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ABSTRACT OF THE DISSERTATION 

 

Circadian and cardiovascular dysfunction in the Huntington’s disease mouse models 

by 

 

Saemi Park 

Doctor of Philosophy in Molecular, Cellular and Integrative Physiology 

University of California, Los Angeles, 2020  

Professor Christopher S. Colwell, Chair 

 

Circadian and sleep disruptions have been shown to lead to an increased risk for 

cardiovascular (CV) events. Huntington’s disease (HD) patients are reported to have various 

symptoms including circadian and motor deficits. In addition, CV symptoms are implicated as 

the cause of death in over 30% of the HD patient population. However, very little is understood 

about the intersection between circadian disruption, CV disease, and HD. Here we utilized two 

mouse models, BACHD and Q175, to investigate CV pathology in HD. Reduced diurnal and 

circadian resting heart rate rhythms, heart rate variability, and baroreceptor reflex support that 

the autonomic regulation of the CV system is compromised in both HD mouse lines. In addition, 

age-dependent reduction in the heart function and cardiac fibrosis were observed. These results 

led us to test the hypothesis that reducing the mutant huntingtin (mHtt) expression in the 

cardiomyocytes is sufficient to rescue CV symptoms seen in BACHD mice by crossing with the 

cardiomyocyte-specific Cre, Myh6-Cre. Our results show that reduced mHtt expression in the 
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cardiomyocytes help improve left ventricular ejection fraction, several heart disease markers, and 

grip strength, a behavioral marker of cardiovascular health in the BACHD mice.  Together this 

data indicates that heart disease in HD patients is likely to be driven both by cardiomyocyte 

specific pathology as well as dysfunction in the ANS.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iv  

The dissertation of Saemi Park is approved. 

 

 

Gene D. Block 

Holly R. Middlekauff 

Kenneth P. Roos 

Yibin Wang 

Christopher S. Colwell, Committee Chair 

 

 

University of California, Los Angeles 

2020 

 

 

 

 

 

 

 

 

 

 



 

 

v  

Dedication 

 

I would like to thank my parents for their sacrifice, love and constant support. They never 

stopped showing me the big world and letting me have so many opportunities to learn and 

explore growing up. I never imagined myself getting a doctoral degree. They always encouraged 

me and never lost faith in me. Thanks to them, I could accomplish this! I also want to thank my 

husband Hak Jo for love and encouragement. He has been always there beside me for better or 

worse. I cannot thank enough my little sister and best friend Sumin for her constant support, 

love, and prayer.  

 

I thank my advisor and mentor Dr. Chris Colwell. He has been always there to support and guide 

me through graduate school during both good and bad times. I appreciate invaluable input and 

support from my committee members Drs. Gene Block, Holly Middlekauff, Ken Roos, and 

Yibin Wang.  

 

I would like to thank the past and present lab members of the Colwell Lab for all their help, 

support and friendship. They have been the best colleagues and friends that everyone wishes for. 

Especially, Huei-Bin, Yu, Chris L, Olivia, Aly, and Dawn, I cherish all the memories inside and 

outside the lab. I also want to thank my friends from MCIP, Shuin, Michael, Iris and Albert for 

making the graduate school life more enjoyable.  

 

 



 

 

vi  

Table of Contents 

Chapter 1: Do disruptions in the circadian timing system contribute to autonomic neuropathy in 
Huntington’s disease? ..................................................................................................................... 1	

Abstract: ...................................................................................................................................... 1	

Introduction: ................................................................................................................................ 2	

Topics: ......................................................................................................................................... 4	

Conclusions and outlook: .......................................................................................................... 16	

Chapter 2: Cardiovascular dysfunction in the Huntington’s Disease models, Q175 and BACHD
....................................................................................................................................................... 18	

Introduction: .............................................................................................................................. 18	

Methods: ................................................................................................................................... 20	

Results: ...................................................................................................................................... 33	

Discussion ................................................................................................................................. 39	

Chapter 3: Rescue of the cardiovascular symptoms in the BACHD mouse model .................... 46	
Introduction: .............................................................................................................................. 46	

Methods: ................................................................................................................................... 47	

Results: ...................................................................................................................................... 52	

Discussion ................................................................................................................................. 56	

Discussion: Clinical significance and future directions ............................................................... 61	

Appendix: Impact of time-restricted feeding on the gene expression rhythms in the BACHD 
mouse hearts .................................................................................................................................. 64	

Introduction ............................................................................................................................... 64	

Methods..................................................................................................................................... 64	

References .................................................................................................................................. 106 
 



 

 

vii  

List of Figures 

Figure 1. 1 .................................................................................................................................... 77	

Figure 1. 2 .................................................................................................................................... 78	

Figure 1. 3 .................................................................................................................................... 79	

Figure 1. 4 .................................................................................................................................... 80	

Figure 1. 5 .................................................................................................................................... 81	

 
Figure 2. 1 .................................................................................................................................... 82	

Figure 2. 2 .................................................................................................................................... 83	

Figure 2. 3 .................................................................................................................................... 84	

Figure 2. 4 .................................................................................................................................... 85	

Figure 2. 5 .................................................................................................................................... 86	

Figure 2. 6 .................................................................................................................................... 87	

Figure 2. 7 .................................................................................................................................... 88	

 
Figure 3. 1 .................................................................................................................................... 89	

Figure 3. 2 .................................................................................................................................... 90	

Figure 3. 3 .................................................................................................................................... 91	

Figure 3. 4 .................................................................................................................................... 92	

Figure 3. 5 .................................................................................................................................... 93	

Figure 3. 6 .................................................................................................................................... 94	

 
Figure Appendix 1 ...................................................................................................................... 96	

 



 

 

viii  

 
List of Tables 

Table 1 .......................................................................................................................................... 97	

Table 2 .......................................................................................................................................... 98	

Table 3 .......................................................................................................................................... 99	

Table 4 ........................................................................................................................................ 100	

Table 5 ........................................................................................................................................ 101	

Table 6 ........................................................................................................................................ 102	

Table 7 ........................................................................................................................................ 103	

Table 8 ........................................................................................................................................ 104	

Table 9 ........................................................................................................................................ 105	

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ix  

Acknowledgements 

All of the chapters represent the collaborative efforts of multiple individuals as directed by PI 

Christopher S. Colwell. These chapters include materials from manuscripts that have been 

published or currently in preparation for publication.  

  

Chapter 1 is a version of a published review entitled “Do Disruptions in the Circadian Timing 

System Contribute to Autonomic Dysfunction in Huntington's Disease?” by Park and Colwell. 

Park, S., & Colwell, C. (2019). Do Disruptions in the Circadian Timing System 
Contribute to Autonomic Dysfunction in Huntington's Disease? The Yale journal of 
biology and medicine, 92(2), 291-303. 
 

Author Contributions: SP wrote the first draft; CSC finalized text and generated figures.   

We would like to acknowledge the prior intellectual contributions of Dr. Analyne 

Schroeder and Ms. Tamara Cutler 

 

Chapter 2 is a version of two published papers entitled “Neurocardiovascular deficits in the 

Q175 mouse model of Huntington’s disease” by Cutler et al. 2017 and “Cardiac Dysfunction in 

the BACHD Mouse Model of Huntington’s Disease” by Schroeder at el. 2016.  

Cutler TS, Park S, Loh DH, Jordan MC, Yokota T, Roos KP, Ghiani CA, and Colwell 
CS. (2017) Neurocardiovascular deficits in the Q175 mouse model of Huntington’s 
disease. Physiol Rep. (11). pii: e13289.  

 
Schroeder AM, Wang HB, Park S, Jordan MC, Gao F, Coppola G, Fishbein MC, Roos 
KP, Ghiani CA, and Colwell CS. (2016) Cardiac Dysfunction in the BACHD Mouse 
Model of Huntington’s Disease. PLoS ONE 11(1): e0147269.  
 



 

 

x  

Author Contributions: SP contributed to the editing of these ms as well as data collection 

and analysis.   

Chapter 3 is in preparation for publication. I would like to acknowledge Drs. Maria Jordan and 

Kenneth P. Roos at the mouse physiology core for their contributions on echocardiography and 

Ms. Iris Wang (Yibin Lab) for her help on RT-qPCR assays.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xi  

Biographical Sketch 

Education 

Ph.D. Doctoral Candidate, Molecular, Cellular and Integrative Physiology 

University of California, Los Angeles 
Los Angeles, California 
2014-current 
 
Master of Science, Physiological Sciences 

University of California, Los Angeles 
Los Angeles, California 
2012-2014 
Bachelor of Arts, Major: Biology and Chemistry; Minor: Mathematics and Global Studies  

Drury University  
Springfield, Missouri  
2006-2010 
 
Publications 

Park, S., & Colwell, C. (2019). Do Disruptions in the Circadian Timing System Contribute to 
Autonomic Dysfunction in Huntington's Disease? The Yale journal of biology and medicine, 
92(2), 291-303. 
 
Cutler TS, Park S, Loh DH, Jordan MC, Yokota T, Roos KP, Ghiani CA, and Colwell CS. 
(2017) Neurocardiovascular deficits in the Q175 mouse model of Huntington’s disease. Physiol 
Rep. (11). pii: e13289.  
 
Schroeder AM, Wang HB, Park S, Jordan MC, Gao F, Coppola G, Fishbein MC, Roos KP, 
Ghiani CA, and Colwell CS. (2016) Cardiac Dysfunction in the BACHD Mouse Model of 
Huntington’s Disease. PLoS ONE 11(1): e0147269.  
 

 

 



 

 

1  

Chapter 1: Do disruptions in the circadian timing system contribute to autonomic neuropathy in 

Huntington’s disease? 

Abstract:  

 

Huntington’s disease (HD) patients suffer from a progressive neurodegenerative process that 

inflicts both motor and non-motor dysfunction. HD is caused by a CAG repeat expansion within 

the first exon of the huntingtin (Htt) gene that produces a polyglutamine repeat that leads to 

protein misfolding, soluble aggregates, and inclusion bodies detected throughout the body 

including the heart. Both the clinical and preclinical research indicate that cardiovascular 

dysfunction should be considered a core symptom of at least a subset of HD patients. There is 

some evidence for cardiomyopathy, but these is even stronger evidence for dysautonomia 

(dysfunctional autonomic nervous system, ANS) in HD patients that can be detected early in the 

disease progression. The temporal patterning of ANS function is controlled by the circadian 

timing system based in the anterior hypothalamus. At the molecular level, circadian rhythms are 

generated by a transcriptional/translational feedback system that regulates transcription and has a 

major impact on cellular functions. Patients with neurodegenerative diseases including HD 

exhibit disrupted sleep/wake cycle and, in preclinical models, there is compelling evidence that 

the circadian timing system is compromised early in the disease process. We have been using 

preclinical models of HD to test the hypothesis that dysfunction in the circadian system 

contributes to the CV disease in neurodegenerative diseases. If correct, this work would lead to 

new therapeutic strategies and standards of care for HD and other neurodegenerative diseases. 
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Introduction: 

 

HD is a genetic determined neurodegenerative disease.   

Huntington’s disease (HD) patients suffer from a progressive neurodegenerative process that 

inflicts cognitive, psychiatric and motor dysfunction [1,2]. HD is caused by a CAG repeat 

expansion within the first exon of the huntingtin (Htt) gene which produces a polyglutamine 

repeat that leads to protein misfolding, soluble aggregates, and inclusion bodies detected 

throughout the body [3,4]. The normal function of the protein (HTT) is unknown; however, the 

mutated form leads to dysfunction of a broad range of cellular processes including cytoskeletal 

organization, protein folding, metabolism, and transcriptional activities. Based on the broad 

distribution of the HTT, the mutation would be expected to produce symptoms throughout the 

body. Indeed, recent work suggests HD alters function in the heart, testes, liver, muscle, as well 

as in the brain. HD is a genetic disease, and a large number of animal models have been 

developed, each with strengthens and weaknesses (see [5]). The work covered in this review was 

mostly conducted on the Q175, BACHD, R6/2, and R6/1 mouse lines.   

 

Cardiovascular dysfunction may be common in HD.   

Cardiovascular events are a major cause of early death in the HD population and occur at a 

higher rate compared to the rest of the population [6,7]. Possible cardiomyopathies have not been 

well explored in HD patients.  One recent study examined the electrocardiograms of over 500 

early symptomatic HD patients and found evidence for low heart rate (bradycardia) and 

conduction abnormalities in a significant fraction of the patients [8]. Preclinical models of HD 
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have found clear evidence for reduced contractility and cardiac output [9–14]. For example, a 

recent study of the cardiomyocytes of BACHD mice found evidence for increased 

calcium/calmodulin-dependent protein kinase II activity as well as structural abnormalities in the 

mitochondria [15]. The cardiac-specific expression of polyQ repeats leads to cardiovascular 

dysfunction, suggesting that cardiovascular disease may be the result of local abnormalities 

[16,17]. There is even stronger evidence for dysautonomia (dysfunctional autonomic nervous 

system, ANS) in HD patients that can be detected early in the disease progression.  The 

sympathetic nervous system appears to be most impacted during the very early stages of HD 

[18–20]. As the disease advances, the parasympathetic activity progressively decreases as well 

[20–22]. Therefore, both the clinical and preclinical research indicate that cardiovascular 

dysfunction should be considered a core symptom of at least a subset of HD patients. 

 

Sleep and circadian dysfunction are an integral component of HD pathophysiology.  

Sleep disorders are prevalent in HD patients and have detrimental effects on the daily 

functioning and quality of life of patients and their caregivers [23,24]. The most common 

symptoms found in these studies include a delay in sleep onset, fragmented sleep during the 

night, and daytime sleepiness.  Importantly, these disruptions in the sleep/wake cycle occur early 

in the disease progression and so could serve as a biomarker for HD as well as a target for 

interventions. The sleep/wake cycle is conceptualized as being driven by two, anatomically-

distinct processes: a homeostatic sleep mechanism (process S) as well as by the circadian timing 

system (process C). To date, there is little evidence that HD impacts sleep homeostasis but there 

is growing evidence for HD-driven disruption in circadian timing. Still, it is difficult to 
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determine whether the disease alters the circadian timing system in humans and animal models 

provide critical insights. Mouse models of HD also exhibit a progressive and rapid breakdown of 

the circadian rest/activity cycle that closely mimics the condition observed in human patients, 

typified by loss of consolidated sleep, increased activity during the rest phase, and more sleep 

during the active phase [10,25–27]. Importantly, the disruptions are seen under both light/dark 

(LD) cycle as well as the mice are held in constant darkness (DD). This latter step is critical to 

establish that the circadian system is compromised.  Disorganized circadian timing leads to 

undesirable effects throughout the body [28], altering the function of key organ systems 

including heart, pancreas, liver, lungs as well as the brain. Collectively this prior research 

supports the hypothesis that circadian dysfunction is an integral component of HD 

pathophysiology. We have been testing the hypothesis that dysfunction in the circadian system 

contributes to the CV disease in HD (Fig 1.1) and, in this review, we will summarize our 

progress. 

 

Topics: 

 

Baroreceptor reflex is blunted in HD 

One of the classic physiological tests of the ANS function is the measurement of the 

baroreceptor reflex in which changes in blood pressure (BP) evoke alterations in the heart rate 

(HR). Baroreceptors are mechanoreceptors located in the carotid sinus and aortic arch which 

sense the pressure changes. Although they are sensitive to both increases and decreases in 

arterial pressure, their primary role is to respond to a sudden fall in arterial pressure. This sudden 
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decrease is detected by baroreceptors and signals are sent to the medulla to elevate the 

sympathetic activity and reduce the parasympathetic activity. These changes lead to 

vasoconstriction and increased HR to bring back arterial pressure into the normal range. 

Recordings from the BACHD [29] as well as the Q175 [14] lines of HD mice indicate that the 

baroreceptor reflex is dramatically altered (Fig 1.2). The administration of Angiotensin II (ATII) 

or Nitroprusside (NP) leads to episodes of hypertension or hypotension, respectively. Changes in 

BP as a result of drug administration should elicit a compensatory response of HR via the 

baroreceptor reflex in order to normalize BP levels.  The Q175 mutants showed a dramatically 

blunted response in HR to the transient hypotension induced by NP suggesting that the 

sympathetic branch has impaired. The BACHD mutants showed a blunted response to both ATII 

and NP indicating both sympathetic and parasympathetic arms were impacted.  In both cases, we 

confirmed that there were no genotypic differences in the change in BP evoked by the injected 

drug as well as performed pharmacological controls to showing that appropriate receptor 

blockers prevented the change in HR.    

