respectively. We have identified

several parameters to monitor in order to compare how well the CAP sensor tracks the

entire hemodynamic waveform as compared to the A-Line. This includes waveform

similarity, HR, absolute SBP, DBP, and temporal response to a vasopressor. Overall, the CAP

sensor shows good correlations with A-Line with respect to hemodynamic shape (r > 0.89),

HR (mean bias = 0.0006; SD = 0.17), absolute SBP, and DBP in a line of best fit (slope = 0.98

in SBP; 1.08 in DBP) and the mean bias derived from Bland-Altman method to be 1.92 (SD =

12.55) in SBP and 2.38 (SD = 12.19) in DBP across body habitus and age in OR patients

under general anesthesia. While we do observe drifts in the system, we still obtain decent
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correlations with respect to the A-Line as evidenced by excellent linear fit and low mean

bias across patients. When we post-process using a different calibration method to account

for the drift, the mean bias and SD improve dramatically to −1.85 and 7.19 DBP as well as

1.43 and 7.43 SBP, respectively, indicating a promising potential for improvement when we

integrate strategies to account for movement identified by our integrated accelerometer

data.

Chapter 3.2: Introduction

BP is one of the core physiological measurements of interest in virtually all

healthcare contexts as it provides insight into a patient’s cardiac function, volume status,

organ perfusion, and overall hemodynamic stability. It is typically monitored using a

noninvasive sphygmomanometer, otherwise known as the BP cuff, and in higher-risk

surgery may be monitored using an invasive A-Line. The A-Line is considered the gold

standard in capturing beat-to-beat BP values to detect immediate fluctuations. This

requires the insertion of a catheter into an artery, typically the radial or dorsalis pedis

arteries. Because A-Lines are invasive, they are associated with an increased risk of

complications including infection, thrombosis, and embolization.18,20,44 Clinicians may also

experience difficulty cannulating the arteries so clinical expertise is required for proper

insertion.45 As a result, 30% or less of patients in the OR or Intensive Care Unit (ICU)

receive A-Lines.44 Instead, the overwhelming majority of patients even in hospital settings

are only monitored intermittently using the BP cuff, which inherently lacks the temporal

resolution to detect real-time fluctuations in hemodynamically labile patients. Moreover,
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such intermittent measurements have been observed to under or overestimate BP readings

when compared with the A-Line.46,47 In fact, a recent study has shown that BP cuff

measurements are inaccurate (within ISO guidelines) up to almost 50% of the time.48 Since

BP is a dynamic physiological parameter that changes constantly over time, continuous

NIBP monitoring would reveal important hemodynamic information in real-time that is

currently delayed by the intermittent BP cuff readings. This is especially important when

labile BP warrants close monitoring–such as in the Emergency Room (ER), OR, or ICU

settings. Furthermore, as healthcare moves towards digital health, options for remote

continuous BP monitoring (e.g., in ambulatory settings) would be incredibly useful in the

management of hypertension, which affects roughly half of all American adults, as well as

other medical conditions with vascular underpinnings.49 This is particularly important for

personalized medicine—for example, to remotely monitor how patients respond to

vasoactive pharmaceuticals. For these reasons, noninvasive methods for continuous BP

monitoring, or NIBP, is an area of continued interest. Existing NIBP methods to capture

continuous BP include optical techniques; derivations based on other vital sign

measurements such as PTT; ultrasound technology; and tonometry. Concerning optical

techniques, ClearSight™ and CNAP® are both FDA-approved infrared PPG devices that use

the finger cuff volume clamp method. These devices are used preliminarily in the ICU or

post-operative patients in the hospital because patients must remain stationary, the

method is uncomfortable (a finger cuff repeatedly inflates), and they do not work well on

patients with peripheral vascular disease or administration of high-dose vasopressors.14,50,51
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More recently, cuffless PPGs have been used to indirectly estimate BP using PTT, which is

the time it takes for a BP waveform to propagate from one location to another. As such,

estimates depend on physiological conditions and have been shown to be inaccurate in

certain populations.52,53 More recently, conformal ultrasound patches can monitor BP

waveforms. However, they are yet to be wireless and require connection to a power source

and a benchtop machine to display the data.54,55 Finally, the last technology category,

tonometry involves applying force over the artery to measure the pulsatile displacement of

the vessel wall under applanation. Typically, the pressure transducers in this class have

been rigid, bulky, and shown to be inaccurate in obese and cardiac patients.56,57 We have

previously demonstrated the accuracy of a CAP sensor based on applanation tonometry for

continuous non-invasive measurement of BP compared to the FDA-approved NIBP monitor

ClearSight™ in a small cohort of healthy, young individuals.15 For clinical validation,

however, it is important to compare against the gold standard in a clinical setting across

body habitus and age. In this paper, we demonstrate calibration and comparison of pulse

waveforms from the CAP sensor to A-Line measurements taken simultaneously in the

intraoperative setting across 17 patients ranging in age from 24 to 79 years and

importantly, with BMI from 24 (normal) to 34 (obese) kg/m2. Importantly, to do our

comparison, we needed to develop an objective signal processing framework to analyze

large data sets of different length scales with real-world noise and motion artifacts.

Moreover, to make sense of the data, we needed to determine strategies to compare key

parameters.
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Chapter 3.3: Methods

BP data were acquired invasively and non-invasively using an A-Line and a CAP

sensor, respectively. Surgical patients aged 18 to 99 years under general anesthesia in the

OR setting who needed an A-Line placed as a standard of care were recruited at University

of California Irvine Health between June 2020 and March 2021. Exclusion criteria were

patients aged <18 years, refusal, or inability to give informed consent. All subjects gave

informed consent for the study which was approved by the Institutional Review Board of

the University of California (IRB no. 2019-5251).

3.3.1 Measuring devices and systems

This study simultaneously employed two continuous BP measurement systems

(Figure 3.1.a). The A-Line was inserted into the radial artery and connected to a pressure

transducer (ICU Medical Transpace© IV Monitoring Kit (60′′), REF no. 42584-05) and

displayed on a monitoring system (GE Patient Data Module & Monitoring system, General

Electric, Boston, MA). The A-Line signal was then captured at an average sampling rate of

100 Hz using a DAQ board (National Instruments cDAQ-9171 with NI 9234) with a custom

application written in C#.

The non-invasive system comprises a CAP sensor15 and an EcoBP58, an eco-friendly

dual-channel custom data acquisition board that includes an inertial measurement unit

(IMU). The CAP sensor was placed at the radial artery (or in two cases, the dorsalis pedis
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artery) for continuous arterial pressure measurement. The CAP signal was captured at a

sampling rate of 90 Hz in single-channel mode and 45 Hz in dual-channel mode.

Figure 3.1. a) Measurement setup in the OR. An A-Line was inserted in the radial artery. The

CAP system was placed either on the radial artery or the dorsalis pedis artery depending on the

procedure. b) An example of a 30-s segment raw signal acquired from A-Line, the CAP sensor,

and the accelerometer data that was used to compare waveform similarity, HR, and BP.

3.3.2 Experimental procedure

The A-Line was inserted into the radial artery on either arm and calibrated per

hospital protocol. A BP cuff (CRITIKON™ SOFT-CUF™REF SFT-A2-2A, GE Healthcare,
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Chicago, IL) was also placed on either arm for periodic measurements. The CAP sensor was

placed over the radial artery, on the arm without the A-Line, and stabilized with slight

pressure via mechanical fixation using Velcro strap, sea-band (Sea-Band Ltd., Hinckley,

Leicestershire, England), or Prelude Sync Radial Compression Device (Merit Medical

Systems, Inc.). In cases where the radial artery was not readily available for placement, the

dorsalis pedis artery was used (Figure 3.1). The EcoBP board was taped down onto the

skin using Transpore tape (3M, Minnesota, USA).

  After anesthesia induction, measurements were continuously collected from both

CAP (non-invasive) and A-Line (invasive) systems by the anesthesiologist for a minimum of

15 min during the operation. The timing of administration of all intraoperative vasoactive

medications was recorded in the electronic medical records (EMR).

3.3.3 Data extraction and quality assessment

The collected data was post-processed using Matlab (R2019b, The MathWorks,

Natick, Massachusetts, USA). The raw signals were first spline interpolated to 500 Hz. To

synchronize the signals recorded on different systems, cross-correlation was applied to the

signal obtained by differentiating the discrete sequence of systolic peaks. After signal

synchronization, clearly identified artifacts from invasive and non-invasive measurements

were cleaned out. The A-Line data was visually screened by the authors for errors;

excessively noisy sections defined by a sudden change of pressure >30 mmHg within two

beats were removed. On the other hand, artifacts in the CAP signals were removed based on

the movement data captured by the IMU. A 2.5-scaled median absolute deviation (MAD)
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filter was applied to accelerometer data on each of the 3 axes to detect outliers due to

sudden and immoderate movement (Figure 3.2.a). A 100- points (0.2 s) moving window

was then applied and windows with at least 10% of data categorized as outliers were sliced

out (Figure 3.2.b). In addition to specific artifact removal techniques separately applied to

A-Line and CAP signals, the intermittent BP cuff occlusions affected either A-Line or CAP

measurements. Consequently, the affected data sections were cleaned out. It is worth

noting that for consistency, any artifact-ridden data section in A-Line was also sliced out of

CAP signal and vice-versa. After the removal of segments with excessive artifacts, the

remaining signals were then considered valid data for further analysis.

Figure 3.2. The artifact removal procedure using accelerometer data a) Illustration of MAD filter

and moving window. The horizontal solid line is the median value of the accelerometer dataset.

The dotted lines are the 2.5-scaled MAD. Black circles represent the data within 2.5-scaled

MAD. Red circles are considered outliers. The gray crossed area represents the invalid segment

after a 50 percent threshold moving window with a window size of 8. b) A representative

segment showing how the data was filtered with a MAD filter and the moving window. The top

three rows are the 3-axis of the accelerometer data. The horizontal solid line represents the
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median in each axis. The dotted lines are the 2.5-scaled MAD of each axis. The bottom two rows

represent the corresponding A-Line and the CAP sensor data. The signal section colored gray

and defined by the vertical lines was categorized as having excessive artifacts from the

accelerometer data and thus removed.

3.3.4 Waveform similarity analysis

The diastolic and systolic pressure values and timestamps of each valid segment of

data were identified for waveform analysis. A complete waveform was defined as the signal

data bounded by two consecutive diastolic pressure values.

To analyze waveform shape similarity, corresponding A-Line and CAP sensor

waveforms were normalized between 0 and 1. For each waveform, 0 was set as the average

of the starting and ending diastolic pressure values, and 1 as the waveform maximum

(systolic pressure value). A 0.1 threshold value was then applied to avoid false detection of

minima (diastolic pressure).

3.3.5 Heart rate monitoring

HR is the reciprocal of the beat-to-beat time interval of the continuous BP signal

(Equation 3-1). The systolic intervals were obtained as the time interval from one systolic

pressure value to the subsequent one as shown in Figure 3.3.
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Figure 3.3. An example of the interval of two consecutive systolic pressures used to calculate

HR.

The HRs were calculated as the reciprocal of these systolic intervals. The accuracy of HR

estimation from capacitive pressure signal was evaluated by computing average HR values

in each 30- s data window from valid segments of CAP sensor and then comparing against

A-Line’s. Each valid signal was sliced into 30- s non-overlapping windows starting from the

beginning of the signal and any remaining data that was <30-s was excluded from HR

computation.

𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 [𝑏𝑝𝑚] =  1
𝑏𝑒𝑎𝑡−𝑡𝑜−𝑏𝑒𝑎𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [𝑚𝑖𝑛]

(3-1)

3.3.6 Blood pressure comparison

Using valid data segments from A-Line and CAP sensor measurements, the CAP

sensor’s ability to accurately infer absolute BP is assessed.
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Given that the CAP sensor’s raw measurements are captured as capacitance values

in picofarad (pF) and the A-Line’s as absolute pressure in mmHg, a conversion from the

CAP sensor’s capacitance to absolute pressure in mmHg is needed to accurately assess the

CAP sensor against A-Line. In this regard, we propose a calibration algorithm.

The initial step in the calibration process is the extraction of systolic and diastolic

pressure signals from the raw A-Line and CAP sensor measurements. A 5-points median

filter was applied to the extracted signals to smooth out detected false values. The filtered

systolic and diastolic pressure signals were then split into individual 60-s segments for use

in subsequent calibration steps. In a normal resting condition, a 60-s segment should

contain 60–100 beats. The choice of 60-s as segment length is based on ClearSight™’s use

of 70 beats between re-calibration.59

The calibration algorithm took the average values of the first three beats in systolic

and diastolic pressure every 60-s epoch. Sixty seconds was chosen for re-calibration

periodicity as this is standard practice in ClearSight™, a commercially available continuous

NIBP device. A linear regression model was then created as the relationship between

pressure measured in pF and mmHg. The remaining systolic and diastolic capacitance

pressure values in the 60-s segment were then converted to the units of BP (mmHg). An

example of the calibration algorithm can be found in Figure 3.4.
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Figure 3.4. The presented calibration algorithm. a) An example of a 60-s epoch raw signal

acquired from A-Line and the CAP sensor. The red and blue circles are first three systolic and

diastolic pressure values extracted for calibration from each signal, respectively. b) Linear

regression that models the relationship between the averaged systolic (red) and diastolic (blue)

pressure values of A-Line and the CAP sensor from the first three beats. The dashed line is a

linear regression line that forms the equation with m the slope and b the intercept. c) The raw

60-s signal of A-Line, first three beats of SBP and DBP (red/blue circles), and the SBP and DBP

values (red/blue triangles) calibrated from the CAP signal using the presented calibration

algorithm.

3.3.7 Statistics

To assess the CAP sensor’s ability in comparison to A-Line in an OR setting, several

statistical methods were performed. Pearson correlation coefficient gives the linear

correlation between features acquired from A-Line and the CAP sensor. Here, Pearson’s r
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was computed to quantify the similarity between corresponding A-Line and CAP sensor

normalized waveforms after aligning the two by their maxima (normalized systolic

pressures) and how well the CAP sensor tracked BP compared to A-Line in

vasoactive-drug-administered incidents. Moreover, the mean bias, SD, and 95% limits of

agreement (estimated as the SD of the differences × 1.96) were calculated to understand

the agreement between two methods by Bland-Altman method of paired measurements.60,61

 Mean HR in 30-s epochs and SBP and DBP in 60-s epochs derived from A-Line and CAP

measurements were evaluated by this method. Lastly, the slope and R2-value of a simple

linear fit were presented to evaluate the accuracy of beat-to-beat DBP and SBP using the

proposed calibration algorithm.

Chapter 3.4: Results

We have identified several parameters to monitor in order to compare how well the

CAP sensor tracks continuous BP as compared to the A-Line. This includes waveform

similarity, HR, absolute SBP and DBP, and temporal response to a vasopressor.

3.4.1 Participants

A total of 32 patients undergoing surgery requiring an A-Line placed were recruited

during the study period, seven of whom were excluded due to the failure of data collection

(data not recorded or data acquisition issues), five were excluded with obvious distortion in

the measurements (artifacts or inaccurate sensor placement), and three others were

excluded when the pulse signal from dorsalis pedis was affected by the intermittent
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pneumatic compression (IPC) device placed on the legs during the entire measurement.

Thereafter, 17 patients (six male) with a mean age of 57.35 ± 18.72 years and a mean BMI

of 27.36 ± 4.20 kg/m2 were reported in the paper. Patients’ demographics, the placement of

CAP sensor, and the procedure are shown in Table 3.1. The post-processing method was

used to remove obvious incorrect measurements and potential distortion affected by

apparent artifacts. After removing artifacts as heretofore described, the mean and standard

deviation of the total amount of data included across the 17 studies was 46 ± 21%.

Table 3.1. Patients’ demographic, CAP placement, and procedure.
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3.4.2 Waveform similarity

All the full-beat waveforms were included to understand the similarity of

hemodynamic waveforms from two sites of the subject’s body. A total of 20,090 full-beat

waveforms were analyzed, which included non-invasive pulse waveforms from the radial

artery and dorsalis pedis artery, to compare against BP derived from A-Line. Pearson’s r is

applied to indicate the strength of similarity between the two curves. Due to the length

difference of valid segments in each dataset, the results are presented as averaged r-values

with the quantity of full-beat waveforms as listed in Table 3.2. It is shown that the

hemodynamic waveforms acquired from two different locations, regardless of the

invasiveness of the acquisition technique, of the same patient have a very strong linear

relationship.62 Besides, the two studies with averaged r lower than 0.9 (Subject 2 and

Subject 14) were the only two studies having the pressure sensor placed on dorsalis pedis

artery rather than the radial artery.

Table 3.2. Mean and standard deviation of Pearson correlation coefficient r across 17 subjects.
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3.4.3 Heart rate monitoring

To assess the accuracy of heart rate detection across all the patients in the study, a

total of 562 30-s valid segments for both A-Line and CAP were extracted and compared in

the mean and standard deviation of HR. The mean bias and SD of mean HR in two

measurements are 0.0006 and 0.1666 bpm, respectively. The 95% limits of agreement lie in

the range of −0.3259 and 0.3272 bpm (Figure 3.5).
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Figure 3.5. A Bland-Altman plot of 562 averaged heart rates calculated from 30-s valid segments

across 17 patients. Each blue circle is one averaged HR data. The black horizontal solid and

dotted lines represent the mean bias and the upper and lower 95% limits of agreement,

respectively. The mean bias in differences is 0.0006, upper 95% limit is 0.3272, and lower 95%

limit is −0.3259.

3.4.4 Blood pressure comparison

A total of 29,319 BP values (14,645 diastolic and 14,674 systolic) were obtained and

compared from 209 60-s segments. The mean bias of overall DBP and SBP are 2.3842 (SD =

12.1908) and 1.9153 (SD = 12.5525), respectively. The limits of agreement in DBP are from

−21.5098 to 26.2782 mmHg and for SBP from −22.6876 to 26.5182 mmHg (Figures

3.6.a,b). To understand the correlation of BP measurements within two systems, a best-fit

line with a slope of 1.0047 was derived (Figure 3.6.c).
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Figure 3.6. Beat-to-beat BP comparison using Bland-Altman method and linear regression. a)

With 14,645 paired data points of DBP (blue circles), a mean bias of 2.3842 (solid black line) and

an SD of 12.1908 were calculated. The dotted black lines are the upper (26.2782) and lower

(−21.5098) 95% limits of agreement. On the other hand, b) 14,674 paired measurements of SBP

(red circles) were compared. The mean bias of 1.9153 (horizontal black solid line) and an SD of

12.5525 were calculated. The 95% limits of agreement ranged from −22.6876 to 26.582. c) The

CAP sensor was compared against the A-Line using a linear regression model over 29,319 data

points from valid 60-s segments. A linear fit slope of 1.0047 shows the two measurements in

good correlation.

The separated plots of SBP and DBP measured by A-Line and the CAP sensor can be seen in

Figure 3.7. Lastly, we observed the BP change after the vasoactive drugs were

administered. A total of 20 events were identified according to physician observation and

the EMR across nine patients (no vasoactive drug administration was observed while the

other eight patients were recorded). Three events were excluded due to movement artifacts

caused by either the surgeon or the periodic BP cuff measurement. The mean duration of

the 17 events was 55.4 (SD = 29.8) seconds. The Pearson’s r of SBP between A-Line and CAP

was 0.82 ± 0.28 (mean±SD). Figure 3.8 shows a representative event in which both BP

measured from A-Line and the CAP sensor increased 30 s after Ephedrine and Vasopressin
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were administered. This is unlike sensors based on PPG which have difficulty tracking fast

changes in BP.63

Figure 3.7. BP was measured by A-Line and the CAP sensor from valid 60-s segments using the

proposed calibration method. a) A linear fit slope of 1.0785 and R2 of 0.329 were derived from

14, 645 DBP in blue circles. The black solid line across the blue circle is the best linear fit line. b)

A linear fit slope of 0.9774 and R2 of 0.685 were derived from 14,674 SBP in red circles. The

black solid line across the red circle is the best linear fit line.
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Figure 3.8. A representative section of the temporal response to vasoactive drug administration

in both A-Line and CAP signals. Without motion artifacts, BP increased about 30 s

simultaneously after Ephedrine and Vasopressin were administered. Systolic peak values of both

A-Line and CAP signals were detected as the red circles. The Pearson correlation is 0.9973.

Chapter 3.5: Discussion

The major finding of the study is that the CAP sensor can noninvasively track BP

across different body types and ages in an OR setting under general anesthesia. In

particular, the study showed the sensor’s capability of capturing hemodynamic waveforms

from different arterial sites with high fidelity compared to the A-Line. Additionally, we

found a good correlation in HR monitoring. Concerning beat-to-beat BP monitoring, we

showed a low mean bias of both SBP and DBP.

3.5.1 Clinical application

At present, we have demonstrated an ability to accurately track BP with high

confidence. While the present performance may be improved over time and is not a

replacement for continuous arterial monitoring, there would nevertheless be clinical utility

even with the present sensor as an adjunct to noninvasive monitoring (which is used

universally during surgery). The NIBP monitoring could be used as it currently is, and the

CAP sensor recalibrated with each cycling of the noninvasive cuff. Meanwhile, the CAP

sensor would provide continuous monitoring in the periods between cuff cycles, catching

hypotension faster and allowing for more rapid treatment, as well as allowing for more

rapid assessment of other interventions like narcotics or anti-hypertensives.
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3.5.2 Subject inclusion

Fifteen out of 32 datasets had been excluded from the study for the following

reasons: failure of data collection, obvious distortion (in the A-Line data or from obvious

misplacement of the CAP), and the simultaneous use of the IPC device. Improved

instructions on applying the CAP sensor and/or improved applanation (strap) design

should improve the ability to capture more datasets in the future.

3.5.3 Single-channel CAP sensor

As previously mentioned, 17 studies had been done either using a single or

dual-channel CAP sensor. For the dual-channel CAP sensor, the second channel may be

useful as a neighbor reference of the main arterial pressure signal. However, we have not

yet investigated the benefits of dual-channel acquisitions and as a result, only one

capacitance reading is included for all the data analysis in the study. We believe a

multi-channel CAP sensor will greatly improve BP monitoring by eliminating the need for

frequent recalibrations.

