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Abstract The ex-Gaussian distribution is produced by coringlv
It has been argued that performance in the lexdeaision (|_.e.,. adeg samples from) the Gaussian and Expiale
task (LDT) does not provide a direct measure ofickdx distributions. It has three parameters, the meqanafd
access because of the effect of decision proce¥gesre- standard deviationa] of the Gaussian component and the
examine LDT data and fits of the diffusion decisioodel mean of the exponential componen). (These parameters
reported by Ratcliff, Gomez and McKoon (2004) aihdvs give information about the shape of the RT distitu In

that they assumed too little role for non-decigioocesses in . .
explainixg the word frequency effect. Our aﬂ?mi@ports particular, they parameter is affected by the speed of the

an effect of frequency on decisiand non-decision time. fastest responses made by participants. SimilaHg, T
parameter is affected by the length of the rigitofathe RT

distribution.

Differences in parameter estimates from fits of &e
Gaussian to high and low frequency RT distributions
indicate that there are changes in the very fashest
slowest responses made by participants. Changes ah
approximately 20-30ms have been reported (Andrews &
Heathcote, 2001; Balota & Spieler, 1999; PlourdBesner,
1997). These changes indicate that the entire Rfilalition
shifts to be slower for less frequent words, incejeatly of
any changes in the shape of the distribution. B shme
applications of the ex-Gaussian, changes 1n of
approximately 35-45ms were observed, suggestingttiea
right tail is longer when the words to be identfiare less
frequent.

Balota and Chumbly (1984) argued that the data from
LDT tasks come from a combination of the lexicabqess
and the decision process. Ratcliff et al. (2004) far#éd this
line by arguing information about lexical access oaly be
obtained from RTafter accounting for the decision process.
In other words, even studying the full range of d&eaobral
data in the LDT (i.e., accuracy and RT distribusicior
correct and error responses) does not by itselfigeoclear
information about lexical access. To address guge they
fit a model of the decision process, the diffusioadel, to
their LDT data and used estimates of its parameaeics the
parameters of a simple characterization of nonsieti
processes, to examine lexical access. When Yapl.et a
(2006) compared the diffusion account with a hyhvie-
stage model of the LDT based on Balota and Chursbly’
work, they concluded in favor of the diffusion mbade

Keywords: Lexical decision task; diffusion model

Reading is one of the most remarkable abilitieSeaetdl
by the human mind. One of the key aspects enaldiading
is the ability to recognize a string of charactassbeing a
word, a process called “lexical decision”. The &zki
decision task (LDT) is a paradigm for studying word
identification in which participants are presenteith a
string of letters and they must quickly decide Vileetor not
the letters form a word. If the letters presentedntbke a
word, then the time taken to make a ‘word’ respoisse
thought to give information about how long it todk
retrieve the word from their database of words,recgss
referred to as lexical access.

The word frequency effect is one of the most robust
findings from the LDT paradigm: words used less
frequently in natural language take longer to inifgrthan
higher frequency words. Historically, the word fueqgcy
effect has been reported as a difference in meactioa
time (RT) for correct responses between low anch hig
frequency words. Mean RT from high and low frequenc
words usually differs by around 60-80ms. HoweverT, iR
the LDT is quite variable, typically having a stand
deviation of greater than 100ms. Some of this éiig is
because of differences between words within a &#aqu
class, but variability also occurs between the seumil on
different occasions. Variability in RT is also posly
skewed, with a longer right (slow) than left (fait)l in RT
distribution, and the length of the right tail Hasen found
to vary systematically in LDT experiments. Hence,
researchers have begun to investigate differencethe A :
entire RT distributiong between higﬁ and low frequen The d'ﬁ“S'Qr! quel account of RT. IS co.mposed 0b tw
words, rather than just the mean RT (Andrews & Heate, parts — a decision time a_md a non-de_C|S|on time. a'ch:_ount
2001; Balota & Spieler, 1999; Plourde & Besner, 7)99 of LDT starts by assuming that a stimulus is pexegiand

More recently, there have been lexical theoriepqsed enqoded. This is followed by lexical access, Wrguhas_ an
that account for effects on all aspects of RT itigtion estimate of how much evidence the stimulus provibes

(Ratcliff, Gomez and McKoon, 2004; Yap, Balota, e each response (word and non-word in an LDT). This
&Watsén 2006) ' ' ' ' evidence determines the rate at which informatign i