 

HD patients complain of dizziness and light-headedness upon standing, all symptoms of 

baroreceptor dysregulation resulting in orthostatic hypotension [18,30]. While not well 

documented in HD patients, orthostatic hypotension has been extensively examined in 

Parkinson’s Disease (PD) [31]. In this neurodegenerative disease, the neurogenic hypotension 

impacts about 30% of the patients with dizziness or lightheadedness, fatigue when standing, and 

difficulty walking to be the most common symptoms [32,33]. In a significant number of patients, 

the hypotension is responsible for the falls which one of the main complications of PD that has a 
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major impact on the quality of life. Patients with neurogenic orthostatic hypotension exhibit in 

enhanced reduction in systolic BP (~40 vs. 20 mmHg) in response to a stressor and thus are 

vulnerable for falls due to failure to maintain BP [34]. Like the PD patients, we expect that a 

subset of HD patients will be vulnerable to neurogenic orthostatic hypotension. 

 

Heart rate variability is reduced in HD 

HRV is a measure of variation in the beat-to-beat (R-R) interval that reflects the dynamic 

balance of sympathetic and parasympathetic control of heart function. Traditionally, HRV is 

generally considered an indication of cardiovascular health and low HRV proposed as a predictor 

for cardiovascular disease and mortality [35,36]. More recently, HRV has become a popular 

index of cardiac autonomic control in the biobehavioral sciences due to its relationship with 

stress disorders and other illnesses [37]. In humans, it is typically measured for short intervals 

and is increasingly available in health records as a non-invasive measure of cardiovascular 

function. One of the most commonly used methods for HRV evaluation is power spectral density 

analysis in which high-frequency (HF) and low-frequency (LF) bands are extracted from the 

HRV signal, and the spectral power is calculated (e.g., [38]). Traditionally, the LF power is 

viewed as a measure of regulation by the sympathetic branch of the ANS, although it is more 

likely a general index of ANS function [39,40].  

 

In our work, we measured HRV in WT and HD mutant mice over several days in both LD and 

DD conditions. In WT mice, HRV displayed a robust diurnal and circadian rhythm consistent 

with circadian regulation of the ANS (Fig 1.3). Both the LF and HF domains of the HRV 



 

 

7  

exhibited robust daily rhythms. In the Q175 line [14], the HRV was low in young mutants, and 

this reduction was largest during the rest phase. The power in the LF domain was significantly 

reduced in the young mutants with the most prominent effects during the night. A similar 

reduction in HRV was previously observed in the BACHD line [10,13] as well as in the R6/1 

model [41].  

 

In HD patients, a similar decrease in HRV has also been reported during the presymptomatic and 

early stages of HD progression [18,19,21]. Prior studies reported HRV deficits during the 

Valsalva maneuver, hand-grip test, and the head up tilt test in HD patients [20,22,42,43]. As far 

as we know, the spectral power analysis has not been carried out on data from patients. In human 

subjects, HRV changes with daily cycle and with sleep state (e.g., [44]) but we do not have this 

data from the HD patients. Thus, both the preclinical and clinical work is consistent with a 

disruption in the sympathetic branch early in the disease progression that is reflected as a 

decrease in HRV.   

 

Abnormal diurnal and circadian rhythms in HR observed in HD 

In humans and other animals, HR varies dramatically with acute physical demands, i.e. higher 

HR when we are physically active while low HR when sedentary. In addition to these acute 

changes, there are also robust 24-hr circadian rhythms in the heart and vasculature to prepare the 

cardiovascular system for higher output during the day in humans. Interestingly, these natural 

rhythms may increase the risk for vulnerable individuals and daily rhythms in the symptoms of 

cardiovascular disease peak in the morning hours (e.g., [45]).    
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In nocturnal mice, diurnal and circadian of cardiovascular output peak in the night. While 

influenced by activity levels, the rhythms occur even when measured in windows of time when 

the mice were inactive. As measured by telemetry, diurnal and circadian rhythms in HR are 

disrupted in the BACHD, Q175, R6/1 lines of mice [10,13,14,41]. For example, the Q175 

exhibited highly pronounced tachycardia during their normal sleep time, with high HR and 

reduced amplitude in the HR rhythm (Fig 1.4). Besides, the normal strong correlation between 

activity and HR, which is mediated by the ANS, was dramatically reduced in the mutants. These 

changes suggest that ANS disruption occurs early in disease progression in the Q175 line. In 

agreement, we also saw evidence in the BACHD of the circadian system failing to lower BP 

during sleep [29]. The HR rhythm in R6/1 mice are disrupted with the mutants showing a higher 

HR than WT littermates as young adults but ultimately exhibiting low HR [41]. In two other 

models (R6/2 and HdhQ150 lines), the HR was significantly reduced in symptomatic mice [46]. 

Therefore, overlapping data from several studies using different mouse models all found 

evidence for disrupted diurnal or circadian rhythms of HR.   

As far as we know, the question of whether the rhythms in HR and BP are disrupted have not 

been examined in HD patients. The preclinical data suggest that the disruptions are most likely to 

occur at the beginning of the sleep and can be difficult to diagnosis. Office visits are unlikely to 

coincide with the expression of the hypertension. This type of “masked” or nocturnal 

hypertension is associated with poor clinical outcomes as the symptoms are likely to be untreated 

and patients frequently develop organ damage prior to transitioning to sustained hypertension 

which can be detected [47,48]. Based on the preclinical data, HD patients should be strong 
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candidates for 24-hr BP monitoring which is the best method for uncovering this type of 

hypertension.   

 

Possible mechanisms underlying the dysautonomia 

The circuits involved in the generation of rhythms in HR and autonomic function are relatively 

well defined. The central circadian clock in the suprachiasmatic nucleus (SCN) orchestrates the 

peripheral clocks via ANS [49–53]. Complete separation between pre-sympathetic and pre-

parasympathetic neurons starts from the SCN (Fig 1.5) [53,54]. These separate pre-sympathetic 

and pre-parasympathetic neurons project to the paraventricular nucleus (PVN) and its separated 

pre-autonomic neurons have projections to either the preganglionic sympathetic neurons in the 

intermediolateral (IML) column of the spinal cord or the preganglionic neurons of the dorsal 

motor nucleus of the vagus (DMV). There are axon collaterals of the pre-sympathetic PVN 

neurons in the nucleus tractus solitarius (NTS). Particularly, the SCN utilizes completely 

separated sympathetic and parasympathetic neurons to convey the circadian information to the 

periphery including the heart, liver and adrenal gland. Various neuroendocrine and autonomic 

neurons are located in the PVN. Appropriate hormonal and autonomic responses are coordinated 

by the PVN [53,54].   

 

HD is a neurodegenerative disease so the most obvious cause of dysautonomia is the loss of cell 

populations in the hypothalamus or brain stem. We examined possible anatomical changes 

within the SCN of the BACHD mouse at 3 months of age just as the motor symptoms can first be 

measured. We found that the male, but not the female, SCN was smaller than WT controls. There 
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were no differences in peptide expression (arginine vasopressin, AVP; vasoactive intestinal 

peptide, VIP) within the SCN with genotype or sex. In the more severely impacted R6/2 mice, 

the SCN shows decreased expression of VIP and its receptor, VPAC2 [55]. The SCN sends 

projections out to regulate the temporal patterns of activity in several major arousal centers 

including the orexin expressing cell population in the lateral hypothalamus. The expression 

levels of orexin and AVP are reduced in HD models (e.g., [56,57]). Changes in the expression of 

brain-derived neurotrophic factor (BDNF) have also been observed. Expression of BDNF is 

normally high in the brainstem where this neuromodulator plays a crucial for regulating HR [58–

60]. The levels of BDNF are known to be reduced in the brainstem of mutant mice and resorting 

BDNF level can ameliorate HD pathology and prolong the lifespan in HD mice [61]. 

Importantly, restoring BDNF levels also returned the HR of the HD mice to the control levels 

[62]. So in the mouse models, HD alters the expression of peptides and neuromodulators in the 

brain regions involved in the neural regulation of cardiovascular function without necessarily 

causing a significant loss of hypothalamic neurons. 

 

In HD patients, there is evidence that the disease causes similar changes in expression as well as 

degeneration in the brain regions involved in the CNS regulation of cardiovascular function. In 

the hypothalamus, there is evidence for the reduction in the expression of orexin and AVP in the 

brains of the HD patients [63,64]. In addition, the levels of BDNF and its receptors (TrkB) are 

reduced in HD patients [65], and the HD aggregates directly interfere with the transcription of 

BDNF [66]. Finally, there is evidence for degeneration in the brainstem nuclei in HD patients 

including loss of neurons in the substantia nigra, pontine nuclei, reticulotegmental nucleus of the 
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pons, superior and inferior olives [67]. This study also reported the strong expression of p62 

immunopositive protein aggregates in axons of brainstem fiber tracts including the vagal nerve 

and the nucleus of the solitary tract. These structures are centrally involved in the CNS 

regulation of the CV system. Thus, by the end of life, HD certainly impacts the brain regions 

responsible for the CNS regulation of CV function and establishes a possible structural cause for 

this dysfunction. 

 

Altered SCN-driven physiology output in HD  

The circadian system is composed of cell-autonomous clock gene expression rhythms that are 

synchronized and adaptively phase aligned in tissues throughout the body by a rhythmic output 

from the SCN [68]. Individual SCN neurons express rhythms in spontaneous firing rate, with 

high firing rates observed during the day and low rates at night [69,70]. The BACHD and Q175 

mouse models of HD exhibit decreased electrical activity in the SCN during the day [10,71]. 

This decrease in daytime firing in the SCN was not seen in the R6/2 model [72] although firing 

rate deficits were seen in an SCN-driven output in the orexin neurons [57]. Using 

electrophysiological techniques, we found that SCN neural activity rhythms were lost early in the 

disease progression and were accompanied by loss of the normal daily variation in resting 

membrane potential in the mutant SCN neurons [71]. The low neural activity could be transiently 

reversed by direct current injection thus demonstrating that the neurons have the capacity to 

discharge at WT levels. Exploring the potassium currents known to regulate the electrical 

activity of SCN neurons, our most striking finding was that these cells in the mutants exhibited 

an enhancement in the large-conductance calcium- and voltage-activated potassium (BK) 
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currents. The expression of the pore-forming subunit (Kcnma1) of the BK channel was higher in 

the mutant SCN. These findings demonstrate that SCN neurons of both BACHD and Q175 HD 

models exhibit early pathophysiology and that dysregulation of BK current may be responsible.   

 

Circadian molecular feedback loop may be impacted by HD.     

The rhythms in neural activity in the SCN are driven by cell autonomous molecular feedback 

loops. At a molecular level, circadian rhythms are generated by the intracellular 

transcriptional/translational feedback loop, driving daily oscillations with a period of 

approximately 24-hrs in the expression of core clock proteins. CLOCK (Circadian Locomotor 

Output Cycles Kaput) and BMAL1 (Brain and muscle aryl-hydrocarbon receptor nuclear 

translocator-like 1) the positive components of the clock bind to E-box sequences and drive the 

expression of the negative elements period (Per) and cryptochrome (Cry) which can inhibit their 

own transcription by repressing the CLOCK/BMAL1 heterodimer. Once the levels of PER and 

CRY are decreased, the new cycle of transcription/translation is started by CLOCK-BMAL1. 

This feedback loop constitutes a 24-hr period of the internal circadian rhythms. The circadian 

nuclear receptor, Rev-erba and a retinoic acid-related orphan receptor (ROR) regulate the Bmal1 

expression via activation and repression, respectively. Post-translational modifications are 

crucial for regulating the clock. Casein kinase 1 (CK1) phosphorylate PER and CRY which is 

vital for the circadian cycle length. The expression of other clock-controlled genes and output 

genes is modulated by the CLOCK/BMAL1 heterodimer, which involving many physiological 

functions [73]. We found that the circadian rhythms in PER2-driven bioluminescence were not 

altered in the SCN in the BACHD [74]; however, deficits in gene expression rhythms were found 
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in the SCN of the more severely impacted R6/2 model [25]. Thus the evidence that the molecular 

circadian clockwork is disrupted is so far mixed, and more work is required to identify at what 

age in the disease progression these disruptions occur.     

 

These molecular rhythms are not just expressed in the SCN and work done in the R6/2 model 

clearly demonstrates that circadian rhythms of clock-driven genes that are critical metabolic 

outputs in the liver are abolished in vivo [75].  This deficiency is accompanied by arrhythmic 

expression of the clock genes Cry1 and Dbp, and a phase-advanced Per2 cycle. There is 

overwhelming evidence that circadian clock genes including Bmal1, Clock, Rev-erba, Per 1, Per 

2, Cry1, and Cry2 are rhythmically expressed in cardiomyocytes [76,77]. Functionally this 

timing system has a major impact on the expression of the genes involved in cardiac metabolism 

and electrical activity display circadian expression. For example, the metabolic genes, pyruvate 

dehydrogenase kinase 4 (pdk4) and uncoupling protein 3 (ucp3), are known to be regulated by 

peroxisome proliferator activated receptor alpha (PPARα). PPARα displays a robust rhythmic 

expression in the heart and is also shown to modulate Bmal1 by directly binding to the Bmal1 

promoter [78]. Daily oscillations of the expression in Pdk4 and ucp3 are associated with 

oscillations in the clock gene expression with the peak during the active phase. Glucose levels 

are shown to exhibit diurnal rhythms. Glucose transporters 1 and 4 (Glut1,4) have a peak in the 

expression level at the same time, suggesting increased glucose transport and utilization at the 

same time with diurnal variations. Potassium channels, Kv1.5 and Kv4.2, as well as calcium 

transients show rhythmicity in the protein expression levels [79].  
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There is still much work to do to understand how the molecular clock controlling transcription 

interacts with the physiology of CV function. The general assumption is that the temporal pattern 

of transcription favors ATP production and energy utilization during the active phase while 

allowing remodeling and repair to dominate during rest. One particularly interesting case study 

involves the rhythmically expressed kruppel-like factor 15 (KLF15).  Depletion of KLF15 in 

cardiomyocytes leads to a disorganized circadian behavior despite an intact core clock [80]. 

KLF15 transcriptionally controls the rhythmic expression of Kv channel-interacting protein 2, a 

critical subunit required for generating a transient potassium current. Deficiency or excess of 

KLF15 causes loss of rhythmic QT variation, abnormal repolarization and enhanced 

susceptibility to ventricular arrhythmias [81]. We do not know whether the HD mutation impacts 

KLF15 or other critical rhythmic outputs. We consider this lack of knowledge a major hole in the 

literature as HD-driven alterations in circadian output could be an important clinical symptom of 

the disease.    

 

Genetic or environmental disruption of the circadian timing system leads to CV symptoms 

Regardless of the specific cause, prior work has shown that the genetic or environmental 

disruption in circadian rhythms can result in CV symptoms. For example, mice held in a 20-hr 

(LD10:10) cycle are exhibited worse cardiac damage in response to high BP compared to 

controls held on a normal 24-hr cycle (LD 12:12) [82]. These lighting conditions alter rhythms in 

clock gene expression in both the heart and brain. Furthermore, “tau” mutant hamsters have a 

mutation in CK1 which results in a short endogenous cycle length of approximately 22-hrs [83] 

and, when they are held under a 24-hr LD cycle, these mutant hamsters die early with 
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cardiomyopathy including fibrosis[83]. However, when the mutant hamsters are housed in a 22-

hr LD cycle or are made arrhythmic by destruction of their circadian clock (SCN), the hamsters 

are protected from developing cardiac dysfunction [83]. These results suggest that discord 

between the internal circadian clock (22 hrs) and external environment (24 hrs) can trigger 

cardiac disease. To provide a final example, Bmal1-knock out (KO) mice exhibit arrhythmic 

circadian behavior, age-related dilated cardiomyopathy, and shorten life span [84–87]. These 

symptoms are also seen in the cardiomyocyte-specific Bmal1 KO mice [88]. To understand the 

role of circadian clock within the cardiomyocyte on myocardial biology, a cardiomyocyte-

specific Clock mutant (CCM) mouse model was assessed [89,90]. CCM mice show decreased 

diurnal rhythms in HR, reduced cardiac efficiency, and bradycardia [89]. The cardiac 

hypertrophic markers are elevated in CCM mice [90]. These data suggest an essential role of 

cardiomyocyte circadian clock in CV function and highlight the possibility that at least some of 

the CV symptoms seen in HD could be the consequence of the well-established circadian 

dysfunction.  

