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Integrated gene analyses of de novo variants from 46,612 trios
with autism and developmental disorders
Tianyun Wanga,b,c,1 , Chang N. Kimd , Trygve E. Bakkene , Madelyn A. Gillentinea, Barbara Henninga , Yafei Maoa,f , Christian Gilisseng,
The SPARK Consortiumh, Tomasz J. Nowakowskid,i,j, and Evan E. Eichlera,k,1

Edited by Daniel Geschwind, University of California Los Angeles Center for Autism Research and Treatment, Los Angeles, CA; received March 3, 2022;
accepted September 28, 2022 by Editorial Board Member Jeannie T. Lee

Most genetic studies consider autism spectrum disorder (ASD) and developmental disor-
der (DD) separately despite overwhelming comorbidity and shared genetic etiology.
Here, we analyzed de novo variants (DNVs) from 15,560 ASD (6,557 from SPARK)
and 31,052 DD trios independently and also combined as broader neurodevelopmental
disorders (NDDs) using three models. We identify 615 NDD candidate genes (false dis-
covery rate [FDR] < 0.05) supported by ≥1 models, including 138 reaching Bonferroni
exome-wide significance (P < 3.64e–7) in all models. The genes group into five func-
tional networks associating with different brain developmental lineages based on single-
cell nuclei transcriptomic data. We find no evidence for ASD-specific genes in contrast to
18 genes significantly enriched for DD. There are 53 genes that show mutational bias,
including enrichments for missense (n = 41) or truncating (n = 12) DNVs. We also find
10 genes with evidence of male- or female-bias enrichment, including 4 X chromosome
genes with significant female burden (DDX3X, MECP2, WDR45, and HDAC8). This
large-scale integrative analysis identifies candidates and functional subsets of NDD genes.

de novo variants j neurodevelopmental disorder j protein–protein interaction j
single-nuclei transcriptome

Neurodevelopmental disorders (NDDs) are a group of heritable disorders that are twice
as likely to affect males than females and whose prevalence continues to increase, in part,
due to improved and increased pediatric ascertainment (1). Among NDDs, autism spec-
trum disorder (ASD), developmental disorder (DD), intellectual disability (ID), and
attention-deficit/hyperactivity disorder (ADHD) show considerable heterogeneity, both
genetically and clinically, and often present some of the greatest sex disparities in preva-
lence (2–7). Individuals with different primary NDD diagnoses frequently present over-
lapping phenotypes. For example, ADHD has been observed as the most common
co-occurring disorder among individuals with an ID diagnosis, followed by 15 to 40%
of individuals presenting with ASD (8–11). Similarly, ∼30% of individuals with an
ASD diagnosis also show some level of cognitive impairment, and ∼30 to 40% of cases
co-occur with ADHD (5, 12). This significant diagnostic overlap among NDD groups
has long suggested a shared genetic etiology, at least among a subset of cases (13).
De novo variants (DNVs) that disrupt or alter protein-coding gene function signifi-

cantly contribute to NDDs. This genetic signal has facilitated the discovery of hundreds
of risk genes over the last decade (14–16). Most studies to date have focused on a single
phenotypic group (e.g., either on ASD (17) or DD (18)) in an effort to identify genes
that specifically contribute to that phenotype. The locus heterogeneity of these disor-
ders, however, has limited power to identify genes with rare DNVs given that more
than half of the genes still await a sufficient number of cases to reach statistical signifi-
cance (19). Moreover, different studies have tended to apply their preferred statistical or
evolutionary models to identify genes with an excess of DNVs. This has led to the
emergence of slightly different gene sets from the same parent–child trio data (17, 19).
In this study, we integrate DNVs from 11 cohorts with a primary diagnosis of ASD

or DD from 46,612 parent–child trios, 6,557 ASD trios of which are from Simons
Foundation Powering Autism Research for Knowledge (SPARK, https://sparkforautism.
org), and apply three different statistical models (chimpanzee–human divergence [CH]
model (19, 20), denovolyzeR (21), and DeNovoWEST (18)) (Fig. 1). Briefly, the CH
model estimates the number of expected DNVs by incorporating locus-specific transi-
tion, transversion, and indel rates, the gene length, and null expectation based on
chimpanzee–human coding sequence divergence; denovolyzeR estimates mutation rates,
considers the triplet context, and adjusts divergence based on macaque–human gene
comparisons; DeNovoWEST applies the same underlying mutation rate as denovolyzeR
but also incorporates gene-based weighting with missense clustering to provide the most
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sensitive set of candidate genes. In addition to applying standard
statistical thresholds of significance, we prioritized genes as
higher confidence if they were predicted by more than one or all
of these three models and flag potential artifacts in previous call
sets based on exclusivity of variant calls to a particular study.
The goal of this analysis is fourfold: (1) discover candidate

genes by combining ASD- and DD-diagnosed individuals as a
broader NDD cohort; (2) distinguish ASD- from DD-enriched
genes and test whether any genes show an enrichment in one
diagnosis over the other (22); (3) ascertain genes that favor a par-
ticular class of variant (i.e., missense over likely gene-disruptive
[LGD]); and (4) identify genes that are biased for DNVs either
among females or males. We further explore the protein–protein
interaction (PPI) networks and expression properties of these
genes both in bulk tissue and single-cell RNA sequencing
(scRNA-seq) data to reveal properties regarding the tissues and
functional neural networks affected by the disruption of these
genes.

Results

DNV Discovery and Integration across Cohorts. We integrated
exome and genome sequencing data from over 44,800 parent–child
families with more than 151,000 individuals from 11 cohorts
(17, 18, 23–28), in which children received a primary diagnosis
of ASD or DD (SI Appendix, Table S1). We split the cohorts
into two subsets based on whether the underlying Illumina
sequencing data were available for reanalysis and variant recalling.
We identified DNVs by reanalyzing underlying sequence data
using FreeBayes and GATK as described previously (29) for five
cohorts (recalled subset: 46.4% of families with 60,868 exomes
and 9,304 genomes) and retrieved published DNVs from the
other six cohorts (no-recall subset: 53.6% of families with 81,052
exomes) (SI Appendix, Table S2). After DNV discovery and inte-
gration, we further performed stringent quality control (QC) and
filtering on both the recalled and no-recall subsets to better har-
monize the DNVs (Materials and Methods).

After QC on both samples and variants, the harmonized
DNV set came from 15,560 ASD (6,557 from SPARK) and
31,052 DD patients as well as 5,241 unaffected siblings (3,034
from SPARK). This set includes 6,921 de novo LGD (dnLGD,
including frameshift, stop-gain, splice-donor, or splice-acceptor)
variants, 32,774 de novo missense (dnMIS) variants, as well as
11,706 de novo synonymous (dnSYN) variants. Among the
dnMIS variants, we further classify 5,946 as severe based on a
combined annotation dependent depletion (CADD) score (30,
31) greater than 30 (dnMIS30, version 1.3 on hg19), which
rank among the top 0.1% of variants with the most severe pre-
dicted effect (Dataset S1). There are 11,409 genes with non-
synonymous DNVs in probands versus 2,742 genes in siblings,
with 37.7% (4,304/11,409) of the genes in probands and
83.7% (2,296/2,742) of genes in siblings with only one DNV
(SI Appendix, Fig. S1). Comparing the overall mutation rate
for the recalled and no-recall sample sets gave similar DNV fre-
quency (∼0.78 nonsynonymous DNVs per proband). When
considering cohorts by phenotype, we find that DD probands
(1.04 DNV per person) show the highest DNV rate followed
by ASD probands (0.93 DNV per person) and then siblings
(0.88 DNV per person) (SI Appendix, Fig. S2 and Table S2),
although the platform and methodological differences among each
cohort may partly contribute to the discrepancy on DNV rate.