RT distributions have been shown to be WeIIaccumulated, calledrift rate, and drives the decision part
characterized by the ex-Gaussian distribution (LU&S86). of the diffusion model. The time taken for the it
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perceptual, encoding and lexical access procephesthe
time to execute the motor response after the agrcisi
process is completed, makes up the non-decision fithe
non-decision timeTg in the diffusion model determines the
smallest possible RT and, therefore, changél,ishift the
entire RT distribution. The ex-Gaussian evidenceereed
above might have suggested that the word frequeffegt
would, in part, be explained by differencesTin for high
and low frequency words. However, when Ratcliff abt
(2004) applied the diffusion model to data fromenitDT
experiments they concluded that only drift ratefedéd
between high and low frequency words. In other wprd
word frequency effects in the LDT were simply doehbw
‘wordlike’ the string of letters was, and not cadissy other
aspects of the non-decision processing, such adirtie
required for lexical access. Ratcliff et al. cladnghat the
shift of the RT distribution due to word frequendcy
captured by the inclusion of trial-to-trial variéityi in Te
and not due to systematic differencesTindetermined by
the frequency of the word being identified.

In the current paper we reanalyze Ratcliff et a2804)
data and demonstrate that their fits of the difnsmodel
systematically fail to account for the word freqogreffect
on both fast and slow responses. We then showtligat
misfit is greatly reduced by allowingy to differ for words

total, sayx, illustrated as a function of time by the irregula
line in Figure 1. The accumulator begins the deaisi
process in some intermediate state, se& Evidence that
favors the response “word” increases the value,adind
evidence that favors the other response (“non-word”
decreases the valuexfThe evidence accumulation process
continues until sufficient evidence favors one case over
the other, causing the total to reach one of it® tw
boundaries (the horizontal linesxat0 andx=a in Figure 1).
The choice made by the model depends on which @wynd
is reachedd for a “word” response or 0 for a “non-word”
response) and decision time equals the accumulttien
Depending on the stimulus, evidence tends to aclaienu
more towards one boundary or another, and the geaede
of this accumulation is called the “drift rate”, ish we will
label v. Larger positive or negative drift rates causdefas
and more accurate responses as evidence headslsaivar
correct boundary at a faster rate. The evidencenagiation
process also varies randomly from moment-to-moment
during the accumulation process, and the amourthisf
variability is another parameter of the modsl, The
diffusion model used in Ratcliff et al. (2004) alseludes
three extra variability parameters, the distributiof drift
rates is assumed to vary from trial-to-trial acdagdto a
normal distribution with mean and standard deviation

of different frequency. We finish by discussing theStart point is also assumed to vary from trialdatt

implications of our results and possible extensidfisst,
however, we begin by describing the diffusion model

The Diffusion Model

The diffusion model with trial-to-trial variabilityin
parameters is the most successful model of chorw
reaction time for simple decisions between twora#dtves
(Ratcliff, 1978) and has been applied repeatediy.Bd
data since Ratcliff et al.’s (2004) initial work ¢@ez,
Ratcliff & Perea, 2007; Ratcliff, Perea, Colangel,
Buchanan, 2004; Wagenmakers, Ratcliff, Gomez

according to a uniform distribution with centzeand range
s, Finally, non-decision time is assumed to varyween
trials according to a uniform distribution with ¢enT, and
range sr. Critically, non-decision variability enables the
diffusion model to better account for shifts in RT

g distribution between conditions that differ onlydnift rate.

When there is no non-decision variability a chamgdrift
rate almost exclusively slows RT by lengthening tight
tail of the distribution, with only a small effegh the fastest
RTs. When non-decision variability is added theeetffof a

gdrift rate change on fast RTs is increased suffttjeso that

McKoon, 2008). The diffusion model assumes thatRatcliff et al. (2004) were satisfied with an acebof the

participants sample evidence from the

stimulugword frequency effect in terms of a pure selectnfience

continuously, and this evidence stream updates/iierece  ©N drift rate.
Ratcliff Diffusion Model
a Parameters
Respond
‘word'
1. upper response boundary, a
N(v,n) 2. non-decision time, Tg,
3. between-trial variability in drift rate,n
AN 4. mean of between-trial drift rate distribution, v
T \/\} \/ 5. between-trial variability in starting point, s,
range = sy 6. between-trial variability in non-decision time, s;
7. within-trial variability in drift rate, S
8. centre of start point distribution, z
Respond
0 'non-word'

Accumulation time ——»

Figure 1: A graphical representation of a singfeudion model decision in an LDT task.
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Ratcliff et al.’s (2004) LDT Data

Fits reported in the original paper

Ratcliff et al.’s (2004) fits to all experiments rge
accomplished by allowing only drift rate to varytleen
word frequency conditions. This is common practideen
applying the diffusion model. Differences in norcidéon
process parameters cannot be the sole account dod w
frequency effects, as these processes cannot ricBuerror
rates. However, although less parsimonious, theraa
reason why non-decision processes might not betatfeoy
word frequency in addition to drift rates. Inde&&tcliff et
al.’s (2004) application of the diffusion model ttee LDT
was one of the first occasions on which non-denisio
variability was used, with most earlier applicaion
assuming a constant non-decision time (e.g., Rattd78).