 

Finally, sleep disruption and work schedules that disrupt the circadian system are also risk 

factors for CV disease in humans [45]. Epidemiological studies show that approximately 40% of 

the population in North America do not get the recommended amount of sleep, and the reduced 

sleep duration is associated with a high risk of cardiac disease [91]. In the laboratory, placing 

healthy adults in an inverted sleep/wake and meal cycle for three days is sufficient to increase 

their BP and levels of the inflammatory markers [92]. A short 2 hr disruption of the sleep/wake 

can increase resting HR and cortisol levels in healthy subjects [93]. The sleep and rhythms 
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disruption due to work schedule is associated with the adverse endocrine and CV profiles in 

subjects, putting them at increased CV risk [93]. In a study performed on healthy male shift 

workers, 24-hr electrocardiogram recordings are used to investigate the effect of the work 

schedule on the cardiac autonomic control [94]. Results show a reduction in the cardiac 

sympathetic modulation based on the HRV analysis, suggesting an increased risk for CV events 

[94]. Therefore, the data from humans is consistent with our assertion that the sleep and 

circadian dysfunction seen in HD could contribute to the CV symptoms seen in the patients.  

 

Conclusions and outlook: 

 

The body of evidence presented in this review is consistent with the hypothesis that the 

disruption of the SCN circuit contributes to the autonomic dysfunction seen in HD. If correct, 

this hypothesis has a number of predictions. First, the normal diurnal and circadian rhythms in 

HR and BP driven by the ANS will be disrupted in HD. To date, the disrupted rhythms in HR, 

BP and baroreceptor reflex from data in HD animal models and patients support this hypothesis. 

Second, removing the mutant Htt from the heart will not be sufficient to rescue cardiac function. 

In contrast, reducing Htt in the brain will be sufficient, and specifically the CNS circuit 

controlling autonomic function will be a critical target. This prediction is clinically important as 

a number of clinical trials with mHtt lowering agents are ongoing. Third, treatment with drugs 

focusing on dysautonomia should be targeted to specific times of the daily cycle. For example, 

beta-adrenergic receptor blockers may produce the most substantial benefits when taken before 

bed. Fourth, cardiac function shows a robust diurnal variation including rhythms in HR and BP. 
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This body of preclinical data described in this review suggests that monitoring of the 

cardiovascular system in HD patients should start at an early age so therapeutic interventions can 

be employed to slow the progression of these pathological processes and prevent early death. 

Most importantly, our data suggest that this early screening must include observations during the 

usual sleep hours of the day, as early anomalies may go undetected at the times of day that 

patients would usually interact with clinicians. Finally, we predict that treatments or lifestyle 

changes that improve the circadian timing system will reduce the autonomic dysfunction in HD. 
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Chapter 2: Cardiovascular dysfunction in the Huntington’s Disease models, Q175 and BACHD 

 

Introduction: 

Over the course of a lifetime, Huntington’s disease (HD) patients are subject to a progressive 

neurodegenerative process that inflicts cognitive, psychiatric and motor dysfunction [1,95]. HD 

is caused by a CAG repeat expansion within the first exon of the huntingtin (Htt) gene and when 

translated, produces a polyglutamine (polyQ) repeat that leads to protein misfolding, soluble 

aggregates, and inclusion bodies detected throughout the body [3,4]. The normal function of the 

protein (HTT) is unknown; however, the mutated form leads to dysfunction of a large range of 

cellular processes including cytoskeletal organization, protein folding, metabolism and 

transcriptional activities. Cardiovascular events are a major cause of early death in the HD 

population and these events occur at higher rates compared to the rest of the population 

[6,96,97]. The limited cardiovascular studies in HD patients attribute the increased 

cardiovascular susceptibility in part to a dysfunctional autonomic nervous system (ANS) that can 

be detected early in the disease progression [18–22,30]. Additional studies are needed to better 

understand the time-course and cause of cardiovascular pathology in HD that could potentially 

help improve symptoms and prevent early death. 

 

While there is no perfect animal model of HD [5], several models recapitulate aspects of the 

cardiovascular dysfunction seen in human disease. For example, dysfunction of the ANS has 

been reported in the several mouse models of HD as measured by heart rate variability and 

baroreceptor reflex experiments [10,29,41,46]. Reduced contractility and cardiac output is also a 
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common feature in mouse models [9–12,29]. The cardiac-specific expression of polyQ repeats 

leads to dysfunction, suggesting that cardiovascular disease is a result of both local dysfunction 

as well as improper input [16,17]. Advances in these preclinical models are critical if we are to 

develop a mechanistic understanding of the cardiovascular pathology in HD but establish models 

to evaluate therapeutic interventions. 

In this chapter, we focus on examining possible cardiovascular dysfunction in the Q175 model of 

HD.  The heterozygote (Het) Q175 offers advantages including: a single copy of the mutation, 

genetic precision of the insertion and control of mutation copy number [98,99]. These features 

make the Het Q175 line perhaps the most clinically relevant among the animal models; however, 

possible autonomic dysfunction has not been examined. We sought to test the dual hypotheses 

that cardiovascular dysautonomia can be detected early in disease progression in the Q175 model 

and that this dysfunction varies with the daily cycle. We used radiotelemetry to assess diurnal 

and circadian rhythms in activity, core body temperature (CBT), and heart rate (HR) in young 

(3–4 months of age) and middle aged (9–10 months of age) Q175 and wild-type (WT) mice. To 

further explore possible autonomic dysfunction, we measured HRV throughout the 24-h cycle as 

well as the baroreceptor reflex during the normal rest cycle. In addition, we evaluated the age-

dependent progression in heart dysfunction in a separate cohort of mice using echocardiograms 

starting at 3 months of age and progressing to 12 months of age when the motor symptoms are 

pronounced and brain atrophy can be detected. Tissue was then collected to examine 

histoanatomical features of the Q175 hearts. 
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In addition, we sought to confirm some of our findings with the Q175 using the better studied 

BACHD line.  Specifically, using this disease model, we evaluated the age-dependent 

progression in heart dysfunction using echocardiograms starting at the beginning of motor 

symptoms at 3 mo of age and progressing to an age (15 mo) when the motor symptoms are 

pronounced and brain atrophy can be detected. In addition, we examined gene expression 

profiles in the heart early (3 mo) and late (15 mo) in the disease progression in the BACHD 

model.   

 

 

Methods: 

 

Experimental Animals and Ethics Statement 

BACHD mice on the C57BL6/J background along with littermate wild-type (WT) controls were 

acquired from the mouse mutant resource at The Jackson Laboratory, (JAX, Bar Harbor, Maine) 

in a colony maintained by the CHDI Foundation. The mice start showing symptoms at 2–3 mo of 

age and by 12 mo manifest full symptoms. In our colony, the BACHD mice commonly live to 18 

mo of age but their health declines precipitously after 16 mo. Therefore, we stopped the present 

study when mice reached 15 mo of age. Five separate cohorts of mice of each genotype were 

used for this study: 1) longitudinal measurement of cardiac function using echocardiograms; 2) 

chronic treatment with isoproterenol (ISO) to boost cardiac output from 3 to 6 mo of age; 3) 

transcriptional comparison between the hearts of genotypes at 3 and 15 mo 
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of age; 4) measurement of serum cytokines in 3 mo old animals using a multiplex assay; 5) 

measurement of an apoptotic marker in 12–15 mo hearts by western blot.  

Homozygous (Hom) and Het Q175 mice on the C57BL6/J background along with littermate WT 

controls were acquired from the mouse-mutant resource at The Jackson Laboratory, (JAX, Bar 

Harbor, Maine; stock No: 370476). The mice are full backcrossed into the C57 line (>12 crosses) 

and are monitored for the number of CAG repeats (approximately 190). Het Q175 mice 

commonly live to 24 months of age but the health of the Hom Q175 declines precipitously after 

16 months. Therefore, we stopped this study well before this age point. Three separate cohorts of 

mice of each genotype were used for this study: (1) Telemetry studies measuring activity, CBT 

and electrocardiograms (ECG). Recordings (6–8 weeks in duration) were made from mice in a 

light-dark (LD) cycle as well as in constant darkness (DD) starting when the mice were 3 months 

and then again at 9 months of age; (2) Baroreceptor reflex measurements at 9 months of age; (3) 

longitudinal measurement of cardiac function using echocardiograms with measurements made 

at 3, 6, 9 and 12 months. The hearts of this third cohort of mice were then used for histological 

analysis. The LD cycle consisted of 12 h of light and 12 h of dark. By convention, the time of 

lights-on being defined as zeitgeber time zero (ZT 0). By convention, when the mice were held 

in DD, the beginning of activity onset is defined at circadian time zero (CT 0). 

 

All procedures followed guidelines of the National Institutes of Health and were approved by the 

UCLA Animal Research Committee. To provide some details, the health of the mice was 

monitored daily. We looked for a set of symptoms including restlessness, impaired mobility, 

licking or guarding wound, failure to groom, open sores, loss of appetite or weight loss. At any 
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sign of ill health, a member of the veterinary staff was consulted for the course of treatment. If 

the animal did not improve, then it would be humanely sacrificed with an overdose of isoflurane 

and followed by decapitation. For pain management, the mice were given carprofen at 5 mg/kg 

every 24 hrs for 48 hr minimum. The first dose was given before surgery, and the remaining 

post-operatively. 

 

Telemetry measurements 

Methods employed were similar to those previously described [10,13]. WT, Hom Q175, and Het 

Q175 mice (n = 10 per genotype) were surgically implanted with a wireless radio-frequency 

transmitter (ETA-F20, Data Sciences International, St. Paul, MN). Three of the WT mice and 

one of the Hom Q175 did not exhibit measurable signals and had to be excluded from the final 

analysis. Mice were housed in individual cages in the absence of a running wheel. Cages were 

placed atop telemetry receivers (Data Sciences International) in a light and temperature-

controlled chamber. Standard rodent chow was provided ad libitum. Data collection began 2-

weeks postsurgery, to allow mice to recover in the 12:12 LD cycle. HR is extrapolated from 

ECG waveforms using the RR interval. All measurements were made in both LD and DD 

conditions at 3 months (young) and 9 months (middle age). At each age, the recordings took 6–

8 weeks to complete. Cage activity in DD was also examined by periodogram analysis 

(ClockLab program, Actimetrics, Wilmette, IL) to estimate the free-running period.  

 

Echocardiograms 
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WT (n = 10) and BACHD mice (n = 10) were group housed and kept in a 12:12 light/dark (LD) 

cycle with rodent chow provided ad libitum. Mice were examined with echocardiograms at 3, 6, 

9, 12 and 15 mo of age. After the last echocardiogram measure, the mice were perfused and 

morphologic and histological measurements were taken. During the course of the study, 1 

BACHD and 2WT mice died and the data from these mice were excluded from the analysis.  

 

WT (n = 12), Q175 Het (n = 10) and Q175 Hom mice (n = 10) were group housed and kept in a 

12:12 LD cycle with rodent chow provided ad libitum. Mice were examined with 

echocardiograms at 3, 6, 9, 12 months of age. After the final measurement, the mice were 

perfused and morphological and histological measurements of the heart were taken. 

 

WT (n = 8), BACHD (n = 8), and BMYO mice (n = 8) were group housed and kept in a 12:12 

light/dark (LD) cycle with rodent chow provided ad libitum. Mice were examined with 

echocardiograms at 3 and 6 mo of age. After the last echocardiogram measure, the heart and 

brain tissues of the mice were collected and morphologic and histological measurements were 

taken.  

 

Echocardiograms were measured using a Siemens Acuson Sequoia C256 instrument equipped 

with a 15L8 15MHz probe (Siemens Medical Solutions, Mountain View, CA) as previously 

described. Briefly, two-dimensional, M-mode echocardiography and spectral Doppler images 

enabled measurement of heart dimension and function (Left Ventricle (Lv) Mass), end-diastolic 

dimension (EDD), end-systolic dimension (ESD), posterior wall thickness (PWT), ventricular 
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septal thickness (VST), Lv Ejection Fraction (Lv EF). The mice were sedated with 1% isoflurane 

vaporized in oxygen (Summit Anesthesia Solutions, Bend, OR) and HR was monitored using 

electrocardiogram to maintain physiological levels (between 450 and 650). 

 

Isoproterenol (ISO) Treatment 

BACHD and WT mice (2–3 mo) were subjected to echocardiograms before subcutaneous 

implantation of an osmotic pump (Alzet model 2001, Durect Corp, Cupertino, CA) containing 

either saline (WT: n = 4; BACHD: n = 4) or ISO (WT: n = 10; BACHD: n = 8). To determine an 

effective dose of isoproterenol, each treated mouse received sequentially increased doses of ISO, 

beginning with 0.24 mg/day, then 0.48 mg/day, and finally 0.97mg/day. It was this final 

concentration that proved effective at significantly increasing HR and was used in this study. At 

the end of the treatments (3 months duration), the cardiovascular function was assessed using 

electrocardiogram recording and echocardiography. After the last echocardiogram measure, 

the mice were perfused and morphologic and histological measurements were taken. 

 

Electrocardiogram (ECG) Measurements 

ECG traces were obtained under isoflurane anesthesia by inserting two platinum needle 

electrodes (Grass Technologies, West Warwick, RI) under the skin in the lead II configuration. 

The ECG signal was amplified (Grass Technologies), acquired and analyzed with HEM V4.2 

software (Notocord Systems, Croissy sur Seine, France). The ECG data were recorded for 5 to 

10 mins from each mouse monthly for the duration of the study. Heart rate (HR) was calculated 

using the RR-interval for all animals. 
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Heart Rate Variability  

Data were extracted in 20-sec intervals then filtered to remove extreme noise. Remaining valid 

data segments were averaged into 1 h bins across the 24-h cycle. The following parameters for 

time domain analysis were calculated: mean normal-to-normal intervals (NN, in msec) and, 

standard deviation of all NN intervals (SDNN, in msec). For frequency domain analysis, spectra 

were calculated with a FFT (fast Fourier transform) with 20,000 data points per bin and a 

periodogram resolution of 8192, three overlapping subseries and a Hamming window (HRV 

Module, Data Sciences International). Frequency bins were defined as high-frequency (HF 1.5–

5.0 Hz), low-frequency (LF: 0.2–1.5 Hz) and very low frequency (VLF: 0.01–0.2 Hz), and the 

power in these bands was calculated [100,101]. While it is common for LF and HF to be 

expressed in normalized units, this normalization minimizes the circadian regulation that we are 

interested in examining [102]. Therefore, we reported the raw LF and HF values (mV/Hz).  

 

Baroreceptor reflex 

Methods employed were similar to those described previously [29]. The administration of 

angiotensin II (ATII) or nitroprusside (NP) triggers acute hypertension or hypotension, 

respectively. Changes in blood pressure (BP) as a result of administering these drugs should 

elicit a compensatory response of HR. Differences in the ratio of change in HR to BP 

(∆HR/∆BP) are suggestive of aberrant signaling to the heart by the ANS. Baroreceptor function 

was examined during the day (ZT4-9) in middle age (9 months) mice of each genotype: WT 

(n = 8), Hom Q175 (n = 10) and Het Q175 (n = 8). These measurements took 4 weeks to 
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complete. The procedure was unsuccessful in some of the mice (WT, n = 1; Het Q175, n = 2; 

Hom Q175, n = 1) and data could not be used. During the experiment, HR was determined from 

the R-R interval of the ECG. Mice were anesthetized and both femoral arteries were catheterized, 

whereby BP measurements were collected from one artery and drugs were administered through 

the other artery. Following catheterization, isoflurane levels were decreased to between 1 and 

1.5% and the mice were allowed to rest for at least 10 min. Baseline BP and HR were then 

recorded. AT II (4.0 µg/kg) and NP (40 µg/kg) were administered in sequence to probe the HR 

response to the changes in BP. Each treatment was followed by a flush of saline (+heparin 

3 U/mL) to ensure full delivery of the drugs. As a control, muscarinic (75 µg/kg glycopyrrolate) 

and β-adrenergic (750 µg/kg propranolol) receptors were blocked before administering another 

dose of ATII or NP. The absolute value of the maximum change in BP as well as the subsequent 

directional change in HR was determined. Ratios of these two values (∆HR/∆BP) reflected the 

magnitude HR change relative to the change in BP that characterizes the sensitivity of the 

baroreceptor response.  

