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Evidence for effort prediction in perceptual decisions
Nisheeth Srivastava

Dept of Computer Science, IIT Kanpur
India

Abstract

The classic drift diffusion model of the 2AFC choice process
assumes that observers select evidence accumulation thresh-
olds to optimize some desired level of accuracy across the ex-
periment. We argue that it is more ecologically natural to as-
sume that decision-makers set this threshold adaptively, using
information from recent trials to adjust it for upcoming ones.
To test this hypothesis, we designed and conducted a pair of
random dot motion discrimination experiment where the co-
herence parameter that controls task difficulty varies across tri-
als in a predictable manner. To analyze data from these exper-
iments, we also designed a hierarchical drift diffusion model
that allows decision-makers to adapt their evidence threshold
based on the trend of difficulty of previous trials. Our results
suggest that observers rationally integrate cross-trial informa-
tion about trial difficulty into perceptual decision-making by
adjusting their internal evidence thresholds. We briefly discuss
the implications of the existence of such trial-level effort infer-
ence on contemporary models of the choice process.

Keywords: drift diffusion model; ideal observer model;
Bayesian modelling; cognitive effort; rational inference

Introduction
The drift diffusion model (DDM) is a very successful se-
quential sampling model of the choice process (Ratcliff &
McKoon, 2008). Particularly when applied to perceptual
decision-making tasks, where the stream of evidence is trans-
parent to the experimenter, this model has shown excel-
lent fits to choice and response time data from a wide va-
riety of experimental paradigms, even generalizing across
organisms (Brunton, Botvinick, & Brody, 2013). While
it shares several components, including parallel accumula-
tion and race-to-a-threshold with other competing paradigms
such as leaky competing accumulation (Usher & McClelland,
2001) and decision field theory (Busemeyer & Townsend,
1993), its stochastic specification of important components
of the choice process - rate of accumulation of evidence, re-
sponse bias, and variability in the evidence accumulation rate
- gives it excellent flexibility and interpretability in modelling
the summary statistics seen in perceptual decision-making ex-
periments.

While on the one hand, its mathematical construction
makes the DDM an excellent descriptive model of the choice
process, it simultaneously makes it challenging to associate
its optimality criterion with the goals and costs faced by
real decision-makers. Specifically, the drift diffusion model
is known to implement the sequential probability ratio test
(SPRT) (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006),
which is statistically optimal in the sense that for any choice
of the decision threshold, using the DDM criterion for choice
will yield the highest possible accuracy (Wald & Wolfowitz,
1948).

The relationship between the SPRT and DDM imbues it
with a normative sense of optimality - observers are being
statistically optimal in the SPRT-sense if we show that the
DDM model fits their behavior well. But the underlying as-
sumptions of SPRT - perfect evidence integration, approx-
imately linear evidence accumulation rates, race to a fixed
evidence threshold - are not good fits for the information
and processing limitations that organisms face in real-world
decision-making scenarios. In recent years, objections to
these premises have been raised on both computational and
empirical grounds. Deneve has documented how the con-
ventional drift diffusion paradigm fails to accommodate sit-
uations where sensory inputs are unreliable (Deneve, 2012).
Thura and colleagues have shown how reaction time distri-
butions in perceptual decision-making tasks may be better
described by evidence accumulation terminated by breach-
ing a time-collapsing threshold responsive to an increasing
’urgency’ signal than classic accumulation to a fixed thresh-
old (Thura, Beauregard-Racine, Fradet, & Cisek, 2012).
Glaze et al have demonstrated how perfect evidence integra-
tion - a fundamental assumption of drift diffusion models -
is sub-optimal in the face of unsignalled context shifts in the
decision-making environment (Glaze, Kable, & Gold, 2015).
Thus, using DDM as a normative baseline, research is in-
creasingly focusing on identifying aspects of the environment
that constrain real-world decision-making.