DNV-Enriched NDD Candidate Genes. To identify genes with a
significant excess of DNVs, we applied three statistical models
(CH model (19, 20), denovolyzeR (21), and DeNovoWEST
(18)) to the ASD and DD cohorts based on their primary diag-
noses independently and then combined as one broader NDD
group (Fig. 1). After excluding genes that showed evidence of
DNV significance among unaffected siblings (n = 7; Dataset
S2), we identify 615 candidate genes in the combined NDD
group with an excess of DNVs by one or more of the three
models (union false discovery rate [FDR] <0.05, DNV count
>2), 59.3% (365/615) genes of which are intolerant (probabil-
ity of being loss-of-function intolerant [pLI] >0.9) and show
expression in Genotype-Tissue Expression (GTEx) brain tis-
sues. Of note, we consider these 615 genes to be the most sen-
sitive set with the lowest confidence (LC615 genes). This set
should be regarded as candidates for future investigation.
Among the LC615 genes, we defined 237 genes with moderate
confidence (MC237 genes) that reach <5% FDR by all three
models (intersection FDR <0.05, DNV count >2); 80.2%
(190/237) of MC237 genes are intolerant (pLI >0.9) and show
expression in GTEx brain tissues. We further defined the

Exome or genome
(>151K samples)

Simplex/multiplex family 

n=15,560
ASD

+ n=5,241
Sibling

n=31,052
DD

n=46,612
NDD

DNV discovery and integration
• Remove sample duplicates and outliers
• Restrict to well-covered coding regions
• Exclude SegDup, LCR, centromeric regions
• Other quality control on samples and DNVs

Significant genes
FDR 5% and FWER 5% significance

…
…

…

Sibling
ASD

DD

n=29,704
Male

n=16,530
Female

Male FemaleDD ASD

NDD

Offspring phenotype group Proband sex group*

(CH model, denovolyzeR, DeNovoWEST)
DNV enrichment analysis

(Fisher’s exact test)
DNV burden test+

Functional assessment
e.g., intolerance, PPI, and scRNA-seq

Fig. 1. Study workflow. DNVs from >151,000 samples, including both simplex
and multiplex families with a primary diagnosis of ASD or DD, were integrated
with strict QC and filtering measures applied (SI Appendix, Supplementary
Methods). De novo enrichment analysis was performed independently in ASD
(n = 15,560), DD (n = 31,052), and NDD (n = 46,612) groups, and probands
with sex information available were grouped by males and females, in parallel
using three statistical models (CH model, denovolyzeR, and DeNovoWEST).
Siblings were also analyzed using the CH model and denovolyzeR, but not run
for DeNovoWEST due to the small sample size (n = 5,241). Significant genes
were used for downstream analyses for the identification of risk genes and
the comparison between phenotype and sex. *Sex information is available for
the majority (99.2%, 46,234/46,612) of the probands. SegDup: segmental dupli-
cations; LCR: low-complexity regions.
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highest confidence set of 138 genes (HC138 genes) in which
the excess of DNVs meets exome-wide significance supported
by all three models (intersection family-wise error rate [FWER]
5%, P < 3.64e–7, DNV count > 2) (Table 1 and Dataset S3
and SI Appendix, Fig. S3), and 86.2% (119/138) of HC138
genes are intolerant (pLI > 0.9) and show expression in GTEx
brain tissues. Across the three models, DeNovoWEST shows
the greatest sensitivity because it incorporates missense cluster-
ing in addition to strict counts of DNVs (18). We observe sim-
ilar trends in our independent analyses of the ASD and DD
cohorts (Table 1 and SI Appendix, Fig. S4 and Datasets S4 and
S5). Candidate genes, as expected, are significantly more likely
to be intolerant to variation (SI Appendix, Fig. S5).
Among the MC237 genes, 30 show increased statistical signifi-

cance when compared to three previous large-scale reports
(17–19) (SI Appendix, Fig. S6 and Dataset S6). Among the 30
candidates with significance at 5% FDR based on all three mod-
els, we identified 21 genes (MED13, NALCN, NF1, ASXL2,
SPTBN1, CTNND1, TSC1, GGNBP2, AAAS, PSMD12, RORA,
CYFIP2, PPP3CA, PSPH, PLCG2, ATP1A2, POLR3B, KCNT2,
HIST1H4J, CPA6, and RALA) with additional evidence of patho-
genicity (including case reports) within the Development Disorder
Genotype-Phenotype Database (DDG2P), SFARI Gene, Online
Mendelian Inheritance in Man (OMIM) database, and PubMed.
Further restricting to genes intolerant to mutation (pLI> 0.9) and
with medium to high expression in the brain (GTEx transcripts
per million [TPM] > 10) identifies three potential associations
(PABPC1, MARK2, and GSK3B) (Dataset S6). We identify or
confirm three genes (MED13, NALCN, and PABPC1) among the
most stringent set of HC138 genes as now reaching exome-wide
significance in this large dataset, further confirming the association
of MED13 and NALCN with NDDs based on recent clinical
reports (32, 33) (SI Appendix, Fig. S6). We also note that there
are 25 genes with potential associations with NDDs if we consider
exome-wide significance more broadly by the union of any one or
more of the models instead of requiring all three models to inter-
sect (Dataset S6). These genes, thus, represent an important
resource for future clinical and basic research investigations related
to NDDs.
In an effort to provide additional support for the role of

these NDD candidate genes, we performed a case-control
mutational burden for ultra-rare gene-disruptive mutations in a
recently released cohort of 20,817 autism families (32,783 indi-
viduals) from SPARK (34), which had not been included as

part of our initial meta-analysis. Specifically, we compared
the frequency of rare LGD (minor allele frequency [MAF]
<0.01%) mutations among the LC615 genes in this autism
cohort (n = 21,200 cases) with the Exome Aggregation Con-
sortium (ExAC) nonpsychiatric subset (n = 45,376 controls),
carefully controlling for platform and sequence-read-depth dif-
ferences (Materials and Methods). In total, this replication iden-
tified 52 genes in which additional evidence of case-control
mutational burden significance was identified (FDR < 0.05,
one-sided Fisher’s exact test). This included 25 genes in the
HC138 set, 11 genes among MC237 set, and 16 genes
restricted to the LC615 set (Dataset S6). After literature
and database searches (e.g., DDG2P, SFARI Gene, OMIM,
PubMed), filtering for GTEx brain tissue expression, and
pLI intolerance as mentioned above, we highlight five genes
(PABPC1, MARK2, SF3B2, CDKN2AIP, and RTF1) as com-
pelling candidates with a potential association with NDDs and
are replicated by a case-control design with autism probands.