 

Morphometry and Histology 

Following the longitudinal echocardiogram measurements as well as the ISO treatments 

(described above), animals were deeply anaesthetized using isoflurane and perfused with 

phosphate-buffered saline (PBS, pH 7.4) with heparin (2 units/ml, Henry Schein, Melville, NY) 

followed by 4% (w/v) paraformaldehyde (Sigma-Aldrich) in PBS (pH 7.4). A motorized pump 

was used to deliver the solutions in order to control and maintain similar pressure between 

animals. Hearts were dissected, weighed and post-fixed at 4°C. Tibia length (TL) was also 
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measured. Heart weight (HW)/TL and HW/body weight (BW) ratios were calculated to 

determine any differences in morphometry that would indicate cardiac hypertrophy. Following a 

series of dehydration steps using ethanol and xylene, hearts were embedded in paraffin. Paraffin-

embedded hearts were sectioned and stained with H&E or Masson’s Trichrome. Heart 

dimensions were measured using two mid-ventricular cross sections from each H&E and/or 

Masson’s Trichrome-stained heart with the aid of Image J software. The presence or absence of 

fibrotic staining was visually scored by two researchers masked to the experimental conditions. 

In order to quantitate the degree of fibrosis, images were acquired from each heart. Areas of 

fibrosis were captured, and in sections lacking positive fibrotic staining, an area of the left 

ventricle (Lv) wall was imaged. Pictures were processed using Corel Draw, to remove pixels of 

background and pink cardiomyocyte tissue, leaving areas of positive blue stain in the image. 

Integrated density of these processed images was measured using Image J, where pixel areas less 

than 3 were excluded from the measurements in order to minimize noise. The resulting density 

numbers were divided by the area of the heart tissue in the image. 

Trichrome stained sections were used to estimate the cardiomyocyte cross-sectional area in aged 

(15 mo) WT and BACHD mice (n = 4 per group). Measurements were performed by three 

observers masked to the genotype of the mice. Images from multiple fields (3–5) at the level of 

the papillary muscles were acquired on a Zeiss Axioskop with an Axiocam using the AxioVision 

software (Zeiss, Pleas- anton, CA, USA), and measurements (in µm) obtained using the 

AxioVision software. Only cells with a well-defined round shape were considered. The cross-

sectional areas of 7–12 cells/animal were averaged and analyzed for the statistical difference. 
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Two mid-ventricular-stained cross sections were used to obtain morphometric measurements and 

to estimate the number of fibrotic areas in WT (n = 5), Hom and Het Q175 mice (both n = 6 per 

genotype). Images of the mid-ventricular cross sections from each heart were acquired on a Zeiss 

Stereomicroscope (Stemi SV 11 Apo) equipped with an Axiocam using the AxioVision software 

(Carl Zeiss). Measurements were performed by two observers masked to the genotype of the 

mice using the Zeiss Axiovision software. The thickness of the left ventricular wall was 

measured in three different nonseptal parts to obtain an average thickness. Values from the two 

sections were averaged. Fibrotic areas, suggestive of necrotic areas, that is, infarcts, were 

visually identified and counted by three observers masked to the genotype on a Zeiss Axioskop 

(Carl Zeiss, Pleasanton, CA). To determine which chamber or part of the interventricular septum 

was more affected, the locations of the infarctions in the heart were also annotated.  

 

For wheat germ agglutinin (WGA) staining, deparaffinized sections were rehydrated through an 

alcohol gradient starting at 95% ethanol to 50%. Heat-induced antigen retrieval was performed 

using 10 mmol/L Citrate buffer (pH 6.0), followed by blocking in 10% BSA/PBS for 1 h. Slides 

were incubated with Alexa Fluor 594-WGA (50 µg/mL, 10 min, Invitrogen) in PBS and mounted 

using ProLong Gold (Invitrogen, Carlsbad, CA). Confocal images of stained sections at the 

levels of the papillary muscles were captured, using a confocal scanning microscope (Nikon, 

Melville, NY) and the cross-sectional area of the cardiomyocytes was measured using the NIS 

Elements (Nikon) software (50-100 cells from 6 to 8 areas per mouse heart, n = 6 per genotype).  

 

RNA Extraction 
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A separate cohort of young (3 mo) and older (15 mo) WT and BACHD mice (n = 4 per group) 

were used for gene expression analysis. Total RNA from the ventricles were extracted using 

Trizol RNA isolation protocol (LifeTechnologies, Carlsbad, CA), then DNAse treated (TURBO 

DNA-free kit, Life Technologies) and column purified (Pureline RNA Mini-kit, Life 

Technologies). RNA was used for microarray and Quantitative Real-Time PCR experiments 

described below. 

 

Microarray Hybridization 

Microarray processing was performed by the Southern California Genotyping Consortium at 

UCLA. Briefly, whole genome gene expression profiling protocols began with 100 ng of total 

RNA isolated as described above. Samples were quantitated using Ribogreen fluorescent assay 

and normalized to10 ng/ul prior to amplification. Amplified and labeled cRNA was produced 

using the Illumina-specific Ambion TotalPrep kit. 1st and 2nd strand cDNA was produced using 

the Ambion kit (Life Technology) and purified using a robotic-assisted magnetic capture step. 

Biotinylated cRNA was produced from the cDNA template in a reverse transcription reaction. 

After a second Ribogreen quant and normalization step, amplified and labeled cRNA was 

hybridized overnight at 58°C to Illumina MouseRef-8 v2.0 expression arrays. Hybridization was 

followed by washing, blocking, staining and drying on a Little Dipper processor. Array chips 

were scanned using an iScan reader, and expression data were extracted and compiled using 

BeadStudio software (Illumina, San Diego, CA). 

 

Quantitative Real-Time PCR 
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One µg of total RNA was reverse transcribed using High Capacity cDNA Reverse Transcription 

Kit (Applied Biosystems, Foster City, CA). Quantitative real-time RT-PCR was performed using 

SYBR Green Mix (Applied Biosystems, Foster City, CA). Using Primer3 [103] following 

primers were designed to flank intron-exon broundaries: Hspa1a (sense: 5’-GGT CTC AAG 

GGC AAG CTC AG-3’ and anti-sense: 5’-CTT GTG CAC GAA CTC CTC CT-3’) Nppb (sense: 

5’-TCC TCT GGG AAG TCC TAG CC-3’ and anti-sense: 5’-AGC TGT CTC TGG GCC ATT 

TC-3’) Kcnip2 (sense: 5’-AAT CCC GAG ATT TGG ACG GC-3’ and antisense: 5’-GCT TGA 

GGA AAC GCT GCT TC-3’) Acot1 (sense: 5’-AGA AGC CGT GAA CTA CCT GC-3’ and 

antisense: 5’-GGA AGG AGG CCA TAG CAA GG-3’) Tbp (sense: 5’ CAC GGA CAA CTG 

CGT TGA TT-3’ and antisense: 5’-AGC CCA ACT TCT GCA CAA CT-3’) B2M (sense: 5’-

GGT GAC CCT GGT CTT TCT GG-3’ and antisense: 5’-TGT TCG GCT TCC CAT TCT CC-

3’). Specificity and efficiency of the reactions were verified using melting curves and dilution 

series, respectively. Expression levels of Hspa1a, Nppb, Kcnip2, and Acot1 were calculated 

using the 2-ΔΔCt method where Tbp and B2m were used as normalizing genes. Tbp and B2m did 

not vary between genotypes and we report gene expression normalized to Tbp. 

 

Multiplex Assay 

Blood sample was collected from a separate cohort of young (3-4mo) WT (n = 8) and BACHD 

(n = 8) mice using the facial vein technique. Blood was allowed to clot for at least 30 mins at 

room temperature, and serum was collected following centrifugation at 3000rpm for 15 mins and 

frozen at -80C until analyzed. A volume of 25µL serum was used to assess cytokine levels of 

IFNγ, IL-10, IL-12, IL-1A, IL-1B, IL-2, MIP1A, RANTES, IL-6, MCP-1, and TNF-α using the 



 

 

31  

Millipore cytokine milliplex kit (EMD Millipore Corporation, Billerica, MA, USA) and the 

Biorad Bio-plex 200 systems machine (Hercules, CA, USA). 

 

Western Blot 

Hearts from aged WT (n = 4) and BACHD (n = 4) mice were rapidly dissected and homogenized 

in lysis buffer containing 50 mM Tris/HCl, 0.25% (w/v) DOC (sodium deoxycholate), 150 mM 

NaCl, 1 mM EDTA, 1nM EGTA, 1% (w/v) Nonidet P40, 1 mM Na3VO4 (sodium 

orthovanadate), 1 mM AEBSF [4-(2-aminoethyl)benzenesulfonyl fluoride], 10 µg/ml aprotinin, 

10 µg/ml leupeptin, 10 µg/ml pepstatin and 4 µM sodium fluoride. Total protein concentration in 

cleared extracts was estimated using the Thermo Scientific™ Pierce™ BCA Protein Assay Kit 

(Thermo Fisher Scientific, Waltham, MA USA). Fifty µg of total proteins were loaded on to a 4–

20% Tris-glycine gel (Invitrogen, Carlsbad, CA). Western blots were performed as previously 

described [104]. Equal protein loading was verified by Ponceau S solution (Sigma, Saint Louis, 

MO) reversible staining of the blots. Each extract was analyzed for the relative protein levels of 

Heat-Shock protein (Hsp)-70, by using a mouse monoclonal antibody (Sigma, Saint Loius, Mo), 

and Cleaved Caspase-3, by using rabbit polyclonal antibodies (EMD Millipore Corporation, 

Billerica, MA & Cell Signaling, Danvers, MA). Each extract was also analyzed for relative 

protein levels of GAPDH (Genetex, Irvine, CA) by stripping and re-probing. Protein bands were 

detected by chemiluminescence using the Thermo Scientific™ Pierce™ ECL 2 Western Blotting 

Substrate or the Amersham ECL kit (GE Healthcare; Piscataway, NJ) with HRP (horseradish 

peroxidase)-conjugated secondary antibodies (Cell Signaling, Danvers, MA). Relative intensities 

of the protein bands were quantified by scanning densitometry using the NIH Image Software 
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(Image J, http://rsb.info.nih.gov/ij/). For the comparison of relative protein levels in the heart 

from WT and BACHD animals, each background-corrected value was normalized according to 

the relative GAPDH levels of the sample, and then referred to the average of the WT values 

calculated from the same immunoblot image. 

 

Statistical Analysis 

A two-way repeated measures ANOVA was used to analyze the long-term changes in 

echocardiographic measurements between WT and BACHD animals using genotype and age as 

factors. Other comparisons between the two genotypes were made using a Student’s t-test. If the 

data set failed to pass a test for equal variance, a Rank-Sum Test was used. These statistical 

analyses were performed using the SigmaStat (San Jose, CA) or Prism 5 (GraphPad Software, 

San Diego, CA) statistical software. Data are shown as the mean ± SEM. Raw microarray data 

were analyzed by using Bioconductor packages as previously described [105]. Briefly, quality 

assessment was performed by examining the inter-array Pearson correlation and clustering based 

on the top variant genes. Contrast analysis of differential expression was performed by using the 

LIMMA (Linear Models for Microarray and RNA-Seq Data) package [106]. After linear model 

fitting, a Bayesian estimate of differential expression was calculated, and the P -value threshold 

was set at 0.005. The fold change of gene expressions is calculated by comparing the signal 

intensity of young hearts and old hearts. Differentially expressed genes were then classified 

according to gene ontology and pathways using Ingenuity Pathway Analysis (IPA, Ingenuity 

Systems, Redwood City, CA). After applying threshold at P = 0.005, the top 10 genes up-

regulated and down-regulated in BACHD compared to WT at the same age are selected 
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according to their P-value. In other words, they are the most significantly changed genes in the 

comparison. 

 

For most of our experiments, two-way analysis of variance (ANOVA) was used to determine 

statistical significance with genotype (WT, Het Q175, Hom Q175) and time (either ZT or CT) as 

the two factors. If the data did not exhibit a normal distribution, a two-way ANOVA on ranks 

was used. Post hoc t-test with Bonferroni's corrections was applied to determine significant 

differences between genotypes at each of the hourly bins (ZT or CT). In the cases in which we 

only obtained the measurements at one age (baroreceptor, histological measurements), we used a 

one-way ANOVA followed by Bonferroni's multiple comparison test or a one-way ANOVA on 

ranks. Correlations between activity and heart rate were examined by applying the Spearman 

correlation analysis to 21,700 contiguous, 20 sec, time-matched, heart rate and activity bins per 

mouse at two ages (3 months, 9 months). R-values were then compared between groups using a 

two-way ANOVA. For a comparison of the number of infarcts, we used a Kruskal–Wallis 

ANOVA followed by Dunn's multiple comparison test. These statistical analyses were 

performed using the SigmaStat (San Jose, CA) or Prism 5 (GraphPad Software, San Diego, CA) 

statistical software. Values are reported as the mean ± Standard Error of the Mean (SEM).  

 

 

Results: 

 

Altered diurnal and circadian resting HR rhythms in the Q175 line. 
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We examined the HR when the Q175 animals were physically inactive, that is, the resting HR. 

The young Q175 exhibit abnormally high resting HR under both LD and DD, mostly during the 

late day and early night (Fig 2.1A and B). By middle age in DD, this tachycardia reversed and 

we actually saw low resting HR in the Hom Q175. The low HR in the Hom Q175 occurred 

primarily during the early subjective day (Fig 2.1C and D). The simultaneous recording of HR 

and activity allows the analysis of HR evoked by movement; hence, we measured HR when the 

animals were physically active, that is, the active HR. Again, a significant effect of genotype in 

young animals was found under both LD and DD conditions. The Hom Q175 exhibited a 

significantly increased active HR during the early day and subjective day. Similar results were 

obtained in middle aged mutants, with a significant effect of genotype under both LD and DD 

conditions. 

 

A significantly increased activity-evoked HR was observed in the Hom Q175 during the early 

day and subjective day as well as a reduced correlation between activity and HR (Fig 2.2). For 

example, in WT mice, the Spearman correlation between activity and HR was 0.56 ± 0.03 while 

in the Hom Q175 the correlation was reduced to 0.42 ± 0.02 (genotype, F = 10.4; P < 0.001). 

Finally, we compared a number of parameters of the ECG waveform (RR, PR, QRS, QT, QAT, 

MxdV) in WT and the Q175 mutants under LD conditions (Table 1). Significant differences 

between the genotypes were seen with RR, QRS, and QAT intervals. In summary, the Hom 

Q175 exhibited tachycardia during rest and activity with the high HR being most pronounced 

during the day when HR was normally low. Even in young animals, the ANS-driven rhythms in 

HR were disrupted in the Q175 line.  
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Reduced HRV in the Q175 line. 

To further explore autonomic dysfunction in the Q175 line, we measured HRV throughout the 

24-hr cycle. HRV measures the variability in the time between individual heartbeats and reflects 

the balance of the sympathetic and vagal inputs regulating heart rate. High HRV is associated 

with cardiovascular health, while low HRV is a sign of poor cardiovascular function. We 

observed high HRV during the day and lower at night (Fig 2.3A) in WT mice. Conversely, the 

HRV was abnormally low in the HD mutants (Hom, Het) and this damping was largest during 

the sleep phases. HRV measures were separated into low-frequency (LF: 0.2–1.5 Hz) and high-

frequency (HF, 1.5–5.0 Hz) bands, which are commonly used to quantify parasympathetic and 

sympathetic regulation, respectively. In WT mice, the power of both the LF and HF bands 

exhibited a daily rhythm which peaked during the night (Fig 2.3B and C). The power of the HF 

band was minimally impacted with the young Hom Q175 exhibiting significant differences only 

in the late night (Fig 2.3B). In contrast, the power of the LF band was greatly impacted 

throughout the night in the mutants (Fig 2.3C). These results demonstrate that the temporal 

patterning as well as the overall level of autonomic regulation of the cardiovascular system is 

compromised in the Q175 mice.  

 

Baroreceptor reflex is compromised in the Q175 line.   