3.5.4 Artifact detection and quality assessment

There are a number of confounding factors inherent in any continuous physiological

monitoring. This study was done in an OR setting to investigate the validity of the CAP

sensor for a specific reason: we can account for and eliminate many of these variables. For

instance, we have the BMI of every patient and whether they have hypertension via EMR.

We found no correlation between BMI or hypertension and signal accuracy. The other
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major confounding factor is movement artifact. From the development of the CAP sensor, it

was found to have a low tolerance to movements. Compared to the previous study

published using the CAP sensor in a relatively controlled subject group, this study was done

in a real clinical setting where the measurement could be affected by multiple challenges.

One obvious difference of BP measurement with noninvasive technology is that the data is

obtained outside the subject’s body. With different body sizes and ages of a patient, the

tissue layer between the CAP sensor and the artery may create artifacts that directly

influence the pressure measurement. For instance, the mechanical fixation on an elder

patient with loose skin can be more challenging. Besides, the tightness and positioning of

the wristband affected the signal quality. This also explains the reason why the study

included multiple mechanical fixation ways. Furthermore, human-caused artifacts such as

the surgeon’s need to interact with the patient’s body or the interference from electronic

noises were inevitable in the OR. We chose to remove the artifacts of the A-Line signal by

eye considering limited information. A similar data exclusion method has been previously

used by several other groups.56,64,65 In this case, it can be improved by including video

recordings to have a better understanding of the artifact sources. On the other hand, the

accelerometer data from the EcoBP was used to filter significant motion artifacts. The MAD

filter is a robust measure of statistical dispersion. Although a 2- scaled MAD or 3-scaled

MAD may serve a similar purpose of artifact removal, a 2.5-scaled MAD was chosen as an

adequate threshold to separate the significant motion artifacts in the study while

conserving a reasonable percentage of valid data. We also observed baseline drift in some
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datasets from the CAP signal. In most cases, a downward drift occurred linearly or

exponentially. The cause might be due to the movement or unknown factors. We expect a

future study to resolve the issue. Despite the aforementioned challenges, it is clear that

after the objective signal processing strategy outlined above, the CAP sensor showed a good

correlation with A-Line during surgery and can provide a wealth of information about the

hemodynamic waveform. In addition to the excellent slope value, the average mean bias

and standard deviation across 15 patients were low.

3.5.5 Waveform similarity

Pearson correlation was used to evaluate the degree of the linear relationship

between A-Line and CAP waveforms. Similar work had been previously done.66 In this study,

the focus for waveform similarity analysis was to compare full-beat wave shape.

Consequently, the waveforms were normalized and aligned by the systolic pressure to avoid

the time delay due to measuring from different sites of the body. A very strong correlation

between A-Line and CAP sensor measurements was reported. Although not all waveforms

from both signals perfectly match visually (Figure 3.9), it is in fact a characteristic of the

peripheral arterial pressure waveform measured across different arterial sites. This

waveform distortion effect is due to the individual physical characteristics of the arterial

tree.67,68 Additionally, the applanation tonometry waveforms were detected indirectly as the

pulse signal propagated through the artery wall and the tissues. The CAP sensor not only

can capture the components of the arterial pressure waveform (diastolic pressure, systolic

pressure, upstroke of systole, dicrotic notch, etc.) but also potentially shows differences in

the pulse pressure profile in the radial artery (upper extremity) and the dorsalis pedis
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(lower extremity) as shown in Figure 3.10. This implies that the CAP sensor could acquire

similar hemodynamic waveforms to the A-Line but non-invasively in an OR setting.

Figure 3.9. Comparison of A-Line and CAP waveform similarity. Both waveforms were derived

from radial arteries. Representative figures with a) high and b) low Pearson correlation

coefficient.

Figure 3.10. Hemodynamic waveform captured from a) radial artery and b) dorsalis pedis. The

black dotted line represents the MAP of each wave.
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3.5.6 Limitations

The current study is subject to several limitations. Because this is a retrospective

study, we went back to calibrate to the A-Line, after completion of data collection. Going

forward, a sensor that calibrates to the BP cuff in real-time would be advantageous. The

greatest challenge that we had was accounting for motion artifacts and drifts in the signal

after motion. We, therefore, had to splice out many sections of the data to account for active

movement as captured by the accelerometer. However, outside the window that we spliced

out (during active movement), we observed the movement caused a longer-term drift over

time. We did not account for such drifts in our analysis but had we done so, the results

would be even better. This is evidenced by the fact that if we instead calibrated to the first,

middle, and last point of each 60-s epoch (instead of just the average of the first three

beats), the averaged mean bias and average SD go down considerably, from 2.3842 ±

12.1908 to −1.8477 ± 7.1906 in DBP and from 1.9153 ± 12.5525 to 1.4324 ± 7.4321 in SBP

(Figure 3.11). This indicates that the CAP signal drifts over the 60-s epoch. In future

iterations, we would like to not toss away all the sections with movement but use machine

learning along with the parallel sensor channels to correct for the motion.69 We would also

like to model out the drifts caused by this motion so we can objectively account for and

subtract it from the signal. This would undoubtedly improve our agreements with the

A-Line. Overall, in summary, we show that the CAP sensor is a promising technology that

has good agreement with the A-Line regarding the hemodynamic shape, HR, SBP, and DBP

across body habitus and age in OR patients under general anesthesia. While we do observe

drifts in the system, we still obtain good correlations with respect to the A-Line as

evidenced by excellent linear fit and averaged mean bias and standard deviation across all
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patients. Moreover, CAP seems to be able to track fast changes in BP well, which is critical to

monitoring hemodynamically unstable patients.

Figure 3.11. Bland-Altman plot using a) 14,645 diastolic and b) 14,674 systolic BP showing level

of agreement from valid 60-s segments obtained by A-Line and the CAP sensor. The horizontal

black solid, dashed, and dotted lines represent the mean bias, limits of agreement, and the zero

line, respectively. The red error bars on the black dashed limits of agreement lines are the 95%

confidence intervals of the upper and lower limits.
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CHAPTER 4: Effects of ECG data length on heart rate variability among

young healthy adults

Portions of this chapter appear in the journal Sensors.70

While working on the solutions of aforementioned issues of the CAP system, we have begun

the investigation of data interpretation. Heart rate variability (HRV), a measure that tells

the variation in time between consecutive heartbeats, is commonly computed by the ECG

but can also be obtained with the use of the CAP sensor. Many literature have suggested

that HRV was associated with a variety of diseases and disease progressions such as in

obstructive sleep apnea (OSA)71, Type 2 Diabetes Mellitus72, breast cancer73, and gastric

cancer74. However, it didn’t seem clear to us what are the minimum lengths to calculate HRV

measures. The proposed work reports the appropriate way of each HRV measure which

best the future research.

Chapter 4.1: Abstract

The relationship between the robustness of HRV derived by linear and nonlinear

methods to the required minimum data lengths has yet to be well understood. The normal

ECG data of 14 healthy volunteers were applied to 34 HRV measures using various data

lengths, and compared with the most prolonged (2000 R peaks or 750 s) by using the

Mann–Whitney U test, to determine the 0.05 level of significance. We found that SDNN,

RMSSD, pNN50, normalized LF, the ratio of LF and HF, and SD1 of the Poincaré plot could be

adequately computed by small data size (60–100 R peaks). In addition, parameters of RQA

did not show any significant differences among 60 and 750 s. However, longer data length
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(1000 R peaks) is recommended to calculate most other measures. The DFA and Lyapunov

exponent might require an even longer data length to show robust results. Our work

suggests the optimal minimum data sizes for different HRV measures which can potentially

improve the efficiency and save the time and effort for both patients and medical care

providers.

Chapter 4.2: Introduction

HRV is a promising measure used to assess cardiovascular health by investigating

heartbeat fluctuations over time. ECG is an autonomically controlled physiological vital

signal that changes due to sympathetic or parasympathetic perturbations. As such,

reduction in HRV is a well-established biomarker of diabetes75,76, cardiovascular disease

(CVD)77,78, inflammation79–81, obesity19 and psychiatric disorders82,83. Over the past

half-century, three groups of mathematical methods for determining HRV have been

proposed (i) time domain, (ii) frequency domain, and (iii) nonlinear analyses.84

Time- and frequency-domain HRV measures were standardized in 1996 by the task

force of The European Society of Cardiology and the North American Society for Pacing and

Electrophysiology.85 Nonlinear variability measurements such as the Lyapunov exponent,

fractal, entropy, and symbolic entropy are well-established.86 However, the standardization

in selecting a time series length for robustness in differentiating different populations and

ailments is currently lacking. HRV measurements are influenced by data length, sampling

frequency87–90, noise87,91 and, computation parameters used in specific methods such as the

time delay and embedding dimensions.89,92–96 The length of the heart-rate time series data

are often considered a limitation for utilizing nonlinear analyses. The number of data points
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in time series is critical for nonlinear analysis since it is unknown whether fewer data sets

can characterize the whole dynamics of the system.

The length of data is an essential factor considering shorter data acquisition time

can improve patient throughput and efficiency of hospitals, healthcare providers, and home

monitoring in general. Additionally, it improves patient’s adherence and overall experience.

An essential part of the HRV analysis is knowing how many data points are needed to

describe the system appropriately. An important rule of thumb suggested by researchers is

to choose time series of at least 10d data points with ‘d’ as the system’s embedding

dimension.97 In such a scenario, if the embedding dimension is 6, then at least one million

data points are required. However, sometimes obtaining such long time series data from

human subjects in controlled clinical environments is practically impossible. For example,

to collect one million heartbeats, one has to record ECG continuously for about 277 h. This

makes human subject data collection practically impossible. Besides, it is not known if

shorter time series can accurately characterize the system’s dynamics. An optimal data

length should capture the essential dynamics of the system. Thus, it is imperative to

understand the relationship between the robustness of the HRV to data lengths, such that

the minimum data points necessary for accurate measurements can be determined.

Traditionally in HRV analysis, the data acquisition time is set to at least 5 min.85 A

limitation to longer data acquisition is that the hydrogel layer used in ECG electrodes can

degrade and lower the signal-to-noise ratio.93,98–100 Some studies evaluated the influence of

shorter data acquisition time in different HRV measures.101 For instance, Munoz and

coworkers suggested that some time-domain HRV measures can be reliably obtained from
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less than a minute of recording.102 Others investigated the influences of data length in both

time- and frequency-domain HRV measures.93,103–106  In the time-domain analysis, the

standard deviation of normal-to-normal (NN) interval (SDNN), root mean square of

standard deviation (RMSSD), and the percentage of successive NN intervals greater than 50

ms in all NN internals (pNN50) have been suggested as reliable measures for 5 min data

lengths. However, frequency-domain HRV measures cannot produce consistent conclusions.

For nonlinear dynamics, Entropy-based HRV measures107–109 have been used to differentiate

patients with cardiovascular disease from healthy controls using shorter time-series data.

Sample entropy (SampEn) is reported to be less dependent on data length than

approximate entropy (ApEn).108 In conclusion, the relationship between the robustness of

HRV derived by linear and nonlinear methods to the required minimum data lengths has

yet to be systematically evaluated and clearly understood.