Diagnostic Specificity of DNV-Enriched Genes. We considered
cohorts with a primary diagnosis of ASD and DD separately
using the same criteria and then compared the groups to iden-
tify genes potentially unique to a specific diagnosis. This analy-
sis identifies several genes enriched for DNVs that are unique
to each primary diagnosis or combined (intersection FDR 5%):
ASD (n = 6), DD (n = 30), and NDD (n = 27) (Fig. 2).
Among the five genes with unique intersection FDR signifi-
cance in ASD, three (TBR1, MPHOSPH10, and PAPOLG)
also show evidence of DNVs in DD patients, which suggests
that the screening of further DD samples will likely yield addi-
tional cases and eliminate the ASD specificity. Although two
genes (PAX5 and FXYD5) currently show no DNVs among
DD patients and thus appear ASD specific, none reach exome-
wide significance. We suggest that these should be regarded as
either unlikely or low-confidence “ASD-specific” genes. In con-
trast to ASD, there is compelling evidence for DD-specific
genes that are not associated or rarely associated with ASD.
Among the 30 genes that reach FDR significance (intersection
of models) only in DD but neither ASD nor the combined
NDD set, there are 21 genes where no DNV has yet been
observed among ASD individuals (Fig. 2). As expected, genes
reaching significance in the broader NDD supergroup show
DNVs in both ASD and DD patients, but 10 genes reach
genome-wide significance only when cohorts are combined as a

Table 1. Genes with significant excess of DNVs across phenotype and sex groups

Group Samples

No. DNVs FDR 5% significant genes (q < 0.05) FWER 5% significant genes (P < 3.64e–7)

dnLGD dnMIS dnMIS30
CH

model denovolyzeR DeNovoWEST Union Intersection
CH

model denovolyzeR DeNovoWEST Union Intersection

Offspring phenotype group
ASD 15,560 1,661 9,187 1,454 70 52 113 133 41 26 22 27 39 16
DD 31,052 4,931 20,588 4,084 352 293 414 511 233 181 166 196 241 136
NDD* 46,612 6,592 29,775 5,538 399 323 479 615

(LC615)
237

(MC237)
208 171 190 264 138

(HC138)
Sibling 5,241 329 2,999 408 3 6 — 7 — 1 1 — 2 —

Proband sex group
Male 29,704 3,820 18,590 3,343 233 191 308 385 141 117 105 104 149 77
Female 16,530 2,716 10,986 2,149 222 193 208 277 152 117 112 109 144 85

Two levels of significance, FDR 5% and FWER 5%, were assessed based on the union and intersection of three statistical models. The lower confidence set (LC615) is based on the union
of all genes at FDR 5% significance observed in any one or more of the three models; the MC237 set is based on the intersection of FDR 5% supported by all three models; the highest
confidence set (HC138) is based on the intersection of genes with FWER 5% significance supported by all three models. The FDR 5% significance threshold was corrected by the
Benjamini-Hochberg method for all of the genes in each model (18,946 genes in CH model, 19,618 genes in denovolyzeR, and 18,762 genes in DeNovoWEST); the FWER 5% significance
threshold was corrected by the Bonferroni method for 19,618 genes (the largest among three models) and seven tests in the analyses (tests for dnLGD, dnMIS, and dnMIS30 variants in
CH model; dnLGD and dnMIS variants in denovolyzeR; and DNVs and dnMIS variants in DeNovoWEST). Genes with DNV significance in siblings were excluded from all sets (n = 7).
*NDD = ASD + DD. Details regarding the NDD risk genes can be found in Datasets S2–S5, S9, and S10.
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broader NDD group (MYT1L, PHF21A, FBN1, PBX1, GNB2,
PABPC1, CLCN4, NALCN, PSMC5, and CERT1), highlight-
ing the value of this integrated analysis. In addition, we also
repeated de novo enrichment analyses using the same three models
(CH model, denovolyzeR, and DeNovoWEST) with a more bal-
anced sample size. Two approaches were taken: (1) we down-
sampled DD to match ASD cohort size, and (2) we increased ASD
to match DD sample size (SI Appendix, Supplementary Analyses).
Both analyses with matched sample sizes for ASD and DD cohorts
showed that sample size alone unlikely underlies the paucity of true
ASD-specific genes at least for a de novo mutation model.
Comparing the relative frequency of DNVs among DD and

ASD cohorts identifies genes with a potential bias toward DD
or ASD diagnoses, especially when DNVs are further categorized
by dnMIS or dnLGD variant class (Fig. 3 and SI Appendix,
Table S3 and Dataset S7). There are chromatin modifiers
among the genes trending toward ASD diagnosis: CHD8,
KDM5B, ASH1L, and KMT5B—although none of these genes
reach significance for ASD enrichment. In contrast to DD
patients, a comparison of DNV counts identifies 18 genes with

higher DNV burden in DD over ASD cohorts (two-sided Fish-
er’s exact test, FDR 5% corrected for 20,000 genes) (Table 2).
GATAD2B and KIF1A are exclusive to DD without DNVs in
ASD individuals in this study (Fig. 4). Interestingly, GATAD2B
shows an enrichment only for dnLGD variants, while in con-
trast, KIF1A shows a specific enrichment for dnMIS variants
(Fig. 4). Patients with variants in these genes have been descri-
bed as exhibiting DD and moderate to severe ID (35, 36).
Although no gene shows significant ASD-specific burden, 41 of
the LC615 genes present with a higher DNV frequency in ASD
when compared to DD with sample size adjusted (Fig. 4 and
Dataset S7). For example, CHD8 is highly intolerant to LGD
variants (pLI score = 1, loss-of-function observed/expected
upper bound fraction [LOEUF] score = 0.082) and shows a
2.22-fold enrichment of DNVs in ASD patients (n = 15,560,
18 dnLGD and 12 dnMIS variants) when compared to DD
patients (n = 31,052, 19 dnLGD and 8 dnMIS variants). Other
genes, such as KDM5B (1.48-fold) and WDFY3 (2.90-fold),
also have more DNVs in ASD versus DD patients relative to
the corresponding sample size.