Threshold adaptation as effort inference
We propose to revise the premise that decision-makers accu-
mulate evidence up to a fixed threshold. Whereas such pro-
posals have been made previously (Thura et al., 2012), they
have focused on incorporating the opportunity cost of contin-
ued sampling in the form of a threshold that decreases over
time (Drugowitsch, Moreno-Bote, Churchland, Shadlen, &
Pouget, 2012). We focus on a different aspect of the threshold
determination process - that decision-makers are likely to use
information from previous trials to set decision thresholds for
upcoming trials. Here again, it is well-documented that pat-
terns of responding can introduce response biases in experi-
ments (Ratcliff & McKoon, 2008). The drift diffusion model
allows such biases to be modeled explicitly using changes in
diffusion start-point parameters.

We consider a different normative possibility: we propose
to model the threshold parameter used in drift diffusion mod-
eling as a proxy for the amount of effort the observer be-
lieves is necessary for adequate performance, and we intend
to investigate whether human observers can infers the effort
needed for upcoming trials using effort observations in recent
trials. Grounding this hypothesis in a perceptual decision-
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Figure 1: Schematic illustrating the experiment design. (A) On each experiment trial, participants saw a set of dots in Brownian
motion, with a horizontal drift added to some fraction of the dots. Participants had to discriminate motion direction using key
presses on a computer keyboard, and were incentivized to emphasize accuracy. (B) The sequence of trials each participant saw
possessed a higher-order structure, with the difficulty of successive trials increasing and decreasing in a cyclic manner.

making task, we model behavior on this task using a hierar-
chical ideal Bayesian observer that performs 2AFC random
dot motion (RDM) discrimination. The lower level of this
hierarchical model simulates individual RDM trials using a
classic drift diffusion setup. The higher level of this model
uses a reinforcement learning-inspired controller to set ap-
propriate values of the evidence threshold for each trial.

To test this hypothesis, we designed a specific variation of
the standard RDM task. In the standard task, trial difficulty
is either blocked or randomized across trials. We instead de-
signed a sequence of trial presentation that introduced a pre-
dictable trend in the coherence parameter across trials. If peo-
ple are adaptively tracking the amount of effort they are hav-
ing to expend on individual trials, we expect such inference
to inform their effort allocation on upcoming trials. A hierar-
chical extension of the drift diffusion model, with a top-down
controller setting the evidence threshold adaptively across tri-
als, would potentially fit choice and RT data gathered from
such an experiment design better than a simple DDM that as-
sumes a fixed evidence threshold.

Experiment 1
RDM with higher-order structure
Participants saw a screen with moving dots designed accord-
ing to the following algorithm. Random motion of the dots
was provided by allowing Brownian motion in the vertical di-
rection, i.e. all the dots drifted vertically about their mean po-
sition by a distance chosen from a normal distribution. Hori-
zontal motion was either randomly selected from a bidirec-
tional (left/right) uniform distribution (for incoherent dots)
or from a unidirectional uniform distribution (for coherent
dots). The selection of dots as coherent or incoherent was

determined at the beginning of each experimental trial using
Bernoulli trials controlled by the coherence parameter c.

As in all RDM discrimination experiments, the critical ma-
nipulation of task difficulty was governed entirely by the co-
herence parameter c. We selected a range of values of the co-
herence parameter by running a calibration pilot with 5 partic-
ipants, performing 280 trials of the discrimination task under
accuracy emphasis. We picked a range of coherence values
that permitted 65% accuracy at the low end of the range and
95% accuracy at the high end of the range.

Participants had to indicate the direction of motion of the
overall dot pattern on each trial, as illustrated in Figure 1A.
They were allowed to take as much time as they wanted to
respond to each trial, and as much time as they wanted to
rest between the trials. Each correct response fetched points.
The scoring system was such that a correct response fetches
10 points; the score of each correct response doubled on re-
sponding correctly to three successive trials, and reset to 10
points in case the streak was broken. We further encour-
aged accuracy emphasis by promising a reward to the highest
scorer.