In addressing such limitations, this study explores how the data length of the ECG

signal affects the HRV measures (time and frequency domain variables and nonlinear

variables). In this study, 14 healthy volunteers were monitored in resting-state. Various

data lengths of ECG recordings were applied to eight (two time, two frequency, and four

nonlinear) approaches, including 13 different methods (statistical and geometric methods

in time domain, Welch’s and Lomb–Scargle in frequency domain, and Poincaré plot,

recurrence quantification analysis (RQA), detrended fluctuation analysis (DFA), Wolf and

Rosenstein’s Lyapunov exponents (LE), ApEn, SampEn, multiscale entropy (MSE), and

composite multiscale entropy (CMSE) in nonlinear analyses), and 34 HRV measures

(Figure 4.1), to determine the shortest data length that can keep the system dynamics
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intact. To understand the robustness of optimal minimum data length that can be utilized to

quantify HRV, each data set size was compared with the most prolonged (2000 R peaks or

750 s) using the Mann–Whitney U test to determine the 0.05 level of significance.

Figure 4.1. Approaches, methods, and outputted measures used to calculate HRV in the study.

Chapter 4.3: Materials and Methods

4.3.1. Subjects

The data was collected from healthy young participants with normal ECG recordings.

A total of 14 subjects (seven male) participated with the age of 23.8 ± 4.1 years (mean ±

standard deviation) and BMI of 23.4 ± 5.1 kg/cm2. Participants were excluded if any

neurological disorder or heart-related disease was reported. Only one male participant

49



reported having a history of Kawasaki’s disease but did not present any symptoms during

this data collection.

4.3.2. Experimental protocol

The ECG signals were recorded with lead II placement at a sampling rate of 2 kHz from 14

subjects by BIOPAC MP36 System (BIOPAC Systems, Inc., Goleta, CA USA). Subjects were

asked to avoid taking caffeine two hours before the time of the study. Participants were

provided enough rest on the chair (at least five minutes) after arrival to ensure the subjects

were recorded in a relatively calm state during the studies. At least 10 minutes of ECG

recordings were acquired while the subjects were seated still on the chair. All subjects

provided written informed consent for the study, which the Institutional Review Board

approved of the University of California (IRB #2016-2924).

4.3.3. Data preprocessing

The effect of data length on HRV measures was quantified by analyzing R-R intervals on the

raw ECG recordings using time, frequency domain and nonlinear analyses methods. We

segmented and standardized ECG data length using R peaks ranging from 60 to 2000, thus

controlling HR difference.93 In the study, three statistical (SDNN, RMSSD and pNN50) and

one geometrical method (triangulation index) were included in time-domain

measurements (Figure 4.1). Welch and Lomb-Scargle algorithms for each of the eight

measures (total power, power, and normalized power of very low-frequency, low-frequency,

and high-frequency, and the ratio of low-frequency to high-frequency) were investigated in

the frequency-domain method. Eight nonlinear methods were investigated to present
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different HRV measures. Besides the RQA, all the measures were computed with

consecutive discrete R-R intervals with R peaks ranging from 60 to 2000. RQA was

estimated by raw ECG recordings ranging from 60 to 750 seconds. In the section below, we

have provided details for i) R peak extraction, ii) evaluation for HRV measures, and iii)

statistical analysis.

4.3.4. Extraction of R peaks using wavelet analysis

The consecutive discrete R-R intervals were processed initially from the raw ECG

signal. Symlet 4 (Sym4) wavelet was chosen to enhance R peaks by using maximal overlap

discrete wavelet transform (MODWT) due to its similarity with the QRS complex as shown

in Figure 4.2. Potential artifacts as arrhythmic events were excluded. The identified R

peaks were then extracted as R-R interval segments used for HRV analysis.

Figure 4.2. R peak detection technique. a) Sym4 resembles the QRS complex that can be used

for the wavelet transform. b) A representative raw ECG signal with extracted R peaks in red

circles.

51



4.3.5. Time-domain analysis

Three statistical measures (SDNN, RMSSD, pNN50) and a geometric measure (Triangular

index) were discussed in time-domain analysis. SDNN is the standard deviation of the

normal-to-normal (NN) interval. RMSSD represents the square root of the mean of the sum

of the squares of differences between adjacent NN intervals. pNN50 calculates the ratio of

the counts of adjacent NN intervals that are more than 50 ms and the total number of NN

intervals in the dataset. The basic variable in the geometric method, HRV triangular index,

is also computed (Equation 4-1).

𝐻𝑅𝑉 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝐼𝑛𝑑𝑒𝑥 =  𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑁 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑁 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑎𝑙 𝑏𝑖𝑛

(4-1)

SDNN, RMSSD, pNN50 and HRV triangular index were computed as standards of

measurement.85

4.3.6. Frequency-domain analysis

According to the task force’s guideline85, frequency domain measures of HRV can be

categorized into four bands, ultra-low-frequency (ULF, 0.003 Hz), very low-frequency≤

(VLF, 0.003-0.04 Hz), low-frequency (LF, 0.04-0.15 Hz), and high-frequency (HF, 0.15-0.4

Hz). It is also suggested that VLF, LF, and HF rhythms are distinct components for a

2–5-minute short-term ECG recording. Hence, there were eight parameters calculated in

the study: i) VLF power, ii) LF power, iii) HF power, iv) total power, v) normalized VLF (VLF

norm), vi) normalized LF (LF norm), vii) normalized HF (HF norm), and viii) the ratio of LF

to HF (LF/HF). The total power is a sum of the VLF, LF, and HF absolute power. The
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normalized HRV power is defined as the proportion of one power range to the total power

in absolute values and allows to compare individuals and various data lengths

appropriately. To estimate HRV power spectral analysis, both Welch’s method110   and

Lomb-Scargle periodogram111,112 were applied. Welch’s method utilizes Fast Fourier

Transform (FFT) and is advantageous for low computation workload. The original signal

with  data points is split into segments, . Each segment has a length of𝐾 𝑋
1
(𝑗),  ..., 𝑋

𝐾
(𝑗) 𝐿

and is apart from the previous segment in the distance of such that can be written as𝐷 𝑁

Equation 4-2.

𝑁 =  (𝐾 − 1)𝐷 +  𝐿. (4-2)

The overlapped segments are helpful to mitigate the loss. The windowed finite Fourier

transform is applied to each segment with a data window𝐴
𝑘
(𝑛) (𝑘 = 1, 2,  ...,  𝐾) 𝑊(𝑗)

where as Equation 4-3.𝑗 = 0,  ...,  𝐿 − 1

𝐴
𝑘
(𝑛) = 1

𝐿
𝑗=0

𝐿−1

∑ 𝑋
𝑘
(𝑗)𝑊(𝑗)𝑒

− 2𝑘𝑖𝑗𝑛
𝐿               𝑛 = 0,  ...,  𝐿

2 ,
(4-3)

where is the windowed segment sequences and . Therefore, the𝑋
𝑘
(𝑗)𝑊(𝑗) 𝑖 = − 1

modified periodogram, , for each segment, can be written as Equation 4-4.𝑃
𝑘
(𝑓

𝑛
)

𝑃
𝑘
(𝑓

𝑛
) =

𝐿2|𝐴
𝑘
(𝑛)|2

𝑗=0

𝐿−1

∑ 𝑊2(𝑗)
           𝑓

𝑛
= 𝑛

𝐿         𝑛 = 0,  ...,  𝐿
2 .

(4-4)

And Welch’s method is estimated as the average of the periodogram values as Equation

4-5.
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〈𝑃(𝑓
𝑛
)〉 = 1

𝐾
𝑘=1

𝐾

∑ 𝑃
𝑘
(𝑓

𝑛
).

(4-5)

The Lomb-Scargle periodogram is inspired by Fourier transform and a least-squares

method known for identifying periodicity. It offers advantages in dealing with unevenly

sampled data and allows ectopic or missing beats.113–115

4.3.7. Nonlinear methods

We investigated several nonlinear variability methods such as Poincaré plots, fractal

dimension, Lyapunov exponent, entropy in the study.

4.3.7.1. Poincaré plot

The Poincaré plot is a nonlinear technique that can depict HRV in a two-dimensional

graphic. It visualizes the beat-to-beat detail to dispersion and provides quantitative

information on cardiac performances. Popular approaches to quantify Poincaré plot include

ellipse fitting, histogram, and correlation coefficient. The study characterized the R-R

interval as illustrated by the Poincaré plot by fitting an ellipse as in the Figure 4.3.116–118
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Figure 4.3. A representative Poincaré plot with a new set of a coordinate plane. and are𝑥
1

𝑥
2

the axes of the plane. and represent the radii of a fitted ellipse on - and -axis.𝑆𝐷1 𝑆𝐷2 𝑥
1

𝑥
2

A new set of the coordinate plane, and , is formed at the intersection of the ellipse𝑥
1

𝑥
2

center (Equation 4-6).

(4-6)

and represent the distribution of points perpendicular and parallel to the𝑆𝐷1 𝑆𝐷2

line-of-identity of the fitted ellipse, which indicated the level of short- and long-term

variability.119,120 Mathematically, and are the standard deviations around and ,𝑆𝐷1 𝑆𝐷2 𝑥
1
 𝑥

2

respectively. They were computed by using linear measures of HRV as shown in Equation

4-7 and 4-8:120

55

https://www.zotero.org/google-docs/?5Whd5I
https://www.zotero.org/google-docs/?zR2Cvw


𝑆𝐷12 = 𝑉𝑎𝑟(𝑥
1
) = 𝑉𝑎𝑟( 1

2
𝑅𝑅

𝑛
− 1

2
𝑅𝑅

𝑛+1
)

= 1
2 𝑉𝑎𝑟(𝑅𝑅

𝑛
− 𝑅𝑅

𝑛+1
) = 1

2 𝑆𝐷𝑆𝐷2

(4-7)

𝑆𝐷22 = 2𝑆𝐷𝑁𝑁2 − 1
2 𝑆𝐷𝑆𝐷2, (4-8)

where the standard deviation of the differences between adjacent RR intervals is denoted

by . The axis ratio indicates the relationship of the instantaneous interval𝑆𝐷𝑆𝐷 𝑆𝐷1/𝑆𝐷2

variation to the long-term variation.