The baroreceptor reflex is a rapid homeostatic mechanism by which perturbations in blood 

pressure are countered by change in HR mediated by the ANS. In previous work, we have shown 

that the BACHD mice show an abnormally weak baroreceptors response to decreases in blood 



 

 

36  

pressure, consistent with a weak sympathetic regulation of heart rate [29]. We performed 

baroreceptor evaluations to determine the autonomic responsivity to drug-induced changes in BP 

(Fig 2.4A and B). As expected, the middle-aged WT mice had normal reflex responses, that is, 

when the BP was transiently increased with angiotensin II (ATII, 4 µg/kg), the heart rate dropped 

in compensation, and when the BP was transiently lowered with nitroprusside (NP, 40 µg/kg), 

the heart rate was elevated. The effects of ATII and NP were completely blocked by pretreatment 

with sympathetic and parasympathetic receptor antagonists (750 µg/kg propranolol, 75 µg/kg 

glycopyrrolate) (Fig 2.4). Interestingly, the Hom Q175 mice had very blunted HR responses to 

NP (one-way ANOVA on ranks: H = 11.3, P = 0.004). While some of the Het Q175 (2/6) 

showed a greatly reduced response to the NP injection, the overall NP-response was not 

significantly different from the WT (Fig 2.4A). There were no significant changes in response to 

ATII injection although we did observe an abnormal instability in the Hom Q175 HR (Fig 

2.4B). Systolic BP did not significantly vary with genotype (WT: 83 ± 4 mm Hg; Het Q175: 

76 ± 4; Hom Q175: 71 ± 3; F = 2.8; P = 0.08). These data provide further evidence of 

diminished autonomic function, especially of the sympathetic branch.  

 

Echocardiograms characterize age-related decline in the Q175 and BACHD lines.   

 

The age-dependent progression in heart dysfunction of the Q175 mice was evaluated in a 

separate cohort of mice using echocardiograms beginning at 3 months of age and progressing to 

12 months (Fig 2.5D and E; Table 2). Both the cardiac structure [Lv mass, EDD, ESD] and 

function (FS%, E/A ratio, Lv EF) were significantly influenced by age and genotype (Table 3). 
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For example, the Lv mass of the Hom Q175 was significantly smaller compared to WT and Het 

Q175 by 6 months of age (Fig 2.5D). Cardiac function, measured by Lv EF, was significantly 

diminished in the Hom Q175 beginning at 9 months. Both the Hom and Het Q175 exhibited a 

reduction in this parameter compared to WT at 12 months (Fig 2.5E). By 9 months of age, the 

hearts of Hom Q175 mice were smaller and functionally depressed compared to WTs.  

 

We assessed cardiac structure and function in a group of BACHD and WT mice throughout most 

of their adult life in order to follow changes in cardiovascular parameters and establish a time 

course for pathology. We use echocardiography to follow the same BACHD and WT littermate 

control mice longitudinally from 3 to 15 mo (Fig 2.5A-C; Table 4). The hearts of WT mice 

slowly increased in dimension as they aged, with significance in EDD and PWT starting at 12 

mo while Lv Mass and ESD were significantly larger at 15mo (Fig 2.5A and B; Table 4). 

Cardiac function as measured by Lv EF showed an increase between 3 and 6 mo as is typical 

with development of WT mice and then declined with age (Fig 2.5C). The hearts of BACHD 

mice also increased in size as they aged, with a significant increase in Lv Mass and PWT 

measures starting at 9 mo of age (Fig 2.5A; Table 4). Cardiac function of BACHD mice did not 

significantly change with age (Fig 2.5C; Table 4). The hearts of BACHD mice were larger (ESD 

and EDD) and thicker (PWT) than WT mice starting at 3 mo of age (Fig 2.5B; Table 4). Lv Mass 

was significantly higher in BACHD compared to WT with significant differences starting at 9 

mo (Fig 2.5A). Functional measurements (Lv EF) were depressed in BACHD mice compared to 

WTs starting at 3 mo of age, and remained lower at all ages (Fig 2.5C). Throughout adult life, 

the hearts of BACHD mice were larger and functionally depressed compared to WTs. 
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Cardiac Fibrosis observed in both the Q175 and BACHD lines.   

We observed a significant reduction in both the body (−25%) and heart (−18%) weight in the 

Hom Q175 as compared to WT (Table 5). Therefore, at the end of the echocardiogram 

measurements, histological analysis of the hearts was performed to further characterize these 

abnormalities. The total area of coronal heart sections at the mid-ventricular level in the Hom 

Q175 was 33% and 23% smaller than that of WT and Het Q175, respectively (Table 5, Fig 

2.6A). In agreement with the echocardiogram data, the Lv lumen cross sectional area (CSA) 

(54%) and circumference (23%) were greatly reduced in the Hom Q175 (Table 5). No 

differences were found in the thickness of the Lv wall or the interventricular septum. The 

dimensions of the Het Q175 hearts were not significantly different from WT (Table 5). Next, we 

measured the CSA of individual cardiomyocytes stained with WGA (Fig 2.6B). While the WT 

cardiomyocytes exhibited a medium CSA of 204 ± 11 µm2, the CSA was 151 ± 4 µm2 and 

95 ± 8 µm2 in the Het and Hom Q175, respectively (ANOVA on ranks, H = 15.15, P < 0.0001). 

This dramatic reduction in size (53%) of the CSA of the cardiomyocyte in the Hom hearts was 

accompanied by an apparent disorganized cytoarchitecture of the myocardium (Fig 2.6B). 

Finally, histopathological analysis of the heart with Masson's trichrome stain revealed local 

pockets of fibrosis where the cardiomyocytes appeared to be replaced by scar tissue (Fig 2.6C). 

These areas, an indication of small necrotic lesions or infarcts, were present in the heart of all 

three genotypes with an average of 9.6 infarcts/section in the Hom Q175 vs 2–3 infarcts/section 

in the WT and Het Q175 (Fig 2.6D). Small fibrotic areas were occasionally seen in all the WT 

mice examined, frequently on the edge of the papillary formations in the Lv (Fig 2.6C). In the 
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mutants, the fibrotic pockets were seen in the ventricular wall of both the left and right 

ventricles, some of which were extensive. Interestingly, in the Hom Q175, these lesions were 

most commonly seen in the anterior part of the interventricular septum near the anterior groove, 

suggesting disruption of the blood supply to the heart (Fig 2.6C and D).  

 

To further assess the cardiac structure of WT and BACHD hearts, we sacrificed the mice at 

about 15 mo of age and processed their hearts Masson’s Trichrome to visualize fibrotic tissue or 

H&E staining. We did not detect any fibrotic staining in the WT hearts, while positive staining 

was present in 6 of the 9 BACHD mice (Fig 2.7A). Optical density measurements of fibrotic 

staining were significantly higher in BACHD mice compared to WTs (Fig 2.7B; Table 6). 

BACHD hearts displayed enlarged Lv (Fig 2.7C). Although these values did not reach 

significance, an increase in Lv diameter (19%) and septal thickness (20%) were observed in 

BACHD compared to WT, whilst no difference in right ventricle dimensions were found 

between genotypes (data not shown). Furthermore, no changes were found in the cross-sectional 

area of the BACHD cardiomyocytes (103 ± 15 µm2; n = 4) as compared to WT (121 ± 13 µm2, n 

= 4). 

 

Discussion: 

In this study, we sought to test the dual hypotheses that cardiovascular dysautonomia can be 

detected early in disease progression in the Q175 model and that this dysfunction varies with the 

daily cycle. We found overwhelming evidence for autonomic dysfunction including blunted 

daily rhythms in HR, reduced HRV, and almost a complete failure of the sympathetic arm of the 
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ANS during the baroreceptor challenge. Importantly, several aspects of the Q175 phenotype 

were found to vary with a diurnal and circadian phase dependence. For example, HRV deficits 

were more prominent during the day but it would have been difficult to detect during the night. 

Hence, the time of measurement and the circadian cycle has to be considered as a critical factor 

in the expression of HD symptoms. The Q175 mouse model of HD exhibits cardiovascular 

symptoms comparable to those seen in HD patients with a prominent sympathetic dysfunction 

during the resting phase. 

 

Q175 (Hom, Het) mice showed deficits in both diurnal and circadian activity rhythms in HR 

(Fig. 2.1) with the deficits in HR occurring in young adults while the deficits in CBT were not 

observed until middle age. The circadian rhythms in HR are independent of locomotor activity 

but dependent on an intact SCN [107–112]. The SCN projects to the dorsal subparaventricular 

zone [113,114], which is necessary for driving circadian rhythms of body temperature [115]. 

Young Hom Q175 exhibited highly pronounced tachycardia during their normal sleep time, with 

high HR and a reduced amplitude in the HR rhythm (Fig. 2.1). In addition, the normal strong 

correlation between activity and HR, which is mediated by the ANS, was dramatically reduced in 

the mutants (Fig. 2.2). These changes suggest that ANS disruption occurs early in disease 

progression in the Q175 line. In agreement, we also saw evidence in the BACHD of the circadian 

system failing to lower blood pressure during sleep [29]. Similarly, R6/1 mice have a higher HR 

than WT littermates in young but not older mutant mice [41]. However, in two other models 

(R6/2 and HdhQ150 lines), the HR was significantly reduced in symptomatic mice [46].  
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HRV is a measure of variation in the beat-to-beat (R-R) interval that reflects the dynamic balance 

of sympathetic and parasympathetic control of heart function. In WT mice, HRV displayed a 

robust diurnal and circadian rhythm consistent with circadian regulation of the ANS (Fig. 2.3). 

Both the LF and HF domains of the HRV exhibited robust daily rhythms. In the Q175 line, the 

HRV was low in young mutants (Hom, Het) and this reduction was largest during the rest phase 

(Fig. 2.3A). The power in the LF domain was significantly reduced in the young mutants with 

the biggest effects during the night (Fig. 2.3B). Traditionally, the LF is viewed as a measure of 

regulation by the sympathetic branch of the ANS, although it is more likely a general index of 

ANS function [39,40]. Thus, our data clearly indicate that the autonomic outflow is disrupted in 

the HD mutants. Autonomic dysfunction is likely responsible for the low HRV as well as the 

elevated HR during the rest phase (daytime) in Q175 mice. A similar reduction in HRV was 

previously observed in the BACHD line [10], and evidence of disrupted ANS leading to an 

unstable heart beat as well as elevated levels of the sympathetic transmitter (norepinephrine) 

were reported in the R6/1 model [41]. It is also possible that postsynaptic receptors are altered, as 

suggested by a recent study showing that acetylcholine receptors (measured by α-bungarotoxin 

binding) are reduced in the diaphragm of BACHD mice [116]. However, earlier work examined 

cardiac β1-adrenergic receptor densities in R6/2 and WT mice but did not see any genotypic 

differences [11]. In HD patients, a similar decrease in HRV has also been reported during the 

presymptomatic and early stages of HD progression [18,19,21]. Reduced HRV is generally 

considered an indication of poor cardiovascular health and a predictor for cardiovascular disease 

and mortality [35,117,118]. 
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The baroreceptor reflex is also a process dependent on autonomic function. Similar to the 

BACHD line [29], Q175 mice showed a dramatically blunted response in HR to the transient 

hypotension induced by NP suggesting that the sympathetic branch has impaired homeostatic 

reserve (Fig. 2.4). The primary deficit in the baroreceptor reflex in Q175 mice is unknown, as 

this process is mediated by various regions of the brain including the brainstem and 

hypothalamus, along with outputs from the ANS [18,119,120]. In HD patients, the detection of 

alterations in the baroreceptor circuit, such as the vagal nuclei and cerebral cortex, have 

established a possible structural cause for this dysfunction [19–21,119,120]. Ideally, 

identification of the site of dysfunction could be used to devise an appropriate therapeutic 

approach to manage symptoms in HD patients. Prior studies reported HRV deficits during the 

Valsalva maneuver, hand-grip test, and the head up tilt test in HD patients [20,22,42,43]. 

Furthermore, patients complain of dizziness and light-headedness upon standing, suggesting they 

suffer from orthostatic hypotension due to autonomic dysregulation and a deficient baroreceptor 

reflex [18,30]. The sympathetic nervous system appears to be most impacted during the very 

early stages of HD [18–20]. As the disease advances, the parasympathetic activity progressively 

decreases as well [20–22].  

 

The Q175 mice displayed an age-dependent progression in heart dysfunction beginning at 

presymptomatic stages (3 months). Both the structure and function of the heart exhibited 

significant alterations due to both age and genotype (Fig 2.5D and E). The mutants’ hearts were 

smaller and less functional by 6 months of age (Table 3 and 5) and worsen with age. Histological 

analysis of the hearts also found that the mutant hearts showed localized fibrotic lesions that 
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resembled those caused by myocardial infarction (Fig 2.6C and D) and imply that prior 

obstruction of the blood supply to the heart caused local cell death. These fibrotic infarcted areas 

are the histological signature of heart attacks.  Evidence for fibrosis has also been found in 

another HD model, the R6/2 line [16]. 

 

The echocardiographic measurements performed on BACHD mice showed changes in heart 

structure and function at an early age (Fig 2.5A-C). At this time point (3 mo), motor deficits 

[121] and circadian rhythm dysfunction [10] are just beginning thus the cardiovascular deficits 

are occurring very early in the disease progression in this model. Though the slope of the 

changes were similar between aging WT and BACHD animals, the ejection fraction (EF) ratio of 

15 mo old BACHD mice were close to or below 55, which is the threshold between normal heart 

function and failure. We suspect that the function would continue to weaken with age, which 

poses a challenge for the cardiovascular system, leaving BACHD mice more susceptible to 

serious cardiac events. The presence of cardiac fibrosis in 15 mo old BACHD mice (Fig 2.7) also 

provides evidence for cardiac stress that feeds forward to further impair heart function. WT mice 

show minimal fibrotic lesions at this age. The focal fibrotic lesions in the BACHD would be 

expected to alter wall motion synchrony and could explain the reduced EF.  

 

The presence of fibrosis that we observed in both the Q175 and BACHD models could also 

increase the likelihood of arrhythmias [122] although we did not observe any in our recordings. 

Though the incidence of arrhythmias has not yet been examined in HD patients, other lines of 

evidence suggest increased susceptibility including altered ANS input to the heart [20,123]. ANS 
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dysfunction is consistent among a number of HD animal models including the R6/1 [41] and the 

R6/2 models [46]. In the BACHD model, we have found significant alterations in the 

baroreceptor reflex and a decline in heart-rate variability that indicate dysfunctional ANS 

outflow [29]. With this work, we have provided evidence that the Q175 and BACHD line 

recapitulates cardiovascular dysfunction seen in HD patients as well as established an age-

dependent progression by which we can judge the impact of therapeutic interventions. 

 

Cardiovascular complications are a leading cause of death in HD patients [6,7,96,97]. To date, 

several of the HD mouse models have been shown to exhibit cardiovascular dysfunction [9–

12,17,29,41,46]. Mutant Htt is expressed in both the heart and brain [124], thus a critical 

question is whether the cardiovascular pathologies seen in HD are due to a deficit at the level of 

the cardiomyocytes or whether they are secondary to central nervous system dysfunction. For 

example, overexpression of an expanded polyQ track or mHtt in cardiomyocytes resulted in heart 

failure and a significantly reduced lifespan in both mice [17] and flies [16]. So at least some of 

our findings may be due to cardiomyocyte-specific deficits, e.g., the changes in the ECG 

waveform in young mutant mice. In addition, in HD patients, there is evidence of degeneration 

of brainstem nuclei, including those that control the regulation of heart function 

[19,20,42,67,125,126]. So it is likely that there is an HD-specific cardiomyopathology as well as 

cardiovascular pathology secondary to the HD-driven damage to the ANS. Overall, this body of 

preclinical data suggests that monitoring of the cardiovascular system in HD patients should start 

at an early age so therapeutic interventions can by employed to slow the progression of these 

pathological processes and prevent early death. Most importantly, our data suggest that this early 
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screening must include observations during the usual sleep hours of the day, as early anomalies 

may go undetected at the times of day that patients would usually interact with clinicians.  
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Chapter 3: Rescue of the cardiovascular symptoms in the BACHD mouse model 

 

Introduction: 

 

Mouse model of HD recapitulate aspects of the human disease including cardiovascular 

dysfunctions such as reduced contractility and cardiac output [10,29,41,46]. The animal model 

used in this chapter is the BACHD mouse line of mice, engineered to express the human 

mutation in the Htt gene, in a way that it can be excised by Cre recombinase (Cre) in a tissue 

specific manner [121]. Our previous study showed structural and functional changes in the 

BACHD mice as early as 3 months of age, which resemble aspects of the human HD [13,21,29]. 