The specific higher-order structure introduced in our exper-
iment was a cyclic shift across the 5 specific values of the co-
herence parameter used in the experiment {0.1, 0.175, 0.25,
0.325, 0.4}. For example, a participant starting the experi-
ment with a trial with coherence 0.1 would next see a trial
with coherence 0.175, then one with 0.25, up to the max-
imum coherence level of 0.4, beyond which the coherence
would begin dropping down to 0.325, then to 0.25 etc. Each
such phase cycle from one coherence value through the other
4 and back to the original takes 8 trials, given we use 5 unique
coherence values. Participants completed 20 such phase cy-
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cles for a total of 161 trials per participant, as illustrated in
Figure 1B.

Task
The task was administered via a web-based interface. Partic-
ipants indicated responses with keyboard button presses, and
were allowed to take as long as they liked before pressing the
space bar to begin the next trial. Distance from the screen
was not fixed, but the display size was selected such that the
display was well within the foveal range (20 degrees visual
angle) of normally sighted observers.

Participants
52 undergraduate and postgraduate students participated in
the experiment for course credit (4 female, mean age 20.5±
1.57 SD). All participants had normal or normal-corrected vi-
sion. Since the experiment was conducted without personal
supervision, some participants showed significant guessing
behavior. Post-task, we excluded the data for 18 participants
who had less than 85% accuracy on the highest coherence
trials.

Results
We expected that an observer tracking the cross-trial varia-
tions in difficulty would end up tracking the repeated ramp-
like movement of the coherence parameter, and take longer
on an upcoming trial if the cross-trial coherence was trend-
ing downward (i.e. the trials were becoming more difficult)
than if it was trending upward (i.e. the trials were becoming
easier).

However, even observers insensitive to cross trial informa-
tion are expected to show the same pattern globally in our
data, because upcoming trials aren’t just expected to be eas-
ier/harder on up/down ramps, they actually are easier/harder
too. Therefore, the critical test for whether information from
previous trials are affecting the current trial is to see whether
trials of the same difficulty (coherence) level have longer RTs
when they occur within a down coherence ramp (sequence of
decreasing coherence, increasing trial difficulty) than when
they occur within an up coherence ramp (sequence of increas-
ing coherence, decreasing trial difficulty).

In Figure 2, we plot RTs stratified by coherence level of the
immediate trial for the three intermediate coherence values in
our experiment across all participants, separating out trials
occurring during up and down ramps. For each of the three
coherence levels, the difference between down ramp RTs and
up ramp RTs is directionally in the predicted direction. While
the data is noisy, the large sample size of our experiment
(34 participants × 20 cycles = 680 data points per coherence
level per ramp) allows us to assert statistical significance at
Bonferroni-corrected p < 0.01 for two of the levels (0.175
and 0.325) in two-sample t-tests. The third comparison (for
coherence level 0.25) does not yield a statistically significant
difference in such a test.

These summative statistical results, while conceptually
congruent with our hypothesis, are inadequate to draw strong

inferences. The large standard deviations evident in Figure
2 reflect considerable inter-participant heterogeneity in re-
sponse times. We therefore sought to test our hypothesis at
a trial-by-trial level by developing a generative model of the
information accumulation process involved in a 2AFC per-
ceptual learning task that accommodates such adaptive con-
trol over the evidence threshold, and comparing its ability to
explain our data vis-a-vis a fixed threshold evidence accumu-
lation model.

A hierarchical drift diffusion model
The DDM, in its standard form is a Wiener diffusion process
with drift,

dy = vdt + sdW, (1)

where y is the diffusion state, v is the drift, s determines the
amount of diffusion and dW represents the standard Wiener
process. The model accumulates normally distributed pieces
of evidence for either alternative until a bound on the cumu-
lative evidence is crossed, and then emits the winning option
as the choice.