4.3.7.2. Approximate entropy

Approximate entropy (ApEn) is a method to quantify the complexity of time-series

data. Its application is limited to data lengths greater than 100 data points.121,122 Complexity

can quantify variability to indicate the unpredictability of HR fluctuations. To assess

complexity, ApEn was computed as the difference between the probability of the series of a

vector with a fixed data length  and the probability of the series of another vector with a

similar length that both fall within a tolerance as Equation 4-9.(𝑚 + 1)

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = Φ𝑚+1(𝑟) − Φ𝑚(𝑟), (4-9)

where from the element in Eckmann-Ruelle (E-R) entropy123 is defined in EquationΦ𝑚(𝑟)

4-10

Φ𝑚(𝑟) = 1
𝑁−𝑚+1

𝑖=1

𝑁−𝑚+1

∑ 𝑙𝑜𝑔𝐶
𝑖
𝑚(𝑟),

(4-10)

where is the conditional probability of vector length .𝐶
𝑖
𝑚(𝑟) 𝑚
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Pincus et. al. recommended that given 1,000 data points, using parameters 𝑚 = 2

and value between 0.1 to 0.25 of data standard deviation gave a robust result of𝑟

ApEn.121,124 Hence, ApEn was applied to different quantities of R-R interval time series with

the values and in this study.𝑚 = 2 𝑟 = 0. 2

4.3.7.3. Sample entropy

Sample entropy (SampEn) was initially introduced 9 years after ApEn.125 With a

similar goal, SampEn is a useful mathematical algorithm that measures the predictability in

time series and can be viewed as a refinement of ApEn. SampEn addressed ApEn’s

shortcoming as its ability to have independence for different data lengths and showed

robustness for the change of data lengths.125–127 Richman and Moorman defined the

negative natural logarithm of the probability using vector length , tolerance , and signal𝑚 𝑟

data length from ApEn (Equation 4-11).𝑁

,𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =− 𝑙𝑛 𝐴
𝐵

(4-11)

where and are times the sum of all the conditional probabilities,𝐴 𝐵 (𝑁−𝑚)(𝑁−𝑚−1)
2 𝐶

𝑖
𝑚+1

and , divided by without considering the self-matches, respectively.𝐶
𝑖
𝑚 𝑁 − 𝑚

4.3.7.4. Multiscale entropy

The traditional multiscale entropy (MSE) algorithm128,129 is conducted in two parts:

i) a coarse-graining procedure for different scaled time series from an original signal; ii)

SampEn is used to calculate each time series scale. However, some disadvantages of
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traditional MSE had been issued.130 Therefore, several newly developed MSE methods were

reported.102,131–133 However, most of the solutions suggested modifying the first step’s

time-series scale with different algorithms or using other entropies for the second step

instead.134 Therefore, instead of the conventional MSE, composite multiscale entropy

(CMSE)133 was used to evaluate cardiovascular complexity in the study. Traditional MSE

computed SampEn with the first coarse-grained time series of each scale only (Equation

4-12)

𝑀𝑆𝐸(𝑥,  τ,  𝑚,  𝑟) =  𝑆𝑎𝑚𝑝𝐸𝑛(𝑦
1

(τ),  𝑚,  𝑟), (4-12)

where is the original one-dimensional time series, is the scale factor, and the same𝑥 τ

parameters and from computing SampEn. Equation 4-13 is the first coarse-grained𝑚 𝑟

time series which is defined as:𝑦
1

(τ)

𝑦
1,𝑗

(τ) =  1
τ

𝑖=(𝑗−1)τ+1

𝑗τ

∑ 𝑥
𝑖
,              1 ≤ 𝑗 ≤ 𝑁

τ

(4-13)

Nevertheless, the SampEn of the first coarse-grained time series derives poor reliability.

CMSE algorithm was then introduced to overcome the problem.133 Therefore, instead of

using the first coarse-grained time series, all the coarse-grained time series SampEn are

considered in CMSE as shown in Equation 4-14.

𝐶𝑀𝑆𝐸(𝑥,  τ,  𝑚,  𝑟) = 1
τ

𝑘=1

τ

∑ 𝑆𝑎𝑚𝑝𝐸𝑛(𝑦
𝑘

(τ),  𝑚,  𝑟),
(4-14)
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where represents the coarse-graining procedure is determined from , the th data𝑦
𝑘

(τ) 𝑥
𝑘

𝑘

point from the original signal (Equation 4-15).

𝑦
𝑘,𝑗

(τ) =  1
τ

𝑖=(𝑗−1)τ+𝑘

𝑗τ+𝑘−1

∑ 𝑥
𝑖
,               1 ≤ 𝑗 ≤ 𝑁

τ ,  1 ≤ 𝑘 ≤ τ
(4-15)

4.3.7.5. Detrended fluctuation analysis

In time series analysis, detrended fluctuation analysis (DFA) is used to estimate

self-similarity. It is calculated as the root-mean-square error of the least-squares line fitted

in separate non-overlapping windows of the cumulative integral of the original time series.

For example, given the interbeat intervals of an original ECG signal in time series with𝑥

length , the cumulative integral of the signal is written as Equation 4-16.𝑁 𝑦(𝑘)

𝑦(𝑘) =  
𝑖=1

𝑘

∑ (𝑥(𝑖) −< 𝑥 >).
(4-16)

where < > denotes the average of . is then divided into segments of equal length .𝑥 𝑥 𝑦(𝑘) 𝑛

The root-mean-square fluctuation as a function of the window sizes is computed by𝐹 𝑛

Equation 4-17.

𝐹(𝑛) =  1
𝑁

𝑘=1

𝑁

∑ 𝑦(𝑘) − 𝑦
𝑛
(𝑘)[ ]2.

(4-17)

where is the y-coordinate of the linear fitted line in each of the segments.𝑦
𝑛
(𝑘)
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The fluctuation is indicated as the slope of versus in a logarithmic scale by a scaling𝐹(𝑛) 𝑛

exponent . Peng’s work found that there is a significant difference in over a wide rangeα α

of window sizes among the interbeat interval time series of 15 severe(20 ≤ 𝑛 ≤ 1000)

heart failures and 12 controls.135

4.3.7.6. Recurrence quantification analysis

The research of recurrences is commonly used to understand the complexity of a

nonlinear dynamical system. The RQA is known for being able to handle short and

nonstationary data. Recurrence plot (RP) and its quantification measures are the tools to

visualize and quantify the recurrence behavior of the state space trajectory.136–138 RP was

first introduced in 1987, allowing the recurrences of higher dimensional phase space to be

visualized by a two-dimensional representation.139 It is an effective way to understand the

behavior of a dynamic system. Mathematically, it shows the phase space vectors that recur𝑥

at time and another time (Equation 4-18)𝑖 𝑗

𝑅
𝑖,𝑗

 =  Θ(ε
𝑖

− 𝑥
𝑖

− 𝑥
𝑗

|||
|||

|||
|||),       𝑥

𝑖
 ∈ 𝑅𝑚,    𝑖,  𝑗 = 1,...,  𝐾, (4-18)

where is considered size for the recurrence matrix, is the highest dimension being𝐾 𝑚

investigated, is a threshold distance, and is the Heaviside function.ε
𝑖

Θ(.)

To infer RQA, there are three parameters that need to be taken into consideration, a

time-delay , the embedding parameter , and a threshold distance . The time-delayτ 𝐷 ε

parameter of Takens Embedding Theorem140 brings the original one-dimensional time

series into multiple dimensional manifolds. Here, the average mutual information (AMI) is
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used to estimate .141 Essentially, AMI calculates the least dependent information in theτ

time-delayed coordinates. Then, the embedding parameter comes in to reconstruct the

phase space vector since a time delay is applied to the raw data. The choice of a deficient 𝐷

may lead to unwanted results such as the false bifurcation points.141 Hence, false nearest

neighbors,142 which inspects whether there’s a significant change in distance between two

adjacent data points with embedding dimensions, was used to determine here. In our𝐷

work, the time-delay and embedding parameters were chosen as the median values across

14 studies and . Lastly, the threshold distance parameter defines who the(τ = 22 𝐷 = 2)

RP neighbors are as the radius of a sphere. To select a sufficient threshold distance can be

critical, it may lose the key information of the recurrence structure or include a lot of

artifacts if is chosen too small or too large.86,143 It is suggested that a proper selection ofε ε

should correspond to a specific range of the percent recurrence (%REC), a quantification

measure discussed in detail in the next paragraph.137,144

In comparing various subsets of data, the recommended threshold parameter

should be chosen so that a typical %REC is in the range of 5% to 10% and the minimum is

at least 1%.144 The threshold of 8 fulfilled the guideline in the study. The quantification

measures are used to characterize the information in RPs. Four of them, %REC, percent

determinism (%DET), the average diagonal line length (ADL), and the maximum diagonal

line length (MDL), were reported in the paper. %REC quantifies the percentage of recurrent

points in a RP (Equation 4-19)

%𝑅𝐸𝐶 =  𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑖𝑛𝑡𝑠
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑅𝑃 * 100. (4-19)
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The minimum (0%) and maximum (100%) represent that no points and all the points are

fallen into the -defined recurrent sphere, respectively. The second parameter, %DET,

measures the percent recurrent points occurring in connected trajectories is of total counts

of recurrent points (Equation 4-20). The connected trajectories are formed by the

continuous adjacent of two or more points that follow the diagonal lines.

%𝐷𝐸𝑇 =  𝑠𝑢𝑚 𝑜𝑓 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑙𝑦 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑖𝑛𝑡𝑠
𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑅𝑃 * 100. (4-20)

ADL calculates the average length of connected trajectories. And MDL simply counts the

length of the longest connected trajectory in the RP.

4.3.7.7. Lyapunov exponent

The Lyapunov exponent (LE) of a dynamical system is a quantity that measures how fast

two infinitesimally close trajectories separate in phase space based on the initial condition.

For instance, one point would exponentially diverge from another if the system is chaotic.

Given two close trajectories, and are a function of time, Equation 4-21 shows the𝑥(𝑡) 𝑦(𝑡)

next iteration  after time  separates their distance exponentially.

𝑥(𝑡 + ε) − 𝑦(𝑡 + ε)| | =  𝑥(𝑡) − 𝑦(𝑡)| |𝑒
λ

1
ε
, (4-21)

where represents as the first LE (Equation 4-22). Hence, the first LE can be written asλ
1

λ
1 

=  
ε ∞
lim
→ 𝑥(𝑡)−𝑦(𝑡)| | 0

lim
→

1
ε 𝑙𝑛 𝑥(𝑡+ε)−𝑦(𝑡+ε)| |

𝑥(𝑡)−𝑦(𝑡)| |( ). (4-22)

The rate of separation, LE, may vary for different orientations of the initial two close

trajectories. with a positive value means the trajectories diverge exponentially.λ (λ > 0)
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On the contrary, two nearby points converge exponentially, which leads to a negative value

of . That is to say, the larger the value of LE, the lower the predictability for aλ (λ < 0)

dynamical system. The largest Lyapunov exponent (LLE) is commonly referred to as the

indicator of chaos. There are various computational methods to quantify LLE. Two widely

used algorithms, Wolf and Rosenstein methods, are included in the study. Both track the

divergence of nearest neighbors over time. However, Wolf’s algorithm145 takes one

trajectory as the reference only (Equation 4-23). Thus, each point on the reference

trajectory iterates with its single nearest neighbor’s trajectory over time until their distance

apart from each other grows beyond a threshold.

𝑧(𝑡
𝑖
) − 𝑥(𝑡

𝑖
)| || | = 𝐿(𝑖), (4-23)

where is the increment, is the difference in two trajectories, is the point on the𝑖 𝐿 𝑥

reference trajectory, and is the nearest neighbor of the corresponding point. The𝑧

reference point re-evaluates the new single nearest neighbor once the previous trajectory’s

separation is large. This procedure of following the nearest neighbor and replacing with

another trajectory completes at the end of the reference trajectory. The distance between

the reference point and the beginning and last point of each new nearest neighbor

trajectory is denoted as and , respectively. The LLE by Wolf’s algorithm, , tracks all the𝐿 𝐿' λ
1

and .𝐿 𝐿'

λ
1
 ≃ 1

𝐾
𝑖=0

𝑀−1

∑ 𝑙𝑛
𝐿'

𝑖

𝐿
𝑖

,
(4-24)

where represents the number of nearest neighbor trajectories and is the total number𝑀 𝐾

of iterations in the reference trajectory.
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Instead of focusing on a single nearest neighbor, Rosenstein’s method146 finds the

nearest neighbor overall points on the trajectory. The distance of a certain reference point,

, to its nearest neighbor can be express as Equation 4-25.𝑋
𝑗

𝑋
𝑗
'

𝑑
𝑗
(0) = 𝑚𝑖𝑛

𝑋
𝑗
'

𝑋
𝑗

− 𝑋
𝑗
'| || |,  (4-25)

where means the initial distance between the th point and the nearest neighbor. The𝑑
𝑗
(0) 𝑗

LLE by Rosenstein’s work can be estimated as the average speed of nearest neighbor

separation (Equation 4-26).