B
FDR 5%
FWER 5%

# 
G

en
es

0
50

10
0

15
0

20
0

25
0

    DNW

     CH

    DR

237

32

138 142

91

51 59

10

41

10
33

14 12 9

0100200300400500

479

399

323

190

208

171

ASH1L

CAMTA1

GATAD2B

DHDDS
GNB1

H3F3A

HNRNPU

KDM5B

NFIA

PBX1

POGZ

SLC2A1

WDR26

SCN2A

CUL3

DNMT3A

FBXO11

HECW2

KIDINS220

KIF1A

MBD5

PPP1CB

SCN1A

TRIP12

SATB2

ZEB2

ATP6V1A

CTNNB1

FOXP1

MSL2

PIK3CA

SETD5

SLC6A1

TBL1XR1

FBXW7

NAA15

NSD2
CERT1

GABRA1

GABRB2

MEF2C

NSD1

TRIO

ARID1B

MAP3K7

PHIP

PPP2R5D

SYNGAP1

AUTS2

BRAF

GNAI1

GNB2

CHD7

KAT6A

PABPC1

EHMT1

HNRNPK
SET

SMARCA2

SPTAN1

STXBP1

KAT6B

PTEN

WAC

DEAF1

KMT2A

KMT5B

PHF21A

ARID2

GRIN2B

KMT2D

KRAS

MED13L

SCN8A

SOX5

PTPN11

CHAMP1

NALCN

CHD8

DYNC1H1

CHD2

FBN1

GABRB3

MAP2K1

SIN3A

CREBBP

CTCF
SRRM2

CHD3

CLTC

EFTUD2

KANSL1

MED13

PPM1D

TAOK1

TLK2

ASXL3

SETBP1

TCF4

ATP1A3

CACNA1A

PPP2R1A

ADNP

ASXL1

CSNK2A1

EEF1A2

KCNB1

KCNQ2

DYRK1A

SON

EP300

CASK

CLCN4

DDX3X

HDAC8

KDM6A

MECP2

NEXMIF

PDHA1

WDR45

ZC4H2

0

10

20

30

40

50

200

S
ig

ni
fic

an
ce

 o
f D

N
V

 e
nr

ic
hm

en
t

DNV type
ASD dnLGD
ASD dnMIS
DD dnLGD
DD dnMIS

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20
21

22 XChr

100

1
35
70
105
140

# DNVs

FWER 5%
FDR 5%

A −log10(minQ)

HC138
genes

# Genes

MC237
genes C

FDR 5%

FWER 5%

Union of
three models

Intersection
of three models

ASD

DD

NDD

119

380

66
65

51

17

27175
30 28 7

6

31
201

16
24 8

7

10
112

10
14 2

0

HC138
genes

LC615
genes

MC237
genes

Fig. 2. De novo enrichment analysis and significant genes by model and phenotype. (A) The smallest q value (minQ) after Benjamini-Hochberg correction
of each gene across the three models was plotted in alphabetic order of gene name by chromosome. The LC615 genes reaching union FDR 5% significance
were plotted with the number of dnLGD and dnMIS variants in the ASD and DD cohorts scaled in pie charts; the HC138 genes reaching the intersection
FWER 5% significance were additionally labeled with gene name. (B) The number of genes reaching FDR 5% (black bar) and FWER 5% (red bar) significance
identified by each of the three models (DR: denovolyzeR; CH: CH model; DNW: DeNovoWEST) in the combined NDD set. (C) Cohort overlap among low-
confidence (n = 615, FDR 5%) and high-confidence (n = 138 FWER 5%) gene sets considering the ASD and DD cohorts separately and as one group (NDD).
Genes were compared based on the union of three models for DNV enrichment versus only those that were observed by all three (intersection).
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Genes with Biased Burden by Variant Class. In the combined
NDD group (n = 46,612), most genes (92.7%, 10,578/11,409)
show a greater number of dnMIS variants when compared to
dnLGD variants, which is consistent with expectations. However,
a subset of 7.3% (831/11,409) show the reverse pattern with
more dnLGD than dnMIS variants (e.g., ARID1B, ADNP,
KMT2A, DYRK1A, CTNNB1, MED13L, POGZ, SETD5,
GATAD2B), suggesting different mechanisms of pathogenicity or
phenotypic manifestation by mutational class. A direct comparison
of dnLGD and dnMIS variant counts for each gene in the com-
bined NDD cohort (n = 11,409 genes) identifies 12 genes
(ARID1B, ADNP, KMT2A, DYRK1A, CTNNB1, SETD5,

GATAD2B, WAC, ASXL1, ASXL3, ARID2, and PPM1D) signifi-
cantly enriched for dnLGD when compared to dnMIS variants
(two-sided Fisher’s exact test, FDR 5%). By contrast, there are
41 genes with significantly greater burden of dnMIS over dnLGD
variants (e.g., DYNC1H1, GRIN2B, CHD3, CACNA1A, SCN8A)
(Fig. 3 and Dataset S8). Among the above genes with a bias by
variant class, PPM1D shows exclusively dnLGD variants (n =
22), while 23 genes show only dnMIS variants (e.g., KIF1A,
KCNQ2, PTPN11, SMARCA2) in this dataset (Fig. 4).

Sex-Biased DNV Enrichment and Burden Analysis. The male-
biased predominance is well established for NDDs, especially in

0 20

0
20

NDD (n=46,612)

# dnLGD

# 
dn

M
IS

40
60

80

6040 80 120

Autosomes

X chromosome

Male
(n=29,704)

Female
(n=16,530)

Intersection FWER
5% significance

FBN1, KMT2E, 
MBD5, PSMC5,
      WDR37,
  ASH1L, CUL3,
    NFIX, SETBP1,
       MYT1L (n=10)

ARID1B, KMT5B, ADNP, 
CTNNB1, POGZ, KMT2A, 
DYRK1A, FOXP1, SCN2A, 
SETD5, STXBP1, TCF4, 

SYNGAP1, WAC, 
GRIN2B, etc.

(n=52)

DDX3X*, MECP2*, 
HDAC8*, WRD45*, 

PDHA1, ZC4H2, 
KDM6A, NEXMIF, 

  SMC1A, USP9X (n=10)

DNM1L, SPTAN1, 
GABRA1, TRIO, 
MSL2, DHDDS, 

SLC2A1
(n=7)

ARID1B
KMT2A

DYRK1A
ADNP

CTNNB1

DDX3X

MED13L

POGZ
SETD5

GATAD2B

SCN2ADYNC1H1

GRIN2B
CHD3

KCNQ2

SATB2

STXBP1

CHD8

PPM1D

ARID2

SCN1A

0
0.

02
0.

04
0.

06
0.

08
0.

1
0.

12
%

 A
SD

 (n
=1

5,
56

0)

0 0.05 0.1 0.15 0.2 0.25 0.35
% DD (n=31,052)

dnLGD frequency

0
0.

02
0.

04
0.

06
0.

08
0.

1
0.