When we looked closely at Ratcliff et al.’s (2004)
published fits of the diffusion model to their LDdata
averaged over participants, we found a systematieim of
misfit that was highly consistent across all of thime
experiments which they report. In particular, despghe
inclusion of between-trial variability i, the diffusion
model consistently under-predicted the magnitudethef
word frequency effect on the .1 quantile resultsdorrect
responses reported by Ratcliff et al.. The .1 dleant
characterizes the fastest responses from the Riibdison
(i.e., it is the RT below which the fastest 10%r@gponses
occur). Changes in the .1 quantile indicate a shifthe
entire RT distribution. Averaging over their nine
experiments, the .1 quantile estimate for high desgy
words was 27ms and 33ms faster relative to low \argt
low frequency words respectively, whereas for tholeh it

is true for the .9 quantile — the average moddliipt®ns sit
higher than the data in both plots. The systematid
opposite misfit for fast and slow responses redutieover
prediction of the effect of word frequency on vaiiidy

(i.,e., a much larger range between the 10% and 90%
guantiles than observed in data).

T T T T
0.1 0.2 0.3 0.4

T
05 0.6 07

Quantile
Figure 2: Word frequency effect quantile functiased on
responses to high frequency (HF) and low frequéhgy
words in Ratcliff et al.’s (2004) experiments 1A¥erage
model fits across experiments and conditions aregd
lines, and data as symbols. Standard error baicaited
variability across experiments and condition

The diffusion model has clearly raised the bar for
accounts of LDT performance by simultaneously rigti
accuracy and RT distribution for both correct arrdore
responses. Although we agree that the diffusion ehod
provides an impressively comprehensive account afiyn

was only 16ms and 22ms faster. Although the underaspects of performance in the LDT, the systematsgitnof

prediction is relatively small (11 ms on averagfelk highly
consistent, occurring in every one of the 19 faparted in
their Tables 3, 7 and 9 - a highly significant tesising a
binomial test |j<.001 for both low and very low frequency
words). In contrast to results for the fast .1 dienthe
diffusion model consistently over-predicted the &vor
frequency effect for the slow .9 quantile, for niofeten fits
comparing high and low frequency wordp<{01) and
seven of nine fits comparing high and very low frency
words £<.02).

Figure 2 is a graphical summary of these analyfesata
and model fits for high and low frequency wordsraged
over experiments from Ratcliff et al. (2004). Thhugwas
excluded for brevity, the plot of the differencevieeen high
and very low frequency words looks almost identiddie
vertical axis shows the difference in RT between kEnd
high frequency words. Note that the positive vatiighis
difference means that participants were sloweespond to
low frequency words — the standard word frequerftgce
The horizontal axis represents the quantile vabighe RT
distribution. The average model predictions (shdwnthe
solid line) for the.1 quantile fall below the obsed data
averaged across all experiments. Note also thadppesite

the word frequency quantile functions indicatest tieere
may be reason to re-examine the assumptions made by
Ratcliff et al. (2004) in their application of thdiffusion
model.

The diffusion model appears to have misfit Ratcéff
al.’s (2004) data largely because the assumptinderlying
the mapping of the diffusion model to the LDT task too
simple. Although simplicity is a virtue in quantite
modeling, identifying word frequency effects eniravith
drift rate may represent an over-application of @
razor. Most models of reading assume that lexiceéss is
accomplished more quickly as the frequency of adwor
increases (see Andrews & Heathcote, 2001, for
discussion). In the diffusion model framework, tbild be
interpreted as a faster non-decision time for higgn low
frequency words. Allowing for such a possibility ght
reduce the underestimation of the word frequenégcefat
the .1 quantile apparent in Figure 2. In other wppkrhaps
the diffusion model would provide a better accoahthe
word frequency effect in LDT data if it were to @lallow
for changes inTy for words of different frequency. We
explore this possibility in the next section.

a
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Exploring frequency effects on non-decision time