𝑑
𝑗
(𝑖) ≈ 𝐶

𝑗
𝑒

λ
1
(𝑖∆𝑡)

, (4-26)

where is the time period of each iteration, is the number of iterations, and as the∆𝑡 𝑖 𝐶
𝑖

initial separation.

In our approach, the original one-dimensional signal was reconstructed using

aforementioned methods to define parameters, time-delay and embedding dimensionτ 𝐷

(details in RQA section). To compare different data lengths, each and in a particular dataτ 𝐷

length group were obtained as the median values across all participants. The selected

values of and in each group are referenced in Table 4.1.τ 𝐷

Table 4.1. The values of time-delay and embedding dimension used in different data lengths
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4.3.8. Statistical analysis

A total of 34 HRV indices were computed in this study. The indices were divided into

three groups: the effect of data length on i) time-domain, ii) frequency-domain, and iii)

nonlinear HRV measures. Descriptive data are presented as means and SD for continuous

HRV variables. Normal distribution of all time/frequency-domain, linear/nonlinear

variables was tested using the Kolmogorov-Smirnov test and visually inspected histograms

and Q-Q plots. HRV parameters from ECG recordings did not exhibit normal distributions

and were analyzed as non-parametric. To understand the robust/optimal minimum data

length that can be utilized to quantify HRV in the methods as mentioned above, each

dataset size was compared against the most extended (2000 R peaks or 750 seconds) using

the Mann-Whitney U test in R. Moreover, HRV measures were then calculated with several

randomly chosen segments and compared against each other using the Mann-Whitney U

test to eliminate the possibility of biased results from short data length selection. The

critical value was chosen at the 0.05 level of significance.
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Chapter 4.4: Results

4.4.1. Time-domain HRV

Among the four time-domain HRV measures presented in the paper, we find SDNN,

RMSSD, and pNN50 are consistent for very short-term HRV analysis (Table 4.2). SDNN in

100 R peaks was not significantly different from SDNN at 2000 R peaks. Similarly, a

minimum of 60 R peaks of RMSSD and pNN50 were found consistent with longer (2000 R

peaks) HRV recordings. HRV triangular index, however, is recommended to use with at least

1000 R peaks. This means that if one were an adult with a normal resting HR, a 10 to

16-minute recording would have no statistically significant difference compared to a 20 to

33-minute recording.

4.4.2. Frequency-domain HRV

Both Welch and Lomb-Scargle periodograms were included in HRV power spectral

analysis (Table 4.2). With Welch’s method, the appropriate minimum length for acquiring

VLF power, LF power, total power, and VLF norm was 1000 R peaks. HF norm analysis could

use 750 R peaks. HF power, LF norm, and LF/HF ratio had no change from 60 to 2000 R

peaks. On the contrary, the lengths required to calculate HRV measures by Lomb-Scargo

periodogram were shorter than Welch’s in general. However, the recommended lengths to

obtain VLF norm, LF norm, and LF/HF ratio remained the same. Furthermore, using 200,

500, 500, and 750 R peaks for HF norm, LF power, total power, and HF power, respectively,
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were acceptable. VLF power with the Lomb-Scargle algorithm had no statistically

significant difference using very short-term recordings.

Table 4.2. Mann-Whitney U test results for comparing HRV measures at 2000 R peaks with
shorter data lengths. Data length is in R peaks. Statistical significant differences (p<0.05) and
statistical highly significant differences (p<0.001) are color labeled in lighter and darker gray
with bold font, respectively.

67



68



4.4.3. Nonlinear HRV

The statistical results of nonlinear HRV indices were separated into two tables. The

majority of nonlinear HRV indices are shown in Table 4.2. The measures of RQA are listed

in Table 4.3. As a whole, the adequate lengths of nonlinearly assessed HRV measures were

longer than those of linearly assessed methods.

Poincaré plots, when compared with different data lengths, did not show any

differences with . However, the minimum lengths of 1000 and 750 R peaks were not

significantly different compared to the maximum (2000 R peaks) for  and , respectively

(Table 4.2). Furthermore, as entropy-based approaches, using 750 R peaks to quantify

SampEn, ApEn, and CMSE showed no significant differences compared to maximum length

(2000 R peaks), however traditional MSE was significantly different until 750 R peaks and

robust for longer data lengths. Statistical results showed that DFA and Wolf and

Rosenstein’s LE were affected due to the data length. The minimum data length for DFA and

Wolf’s LE was 1500 R peaks such that no significant difference was found compared to

2000 R peaks (maximum data length). However, Rosenstein’s LE showed significantly

different values in all the data lengths when compared to full data length (2000 R peaks).

Four parameters of RQA (Recurrence (REC), determinism (DET), Maximum Diagonal

Length (MDL) and Average Diagonal Length (ADL)) were computed for different data

lengths to compare with the maximum (ECG data of 750 seconds or 12.5 minutes) data. The
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results did not show any significant differences among 1 minute and 12.5 minutes of %REC,

%DET, MDL and ADL.

Table 4.3. Mann-Whitney U test results for comparing measures of RQA at 750 seconds with
shorter data lengths. No significant differences show in any length considered.

Table 4.4 shows recommended minimum data length suggesting consistency and

unbiased to maximum data length (2000 R peaks) using the Mann-Whitney U test. We have

reported time- and frequency-domain HRV measures and minimum data length with

consistency. We found that most of nonlinear variables required a minimum data length of

1000 or 1500 R peaks. However, this was not the case for  of Poincaré plot and RQA

measures.

Table 4.4. The recommended minimum data length of each HRV measure.
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We investigated the effects of data length HRV measures on 14 participants utilizing

the Mann-Whitney U test. Box plots were used to summarize the distribution in each HRV

measure per data length (Figure 4.4). Figure 4a shows how data length affects the
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complexity (ApEn) of the R-R interval data. With the data length increasing from 60 to 2000

R peaks, the overall value of ApEn showed a linear trend and reached a plateau around 750

R peaks. The median values and the 25-75 percentile range among 750 to 2000 R peaks

remained consistent, contrasting to 60 to 500 R peaks (showed increasing linear trend).

Unlike the pattern in ApEn, Rosenstein’s LE showed inconsistency while the data lengths

increased. In Figure 4.4.b, the box plots of Rosenstein's LE show scattered values with the

observation of outlier quantity. Both MSE (Figure 4.4.c) and CMSE (Figure 4.4.d) had more

extensive percentile ranges in shorter data lengths and a similar variation of median values

after 200 R peaks.

Figure 4.4. Bar plots of a) ApEn, b) Rosenstein’s LE, c) MSE, and d) CMSE with different numbers

of R peaks. Different R-peaks are represented with different colors for four nonlinear methods.

The error bars represent SD of the values among 14 participants.
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Chapter 4.5: Discussion

In this study, we investigated the effects of ECG data series length on the consistency of HRV

parameters. Conventionally, short assessments of five minutes of ECG data are used for

analysis (approximately 360 R-R intervals)85 and in this study, we evaluated the statistical

differences of HRV measures at different data lengths to maximum data length (2000 R

peaks). We investigated 34 HRV measures in this study, including (i) time-domain, (ii)

frequency-domain, and (iii) nonlinear analysis variables. We found a length of 1000 R peaks

or more could provide a precise estimate of HRV for time and frequency domain variability

features. Moreover, we found all variables were affected by ECG data length. For example, in

the general frequency domain variables are more unstable for up to 750 R peaks of data

length.

4.5.1. Importance of short data sets and R-R intervals

Although 24-hour recording is known as the gold standard for HRV analysis, a

short-term variability may be capable to evaluate the interactions between the sympathetic

and parasympathetic nervous system.147 This research is essential since variation in ECG

recording length may result in differences in outcomes of HRV analysis in all temporal,

frequency-based, and linear/nonlinear analyses. When recordings with different duration

are compared, it should be considered to use the most prolonged duration as a standard of

comparison for stable HRV values. This will allow us to identify the minimum length of ECG

data that can capture system dynamics without significantly differing results from long

datasets. A quick HRV analysis may serve as a promising diagnostic tool in healthcare. An

effort to shorten ECG data recording is critical since HRV features add essential information
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for cardiac functioning. Our study highlights that most of the HRV measures are sensitive to

changes in the data length. We found the sensitivity of each HRV measure was affected by

the change in data lengths. It is important to note that a faster HR leads to a smaller HRV.93

Hence, unlike most others using time as the length reference, the quantity of R peaks

ranging from 60 to 2000 was used instead to avoid HR variation.148

4.5.2. Linear ECG variability measures

Chen and co-workers conducted a study with 3,387 adult participants with ECG

recordings of longer than two minutes. But reported that such long ECG recording may not

be required since the valid results of RMSSD and SDNN could be attained from 10 and

30-second of ECG recordings respectively.102 The robustness of RMSSD from 10-second

recordings was also corroborated in Thong’s work.93,104 However, 10-second based SDNN

assessment was found inconsistent by both studies concluding linear variability measure

like SDNN was more sensitive to data length than RMSSD. Similarly, some other studies

reported similar results of RMSSD and SDNN when compared data lengths of three and five

minutes93, 50-seconds104, and 5-minute105,149,150 measurements as the reference. On the

other hand, pNN50 evaluated from three and five minutes showed similar values.93 Short

ECG datasets of 20-second of pNN50 could reliably estimate similar to 150-second.104 Thus,

our results indicate that RMSSD and pNN50 were the least sensitive to data lengths. A

shorter ECG data length of 30 seconds for SDNN evaluation could potentially replace

existing guidelines by the task force.85 The HRV triangular index was found to be affected by

data length and this was consistent with previous findings.149
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4.5.3. Frequency-domain analysis

The frequency-domain HRV measures were evaluated as per standard techniques

defined by the task force.85 We investigated two frequency domain HRV analysis methods

using Welch periodogram and Lomb-Scargle. Previously, Thong investigated 10-second HRV

data for HF band variables and reported results as unreliable for accuracy.103 McNames and

Aboy concluded that the performances of HF variable ranging from 10 seconds to 10

minutes compared with the five-minute estimation were comparable with the results in

mean HR.149 In addition, the study has shown that 40-second HF and 50-second LF/HF, LF

norm and HF norm were reliable to monitor mental stress under mobile settings.104 Similar

to Salahuddin’s work, we found 60 R peaks (36- to 60-second) LF/HF and LF norm had no

significant differences with 2000 R peaks using either Welch or Lomb-Scargle algorithm. In

addition, the task force manual suggested that it could be inappropriate to assess VLF in

short-term recordings (≤5 minutes). However, our findings show that the optimum data

length to estimate VLF depends on the methods of power spectral density (for example,

1000 and 60 R peaks in using Welch and Lomb-Scargle algorithm, respectively).