Also, there is evidence that when soluble preamyloid oligomers similar to HD mutations are 

expressed exclusively in cardiomyocytes, the mice die from cardiac failure, suggesting that CV 

dysfunction is not solely secondary to neurodegeneration [16,17]. Therefore, we crossed the 

BACHD mouse line with a Myh6-Cre to reduce mHtt in the cardiomyocytes to obtain a better 

understanding of the role of cardiomyocytes in driving the CV symptoms in HD. Using this 

conditional BACHD mouse model, we assessed the cardiac function and structure with 

echocardiograms in the early disease progression. We also analyzed the gene expression of 

cardiac hypertrophic markers. Finally, we examined the impact of the reduction of mHtt in 

several behaviors that are known to be impacted by the HD mutation. Taken together, our study 

provides important insights into cardiovascular pathophysiology in HD.   
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Methods: 

 

Generation of BMYO mice  

BACHD mice on the C57BL6/J background along with littermate wild-type (WT) controls were 

acquired from the mouse mutant resource at The Jackson Laboratory, (JAX, Bar Harbor, Maine) 

in a colony maintained by the CHDI Foundation. αMHCCre (Myh6-Cre) were obtained from The 

Jackson Laboratory. BACHD and Myh6-Cre mice on the C57BL/6 background were bred to 

generate double transgenic, BACHD;Myh6-Cre (BMYO), with the mHtt floxed out in the 

cardiomyocytes (Fig 3.1). The following three genotypes were used in this study: WT, BACHD, 

and BMYO. Genotypes were confirmed by PCR of tail snips.    

 

WT (n = 8), BACHD (n = 8), and BMYO (n = 8) male mice were group housed and kept in a 

12:12 light/dark (LD) cycle with rodent chow provided ad libitum. Mice were examined with 

echocardiograms at 3 and 6 mo of age. After the last echocardiogram measurement, the heart and 

brain tissues of the mice were collected and morphologic and histological measurements were 

taken. All procedures followed guidelines of the National Institutes of Health and were approved 

by the UCLA Animal Research Committee.  

 

RNA Extraction 

WT, BACHD and BMYO mice (n = 3 per group) were used for gene expression analysis. Total 

RNA from the hearts were extracted using Trizol RNA isolation protocol (LifeTechnologies, 

Carlsbad, CA), then DNAse treated (TURBO DNA-free kit, Life Technologies) and column 
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purified (Pureline RNA Mini-kit, Life Technologies). RNA was used for Quantitative Real-Time 

PCR experiments described below. 

 

Quantitative Real-Time PCR 

One µg of total RNA was reverse transcribed using iScriptTM Reserve Transcription Supermix 

for RT-qPCR (Bio-Rad Laboratories). Quantitative real-time PCR (RT-qPCR) was performed 

using SYBR Green Mix (Applied Biosystems) on a CFX connect Real-Time System (Bio-Rad 

Laboratories). The gene expression was calculated using the 2-ΔΔCt method.  

 

To detect the human mHtt expression, primers for RT-qPCR were designed using the established 

protocol by Gray et al [121]. The forward primer recognized both endogenous mouse HD gene 

homolog and exogenous mhtt. Two reverse primers were designed to be species-specific. 

Forward: 5’-ATC TTG AGC CAC AGC TCC AGC CA-3’; reverse (human) 5’-GGC CTC CGA 

GGC TTC ATC AGG-3’; reverse (murine), 5’- TCT GAA AAC ATC TGA GAC TTC ACC 

AGA-3’. The primers used in this study also include the following: Myh6, Myh7, BNP, GATA4, 

Col1a, and Fibronectin (Qiagen).    

 

Western blotting 

Protein lysates from the heart and brain tissues were western blots were performed as previously 

described [13]. Immunoblots were probed with the anti-polyglutamine-expansion disease 

marker, 1C2 (1:1000, Chemicon), GAPDH (1:3000, GeneTex), and Fibronectin (1:500, Abcam) 

prepared in 5% blocking solution. To quantify, the protein levels were normalized to GAPDH.    
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Echocardiogram 

WT, BACHD, and BMYO mice (n = 8 per genotype) were group housed and kept in a 12:12 

light/dark (LD) cycle with rodent chow provided ad libitum. Mice were examined with 

echocardiograms at 3 and 6 mo of age. After the last echocardiogram measure, the heart and 

brain tissues of the mice were collected and morphologic and histological measurements were 

taken.  

 

Echocardiograms were measured using a Siemens Acuson Sequoia C256 instrument equipped 

with a 15L8 15MHz probe (Siemens Medical Solutions, Mountain View, CA) as previously 

described. Briefly, two-dimensional, M-mode echocardiography and spectral Doppler images 

enabled measurement of heart dimension and function (Left Ventricle (Lv) Mass), end-diastolic 

dimension (EDD), end-systolic dimension (ESD), posterior wall thickness (PWT), ventricular 

septal thickness (VST), Lv Ejection Fraction (Lv EF). The mice were sedated with 1% isoflurane 

vaporized in oxygen (Summit Anesthesia Solutions, Bend, OR) and HR was monitored using 

electrocardiogram to maintain physiological levels (between 450 and 650). 

 

Trichrome Histology  

Heart samples were harvested, perfused, and incubated in 4% paraformaldehyde at 4° C over 

night, followed by incubation in 30% sucrose in PBS at 4° C. The hearts were removed from the 

sucrose solution and embedded in Tissue Tek O.C.T. (Sakura Finetek). Frozen whole-heart 

blocks were sectioned at 8-10 µm thickness with a cryostat (Leica), mounted on Superfrost slides 
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(Fisherbrand), and stained with Masson’s Trichrome kit (Sigma-Aldrich). Masson’s Trichrome-

stained heart with the aid of Image J software.   

 

Behavioral studies 

Locomotor activity was recorded from single-caged mice with infrared motion sensors using our 

established protocols [127]. Locomotor activity was recorded in 3-min bins, and 10 days of data 

were averaged for analysis. The 10 days of activity data collected just before the motor 

performance tests was used. Analyzing the data, the period and rhythmic strength was 

determined as previously described [10,26,127]. The periodogram analysis used a χ2 test with a 

threshold of 0.001 significance, from which the amplitude of the periodicities was determined at 

the circadian harmonic to obtain the rhythm power. The amount of cage activity over a 24-h 

period was averaged over 10 days and reported here as the hourly arbitrary units (au/h). The 

number of activity bouts and the average length of bouts were determined using Clocklab 

(Actimetrics), where each bout was counted when activity bouts were separated by a gap of 21 

min (maximum gap: 21 min; threshold: 3 counts/min).  

 

The grip strength test was used to measure neuromuscular function as maximal muscle strength 

of forelimbs. The grip strength ergometer (Santa Cruz Biotechnology, Santa Cruz, CA) was set 

up on a flat surface with a mouse grid firmly secured in place. Peak mode was utilized to enable 

measurement of the maximal strength exerted. Mice were tested in their active phase under dim 

red light (3 lux), and prior to testing, mice were acclimated to the testing room.  Mice underwent 

five trials with an inter-trial interval of at least two minutes.  For each trial, a mouse was lowered 
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slowly over the grid, and only its forepaws were allowed to grip the grid. While the mouse was 

steadily pulled back, the experimenter ensured the mouse remained horizontal until the mouse 

was no longer able to grip the grid. The maximal grip strength value of the mouse was recorded 

each trial.  The grid was cleaned with 70% ethanol and allowed to dry before testing each mouse 

cohort.  The maximum value obtained per animal is reported as maximal strength divided by 

bodyweight. 

 

The challenging beam test was used to characterize the motor deficits of BACHD mutant mice in 

previous studies [10,127]. The beam narrows in 4 intervals from 33 mm > 24 mm > 18 mm > 6 

mm, with each segment spanning 253 mm in length. The home cage of each mouse is put on the 

end of the beam as the motivating factor. In this study, animals were trained on the beam for 5 

consecutive trials for two consecutive days. During each trial, each mouse was placed on the 

widest end of the beam and allowed to cross with minimal handling by the experimenter. On 

the testing day, a metal grid (10 Å~ 10 mm spacing, formed using 19-gauge wire) was overlaid 

on the beam. This overlaid grid increased the difficulty of the beam traversal task and provided a 

visual reference for foot slips made while crossing the grid. Each mouse was subjected to 5 

consecutive trials conducted during their active (dark) phase. Trials were recorded by a 

camcorder under dim red-light conditions (2 lux), supplemented with infrared lighting for video 

recording. The videos were scored post hoc by 2 independent observers for the number of 

missteps (errors) made by each mouse. The observers were masked as to the treatment group of 

the mice that they were scoring. An error was scored when any foot dipped below the grid. The 
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number of errors was averaged across the 5 trials per mouse to give the final reported values. The 

apparatus was cleaned with 70% alcohol and allowed to dry completely between trials. 

 

Results: 

 

Genetic reduction of mHTT in the cardiomyocyte 

To determine whether genetically reducing mHtt expression from the cardiomyocytes can rescue 

cardiovascular phenotypes observed in the BACHD mice, we crossed BACHD mice with Myh6-

Cre mice and generated three genotypes including WT, BACHD, BACHD;Myh6-Cre (BMYO) 

(Fig 3.1). We used these mice to confirm the reduction of mHtt mRNA and protein levels in the 

cardiomyocytes (Fig 3.2). In the heart, there were significant differences in the mRNA 

expression (one way ANOVA: F(2) = 125.5. P<0.001) with the levels of human mHtt 

significantly reduced in the BMYO hearts compared to the BACHD (Tukey: q = 18.584, P < 

0.001) (Fig 3.2).  In the striatum, there were overall significant differences in expression (one 

way ANOVA, F(2) = 87.706, P < 0.001), but there were no differences between the expression in 

BACHD and BMYO groups (Tukey: q = 0.853, P = 0.824) (Fig 3.2).  There were no differences 

between the three groups in expression of endogenous mouse Htt in the heart (F(2) = 2.045, P = 

0.210) or striatum (F(2) = 0.852, P = 0.473).   

 

We used western blots to measure polyglutamine-expansion in the heart and striatum of the three 

genotypes (Fig 3.2).  In the heart, there were significant differences in the 1C2 protein (one way 

ANOVA: F(2) =162.549, P <0.001) with the levels of the expansion significantly reduced in the 
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BMYO hearts compared to the BACHD (Tukey: q = 20.801, P <0.001).   In the striatum, there 

were overall significant differences in 1C2 expression (one way ANOVA: F(2) = 27.098, P < 

0.001), but there were no differences between the expression in BACHD and BMYO groups 

(Tukey: q = 2.197, P = 0.334). 

 

In summary, we found a significant reduction (92%) in the mHtt expression in the BMYO hearts 

compared with the BACHD hearts, but not in the striatum. Consistent with the mRNA results, 

BMYO mice had about 89% reduction of the polyglutamine expansion marker 1C2 in the hearts 

compared with the BACHD mice.            

 

The genetic reduction of the mHtt expression improves some cardiovascular functions in BMYO 

mice.  

To assess changes in the cardiac structure and function of the three lines of mice, we utilized 

echocardiograms at 3 and 6-month age. Consistent with our earlier data (Chapter 2), at 3 months 

of age, there were few significant differences between the 3 genotypes (Table 7).  At this age, the 

Lv of the mutants exhibited an increased mass (not significantly) and the BACHD exhibited a 

reduced ejection fraction (P = 0.035) compared to the other groups.  At 6 mo of age (Fig 3.3; 

Table 7), both the BACHD and the BMYO exhibited enlarged left ventricle.  This feature of the 

BACHD was not altered by the loss of the mHtt. On the other hand, the ejection fraction and 

heart rate was reduced compared to WT in the BACHD but not in the BMYO.  For both of these 

parameters, the measurements from the BMYO looked more like WT.  While the heart’s 

contractility measurements (Lv fractional shortening) did not differ among all three genotypes 
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(Fig 3.3), there was a clear trend for a reduction in the BACHD compared to the other groups.  

Overall, at the age points examined, most of the echocardiogram parameters did not vary 

significantly.  The EF refers to the percentage of blood that is pumped out of a filled ventricle 

with each heartbeat and this measure appeared to be most sensitive to the levels of mHtt in the 

cardiomyocytes.   

 

The reduction of mHtt impacted gene expression within the BMYO hearts. 

We examined the mRNA expression of disease markers in the hearts at 6-month of age using 

RT-qPCR (Fig 3.4; Table 8). We found that collagen 1a (Col1a) mRNA expression was 

significantly higher level in the BACHD hearts compared to WT although there was no 

significant difference between WT and BMYO.   

 

Next, we looked at the expression of several genes important in cardiomyocyte development 

including Myh6, Myh7 and GATA4. These genes are known to be up-regulated in response to 

injury or cardiomyocyte remodeling [128–130]. We found significant increases in the expression 

of Myh6 and GATA4 in the hearts of the BACHD and found that this up-regulation was not seen 

in the BMYO line. Finally, we looked at expression of brain natriuretic peptide (BNP), which is 

a hormone secreted by cardiomyocytes in the heart ventricles in response to stretching. Again we 

found that the BACHD mutants exhibited higher expression while the BMYO line showed much 

lower expression. Together this data indicates that, at least transcriptionally, the BACHD hearts 

were under stress and that these changes were reversed in the BMYO line.    
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The reduction of mHtt may have reduced fibrosis within the BMYO hearts. 

To assess the cardiac structure of the hearts, we sacrificed the mice at about 6 mo of age and 

processed their hearts and used Masson’s Trichrome to visualize fibrotic tissue (Fig 3.5). We did 

not detect any fibrotic staining in the WT hearts, while both BACHD and BMYO hearts showed 

small fibrosis on the edges of the hearts. These fibrotic regions remain to be quantified.  

Similarly, western blots were used to measure the protein levels of fibronectin. The 

concentration of the anti-sera still needs to be quantified.        

 

The reduction of mHtt in the heart improved some aspects of motor behavior.   

There is compelling evidence that physical activity is an sensitive biomarker for chronic 

cardiovascular disease [131,132]. Therefore, in our final experiment, we sought to determine 

whether the genetic reduction of mHtt expression in the cardiomyocytes had beneficial impact on 

motor function in the BACHD mice using two measures: overall physical activity and grip 

strength (Fig 3.6; Table 9). We found that both BACHD and BMYO exhibited a significant 

reduction in activity over 24 hr compared to WT but that the BMYO line exhibit more activity 

than BACHD.  The strength of the daily rhythms as measured by power of the periodograms was 

similar in both of the mutant lines so the rhythmicity of the activity data was not impacted by the 

reduction in mHtt in the heart.  Grip strength was improved in the BMYO line compared to 

BACHD alone.  Finally, performance on the challenge beam as measured by errors made was 

actually highest in the BMYO line.   
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Overall, the two parameters that have been suggested as biomarkers of cardiovascular function 

(total activity, grip strength) were improved by the reduction of mHtt in the heart. 

      

 

Discussion:  

As described in Chapter 1, both the clinical and preclinical research indicate that cardiovascular 

dysfunction should be considered a core symptom of at least a subset of HD patients. There is 

some evidence for cardiomyopathy, but these is even stronger evidence for dysautonomia 

(dysfunctional autonomic nervous system, ANS) in HD patients that can be detected early in the 

disease progression. Mutant huntingtin (mHTT) is ubiquitously expressed so the cardiomyopathy 

could be the result of deficits in the cardiomyocytes themselves and/or in the dysautonomia 

driven by the nervous system.  In this study, we utilized the BACHD mouse model that allows 

specific reduction of the mHtt expression in the cardiomyocytes when crossed with the Myh6-

Cre mouse line. Our data confirmed successful reduction in the mHTT mRNA and protein levels 

of the BMYO hearts by close to 90% (Fig 3.2). The Cre-driven recombination would have 

occurred early in development so that the BMYO mice that we evaluated would have had greatly 

reduced mHtt from the heart with high levels of mHtt in the brain. This genetic construct gives 

us a unique model to evaluate the contribution of the mHtt in the cardiomyocytes to the 

cardiovascular disease associated with HD.   

One limitation of our approach is the possibility that toxicity of the prolonged Cre expression to 

the hearts. It has been suggested that prolonged Cre expression driven by the α-myosin heavy 

chain promoter can be cardiotoxic [133,134]. Unlike the BACHD mice that can live up to 18 
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months [10,135], we observed that most of BMYO mice did not survive longer than a year which 

may be due to cardiotoxicity (data not shown).  