12
%

 A
SD

 (n
=1

5,
56

0)

0 0.05 0.1 0.15 0.2
% DD (n=31,052)

dnMIS frequency

SCN2A

DYNC1H1

GRIN2B

DDX3X

KCNQ2
KIF1A

CACAN1A

CHD3

MECP2

STXBP1
SCN8A

KDM5B PTEN

FBN1

CHD8

ARID1B
CHD2

PTPN11

SCN1A

ARID1B

ADNP

KMT2A

DYRK1ACTNNB1

DDX3X
GATAD2B

POGZ

SCN2A

CHD8

ASH1L

MED13LSETD5

CHD2

SYNGAP1
FOXP1

EHMT1

HC138 genes
LC615 genes

dnMIS enriched
dnLGD enriched
No difference

NDD significance

NDD (n=46,612)

DNV burden

A B

C D

TRRAP
CSMD1

MED13
WDYF3

ANK2

KDM5B
KMT5B

CUL3

DD enriched
No difference

HC138 genes
LC615 genes

NDD significance

DD enriched
No difference

Fig. 3. Genes with phenotype, variant class, and sex-biased DNV burden. (A) dnLGD and (B) dnMIS variant frequencies in ASD (y axis) and DD (x axis)
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Table 2. Genes with excess DNV burden in DD versus ASD patients

Gene
DD DNV

(dnLGD/dnMIS)
ASD DNV

(dnLGD/dnMIS) P q OR (95% CI) Significant variant

ARID1B 119 (106/13) 22 (12/10) 2.51e–6 5.02e–3 2.7 (1.7–4.5) DNV&dnLGD
DDX3X 115 (50/65) 5 (1/4) 5.41e–15 1.08e–10 11.6 (4.8–36.3) DNV&dnLGD&dnMIS
KMT2A 90 (64/26) 9 (6/3) 2.25e–8 1.50e–4 5 (2.5–11.3) DNV&dnLGD
DYRK1A 80 (64/16) 4 (4/0) 3.11e–10 3.11e–6 10 (3.8–37.8) DNV&dnLGD
MED13L 72 (42/30) 10 (5/5) 1.71e–5 2.14e–2 3.6 (1.9–7.9) DNV
SATB2 68 (32/36) 5 (0/5) 1.31e–7 4.37e–4 6.8 (2.8–21.7) DNV&dnLGD
STXBP1 67 (28/39) 8 (3/5) 7.10e–6 1.18e–2 4.2 (1–10.1) DNV
CTNNB1 62 (60/2) 5 (4/1) 7.84e–7 1.74e–3 6.2 (2.5–19.8) DNV&dnLGD
TCF4 51 (31/20) 4 (3/1) 9.21e–6 1.42e–2 6.4 (2.4–24.4) DNV
KMT2D 47 (30/17) 3 (0/3) 6.63e–6 1.18e–2 7.9 (2.5–39.5) DNV&dnLGD
KCNQ2 45 (0/45) 1 (0/1) 3.01e–7 8.61e–4 22.6 (3.9–907.9) DNV&dnMIS
CACNA1A 43 (3/40) 1 (0/1) 5.05e–7 1.26e–3 21.6 (3.7–868.6) DNV&dnMIS
EFTUD2 43 (31/12) 3 (1/2) 2.67e–5 3.14e–2 7.2 (2.3–36.2) DNV
WDR45 35 (24/11) 1 (1/0) 1.06e–5 1.51e–2 17.6 (3–710.9) DNV
CASK 34 (24/10) 1 (1/0) 1.71e–5 2.14e–2 17.1 (2.9–691.2) DNV
GATAD2B 42 (39/3) 0 (0/0) 5.52e–8 2.21e–4 Inf (5.5–Inf) DNV&dnLGD
KIF1A 42 (0/42) 0 (0/0) 5.52e–8 2.21e–4 Inf (5.5–Inf) DNV&dnMIS
CHD7 51 (31/20) 6 (0/6) 7.36e–6 1.64e–2 Inf (4–Inf) dnLGD only

Two-sided Fisher’s exact test for DNV counts was performed comparing ASD (n = 15,560) and DD (n = 31,052) patients. This table shows the 18 genes with significant DNV burden in DD
compared to ASD patients, while no gene with significant burden is identified in ASD patients. The significance threshold (FDR 5%) was corrected for 20,000 genes (Benjamini-
Hochberg). OR: odds ratio; CI: confidence interval; Inf: infinity.
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ASD, but the underlying mechanism remains largely unknown.
We further investigated this sex bias in 29,704 male and 16,530
female probands in whom sex information is available (Table 1).
Using the three models and treating males and females as two
distinct groups, we identified 33 and 28 candidate genes with
potential male or female bias for DNVs, respectively, that have
no significance in the other sex group (intersection FDR 5%)
(Datasets S9 and S10). After applying the most stringent exome-
wide significance criteria (intersection FWER 5%), five male-
bias (FBN1, KMT2E, MBD5, PSMC5, and WDR37) and five
female-bias (DDX3X, HDAC8, PDHA1, ZC4H2, and DNM1L)
enriched genes were identified (Fig. 3D). By directly comparing
the DNV counts in males versus females and controlling for sex
chromosomes, four genes (DDX3X, MECP2, WDR45, and
HDAC8) show a significant excess of DNVs in females (two-
sided Fisher’s exact test, FDR 5% corrected for 20,000 genes in
human genome) (Table 3 and Fig. 5). Notably, all four genes
map to the X chromosome with either no DNVs or a low num-
ber (≤7) of DNVs observed in males, suggesting that such
variants may be lethal during male embryonic development.
Although no individual gene shows a significant male excess
when comparing DNV counts between the sexes, several genes
show interesting trends. For example, KMT2E encodes a mem-
ber of the lysine N-methyltransferase-2 family of chromatin
modifiers, is associated with O’Donnell-Luria-Rodan syndrome,

and shows a male bias in our data (16 DNVs in males versus
three in females); finally, KDM6B shows 12 DNVs in males
compared to two events in females and encodes a histone
H3K27 demethylase that specifically demethylates di- or trime-
thylated lysine-27 (K27) of histone H3 (Table 3 and Fig. 5).

Functional and Neuronal Properties of NDD Genes. We next
focused on investigating the functional properties of the highest
confidence gene set (HC138) by considering both PPI and gene-
expression trends and differences in the adult and developing
human brain. A PPI network analysis using STRING-db high-
lights five distinct network clusters (P < 1e–16) (Fig. 6). These
include previously described networks such as chromatin binding
(Gene Ontology [GO]: 0003682, P = 2.25e–22), ion channels
(GO: 0022839, P = 8.43e–13), lysine degradation (hsa00310,
Kyoto Encyclopedia of Genes and Genomes [KEGG], P =
6.86e–9), and the GABAergic synapse (hsa04727, KEGG,
P = 8.78e–8). We identify 20 top “hub” genes, where we
observe an excess of PPI interactions supported by at least half of
the 12 models in cytoHubba (37) (Dataset S11). Tissue-specific
expression analysis (TSEA), as expected, shows enrichment in
the brain (P = 0.003), with cell-type-specific expression analysis
(CSEA) further highlighting expression in specific brain regions
from early to late-mid-fetal developmental stages: early-mid-
(FDR P = 0.002) and late-mid-fetal (FDR P = 0.035)
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Fig. 4. Example genes with variant class and phenotype-specific DNV pattern. Linear protein diagrams are present with size and exons split by vertical dashed
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amygdala, early fetal cerebellum (FDR P = 0.006), early to late
fetal cortex (FDR P = 1.46e–4), early to early-mid-fetal striatum
(FDR P = 0.003), and early fetal thalamus (FDR P = 0.015).
Overall, the HC138 genes are more highly expressed prenatally,
consistent with the early developmental impact of variation in
these genes and NDDs (SI Appendix, Fig. S7).
We also explored the enrichment of NDD candidate genes