4.5.4. Nonlinear variability analysis

Most of the nonlinear methods were proposed 30 years ago. However, there are not

as many literatures investigating the sensitivity on data length as the linear HRV analysis. A

shorter data length of Poincare plot, MSE, CMSE have been reported and discussed for

different purposes without providing any suggestions to minimum data length for reliable

measurements. For instance, the short-term assessment of Poincare plot was applied in

different stress levels, yet was concluded as promising results.151,152 For entropy-based HRV
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analysis, SampEn and ApEn have been compared and discussed together in most instances

since SampEn was introduced to improve the unreliable outcome of ApEn due to data

length. It was suggested that a minimum data length of 100 and 250 RR intervals of

SampEn and ApEn could distinguish healthy from congestive heart failure patients.107

Another group studied in the range of two minutes to the 20-minute data length. The

authors concluded that SampEn was a lot less sensitive to data length compared to ApEn.108

Additionally, McNames and Aboy considered several time domain and frequency domain

HRV variables with ApEn and indicated that ApEn was the most unreliable one.149 Although,

SampEn has been reported independent of data length compared to ApEn. However, we

found 1000 R peaks to be optimum for estimating ApEn or SampEn.

The results of DFA ( ) represent the relationship of and the window sizes .α 𝐹(𝑛) 𝑛

And obviously, cannot be larger than the length of the dataset. Therefore, the data length𝑛

is an essential factor of the accuracy of . Moreover, a crossover phenomenon was observedα

when DFA was proposed.135 Therefore, Peng suggested that at least 24-hour recording was

required for diagnostic purposes since the crossover phenomena could play an essential

role consistent with our results.

To calculate LLE, the parameters and need to be defined first. In this study,τ 𝐷

both and increases with the data lengths in HRV. Gao’s works had suggested thatτ 𝐷 𝐷 = 2

should be used when analyzing a finite HRV data set.153–155However, others had reported

larger parameters for longer data sets and shorter parameters for shorter data sets. For

instance, Signorini and Cerutti calculated long-term HRV with and(𝑁 = 20, 000) τ = 7

.156 And Li’s group used and for less than 5-min data sets𝐷 = 10 τ = 1 𝐷 = 3
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.157 Moreover, speaking of the method differences in LE, Rosenstein’s LE(𝑁 = 200 − 355)

is known for fast and easy to implement and applicable to small data sets.146 A minimum of

200 consecutive R-R intervals was suggested as optimum data length for calculating HRV.157

However, Li and coworkers did not report any statistical evidence supporting their

conclusion. On the contrary, we found that data length is significantly different from LLE of

2000 R peaks.

The varying data lengths required for nonlinear and chaos HR analyses can be

partially explained by different aspects of the autonomic heart control system which

complexity (ApEn, SampEn and MSE) and LLE can measure. For instance, MSE can measure

deviations or differences at different time scales thus offering insightful information on

temporal dynamical variations of autonomic HR control system. In our laboratory pilot

studies we have found strenuous exercises significantly decreased the complexity of HR R-R

interval data. However, LLE detects the presence of chaos in heart dynamical control

systems by quantifying LEs (exponential divergence of initially close state space

trajectories). The computation of LLE utilizing multiple LEs derived from divergence curves

requires larger datasets for stable values. Additionally, DFA is an indicator of statistical

persistence and antipersistence of HR time series. Persistence indicates the deviation in HR

time series is statistically more likely followed by subsequent deviation in the same

direction (increase in HR is followed by subsequent increase of HR or decrease is followed

by another decrease of HR). On the other hand, antipersistence implies that the deviation is

followed by subsequent deviation in opposite direction (increase in HR is followed by
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decrease in HR and vice-versa). Since supraspinal mechanisms involuntarily control HR, it

is likely the HR control mechanism will naturally produce long-range correlated HR time

series, thus requiring at least 1500 data points for robust and stable DFA values.

4.5.5. Limitations

The findings of this study must be seen together with the limitations. Firstly, our

study is limited with sample size. Additionally, the subjects were within a limited range of

age thus the study is limited in external validity to other age ranges. We will conduct a

study with a larger number of participants and broader age ranges in the future. Secondly,

this study investigated optimum data length for HRV measures and is limited to the healthy

group only. Hence, a future study with pathological groups would be interesting to

embolden our findings.

Chapter 4.6: Conclusions

ECG-based analysis of cardiac rhythm is critical for the diagnosis of a heart condition

and disease management. In addition, novel clinical decision support systems require quick

ECG analysis to assist clinicians. Our effort to shorten the ECG recording duration is vital to

improve efficiency and save time and effort for patients and clinical care providers. This

could be more critical for patients with frequent artifacts and HRV physiological features

extracted from short ECG recordings with high confidence. Our study suggests that ECG

data length collected from wearable devices must be optimized and selected such that more

consistent and reliable results could be attained with existing laboratory-grade
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measurements. In conclusion, this study suggests ultra-short data sequences can be

collected and analyzed for quick HRV assessments retaining the rich information from

linear/ non-linear variability structure, but with caution since HRV variables are affected

differentially to the data length. Chaotic HR analyses such as LLE (Rosenstein and Wolf) and

long-range correlation through DFA required longer dataset lengths compared to other

nonlinear variability measures like ApEn, SampEn, and MSE.
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CHAPTER 5: Sleep event detection from nasal airflow using deep

learning algorithm

Chapter 5.1: Introduction

People with obstructive sleep apnea (OSA) suffer from excessive daytime

drowsiness, morning headache, or reduced labor and learning capacity and are associated

with a higher risk of CVD.158 However, with the estimation of one billion people affected159, a

proper measure for the severity of this most common sleep-related breathing disorder is

yet completely understood.

Currently, the apnea-hypopnea index (AHI), the average number of apnea or

hypopnea events captured in an hour of sleep, is a well-accepted estimation for OSA

severity. The American Academy of Sleep Medicine (AASM) defined it into three categories

– mild (AHI of 5-15), moderate (AHI of 15-30), and severe (AHI of more than 30).160

Another similar measure, respiratory disturbance index (RDI) included not only AHI but

other breathing irregularities, has been proposed as the association of excess sleepiness161

and risk of mortality in coronary artery diseases.162 However, relying on a simple count of

the event frequency as the only factor, it has been questioned the ability to best represent

the disorder.163 The full picture of physiological characteristics, such as the duration of the

apnea and hypopnea events, and the durations, areas, and depths of oxygen desaturation

episodes, was omitted to evaluate when only AHI or RDI was considered. Nevertheless, it

has been suggested that longer and deeper apnea, hypopnea, or oxygen desaturation

episodes are related to higher risks in adverse events.
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With that being said, patients with similar AHI may not necessarily show similar

sleep apnea-hypopnea syndrome. Hence, several parameters were proposed and discussed

in providing more detailed information supplementing AHI.164–170 For instance, the

nocturnal hypoxemia computed by the percentage of the duration under 90% of oxygen

saturation could better predict CVD and mortality than AHI.169–171 Dr. Töyräs’s study group

published various metrics in considering the durations, areas, and depths for evaluating

OSA severity. They found that, with similar AHI, the deceased OSA patients had higher

obstruction severity values than the demographically matched alive ones.165,172 The

obstruction severity allows the duration and area of area and hypopnea events to be

considered as shown in Equation 5-1.164,165,172

𝑂𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =  𝑛=1

𝐿

∑ 𝑛(𝐻𝑦𝑝𝐷𝑢𝑟
𝑛
×𝐷𝑒𝑠𝐴𝑟𝑒𝑎

𝑛
)+

𝑛=1

𝐿

∑ 𝑛(𝐴𝑝𝐷𝑢𝑟
𝑛
×𝐷𝑒𝑠𝐴𝑟𝑒𝑎

𝑛
)

𝐼𝑛𝑑𝑒𝑥 𝑡𝑖𝑚𝑒

(5-1)

where individual hypopnea and apnea event duration are denoted as and ,𝐻𝑦𝑝𝐷𝑢𝑟 𝐴𝑝𝐷𝑢𝑟

respectively. The area of an individual desaturation event is denoted as .𝐷𝑒𝑠𝐴𝑟𝑒𝑎

is the total analyzed time that is used to normalize different study recording𝐼𝑛𝑑𝑒𝑥 𝑡𝑖𝑚𝑒

lengths. is the quantity of individual events in one study recording. Another parameter𝐿

proposed from the same study group is the desaturation severity (Equation 5-2).164

It was found as a stronger predictor of daytime sleepiness than AHI.173 Furthermore, they

presented an adjusted-AHI (Equation 5-3) which indicates the relationship between AHI

and obstruction severity.
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𝐷𝑒𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 𝑛=1

𝐿

∑ 𝐷𝑒𝑠𝐴𝑟𝑒𝑎
𝑛

𝐼𝑛𝑑𝑒𝑥 𝑡𝑖𝑚𝑒

(5-2)

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐴𝐻𝐼 = 5. 328 × 𝑂𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 (5-3)

Another popular alternative metric, hypoxic burden, which is believed as the desaturation

severity parameter167, has been studied as having predictive power in mortality from

CVD.168,174

Notwithstanding the traditional practice has the AHI to identify OSA severity, it is

certainly not adequate in describing the morphology of sleep events. Alternative

parameters may reveal missing information to compensate for the insufficiency of AHI

being used alone. Additionally, other strategies can be helpful to predict complications.

First, factors such as genetics and symptom subtypes are likely to contribute to individual

differences. Studies found that the variation between individuals in neurobehavioral

impairment during sleep deprivation was trait-like differential vulnerability.175 Another

perspective to improve the severity classification of OSA strategy focuses on identifying

more sophisticated patterns using methods such as machine learning and deep learning

techniques.176–180
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Chapter 5.2: Methods

5.2.1. Data collection

Patients who were suggested to receive on-site and overnight polysomnography

(PSG) studies by the sleep specialist for further diagnosis at UCI Health Newport – Birth

Street were recruited between May 2022 and June 2022 to participate in the study. All

patients gave informed consent for the study which was approved by the Institutional

Review Board of the University of California (IRB no. ). The protocol followed the standard

guidelines of a PSG study to monitor patients’ sleep.

The sleep recordings were scored manually with sleep stages, respiratory events,

and any irregular sleep events by the sleep technicians and physicians. The number of

channels recorded per patient was based on their situation. Then, 37 recommended

channels were extracted, deidentified, and saved in European data format (EDF) for further

analysis.

5.2.2 Data preprocessing

We aim to demonstrate that a single channel acquired from the PSG study can

stratify the severity of sleep events through deep learning models. Considering that the

dataset was relatively small (more data will be included since this is an ongoing study), two

binary classifiers were established for confirming that nasal airflow could be used to

stratify the sleep event and non-sleep event. To lessen the computational cost, the nasal

airflow signals were originally recorded with 512 Hz sampling frequency and were

downsampled to 32 Hz and segmented into 60 seconds recordings.
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Data were categorized into two groups, the sleep and non-sleep events, by the

annotation. The sleep event for the first classifier was defined based on wherever the word

‘Hypopnea’ or ‘Apnea’ contained in the annotation. Possible circumstances such as central

hypopnea, obstructive hypopnea, central apnea, and obstructive apnea were included in the

sleep group. On the other hand, the sleep event for the second classifier was defined

according to the arousal label in the annotation. Only events during the non-rapid eye

movement (NREM) sleep and before continuous positive airway pressure (CPAP) therapy

(if any) were used in the study. The data preparation demonstrated above was prepared

using Matlab (R2021b, The MathWorks, Natick, Massachusetts, USA).