 

 

We examined the cardiovascular function and structure using echocardiograms in all three 

genotypes at 6-month of age. Most of the functional echo parameters did not vary between the 

genotypes (Table 7).  There were two notable exceptions.  As previously observed (Chapter 2), 

the Lv mass of the BACHD hearts was larger than WT.  The divergence between the genotypes 

was already seen at 3 months but was not significant until 6 months of age.  This hypertrophy 

was also observed in the BMYO hearts suggesting that the driver was not the mHtt in the 

cardiomyocytes.  In addition, Lv ejection fraction (EF) was reduced in the BACHD while the EF 

of the BMYO heart was comparable to comparable to the WT levels (Fig 3.3).  The EF refers to 

the percentage of blood that is pumped out of a filled ventricle with each heartbeat. It is the 

relation between the amount of blood expelled during each cardiac cycle relative to the size of 

the ventricle. It is important to note that a Lv EF of 65 – 75% is considered normal under 

physiologic loading conditions for mice, with an EF of below 65% being considered reduced.  So 

even the BACHD hearts were still working at functional levels at the 6 mo time point.  The 

findings with Lv EF were closest to our predictions for a cardiomyopathy driven by mHtt in the 

heart.  The FS % exhibited a similar trend but the differences were not significant.  Perhaps we 

needed to wait to an older age to see more robust differences with the echocardiogram.  Prior 

work indicated that the EF of the BACHD hearts steadily declined with age after the 6 mo time 

point (Chapter 2) so we are looking at the peak of cardiac output. Taken together, these 
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functional data suggest that reduced mHtt expression in the cardiomyocytes help improve Lv EF 

in the BMYO mice.    

 

In prior work examining the hearts of middle-aged BACHD mice (>12 mo), we found striking 

fibrosis as measured by trichrome staining (Chapter 2).  In the present study, we visually 

observed some fibrotic regions in the BACHD and BMYO mouse hearts, but not in the WT (Fig 

3.5). We were unable to quantify the possible differences in staining before the COVID19 

research stoppage.  Interestingly, the Col1a mRNA expression level in the BMYO hearts was 

significantly reduced compared to BACHD (Fig 3.4). Therefore, we expect to similar differences 

in fibrosis as measured by trichrome staining.  An increase in fibrosis in the heart could explain 

the reduction in the ejection fraction found in the echo data.  Histological studies have suggested 

that myocardial fibrosis can be an important driver of a reduction in EF [136,137]. We also 

looked at the expression of several genes important in ventricular remodeling including Myh6, 

Myh7 and GATA4. These genes are known to be up-regulated in response to injury or 

cardiomyocyte remodeling [128–130]. We found significant increases in the expression of Myh6 

and GATA4 in the hearts of the BACHD and found that this up-regulation was not seen in the 

BMYO line. We examined expression of brain natriuretic peptide (BNP), which is a hormone 

secreted by cardiomyocytes in the heart ventricles in response to stretching [138,139]. Again we 

found that the BACHD mutants exhibited higher expression while the BMYO line showed much 

lower expression. Together this data indicates that, at least transcriptionally, the BACHD hearts 

were under stress and that these changes were reduced in the BMYO line.    
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Finally, we looked at impact of the cross on behavioral markers of cardiovascular health.  In 

humans, there is strong evidence that grip strength provides a biomarker for cardiovascular 

function [131,132,140]. For example, a recent study from the Sattar’s group examined the 

associations of objectively measured grip strength (GS) with incident heart failure (HF) [141].  

Using the UK Biobank dataset, the authors evaluated data from 374,493 individuals. During 4 

years, 631 HF events occurred in those with GS data. Higher CRF was associated with 18% 

lower risk for HF (hazard ratio [HR], 0.82; 95% CI, 0.76-0.88) per 1-metabolic equivalent 

increment increase and higher GS was associated with 19% lower incidence of HF risk (HR, 

0.81; 95% CI, 0.77-0.86) per 5-kg increment increase. When GS was standardized, the HR for 

GS was 0.65 per 1-SD increment (95% CI, 0.58-0.72).  While this data is correlational, the 

literature indicates that objective measurements of physical function (GS) are strongly associated 

with lower HF incidence. In this study, we found that grip strength was reduced in the BACHD 

compared to WT and that this measure was improved by the excision of the mHtt. Overall, 

physical activity in this case measured by total activity over 24 hr followed the same trend. Both 

the mutant groups exhibited the reduction in the strength of the rhythm as measured by power 

(Fig 3.6).  Most other rhythmic parameters were not improved by the reduction of the mHtt from 

the heart.  The central circadian clock is based in the hypothalamus so improvements in circadian 

output were not expected from this cross.     
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 In summary, the clinical and preclinical research indicate that cardiovascular dysfunction should 

be considered a core symptom of at least a subset of HD patients. There is strong evidence for 

dysautonomia that can be detected early in the HD progression.  There is also some evidence for 

cardiomyopathy and our results suggest that there is cardiac specific pathology in the BACHD 

pre-clinical model.  Reducing mHtt specifically from cardiomyocytes did improve the Lv EF as 

measured by the echocardiogram, reduced the expression of several markers of heart disease, and 

improved a behavioral marker of cardiovascular health. We believe that this data argues that 

cardiomyopathy should be considered as part of the consequences of the HD mutation.   
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Discussion: Clinical significance and future directions 

Cardiovascular (CV) disease is a leading cause of early death in the Huntington’s disease (HD) 

patient population. Animal models are needed to understand how the mutant Htt causes 

pathology in the CV system in order to development new treatment strategies.  In this thesis 

work, we first sought to determine if CV symptoms could be measured in the Q175 and BACHD 

mouse models of HD.  In this work, we sought to test the dual hypotheses that cardiovascular 

dysautonomia can be detected early in disease progression in the Q175 and BACHD models and 

that this dysfunction varies with the daily cycle. We found overwhelming evidence for 

autonomic dysfunction including blunted daily rhythms in HR, reduced HRV, and almost a 

complete failure of the sympathetic arm of the ANS during the baroreceptor challenge. 

These were first demonstrations that these mouse models exhibited CV symptoms like the HD 

patients.  Furthermore, they suggest that the disrupted circadian regulation could contribute to 

the pathology.   

 

Next, we we sought to reduce mHtt expression in cardiomyocytes to ameliorate CV symptoms 

seen in the BACHD mice. Using this genetic reduction, we could improve some aspects of heart 

function and motor deficits in these mice. However, reducing mHtt in the cardiomyocytes was 

not sufficient to provide striking impact on the functional and structural changes in the BACHD 

mouse hearts. Our findings indicate that cardiovascular focused treatments may extend the 

health-span of the patients but the autonomic dysfunction will also need to be considered.    
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In HD clinical trials, antisense oligonucleotides (ASO) have shown promise to decrease the 

mHtt. For example, the drug candidate, RG6042 by Roche, is currently in the phase 3 trial 

investigating the safety and efficacy of long-term use in the HD patients. Intrathecal 

administration of this ASO therapy was effective at decreasing the total amount of mHtt 

measured in the cerebrospinal fluid by 40-60% [142]. It is yet unknown how much of reduction 

is required to result in the positive effect on the disease progression. The efficient way to 

measure the clinical outcomes is still unclear but CV measures like HRV could provide 

inexpensive biomarkers for treatment efficacy. These clinical studies are heavily relying on the 

limited studies with the mouse models. Thus, many questions of study remain to be pursued in 

the future preclinical studies to develop the effective therapeutic interventions and validate the 

effectiveness of the approach.  

 

 

In investigating the impact of TRF on the gene expression rhythms in the BACHD mouse hearts 

(Appendix), Klf15 exhibited the largest changes among the genes of interest. Many studies have 

documented that Klf15 plays a key role in regulating oscillatory genes in the heart [80] and 

cardiac hypertrophy [143,144]. Our data show that feeding schedule induced the amplitudes of 

the Klf15 expression rhythms in BACHD hearts. Echocardiograms demonstrated that BACHD 

mice had larger left ventricular mass already at 3 mo compared with WT controls (See Chapter 

2). Interesting findings from studies in this work suggest that potential therapeutic strategies that 

aim to modulate the expression of Klf15 to boost circadian output as well as to prevent 

hypertrophy in the HD. Furthermore, the cardiovascular symptoms in HD patients should be 
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better understood in the future studies. Underlying mechanisms of many CV symptoms including 

autonomic dysfunction, and cardiac hypertrophy need to be delineated to further advance the 

therapeutic approaches to prevent mortality and to ultimately treat this devastating disease, HD. 
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Appendix: Impact of time-restricted feeding on the gene expression rhythms in the BACHD 

mouse hearts 

 

Introduction: 

 

HD patients in the early stages of the disease progression exhibit low HRV [18,19,21], which is a 

general indication of poor cardiovascular outcomes [35,117,118]. The decreased HRV was also 

observed in the BACHD mouse line [10]. In our recent study, we have shown that time-restricted 

feeding (TRF) improves activity, motor performance, and sleep rhythms in the BACHD [74]. 

Additionally, TRF had the most robust effect on HRV, suggesting enhanced autonomic function 

in the BACHD mice [74]. Using in vivo imaging of BACHD and WT PER2::LUC mice, we 

showed that TRF elevated the amplitude and shifted the phase of the rhythm in the heart but not 

in the SCN. These findings demonstrated that TRF ameliorates various symptoms and boosts the 

circadian rhythms in the BACHD mice. In this appendix, we investigated the impact of TRF on 

the gene expression rhythms in the BACHD mouse hearts by collecting tissue at six time points 

around the 24-hr cycle. We focused on a set of the target genes including core clock, circadian 

output, clock-driven transcription factors, and metabolic genes.  

 

 

Methods: 

 

Time-restricted feeding (TRF) 
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BACHD and WT mice were first entrained to a 12:12 h Light Dark (LD) cycle for at least 2 

weeks prior to any treatment. Experimental animals were then exposed to one of two feeding 

conditions: food available ad libitum (ad lib) or food available for 6 h during the middle of the 

active phase during zeitgeber time (ZT) 15-21. By definition, ZT 12 is the time when the lights 

are turned off when the mice are in an LD cycle. In this study, four groups were used with two 

genotypes, BACHD and WT, and two feeding conditions (ad lib or TRF). Single-housed mice 

were in a cage equipped with a custom-made programmable food hopper that could temporally 

control access to food (standard chow) and prevent food consumption during restricted times. 

Mice are coprophagic, and the mice were not moved to new cages between their daily feeding 

and fasting cycles. It is possible that the mice consumed their own feces during the fast interval. 

These cages were also equipped with an infrared (IR) motion detector to give us the ability to 

measure cage activity. The mice were held in these conditions for a total of 3 months (from 3 mo 

to 6 mo of age) [74].  

 

Time course tissue collection  

In order to measure the gene expression of the target genes around the clock, the heart tissues of 

the mice (n=4 per group) were quickly collected at ZT 2, 6, 10, 14, 18, and 22 after the last 

behavioral measurement. Thus, the total of 24 mice were used for each group, resulting in 96 

samples harvested.   

 

Quantitative Real-Time PCR 



 

 

66  

Total RNA was extracted from the heart tissues using our lab’s established protocol consistent 

with previous chapters. One µg of total RNA was reverse transcribed using iScriptTM Reserve 

Transcription Supermix for RT-qPCR (Bio-Rad Laboratories). Quantitative real-time PCR (RT-

qPCR) was performed using SYBR Green Mix (Applied Biosystems) on a CFX connect Real-

Time System (Bio-Rad Laboratories). The gene expression was calculated using the 2-ΔΔCt 

method. The expression of the target genes was normalized to GAPDH and the relative 

expression was analyzed. The primers used in this study are the following: Bmal1, Per2, Dbp, 

PPAR γ, SIRT1, Pdk4, Ucp3, Klf15, and GAPDH (Qiagen).    

 

Statistical Analysis 

We were interested in determining if TRF can alter the rhythms in gene expression measured 

from the heart of WT and BACHD mice.  Treated BACHD mice (TRF group) were compared to 

age-matched untreated BACHD mice (ad lib group) in all experiments. The sample size per 

group was determined by both our empirical experience with the variability in the prior measures 

in the BACHD mice and a power analysis (SigmaPlot, SYSTAT Software, San Jose, CA) that 

assumed a power of 0.8 and an alpha of 0.05.  To determine the impact of the treatment on 

temporal expression waveforms, we used a two-way analysis of variance (2-way ANOVA) with 

treatment and time as factors.  We also used a 2-way ANOVA to assess the impact of the 

treatment on the amplitude and phase of the rhythms.  Pairwise Multiple Comparison Procedures 

were made using the Holm-Sidak method. Statistical analysis was performed using SigmaPlot. 

Data were examined for normality (Shapiro-Wilk test) and equal variance (Brown-Forsythe test).  

Between-group differences were determined significant if p < 0.05. All values are reported as 
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group mean ± standard error of the mean (SEM). We report the t- or F-values as well as the 

degrees of freedom. Future analysis will utilize the JTK Clock software [145]. 

 

Results 

Please see Figure Appendix 1.  

PER2: In WT mice, we used a 2-way ANOVA to evaluate expression using time and genotype 

as factors.  We found significant effects of time (F5 = 72.252, P < 0.001) but not treatment (F1 = 

2.973, P = 0.093).  There was a significant interaction between time and treatment (F5 = 2.827, P 

= 0.03).  Using the Holm-Sidak multiple comparison procedure, there was a significant impact of 

treatment at ZT 14 (t = 3.543, P = 0.001).  

 

In the BACHD mice, we found significant effects of time (F5 = 47.037, P < 0.001) but not 

treatment (F1 = 0.733, P = 0.398).  There was a significant interaction between time and 

treatment (F5 = 3.246, P = 0.016).  Using the Holm-Sidak multiple comparison procedure, none 

of the phases showed a significant impact of treatment. 

 

Finally, using a 2-way ANOVA to evaluate the amplitude (peak/trough) of the rhythms using 

genotype and treatment, we did not find any significant effect.   

 

Therefore, our data indicate that all of the groups exhibited a robust rhythm in Per2 expression 

and TRF did significantly increase the expression of WT mice at ZT 14.   
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BMAL1:  In WT mice, we used a 2-way ANOVA to evaluate expression using time and 

genotype as factors.  We found significant effects of time (F5 = 76.719, P < 0.001) but not 

treatment (F1 = 1.231, P = 0.275).  There was not a significant interaction between time and 

treatment (F5 = 1.304, P = 0.284).  Using the Holm-Sidak multiple comparison procedure, there 

was a significant impact of treatment at ZT 2 (t = 2.599, P = 0.013).  

 

In the BACHD mice, we found significant effects of time (F5 = 35.830, P < 0.001) but not 

treatment (F1 = 3.540, P = 0.068).  There was a significant interaction between time and 

treatment (F5 = 3.398, P = 0.013).  Using the Holm-Sidak multiple comparison procedure, there 

was a significant impact of treatment at ZT 2 (t = 4.106, P < 0.001). 

 

Finally, using a 2-way ANOVA to evaluate the amplitude (peak/trough) of the rhythms using 

genotype and treatment as factors.  We did not find a significant impact of genotype (F1 = 0.380, 

P = 0.549) but there was a significant effect of treatment (F1 = 4.940, P = 0.046).     

 

Therefore, our data indicate that all of the groups exhibited a robust rhythm in Bmal1 expression 

and TRF did significantly increase the expression of WT and BACHD mice at ZT 2.  The TRF 

treatment significantly increased the amplitude of the rhythms.   

 

DBP: In WT mice, we used a 2-way ANOVA to evaluate expression using time and genotype as 

factors.  We found significant effects of time (F5 = 19.601, P < 0.001) but not treatment (F1 = 

0.210, P = 0.649).  There was not a significant interaction between time and treatment (F5 = 
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1.577, P = 0.191).  Using the Holm-Sidak multiple comparison procedure, there was a significant 

impact of treatment at ZT 6 (t = 2.529, P = 0.016).  

 

In the BACHD mice, we found significant effects of time (F5 = 29.027, P < 0.001) but not 

treatment (F1 = 2.022, P = 0.164).  There was a significant interaction between time and 

treatment (F5 = 3.743, P = 0.008).  Using the Holm-Sidak multiple comparison procedure, there 

was a significant impact of treatment at ZT 6 (t = 3.865, P < 0.001) and ZT 10 (t = 2.136, P < 

0.040). 

 

Finally, using a 2-way ANOVA to evaluate the amplitude (peak/trough) of the rhythms using 

genotype and treatment as factors.  We did not find a significant impact of genotype (F1 = 2.034, 

P = 0.179) but there was a significant effect of treatment (F1 = 12.107, P = 0.005).     