We developed a hierarchical model of the choice pro-
cess using a recently proposed Bayesian version of the
DDM (Bitzer, Park, Blankenburg, & Kiebel, 2014). This
takes the form of a sequential Bayesian update model that
maps noisy stimuli observations to latent Gaussian represen-
tations

xt ∼ N(µi,σ
2), (2)

constructs a generative model of the likelihood of seeing cer-
tain latent feature values for each stimulus alternative,

p(xt |Ai) = N(µ̂, σ̂2), (3)

and updates beliefs about the correctness of a decision alter-
native given these noisy observations

p(Ai|X1:t) =
p(xt |Ai)p(Ai|X1t−1)

∑
M
j=1 p(xt |Ai)p(A j|X1t−1)

, (4)

where xt are noisy observations from stimuli belonging to cat-
egory i, with true prototypical values µi and measurement
noise σ, estimated prototypical values µ̂ and internal gener-
ative variability σ̂, Ai as possible alternatives and M as the
number of considered alternatives. Bitzer et al show that this
intuitive ideal observer model is formally identical to the drift
diffusion model given certain assumptions about the relation-
ship between parameters of the model.

We augmented this model with a metalearner that esti-
mates the expected sampling effort needed for upcoming tri-
als based on effort allocation on previous trials. We assume a
very simple model for this metalearner. It simply updates the
effort estimate λ as

λt = λt−1 + γ∆t , (5)

where
∆t = z(RTt−1)− z(RTt−2), (6)
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Figure 2: RT at intermediate coherence levels while the cyclic higher-order coherence trend is going up (blue bars) and down
(red bars). Higher RTs seen for trials of equal difficulty, when coherence is trending downwards, i.e. trials are getting harder, is
evidence for adaptive changes in the evidence threshold responsive to past trials. Error bars represent 1 S.D.

γ is a free scaling parameter, z(RT ) is the normalized z-score
of RT at time t with respect to the RT distribution and λt
serves as the threshold for the DDM for the tth trial. This
model is not meant to be comprehensive. We have designed
it purely to simulate our expectation of the role of predictable
up and down changes in dot motion coherence on observer
behavior. We expect that observers will be sensitized to these
trends and extrapolate from them to set decision thresholds
for upcoming trials. Increasing effort on recent trials should
yield a larger threshold for the upcoming trial and vice versa.
Normalization is used to induce a natural scale on the size of
the change in the threshold; the RT distribution is admittedly
non-Gaussian so this assumption could be further refined in
future work. Also, to avoid over-fitting, we have used the
global RT distribution to normalize the RTs, whereas a more
realistic model may use sequential summary statistics within
participants. Indeed, a filtering-based model might capture
the basic intuition of the metalearner more elegantly, but we
wished to compare the augmented model with a complicated
baseline using only choice and RT data, necessitating parsi-
mony in parameter extension. The version of the meta-learner
we have proposed has just one additional free parameter be-
yond the baseline.

As in (Bitzer et al., 2014), we reduced the set of estimated
parameters of the Bayesian model from seven to three by as-
suming equal amount of drift for both stimuli. In practice we
did this by setting µ = µ̂ = ±1 for the 2AFC case. Parame-
ter fitting for the 3 parameters to be estimated θ = {σ, σ̂, tnd}
also followed the procedure outlined in (Bitzer et al., 2014).
We defined the log likelihood of the data given all parameters

as

log p(Acc,RT|θ) = log p(Acc|θ)+ log p(RT |θ)
∝−wacc (Acc−Acc(θ))2

−
1

∑
e=0

7

∑
i=1

wqe,i (qe,i−qe,i(θ)
2,

where qe,i is the ith of seven quantiles
(0.02,0.05,0.1,0.3,0.5,0.7,0.9) for either correct or
error responses as indicated by e.