(ASC102 (17), Coe253 (19), DDD285 (18), and LC615 and
HC138 in this study) at cellular resolution from expression
datasets obtained from the developing and adult human cere-
bral cortex (38). Overall, the NDD candidate genes show broad
expression across adult human cortical cell types, including
inhibitory and excitatory neurons and, to a lesser extent, non-
neuronal cells (Fig. 6). All PPI-defined clusters show a similar
pattern of panneuronal enrichment. While the signal is less pro-
nounced for the LC615 genes, it is still qualitatively more than
the 447 control genes that have more than one nonsynonymous
DNV in siblings (SI Appendix, Fig. S8). We tested for expression
enrichment in neuronal and nonneuronal cells for NDD versus
control gene sets by comparing expression levels for cell subtypes

(Fig. 6 and SI Appendix, Fig. S8) and the number of clusters
that express genes for broad cell classes (SI Appendix, Figs. S9
and S10). All NDD candidate gene sets are significantly enriched
in neuronal subtypes, and all gene sets (except the LC615 genes)
are enriched in nonneuronal types (Bonferroni-corrected P <
0.05, Kolmogorov-Smirnov test). While different neuronal sub-
types show similar enrichments, we note that oligodendrocyte
progenitor cells show the greatest enrichment when compared to
other nonneuronal cells (Fig. 6). If we use the panneuronal
expression signature as a further classifier of functional enrich-
ment, we find that 194 of the LC615 gene set meet these criteria
and are panneuronal genes (Dataset S6).

To further dissect the neuronal signature, we investigated
single-nucleus transcriptomic datasets from the developing human
cerebral cortex. At the single-cell level, we find once again that
HC138 genes are also broadly enriched across inhibitory and
excitatory neurons (Fig. 6). To test which neuronal subtype shows
greater specificity, we performed conditional enrichment analysis
between the neuronal lineage populations and found excitatory
neurons to have an independent signal with respect to controlling

Table 3. Top genes with sex-specific DNV enrichment

Gene Chr
Female DNVs
(dnLGD/dnMIS)

Male DNVs
(dnLGD/dnMIS) Minimum P Minimum q

Intersection
FWER 5% significance

DDX3X X 117 (51/66) 2 (0/2) 1.95e–120 3.83e–116 Female only
HDAC8 X 22 (11/11) 0 (0/0) 5.42e–24 4.11e–21 Female only
PDHA1 X 19 (9/10) 2 (0/2) 1.09e–17 7.37e–15 Female only
ZC4H2 X 7 (7/0) 1 (0/1) 5.06e–15 2.55e–12 Female only
DNM1L 12 11 (1/10) 1 (0/1) 3.18e–11 1.64e–8 Female only
FBN1 15 9 (3/6) 28 (7/21) 1.22e–11 3.71e–9 Male only
KMT2E 7 3 (1/2) 16 (9/7) 1.79e–11 5.24e–9 Male only
MBD5 2 3 (3/0) 15 (11/4) 5.81e–15 3.26e–12 Male only
PSMC5 17 1 (0/1) 10 (0/10) 7.61e–12 2.38e–9 Male only
WDR37 10 3 (0/3) 10 (0/10) 3.09e–10 1.77e–7 Male only

Independent DNV enrichment analysis was performed in female (n = 16,530) and male (n = 29,704) patients. This table shows the top 10 genes with evidence of sex-specific DNV
enrichment in females and males. The significance thresholds (FDR 5% and FWER 5%) were corrected for multiple testing as in Table 1 males (FDR 5%, corrected for 20,000 genes using
Benjamini-Hochberg method, two-sided Fisher’s exact test). Chr: chromosome.
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interneuron signals, while neither enrichment nor significance
(P = 1 for all) is reached in any neuronal lineage population
when controlling for excitatory neurons (SI Appendix, Fig. S11).
Among excitatory neuron clusters, we find that the HC138 genes

are most strongly enriched in visual cortex neurons, which is con-
sistent with recently reported changes in gene expression in the
postmortem ASD brain tissue samples (39). When stratified by
PPI-defined cluster membership, we find that cluster 1, which
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Fig. 6. PPI analysis and panneuronal expression of the highest confidence genes. (A) PPI analysis identified five main clusters (C1 to C5), as well as 22 genes
in another smaller PPI group (O) and 13 singleton genes (S) using STRING for the HC138 genes with the highest confidence. The top three GO functions
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tion. (B) Expression heatmap of the HC138 genes in 120 cell types identified across 6 human neocortical areas grouped by PPI clusters with higher expres-
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per cell. IN: interneurons; EN: excitatory neurons; IPC: intermediate progenitor cells; MGE: medial ganglionic eminence; CGE: caudal ganglionic eminence;
OPC: oligodendrocyte progenitor cells; tRG: truncated radial glia; oRG: outer radial glia; vRG: ventral radial glia; CTX: cortex; V1: visual cortex; PFC: prefrontal
cortex; STR: striatum. (E) The heatmap shows the SD from the mean expression value of each cluster of genes. Positive values are up-regulated
compared to the mean, and negative values are down-regulated compared to the mean. Significance is derived from bootstrapping and labeled with
asterisk (*P < 0.05, **FDR P < 0.05 after Benjamini-Hochberg correction). The HC138 genes were used as the background gene set.
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harbors many proteins involved in chromatin modification and
gene expression regulation, are enriched in progenitor cells and
particularly ventral telencephalic neural progenitor cells (“MGE-
IPC,” “MGE-div”) and newborn GABAergic neurons (“nIN”).
Cluster 2, which includes proteins involved in neuronal commu-
nication and ion channel function, are enriched in cortical excit-
atory and inhibitory neurons, including excitatory neurons of
the prefrontal cortex (“EN-PFC”), as previously reported (40),
and caudal ganglionic eminence derived GABAergic neurons
(“IN-CTX-CGE”). Additional analysis of clusters 3 and 4 revealed
potential trends but did not reach statistical significance after mul-
tiple test corrections. Genes in cluster 4 (serine/protease phosphor-
ylation), for example, are biased in their expression toward outer
radial glia, which are primate-enriched neural stem cells believed
to be responsible for the majority of upper cortical layer neurogen-
esis in humans (41–43), while genes in cluster 3 (insulin receptor
function) are enriched in vascular endothelial and mural cells. We
performed a similar single-nucleus transcriptomic analysis for the
top 10 genes showing an enrichment trend for DNVs in either
males or females. Using the HC138 genes as the background gene
set, we observed an enrichment signal for intermediate progenitor
cells for the female-enriched genes and no such signal for male-
enriched genes (SI Appendix, Fig. S12).