In addition, to avoid imbalanced classes, the quantity of the larger group was

reduced to match the smaller group by random selection. For instance, there were 1037

and 769 epochs of non-sleep and sleep events for the first classifier initially, respectively.

769 epochs from the 1,037 non-sleep events were randomly chosen to match the number of

sleep events.

The complete data sets for both binary classifiers were split into training and test

sets in the ratio of 4:1. For the first classifier, there were 769 apnea-hypopnea and

non-apnea-hypopnea events collected then split into 1,230 (80%) and 308 (20%)

recordings as training and test sets, respectively. The second classifier had 1,343 recordings

for both arousal and non-arousal events and therefore split into 2,148 (80%) training and

538 (20%) test sets.
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5.2.3 Neural network architecture

We intended to utilize the nasal airflow signals from the PSG study for predicting

apnea-hypopnea and arousal events through two separate deep-learning classification

systems. A one-dimensional convolution neural network (1D-CNN) was implemented using

Python 3 deep learning framework including Keras and Tensorflow. The integrated

development environment (IDE) for data processing was Google Colaboratory.

5.2.3.1 Binary classification for apnea-hypopnea event

A similar structure to an AlexNet181 including five 1D convolutions, five batch

normalization, three max-pooling layers, and two fully connected layers were used to build

a classifier and predict in the work. The diagram of the 1D-CNN structure is shown in

Figure 5.1. The first 1D convolution layer had 64 filters, a kernel size of 11, and a stride of

4. The second had 64 filters, a kernel size of 5, and a stride of 1. The last three 1D

convolution layers had 256 filters, a kernel size of 3, and a stride of 1. Each 1D convolution

was followed by batch normalization. All the max-pooling layers had a pool size of 3 with a

stride size of 2. To reduce overfitting, a dropout rate of 30% was applied for each fully

connected layer. The last layer was a softmax activation function that provides binary

classification. A sparse categorical cross-entropy loss function with the Adam optimizer

was used for model optimization.
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Figure 5.1. 1D-CNN AlexNet applied as a binary classification in the work.

5.2.3.2 Binary classification for arousal event

Similar to the structure in section 5.2.3.1, the binary classifier for arousal event was

implemented with an AlexNet, but with the following exceptions. We progressively enlarged

the filter numbers in the five 1D convolution layers to capture more complex abstractions.

The kernel sizes and strides remained the same but the filter numbers increased

subsequently starting from 64, 128, 256, 512, to 1,024.

5.2.4 Cross-validation

K-fold cross-validation is considered a gold standard for machine learning model

evaluation. It overcomes the disadvantage of testing part of the dataset only. It provides a

more trustworthy result for model performance. A 10-fold cross-validation was used to

ensure the bias of subset selection was minimum.
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Chapter 5.3: Results

Binary classification for apnea-hypopnea events versus baseline events achieved an

accuracy of 87%. The accuracies of training and testing datasets are shown in Figure 5.2.

Figure 5.2. The accuracy of binary classification for apnea-hypopnea events. The blue line
represents the accuracy of the training dataset. The orange line represents the accuracy of the
testing dataset.

The input signal time window of the second binary classification was optimized to

45 seconds with 30 seconds prior to and 15 seconds after the onset of arousal. The input

signals of baseline were selected when there were 45 seconds without sleep events. 1,343

signals were prepared for both arousal and non-arousal datasets. The average accuracy

after 10-fold cross-validation reached 85%. The loss and accuracy of each fold are shown in

Table 5.1.
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Table 5.1. The loss and accuracy of each fold from 10-fold cross-validation.
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CHAPTER 6: Effect of electroacupuncture on heart rate variability and

blood pressure variability in subjects with hypertension

Chapter 6.1: Background information

Most of the time, the “silent killer”, hypertension, has no obvious symptoms but has

strong effects on the human body in many ways such as organ damage. However, it was

estimated that nearly half of the adults in the United States were hypertensive, and only

about a quarter of them had it controlled.182 What is even worse is that there is no cure. The

common treatments for hypertension are medications and healthy lifestyle habits. An

appropriate lifestyle change could potentially have the same efficacy as antihypertensive

drugs183 yet is difficult to sustain.85 In addition, Diao’s work found that the outcome of

antihypertensive medications used for treating mild hypertensive adults was controversial

and accompanied by adverse effects.184

Alternatively, some studies had suggested that both acupuncture and

electroacupuncture could manage BP in patients with hypertension.185–191 Furthermore, Li

et al. mentioned that acupuncture therapy was likely to have a long-lasting effect in treating

hypertension.188 Because an overactive sympathetic nervous system plays a dominant role

in elevated BP192–200, this study aims to better understand how EA therapy affect the

sympathetic and parasympathetic activities that precipitate hypertension.

The responder and non-responder in the study are defined as whether one’s BP

after an eight-week intervention reduces in peak and average SBP and DBP compared to the

baseline. Besides absolute BP values, HRV and BPV were the major outcome measures.
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6.1.1. HRV

HRV measures the variation of heartbeat interval in time. Since HR is mainly

regulated by the autonomic nervous system, HRV can be served as a non-invasive index to

assess the autonomic activity of the heart. In frequency-domain analysis, the HF component

of HRV reflects parasympathetic activity.201–204 On the other hand, the LF component of HRV

was suggested either reflecting mainly on sympathetic activity204 or a combination of

sympathetic and parasympathetic activities203. The ratio of LF and HF (LF/HF) reflects the

sympathetic modulations.85 Moreover, frequency-domain HRV had been used to investigate

the effect of acupuncture on sympathetic and parasympathetic activities in several

studies.205–207

6.1.2. BPV

BPV has previously been reported its association with organ damage, cardiovascular

event, and mortality208. Ultrashort-term BPV is referred to beat-to-beat BP fluctuation with

the use of continuous BP devices. Similar to HRV’s power spectral analysis, the LF

component (0.077~0.15 Hz) of BPV was believed to reflect on sympathetic activity209.
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Chapter 6.2: Methods

6.2.1. Trial design and subjects

The randomized controlled clinical trial aims to evaluate the effectiveness of EA in

decreasing BP. Adults with hypertension were recruited at University of California Irvine

Health Susan Samueli Integrative Health Institute between May 2022 to October 2022.

Volunteers were asked to consent to a screening session including resting ECG recording,

24-hour ambulatory BP monitor (Spacelabs Healthcare, Snoqualmie, Washington, USA),

and EndoPAT™ (Itamar Medical, Caesarea, Israel) for eligibility prior to the intervention.

Participants who were non-hypertension, pregnant, nursing, have had ischemic heart

disease, or did not consent were excluded. All enrolled participants gave informed written

consent for the study which was approved by the IRB of the University of California (IRB no.

1999-2222).

The enrolled participants were then randomized into three groups, the authentic

electroacupuncture for BP reduction, the sham electroacupuncture, and the wait-list group.

The protocols of authentic and sham interventions were similar except that the needles

were inserted at different acupoints which neither participants nor researchers knew the

settings. Each EA group received eight treatments. Typically, the participants received the

treatment once per week for eight weeks except when the schedule was conflicted.
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The overall goal of the clinical trial is to investigate the influence of EA treatment on

sympathetic and parasympathetic activities. BP, HRV, and BPV collected during the

interventions were used as part of the outcome measures to understand the effectiveness of

EA and the activities of the sympathetic and parasympathetic nervous systems. Besides a

24-hour ambulatory BP monitor for intermittent BP tracking 24 hours after the treatments,

the CAP sensor (Kim et al. 2019) which monitors continuous beat-to-beat BP was used

during the weekly visits to track HRV and ultra-short-term BPV.

6.2.2. Experimental protocol

After the participants gave consent, they were asked to go through a screening

session to be assessed their eligibility to partake in the study according to the inclusion and

exclusion criteria of the clinical trial. Moving forward to the EA intervention, regardless of

which group was assigned, the beat-to-beat hemodynamic information was captured by the

CAP sensor continuously in every visit. Three BP was measured in a row using an

intermittent digital BP monitor on one arm in the sitting position at the beginning of each

visit. The participants were then asked to lie down in a supine position for the EA

intervention. The CAP sensor was placed on either side of the dorsalis pedis arteries. An

acrylic backing and an acupressure wristband (Sea-Band Ltd.) were used to mount the

sensor onto the subject’s skin. The data from the pressure sensor, accelerometer, and

gyroscope was collected on a customized app. On the same side of the body, a wireless

intermittent BP monitor, Evolv® (Omron Corporation, Kyoto, Japan) was placed on the

upper arm as the BP reference for the CAP sensor. The intermittent BP measurements were
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taken at least every 10 minutes. Additional measurements were taken if needed. By design,

a total of 50-minute BP readings, a 10-minute baseline, a 30-minute intervention, and a

10-minute post-intervention, were recorded by the CAP system. Three seated BP

measurements were obtained again afterward at the end of every visit.

In the fourth week, the participants were asked to wear a 24-hour ambulatory BP

monitor. At the end of the eight-week therapy, similar to the examinations prior to the

therapy, subjects underwent the 24-hour ambulatory BP and HR monitoring again to

compare the changes between pre- and post-therapy.

Chapter 6.3: Results

In the period between May 2022 and October 2022, a total of 15 subjects were

originally recruited but only four completed the study (three from the authentic EA group

and one from the sham group). The completed four participants are all males. For the 11

subjects who withdrew from the study, there were cases either that the subjects were

disqualified from the screening session according to exclusion criteria or that they were

unwilling to commit to eight weeks of treatments.

The one subject in the sham group is denoted as C1. The other three subjects in the

authentic EA group are denoted as S1, S2, and S3 in the order of when they were recruited.

The average BP values from the three measurements at the beginning and last of each visit

are shown in Table 6.1.
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Table 6.1. Averaged SBP and DBP from three intermittent measurements before and after EA
treatments.

The data for week 0 (baseline) to week 8 averaged over 24 hours BP and the peak BP taken

within 24 hours is shown in Table 6.2. In both averaged and peak BP over 24 hours, C1, S1,

and S3 results were expected. The BP decreased after eight authentic EA treatments

compared to the baseline when no treatment was given to S1 and S3. The data for week 0

(baseline) to week 8 averaged over 24 hours BP and the peak BP taken within 24 hours is

shown in Table 6.2. In both averaged and peak BP over 24 hours, results of C1, S1, and S3

were expected. The BP decreased after eight authentic EA treatments compared to the

baseline when no treatment was given to S1 and S3.

Table 6.2. Averaged and peak BP over 24 hours before (week 0) and after (week 8) a course of
eight EA treatments.
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Moreover, the study assessed 5-min of HRV and ultra-short-term BPV to investigate

how EA treatment effect sympathetic and parasympathetic activities. From the recording of

the CAP system, S1 was found to have frequent irregular heartbeats across the weeks.

Therefore, S1 was excluded from HRV and BPV calculation. For C1, S2, and S3, HRV and

ultra-short-term BPV were evaluated whenever it’s applicable since the protocol varied

between visits. A representative subject, S3, displayed the trend following that the LF

power components, the ratio of HF/LF, and BPV decreased whereas the HF power

increased (Figure 6.1).
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Figure 6.1. 5-min HRV (upper row) and BPV (lower row) of a representative subject from week 0
to week 6. pLF and pHF represent the normalized LF and HF components. ARV represents the
average real variability of BPV.
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