We fit four different versions of the diffusion meldto
data averaged over participants from Experimentsadd 5
from Ratcliff et al. (2004). All experiments weré rearly
identical procedure, with differences being in tgpe of

to use quantile maximum likelihood estimation (Hieate,
Brown & Mewhort, 2002). The Bayesian information
criterion (BIC) was calculated using the BIC stati$or N
observations grouped into bins:

BIC = -2(3 NpiIn(m;)) + M In(N)

words used: Experiment 3 used high frequency, lowvherep; is the proportion of observations in tfebin, and
frequency and pseudo-words, Experiment 4 was ic@nti , is the proportion of observations in tifebin as predicted

but used random letter strings instead of pseudalsy@and

by the modelM is the number of parameters of the model

Experiment 5 was the same as Experiment 3 but alsgsed to generate predictions. The BIC is compo$ad@

included very-low frequency words. Our re-analysess
limited to these three experiments because Ra&tliéil. did
not publish critical information for fitting (e.gquantiles for
error RT) for the remaining experiments.

The four versions of the diffusion models diffecaing

parts, the first is a measure of misfit, and a sdcpart,
M In(N), penalizes a model for its complexity as indidate
by the number of estimated parameters. When congpari
two models, the model with the smaller BIC is thioutp
have provided a better fit after complexity hasrbésken

to how non-decision timél,s, varied. There were two ways into account. Best fitting parameter estimateseih of the
in which T was allowed to vary — randomly between trialsfour models to all three experiments and their eetpe

(cf. Ratcliff et al., 2004) or systematically betmeword
frequency conditions. Between-trial variation wasarmly
distributed with meam, and ranges;. Between-condition
variation in T, like between-condition variation in drift
rate, meant that each of the word conditions hedwn T,
value. The between-trial variability i, requires one
parametersy, whereas between-condition variability T
requires the estimation of an additionall parameters,

BIC values are given in Table 1.

Despite the complexity of the analysis, the pattefn
results was relatively simple. Adding between-trial
variability in T always improved the BIC value, and so too
did adding between-condition variability T. In all three
experiments the model with both between-trial and
between-condition variability infe had the lowest BIC.
This implies that the improvement in fit due to thdra free

wherek is the number of word frequency conditions in theparameters outweighed the penalty for added coritplex
experiment being fit. The four different models @er The next best fitting model in two out of three esments

factorial combinations of these two methods: 1)thei
between-trial nor between-conditions variability Tg, 2)
only between-trial variability inTg, 3) only between-

was the model used to originally fit the data irtdRi et al.
(2004) — the model with between-trial variability To. In
Experiment 5 not the model without between-trail

conditions variability inTe, and 4) both between-trial and variability in T, but with between-condition variability in

between-conditions variability .
The data to be fit were accuracy and quantile wafoe
correct and error responses averaged over partisifeom

Te achieved the second best fit.
The model with neither between-trial nor between-
condition variability inT, consistently performed the worst

each experiment. We fit the diffusion model using a of the four models. Inspection of the fits reveatbdt, as

adaptation of Voss and Voss’s (2008) diffusion nmadele

expected, this model predicted almost no changien.1

Table 1: Parameter estimates from fits of fouredight versions of the diffusion model to Experinse3#5. M1 was the
model with no variability in Ter, M2 had variabjlibetween-trials, M3 had variability between-coiwdis and M4 had both.
In all models starting point, z, was set at a/2.

Ter

Model a S, n Vh Y Vo Vy S Ter HE LE o VLE BIC
M1 .128 .059 .037 .348 .176 -.226 404 91887
Exp3 M2 122 .069 .108 446 .219 -.282 A7 444 91126
M3 127 .065 .052 .335 .188 -.243 396 421 422 91449
M4 122 076 .113 412 226 -.301 .16 428 .45161. 90843
M1 .133 .08 .089 .367 .361 -.302 .378 98571
Expd M2 126 .075 .101 .381 .361 -.366 A1 .39 8341
M3 .132 .081 .093 .37 .319 -.358 379 .391 .375 98453
M4 127 .078 .011 .391 .334 -.374 .105 392  .404887 98320
M1  .147 069 .069 .354 214 -259 .128 .409 89190
Exp5 M2 144 075 .01 .394 234 -253 .141 .139 431 89000
M3  .144 .074 .074 336 .243 -217 .132 402 43%129 425 88693
M4 148 .093 .124 404 257 -296 .163 .125 42851, 461 454 88546
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quantile due to changes in word frequency. Becafiskis
it was also unable to capture other aspects of Rie
distribution. Hence, we do not consider the modighout
variability in Ty any further. Although, for brevity, we do
not show the complete fits of the model to quastiler
correct and error responses for all
conditions, these graphs clearly agree with ourckmions
based on BIC values (they may be obtained by emgailie
authors).