Discussion

Here, we present a comprehensive DNV analysis from 15,560
ASD (6,557 from SPARK) and 31,052 DD patients as well as
5,241 unaffected siblings (3,034 from SPARK) using three differ-
ent statistical models to increase the power to identify risk genes
and highlight primary diagnosis, sex, mutation class, and model-
specific differences. In the combined NDD group, we identify
615 genes supported by any one or more of the three models as
NDD candidates (LC615, union FDR 5%), 237 genes of which
show nominal significance by all three models (MC237, intersec-
tion FDR 5%), and 138 genes further reaching exome-wide sig-
nificance by all tests (HC138, intersection FWER 5%). Among
the MC237 genes, 27 were additionally identified only in the
combined NDD set and not observed when ASD and DD were
considered independently (Fig. 2), highlighting the value of com-
bined analyses. For example, SYNCRIP (OMIM: 616686), a gene
already strongly implicated in NDDs (44, 45), shows one dnMIS
and two dnLGD variants in DD patients as well as two dnLGD
variants in ASD patients in this dataset; it reaches FDR signifi-
cance supported by all three models and FWER significance by
the CH model when combined but no significance when ASD
and DD are analyzed separately. This is consistent with the preva-
lence of ASD and DD/ID reported in SYNCRIP-related disorder.
Among the high-confidence genes (HC138), 10 reach exome-
wide significance (intersection FWER 5%) only when the ASD
and DD probands were combined as a broad NDD group, two
genes of which (PABPC1 and PSMC5) represent candidates for
further investigation (Fig. 2).
Among the MC237 genes, we identify nine genes with

potential associations, and among the HC138 genes with the
highest confidence (intersection FWER 5%), we highlight three
genes (MED13, NALCN, and PABPC1) reaching exome-wide
significance first in this study and two of which with clinical
evidence supported the NDD association. MED13, a gene that
encodes a component of the CDK8-kinase module, has previ-
ously been identified through case reports and its phenotype
investigated as part of a GeneMatcher collaboration (32). For
NALCN, Chong and colleagues (33) recently described an
autosomal dominant disorder associated with DD and multiple

congenital contractures of the face and limbs, extending the
phenotype beyond Freeman-Sheldon syndrome to include the
impaired cognitive phenotype. Another gene, PABPC1, encodes
a poly-A RNA binding protein and is thought to play a critical
role in the structure of the translation initiation complex (46).
To our knowledge, this is one of the first reports of DNV
excess in PABPC1; however, four DD cases with dnMIS var-
iants clustered in PABPC1 were reported recently (47), which
found that PABPC1 variants decreased binding affinity to mes-
senger RNA metabolism-related proteins, such as PAIP2, and
Pabpc1 knockdown in mice decreased the proliferation of neu-
ral progenitor cells, supporting our finding of PABPC1 DNV
excess in NDDs.

Replication of these findings is important, and the case-control
mutational burden analysis of ultra-rare LGD mutation (MAF <
0.01%) using independent SPARK cases (n = 21,200) compared
to the ExAC nonpsychiatric subset of controls (n = 45,376) pro-
vided an opportunity to assess some of the new genes at least in
the context of autism risk. At a 5% FDR, we found additional
support for 52 genes—25 are in the HC138 set, 11 are among
MC237, and the remaining 16 correspond to the low-confidence
set LC615 genes. As genetic data from whole-exome and whole-
genome data continue to grow, especially from families in which
complete trios cannot be ascertained, it is likely that such case-
control comparisons of ultra-rare mutation will become more
and more valuable.

The high-confidence genes (HC138) identified in this study
show a consistent pattern of panneuronal expression, which appear
to be driven in large part by excitatory neurons. A comparison of
single-nucleus transcriptomic data with specific functional PPI
networks reveals a more nuanced relationship in which specific
functionally related genes clearly associate with specific cellular lin-
eages in the brain. Four of the five PPI networks in this study
show differential enrichment in specific lineages ranging from rap-
idly dividing progenitor cells (cluster 1) and outer radial glial cells
(cluster 4) to established excitatory and inhibitory neuronal line-
ages (cluster 2) to cell types associated with the vascularization and
maintenance of the blood–brain barrier (cluster 3). Although not
all of these findings are yet statistically significant and will become
refined as highly curated cellular-resolution datasets become avail-
able, they suggest the possible contribution of these specific cell
types to a subset of NDD disease phenotypes and are consistent
with observations from studies of large effect size copy-number
variations on cortical development (48, 49). If functional networks
and definition of cell types and circuits are important targets of
future therapeutics, then distinguishing patients with DNVs in
these specific genes and further exploration of these PPI networks
will be important areas of future research.

Given the locus heterogeneity of ASD and DD, it will be
important to continue to expand the exomes and genomes
of parent–child trios to identify all of the genes associated with
excess DNVs in NDDs. The candidate genes identified here
with different levels of significance provide an important
resource for further genetic and functional characterization.
Severe dnMIS30 or dnLGD variants among the HC138 and
MC237 genes account for only 3,029 (6.5%) and 3,683
(7.9%) of the NDD families in this cohort, respectively. Thus,
many risk genes are awaiting discovery. Our analyses highlight
the value of combining ASD and DD data in increasing power
to identify NDD risk genes. While there is ample evidence of
DD-specific genes, we find little or no support for ASD-specific
genes, although they do identify candidates with trends toward
ASD diagnostic enrichment, but none reach statistical signifi-
cance yet (e.g., CHD8, KDM5B, WDFY3) (22).
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There are also several limitations with this study. The size of
the DD cohort was double that of the ASD patient cohort and,
as a result, favored the discovery of DD-specific genes where
the yield of DNVs is greater. The SPARK project and other
collaborative initiatives aim to generate exome data from over
50,000 ASD families over the next few years, which will
help rectify this imbalance (34). In addition, there is always
ascertainment bias, because different cohorts identify probands
in different ways. We are likely missing both significantly
impaired individuals who obtain independent genetic testing as
well as individuals to whom genetic testing may not provide
value, as has been observed in schizophrenia (50). Another limi-
tation of this meta-analysis is that not all of the underlying
sequence data were available or could be accessed for all pub-
lished cohorts, leaving only ∼50% of the families that could be
reprocessed using the exact same parameters to create a harmo-
nized dataset. Such impediments need to be rectified for the
benefit of the research community and the families who con-
tributed their DNA for the purpose of research. Finally, most
of the cohorts included in this study originate from exome data
in which platform, quality, and coverage vary more widely than
genome data. It has been estimated that 5 to 8% of genic
regions are inaccessible by earlier exome platforms (51). In the
near future, repeating these analyses with genome data or even
ultimately generated by long-read sequencing technologies, and
also investigating inherited variants, will help identify risk genes
or loci (52–54).
In summary, we performed an integrated meta-analysis using

three different statistical models on rare DNVs from a large-scale
NDD cohort that mainly included ASD and DD probands and
unaffected siblings. We identify 615 candidate genes (LC615,
union FDR <0.05) and highlight 138 high-confidence genes
(HC138, intersection FWER <0.05). We find that NDD genes
group into five functional networks where distinct patterns of
single-cell expression in the developing brain are suggested. Based
on DNV enrichment, we find no evidence of ASD-specific genes
in contrast to DD, but we do find clear evidence of genes with
sex bias (n = 10) as well as genes (n = 53) with biases by muta-
tional class (e.g., missense versus loss of function).