To evaluate the log likelihood function, again following the
procedure in (Bitzer et al., 2014), we simulated our experi-
ment with the Bayesian observer model for different parame-
ter values, averaging the accuracy and RT quantiles obtained
across 30 model runs per parameter tuple θ and setting the
likelihood weights w to the inverse variance over these repe-
titions. We scaled each iteration in our simulation to 125 ms.
However, we found the MCMC approach advised in (Bitzer
et al., 2014) to be too slow (on the order of days) for fitting
our hierarchical model that used different threshold values
for each trial. Therefore, we used a two-stage grid-search
of the parameter space (logarithmic exploration in one stage
followed by linear refinement in the second) to optimize the
negative log likelihood. In practice, we found that the grid
search yields comparable mean parameter values for the base-
line DDM model as the MCMC procedure implemented in
(Bitzer et al., 2014).

Since we don’t use MCMC to obtain a posterior distribu-
tion over the parameters, it is useful to average over multi-
ple runs of the likelihood computation at the optimal param-
eter values to obtain representative likelihood values. After
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Model AIC BIC
Simple DDM 16.5 (2.7) 36.3 (2.7)

Hierarchical DDM 8.9 (1.5) 28.5 (1.5)

Table 1: Model comparison. Standard deviation across 20
model runs are given in parentheses.

Block 1 2 3 4
∆ BIC 12.4 -3.0 -0.07 -0.78

Table 2: Model comparison across four sequential blocks of
40 trials each from all participants. Block 1 contains the first
40 trials from each participant, etc.

finding optimal parameters via grid search for both models,
we calculate model likelihood as the average likelihood ob-
tained from 20 runs of the model for the optimal parameter
values. The results from our model comparison using these
average likelihood values are presented in Table 1. ∆BIC
measures difference between baseline DDM and hierarchi-
cal DDM BIC. Positive values support the hierarchical DDM,
negative values support the baseline model. ∆BIC values with
magnitudes smaller than 2 imply insignificant differences be-
tween models; values larger than 10 constitute very strong
support for a model. Using this measure, the hierarchical
DDM is clearly preferable to the simple DDM, across data
from all 34 participants (∆BIC = 7.8 from Table 1).

We additionally ran a block-wise analysis, dividing each
participant’s trials into 4 sequential blocks of 40 trials and cal-
culating model complexity statistics on the likelihoods emit-
ted by the model for the best fitting parameter values of the
overall model (σ = 11, σ̂ = 8, tnd = 250ms). We anticipated
that any evidence of gradual adoption or relinquishment of
threshold metareasoning would show up in the relative model
complexity tracked across these four blocks.

As the results in Table 2 show, the hierarchical model is
heavily preferred over the simpler model during the first quar-
ter of trials, measured across all participants. For later tri-
als, both models are evenly matched, with the simpler model
slightly preferred.

Experiment 2

The block-wise analysis of our data revealed an interest-
ing property: participants behaved as if they were tracking
higher-order structure at the beginning of the experiment, but
appeared to switch away to behaving more like conventional
DDM decision-makers later on. We thought this was because
participants tried to use the higher-order structure between tri-
als, but then shifted away from it, since doing so does not of-
fer any material advantage. To falsify such an explanation, we
conducted a followup experiment where tracking the higher-
order structure would confer a material advantage.

RDM with helpful higher-order structure
This experiment design was equivalent to the first one, with
an alteration only in score-keeping. Recall that the first ex-
periment used scoring with a multiplicative boost for main-
taining accuracy streaks. Score per correct response would
double for every three consecutive correct responses, and re-
set to the default value on each error.

For this second experiment, we transformed the incentive
system into an optional ‘auto boost’ mechanism, such that
accurately responding on three consecutive trials would fill up
a booster bar, and optionally selecting the booster bar would
allow a participant to buy out any one trial of their choice.
The bought out trial would be assumed to have been answered
correctly, would not be displayed on screen, and would not
count towards win streak counts.

Participants
31 undergraduate students (age = 20.6±1.3 years, 8F) volun-
teered to participate in this experiment; none having partici-
pated in the first one. These participants performed the exper-
iment under supervision using the same web-based interface
as before. All other experimental protocols were identical to
the first experiment. Post-task, we excluded the data for 5
participants who had less than 85% accuracy on the highest
coherence trials.