Our reason for investigating between-condition afaitity

the model with only within-condition variability i still
systematically fails to capture the effect. The e$in
connected by plus signs (+) are the predictionsthef
diffusion model with only between-trial (within-cdition)
variability in Ty (i.e. the same as the model used in Figure 2

word frequencyand Ratcliff et al., 2004). Note the systematic amd

prediction of the .1 quantile in all experimentsgahe over-
prediction of the .9 quantile in Experiments 3 @dThe
predictions of the models with between-conditionafzility

in Te or both forms of variability inT, (representing in

in Ty was based on the systematic misfit of the wordrigure 3 by lines joined by crosses and triangles,

frequency effect. Figure 3 shows that there
improvement in the account of the word frequendgaf
when between-condition variability iy is added to the
diffusion model. The plots in Figure 3 are like $boin
Figure 2, but are from individual experiments ratk®n
averaged across all nine experiments in Ratcliffakt
(2004). Each of the three plots also now contdinset sets
of model predictions (represented by solid linegher than
one. The filled black dots represent the differebetwveen
RTs from high and low frequency words at each ef th
.3, .5, .7 and .9 quantiles from the data. Foemfleriments
we again observe that the difference between losvhagh
frequency words is positive at all quantile valugis
suggests that the RT distribution for low frequemayrds is
shifted above that of high frequency words.

The models with between-condition variabilityTig both
provide a good account of the word frequency effettile

Experiment 3

il
]

200
|

* data
+  brial
% b-cond 2 4
) Fis both
w -
—
w
£ o *
S
LL 2
I 54
e
LL
—1

Experiment 4

is amespectively) provide a much better account of wurd

frequency effect. Indeed, the two models producelamst
identical account of the word frequency effect in
Experiments 4 and 5. In these experiments both eode
provide an excellent account of the difference eetwRTs
from high and low frequency conditions at all qulast
except for the .9 quantile in Experiment 5. In Expent 3
the model with both types of variability providesida
excellent account of all but the .9 quantile, whsréhe two
other models also provide a less accurate accouitee of
the four remaining quantiles. Though we do not sktdvere
due to space restrictions, a plot like Figure 3,dmmparing
high and very low frequency words from Experiment 5
showed the same pattern of results (once agaimplibtisnay
be obtained by emailing the authors).

Experiment 5

0.5

0.7 0s 0.1

Quantile

Figure 3: Word frequency effect quantile functiaased on responses to high frequency (HF) and lequéncy (LF) words
in Ratcliff et al.’s (2004) experiments 3-5. Data ahown as filled black dots and model predictivos a diffusion model
with between-trial variability ifTe,, @ model with between-condition variabilityTg and a model with both forms of
variability are shown by lines connected with aspdymbol (+), a cross (x), and a triangle, respelsti
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Discussion

We were prompted to fit a diffusion model whichoaled
mean non-decision timd ) to vary as a function of word
frequency because of a) results from previous aealyof
RT distribution using the Ex-Gaussian distribution)
systematic misfit of the word frequency effect bgiffusion
model which allows only drift rate to vary between
frequency conditions, and c) the fact that a shifilausible
according as most reading models, which assumenibiat
frequency affects the time taken for lexical acceAs
diffusion model with both between-condition andvizetn-
trial variability provided a better fit to the dataven after
accounting for this models increased parametricptexity.
In particular, the model with both forms of varityi
provided an improved account of the word frequeeffgct
compared to Ratcliff et al.’s (2004) original moeéth only
between-trial variability inle, as it did not systematically
under-predict the shift in the RT distribution beem high
and low frequency words.

A diffusion model with between-condition variabjlitn
T, but without between-trial variability i, was also able
to account for the shift effect. However, in teraisoverall
fit, this model did worse in two of three experirtgithan
the Ratcliff et al. (2004) original model. A diffes model
with no variability in Ty either between-conditions or
between-trials fit had a poor overall fit and aaaoaf the
word frequency effect. These results together ssigtieat
the addition of between-condition variability T, greatly
improves the account of the shift in RT distribatidue to
changes in word frequency (see also Ratcliff & Tinekx,
2002).

Even the diffusion model with both forms of varigliin
T still over-predicted the slowest differences bamwaigh
and low frequency words in two of the three experits we
examined. This suggests that our current accounthef
word frequency effect and the LDT may not be corteple
Indeed, given the intricacies of the lexicon, aerevnore
complex model of the effects of frequency on nooislen
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