Materials and Methods

Samples and DNVs. This study was approved by the University of Washington
institutional review board (#STUDY00000383). Raw DNVs were collected or gener-
ated from 11 parent–child cohorts (>44,800 families) with exome or genome data
available (SI Appendix, Table S1). We preferentially retain genome over exome
data when both are available. DNVs were identified by analyzing/reanalyzing the
underlying sequencing data using the same pipeline when available or directly
retrieved from the publications when not. DNVs were annotated using CADD (ver-
sion 1.3, hg19) and VEP (Ensembl GRCh37 release 94) and restricted to the canon-
ical transcript with the most deleterious annotation. Stringent QC and filtering
measures were applied on both samples and DNVs as detailed in the SI Appendix.
The final integrated set includes a total of 46,612 nonredundant NDD cases with a
primary diagnosis of ASD (n = 15,560) or DD (n = 31,052), and unaffected sib-
lings (n = 5,241) (SI Appendix, Table S1).

Statistical Analyses. De novo enrichment analyses were performed indepen-
dently for ASD, DD, and the combined NDD groups by using three models: the
CH model, denovolyzeR, and DeNovoWEST. We considered two metrics of signif-
icance by the union and intersection of three models that corrected by the
Benjamini-Hochberg (FDR) and Bonferroni (FWER) methods accounting for the
total number of genes tested in each model (18,946 genes in CH model,
19,618 genes in denovolyzeR, and 18,762 genes in DeNovoWEST). We excluded
genes that show any significance in the siblings. For each variant category, we
required each gene to have more than two DNVs to be considered significant.

De novo enrichment analyses in males and females, and the recalled and
no-recall subsets, were performed in a similar way. A one-sided Fisher’s exact
test was used to test the mutational burden of ultra-rare (MAF< 0.01%) LGD
variants between additional independent SPARK exomes (WES2 and WES3,
n = 21,200) and the ExAC nonpsychiatric control subset (n = 45,376). Multiple
test correction FDR was performed using the Benjamini-Hochberg method. For
the de novo enrichment and mutational burden analyses between males and
females, chromosome X was considered to be one copy in males and two copies
in females. All of the statistics were calculated using R (version 3.6.2). More
details are provided in the SI Appendix.

PPI Analyses and Hub Genes. The PPI network was assessed using the
STRING database with default settings and imported into Cytoscape for down-
stream analysis. Hub genes (most interacted genes) were assessed using cyto-
Hubba by 12 methods as previously described (37). The hub genes were the top
20 genes supported by at least half of the 12 methods. The PPI clusters were
identified by the Markov Cluster Algorithm (MCL, https://micans.org/mcl/). The
top three GO functions were selected from rank order of the functional enrich-
ment from the STRING database with default settings. More details are provided
in the SI Appendix.

GTEx Brain Expression Evaluation. The median gene-level transcript expres-
sion by tissue was downloaded from GTEx. The average TPM values for LC615
genes (Dataset S6) in the brain were calculated from 13 brain tissues (amygdala,
anterior cingulate cortex, caudate, cerebellar hemisphere, cerebellum, cortex,
frontal cortex, hippocampus, hypothalamus, nucleus accumbens, putamen, spi-
nal cord, and substantia nigra). The baseline expression levels are defined with
the following cutoff: TPM ≥ 1,000, high expression; 1,000 > TPM ≥ 10,
medium expression; 10 > TPM ≥ 0.5, low expression; TPM < 0.5, no expres-
sion or below cutoff. See more details in the SI Appendix.

Single-Nucleus RNA Expression Analysis. The dataset includes single-
nucleus transcriptomes from 49,495 nuclei across multiple human cortical areas.
Nuclei were sampled from postmortem and neurosurgical (middle temporal
gyrus only) donor brains and expression was profiled with SMART-Seq version 4
RNA-seq. Unsupervised clustering with Seurat identified 120 distinct transcrip-
tomic clusters, including 54 GABAergic (inhibitory) neuronal, 56 glutamatergic
(excitatory) neuronal, and 10 nonneuronal cell types. Heatmaps were con-
structed of log-normalized trimmed mean expression (excluding the 25% lowest
and 25% highest expression values), log2(CPM + 1) (CPM, counts per million),
of NDD and control gene sets across cell types. Genes were ordered by the num-
ber of cell types with trimmed mean expression > 1. The SI Appendix has
more details.

Tissue and Cell-Type-Specific Expression of Significant Genes. scRNA-seq
data were pulled from the University of California, Santa Cruz Cell Browser (cells.
ucsc.edu/?ds=cortex-dev) and CPM counts were quasinormalized into unique
molecular identifiers (UMIs) using quminorm (https://github.com/willtownes/
quminorm). Cells were then regrouped by their broad parent cell types, with
unknown cell types filtered out. SCTransform (https://github.com/ChristophH/
sctransform) was used to normalize the UMI counts from quminorm. The cor-
rected counts from SCTransform were used as input into expression weighted
cell-type enrichment (EWCE) following the default parameters with two levels of
annotations based on clusters and clusters split by sex. Bootstrapping parame-
ters in EWCE were as follows: 10,000 repetitions with the LC615 genes as
background in the unconditional enrichment and HC138 for the controlled
experiments. Cluster-specific analysis within the most stringent gene set and top
sex-specific genes used the HC138 genes as background. Online TSEA and CSEA
tools were used to determine the enrichment of expression across brain regions
and cell types (55). The expression among these tissues was compared using
Fisher’s exact tests and followed by Benjamini-Hochberg correction (SI Appendix).

Assessment of Gene Intolerance Scores. We applied the ExAC-based resid-
ual variation intolerance score (RVIS) and missense constraint score (mis_Z
score), as well as the gnomAD-based LOEUF score. A Wilcoxon two-sample test
was performed in R (version 3.6.2) using the wilcox.test function. More details
are provided in the SI Appendix.
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Data, Materials, and Software Availability. The underlying genomic and
phenotypic data in the recalled subset are available from the following resour-
ces: the sequencing and phenotype data for the Simons Simplex Collection
(SSC) cohort (https://www.sfari.org/resource/simons-simplex-collection/) are avail-
able to approved researchers at SFARI Base (https://base.sfari.org, SFARI_SSC_
WGS_p, SFARI_SSC_WGS_1, and SFARI_SSC_WGS_2). Genome data from the
SAGE samples are available at dbGaP (phs001740.v1.p1) (56). Family-level Free-
Bayes and GATK VCF files for SSC and SAGE samples are available at dbGaP
(phs001874.v1.p1) (57) and also at SFARI Base (SFARI_SSC_WGS_2a). The
genomic and phenotypic data for the SPARK study (https://www.sfari.org/
resource/spark/) are available at SFARI Base (SFARI_SPARK_pilot, SFARI_SPARK_
WES_1, SFARI_SPARK_WES_2, and SFARI_SPARK_WES_3). The genomic and
phenotypic data for the DDD study are available from the European Genome-
phenome Archive (EGA, https://ega-archive.org) under study EGAS00001000775,
(58). The DNVs in the no-recall subset are retrieved from each of the corre-
sponding publications (SI Appendix, Table S2). The final harmonized DNVs,
from both the recalled and no-recall subsets, used in the study are available in
Dataset S1. Codes used to generate the figures are available at https://github.
com/tianyunwang/ndd_meta_2022 (59). Web URLs and abbreviations are pro-
vided in the SI Appendix.
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