Results
The primary difference between the two experimental tasks
was that tracking higher-order structure could not help par-
ticipants in the first one, but potentially could in the sec-
ond one. Specifically, in this second experiment participants
could hold on to filled up booster bars for what they predicted
to be the hardest trials, considerably reducing their overall er-
ror and effort.

Block 1 2 3 4
∆ BIC 9.7 8.4 8.9 3.2

Table 3: Model comparison across four sequential blocks of
40 trials each (counting bought out trials) from all participants
for Experiment 2. Block 1 contains the first 40 trials from
each participant, etc.

A direct measure of whether participants did deploy such
a strategy in this task is the relative distribution of trials on
which participants used boosts across coherence levels. Ran-
dom use of boosts would indicate no use of the optimal strat-
egy outlined above, whereas exclusive concentration of boost
use in the lowest coherence level would indicate perfect ad-
herence to this strategy.

Empirically, we found that 45.5% of all boosts were used
for the lowest coherence trials (chance 12.5%, p < 0.005),
and 78.6% of all boosts were concentrated within the two
lowest coherence levels (chance 37.5%), suggesting strong
utilization of the optimal strategy.
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As a secondary measure of strategy adherence, we fit both
classic and hierarchical DDM to these participants’ data fol-
lowing the same methodology as for the first experiment.
Boosted trials were assigned correct responses and subject-
specific mean RT for the corresponding coherence level dur-
ing the simulations. For lack of space, we only present the
difference in BIC values betwe en hierarchical and classic
DDM fits for this data. Contrasting these ∆BIC results tab-
ulated in Table 3 with those from the original experiment (see
Table 2) strongly suggest that the manipulation of the incen-
tive system does affect participants’ behavior on the task in
the predicted direction.

Discussion
With increases in computational power and experimental
methods, behavioral researchers are increasingly able to track
behavior with greater granularity, which makes hypothe-
ses about intermediate computations underlying behavior
tractable to investigation. This development is making the
study of algorithmic aspects of the decision-making process
increasingly more feasible. Not only does such research char-
acterize biological observers’ decision-making processes, it
also provides constraints on the nature of the cost func-
tions that computational theorists can reasonably set up for
decision-making agents.

As part of this paradigm shift, recent work has begun
to question the classic drift diffusion model’s assumption
of a fixed evidence threshold in recent years, basing these
arguments on the temporal opportunity costs of continued
sampling (Thura et al., 2012). In this work, we asked
the same question from a different standpoint. We asked
whether observers might be sensitive to higher-order statis-
tics in decision-making tasks and adaptively adjust evidence
thresholds on upcoming trials to use them efficiently.

To see if this can happen, we created a novel variation of
the classic random dot motion discrimination task, introduc-
ing an up-and-down ramp in difficulty across trials (Gold &
Shadlen, 2000). We predicted that observers would be sen-
sitive to this variation. We designed an extension of the drift
diffusion model that incorporates metacognitive adaptation of
the evidence threshold based on the trend of difficulty of re-
cent trials, and found that it offers a better explanation of par-
ticipants’ behavior in our experiment than a simple drift dif-
fusion model. A followup experiment further demonstrated
that participants’ tracking of higher-order structure in this
task was intentional - they shifted away from tracking when
it offered no advantage and continued tracking when it did.

Our results support a shift in interpretation of the evidence
threshold from its SPRT-driven association with accuracy, to-
wards a more general view of it as an effort parameter influ-
enced by a variety of information sources. Such an interpreta-
tion also makes it easier to generate normative accounts of de-
cisions from memory using DDM-like models, building upon
its descriptive success in modeling retrieval success and RT
distributions in this domain (Krajbich & Rangel, 2011). Un-

like in perceptual decisions where the evidence presentation
rates are fixed, and decisions receive immediate feedback,
decisions from memory are made with evidence streams of
unknown provenance and without feedback. The empirical
success of DDM in explaining data from such experiments
warrants a broader interpretation of the normative principles
of the framework, along lines proposed in this work.
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