 

Therefore, our data indicate that all of the groups exhibited a robust rhythm in Dbp expression 

and TRF did significantly increase the amplitude of the rhythms of expression in WT at ZT 6 and 

BACHD at ZT 6 & 10.   

 

KLF15: In WT mice, we used a 2-way ANOVA to evaluate expression using time and genotype 

as factors.  We found significant effects of time (F5 = 6.068, P < 0.001) but not treatment (F1 = 

1.975, P = 0.164).  There was a significant interaction between time and treatment (F5 = 3.882, P 

= 0.006).  Using the Holm-Sidak multiple comparison procedure, there was a significant impact 

of treatment at ZT 14 (t = 2.558, P = 0.015) and ZT 18 (t = 3.493, P = 0.001). 
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In the BACHD mice, we found significant effects of time (F5 = 8.130, P < 0.001) but not 

treatment (F1 = 0.359, P = 0.553).  There was a significant interaction between time and 

treatment (F5 = 6.748, P < 0.001).  Using the Holm-Sidak multiple comparison procedure, there 

was a significant impact of treatment at ZT 10 (t = 2.383, P = 0.023) and ZT 14 (t = 4.741, P < 

0.001). 

 

Finally, using a 2-way ANOVA to evaluate the amplitude (peak/trough) of the rhythms using 

genotype and treatment as factors.  We found a significant impact of genotype (F1 = 5.210, P = 

0.041) and treatment (F1 = 28.126, P = 0.001).     

 

Therefore, our data indicate that all of the groups exhibited a robust rhythm in Klf15 expression 

and TRF did significantly increase the amplitude of the rhythms of expression in WT at ZT 14 & 

18 and BACHD at ZT 10 & 14.   

 

PPAR γ:  In WT mice, we used a 2-way ANOVA to evaluate expression using time and 

genotype as factors.  We did not find significant effects of time (F5 = 0.379, P = 0.860) or 

treatment (F1 = 0.669, P = 0.419).  There was not a significant interaction between time and 

treatment (F5 = 1.226, P = 0.317).  Using the Holm-Sidak multiple comparison procedure, there 

were no significant impact of treatment at any phase.   
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In the BACHD mice, we did not find significant effects of time (F5 = 1.378, P = 0.255) or 

treatment (F1 = 1.043, P = 0.314).  There was not a significant interaction between time and 

treatment (F5 = 1.675, P = 0.166).  Using the Holm-Sidak multiple comparison procedure, there 

were no significant impact of treatment at any phase.   

 

Finally, using a 2-way ANOVA to evaluate the amplitude (peak/trough) of the rhythms using 

genotype and treatment as factors.  We did not find a significant impact of genotype (F1 = 0.681, 

P = 0.425) and treatment (F1 = 2.842, P = 0.116).     

 

Therefore, our data indicate that none of the groups exhibited a robust rhythm in PPAR gamma 

expression and TRF did not alter the amplitude of the rhythms of expression. 

 

SIRT1: In WT mice, we used a 2-way ANOVA to evaluate expression using time and genotype 

as factors.  We did not find significant effects of time (F5 = 1.507, P = 0.212) or treatment (F1 = 

0.006, P = 0.937).  There was not a significant interaction between time and treatment (F5 = 

0.240, P = 0.942).  Using the Holm-Sidak multiple comparison procedure, there were no 

significant impact of treatment at any phase.   

 

In the BACHD mice, we found a significant effect of time (F5 = 3.546, P = 0.010) but not 

treatment (F1 = 0.017, P = 0.898).  There was not a significant interaction between time and 

treatment (F5 = 2.338, P = 0.062).  Using the Holm-Sidak multiple comparison procedure, there 

were no significant impact of treatment at any phase.   



 

 

72  

 

Finally, using a 2-way ANOVA to evaluate the amplitude (peak/trough) of the rhythms using 

genotype and treatment as factors.  We did not find a significant impact of genotype (F1 = 0.654, 

P = 0.434) or treatment (F1 = 2.962, P = 0.111).     

 

Therefore, our data indicate that only the BACHD exhibited a rhythm in Sirt1 expression and 

TRF was ineffective in altering the expression of this gene. 

 

UCP3: In WT mice, we used a 2-way ANOVA to evaluate expression using time and genotype 

as factors.  We found significant effects of time (F5 = 5.986, P < 0.001) but not treatment (F1 = 

2.561, P = 0.118).  There was not a significant interaction between time and treatment (F5 = 

1.234, P = 0.314).  Using the Holm-Sidak multiple comparison procedure, there was not a 

significant impact of treatment at any phase.   

 

In the BACHD mice, we found significant effects of time (F5 = 8.895, P < 0.001) but not 

treatment (F1 = 1.301, P = 0.262).  There was not a significant interaction between time and 

treatment (F5 = 2.238, P = 0.072).  Using the Holm-Sidak multiple comparison procedure, there 

was a significant impact of treatment at ZT 10 (t = 2.032, P = 0.050) and ZT 14 (t = 2.262, P < 

0.030). 

 

Finally, using a 2-way ANOVA to evaluate the amplitude (peak/trough) of the rhythms using 

genotype and treatment as factors.  We found no significant impact of genotype (F1 = 0.243, P = 
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0.631) but there was a significant impact of treatment on the amplitude of the rhythms (F1 = 

6.413, P = 0.026).     

 

Therefore, our data indicate that all of the groups exhibited a robust rhythm in UCP3 expression 

and TRF did not impact the amplitude of WT rhythms.  On the other hand, TRF did increase the 

amplitude of the rhythm of expression in the BACHD at ZT 10 & 14.   

 

PDK4: In WT mice, we used a 2-way ANOVA to evaluate expression using time and genotype 

as factors.  We found not significant effects of time (F5 = 2.362, P = 0.059) but there was an 

impact of treatment (F1 = 5.954, P = 0.020).  There was not a significant interaction between 

time and treatment (F5 = 2.234, P = 0.072). Using the Holm-Sidak multiple comparison 

procedure, there was a significant impact of treatment at ZT 14 (t = 3.566, P = 0.001). 

 

In the BACHD mice, we found significant effects of time (F5 = 8.130, P < 0.001) but not 

treatment (F1 = 0.359, P = 0.553).  There was a significant interaction between time and 

treatment (F5 = 6.748, P < 0.001).  Using the Holm-Sidak multiple comparison procedure, there 

was a significant impact of treatment at ZT 10 (t = 2.383, P = 0.023) and ZT 14 (t = 4.741, P < 

0.001). 

 

Finally, using a 2-way ANOVA to evaluate the amplitude (peak/trough) of the rhythms using 

genotype and treatment as factors.  We found a significant impact of genotype (F1 = 5.210, P = 

0.041) and treatment (F1 = 28.126, P = 0.001).     
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Therefore, our data indicate that all of the groups exhibited a robust rhythm in PDK4 expression 

and TRF did significantly increase the amplitude of the rhythms of expression in WT at ZT 14 & 

18 and BACHD at ZT 10 & 14.   

 

 

Summary 

 

Overall, time restricted feeding could alter gene expression rhythms in the heart of BACHD and 

WT mice.   

 

First we examined rhythms in the core clock genes, Bmal1 and Per2.  With this cohort of mice (6 

months of age), we did not see a significantly reduced Per2 expression rhythm as we had seen 

using PER2::LUC driven bioluminescence (Chapter 2). We cannot explain this difference but 

also noted that these mice are less impacted by the mutation (see Chapter 4) than the original 

cohorts.  All of the groups exhibited robust daily rhythms in the expression of Per2 and Bmal1.  

The TRF treated mice exhibited higher amplitude rhythms with peak expression at ZT 14 for 

Per2 and ZT 2 for Bmal1. Together this data shows that scheduled feeding can alter the 

amplitude the rhythm of the molecular circadian clockwork in the heart.     

 

 



 

 

75  

Next, we looked at the expression of two of the key molecular output genes: albumin D site-

binding protein (Dbp) and kruppel-like factor 15 (KLF15). The mechanisms by which the 

circadian clock regulates the transcription of other genes has been particularly well studied for 

the Dbp gene. BMAL1 and CLOCK bind to E boxes in the promoter region of Dbp to control 

transcription [146]. The circadian regulation of this gene has been particularly well studied in 

cell culture but not much is known about its expression in the heart. Here we show that both WT 

and BACHD hearts exhibit robust rhythms and that TRF increased the amplitude of the 

expression rhythms. Prior work has shown that KLF15 governs a biphasic transcriptomic 

oscillation in the heart with a maximum ATP production phase and a remodeling and repair 

phase corresponding to the active and resting phase of a rodent [80]. Depletion of KLF15 in 

cardiomyocytes leads to a disorganized oscillatory behavior without day/night partition despite 

an intact core clock. Thus, KLF15 is a nodal connection between the clock and rhythmicity in the 

heart.  In the heart, KLF15 in the heart plays a key role in controlling the transcription of cardiac 

metabolism during fasting [147] and plays a protective role in preventing hypertrophy [143].  

Based on this past data, it is perhaps not surprising that TRF regulates the phase and amplitude of 

the rhythm in KLF15 in the heart. Together this data shows that TRF treatment effectively 

regulates expression of key circadian output genes.   

 

 

As metabolism and mitochondrial function are known to be rhythmic in the heart, we examined 

the expression of a couple of genes linked to metabolism. Uncoupling protein 3 (UCP3) is a key 

protein involved in mitochondrial metabolism and function while pyruvate dehydrogenase 
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kinase-4 (PDK4) is critical for pyruvate oxidation. Both of these genes have been shown to be 

rhythmic in the heart in prior work [76] and we found robust rhythms in both genes. TRF 

increased the amplitude of gene expression in both of these genes.   

 

Our experiments did turn up some unanticipated finding. In the liver, both PPAR γ and SIRT1 

are rhythmic and are regulated by feeding schedules [148]. PPAR γ is known to regulate the 

BMAL1 gene expression and its deletion in the vasculature leads to decrease circadian variations 

in BP and HR [149]. Therefore, we were surprised to not be able to find a rhythm in expression 

in these gene nor did we see any evidence that TRF regulated the expression of these genes. We 

cannot explain these unexpected findings at this time.  
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Figure 1. 1  

Huntington’s disease (HD) is traditionally considered a motor disease treated by neurologists. 
However, there is increasing evidence that HD patients and animal models exhibit cardiovascular 
(CV) symptoms including dysautonomia (dysfunctional autonomic nervous system, ANS). 
Dysautonomia has been well-characterized in PD, and we believe that it is also a core symptom of 
a subset of HD patients and may be usefully applied to segregate this patient population for tailored 
treatments. There is also a growing body of evidence that HD patients and animal models exhibit 
disruption in circadian timing although not in sleep homeostasis. In our work, we have been testing 
the hypothesis that dysfunction in the circadian system in HD contributes to the CV disease and, 
in this review, we will summarize our progress. 
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Figure 1. 2 

Baroreceptor reflex is disrupted in mouse models of HD. In the baroreceptor reflex, changes in BP 
are detected by the baroreceptors and evoke compensatory changes in ANS. The Q175 and 
BACHD mutants showed a dramatically blunted response in HR to the transient hypotension 
induced by nitroprusside (NP) suggesting that the sympathetic branch has impaired. The effect of 
NP was blocked by a beta-adrenergic receptor blocker (β-blocker) propranolol. The Q175 mutants 
did not show a significantly altered response to transient hypertension induced by angiotensin II. 
HD patients complain of dizziness and light-headedness upon standing, all symptoms of 
baroreceptor dysregulation resulting in orthostatic hypotension. Data from [14,29]. 
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Figure 1. 3 

HRV is a measure of variation in the beat-to-beat (R-R) interval that reflects the dynamic balance 
of sympathetic and parasympathetic control of heart function. Traditionally, HRV is an indication 
of CV health and low HRV proposed as a predictor for CV disease and mortality. One of the most 
commonly used methods for evaluation of HRV is power spectral density analysis in which high-
frequency (HF) and low-frequency (LF) bands are extracted from the HRV signal, and the spectral 
power is calculated. Traditionally, the LF power is viewed as a measure of regulation by the 
sympathetic branch of the ANS, although it is more likely a general index of ANS function. We 
found robust daily and circadian rhythms in HRV and LP power in WT mice. As shown in the 
panels, HRV increased during sleep while LF power (sympathetic outflow) was higher when the 
mice were active. In the HD mutants (Q175), the HRV was low in young mutants and this 
reduction was largest during the rest phase. The power in the LF domain was significantly reduced 
in the young mutants with the biggest effects during the night. A similar reduction in HRV was 
previously observed in the BACHD line [10,13] as well as in the R6/1 model [41]. In HD patients, 
a similar decrease in HRV has also been reported during the presymptomatic and early stages of 
HD progression. 
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Figure 1. 4 

HR varies dramatically with a daily cycle in which HR is high during the active part of the 
sleep/wake cycle. As measured by telemetry, HD mutants (BACHD and Q175) exhibited highly 
pronounced tachycardia during their normal sleep time, with high HR and reduced amplitude in 
the HR rhythm. These changes suggest that ANS disruption occurs early in disease progression in 
these mutant lines. In agreement, we also saw evidence in the BACHD of the circadian system 
failing to lower blood pressure (BP) during sleep [29]. The HR rhythm is also disrupted in R6/1 
[41], R6/2 and HdhQ150 lines [46]. Therefore, overlapping data from several studies using 
different mouse models all found evidence for disrupted diurnal or circadian rhythms of HR. We 
have not seen evidence that this has been examined in HD patients, but the pre-clinical data 
supports 24-hr monitoring in patients.   
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Figure 1. 5 

The circuits involved in the generation of rhythms in HR and autonomic function are relatively 
well defined.  The central circadian clock in the suprachiasmatic nucleus (SCN) orchestrates the 
peripheral clocks via ANS. It appears that separate populations of SCN neurons project to the 
paraventricular nucleus (PVN) and innervate pre-sympathetic and pre-parasympathetic cell 
populations. These separate pre-sympathetic and pre-parasympathetic neurons project to either the 
preganglionic sympathetic neurons in the intermediolateral (IML) column of the spinal cord or the 
preganglionic neurons of the dorsal motor nucleus of the vagus (DMV). There are axon collaterals 
of the pre-sympathetic PVN neurons in the nucleus tractus solitarius (NTS). Both pathways 
innervate the heart to regulate HR via release of acetylcholine (ACh) and norepinephrine (NE). 
Also, the SCN regulates the HPA axis and the secretion of cortisol. The glucocorticoid receptors 
are also potent regulators of CV function. In HD patients, there is evidence for the degeneration of 
neurons in the SCN as well the brain stem. There is also evidence for the strong expression of p62 
immunopositive protein aggregates in axons of brainstem fiber tracts including the vagal nerve 
and the NTS [67].   
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Figure 2. 1 

Q175 mice exhibited altered diurnal and circadian resting HR rhythms. (A, B) The young Q175 
exhibited significantly different resting HR rhythms under both LD and DD. The effects were most 
striking under LD conditions where the mutants showed high resting HR. (C, D) By middle age, 
this tachycardia reversed and we actually saw low resting HR in the Hom Q175 under DD 
conditions. Please see Table 1 for results of statistical tests. Asterisks indicate P < 0.05 between 
the genotypes at each of the hourly bins (ZT or CT). 
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Figure 2. 2 

Q175 mice exhibited an abnormal relationship between HR and activity. (A) The young adult Hom 
Q175 exhibited high HR even while they exhibited low levels of activity. (B) By middle age, the 
Hom Q175 exhibited lower HR and lower activity in the night. WT data shown with black lines 
(HR) and fill (activity); the Het Q175 data are shown with gray lines (HR) and fill (activity); the 
Hom Q175 data are shown with red lines (HR) and fill (activity). (C) Q175 homozygotes exhibited 
significant loss of correlation of HR with activity levels (P < 0.001) in young mice. (D) By middle 
age, differences are diminished by the effects of aging and the progression of autonomic pathology 
in the mutants. WT data shown with black lines (HR) and fill (activity); Het Q175 data shown with 
gray lines (HR) and fill (activity); Hom Q175 data shown with red lines (HR) and fill (activity). 
WT, wild-type. 
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Figure 2. 3 

Q175 mice exhibited low HRV as measured at 3 months. (A) The young Q175 (Hom, Het) 
exhibited significantly reduced HRV. Most phases of the daily cycle were impacted. (B) The HF 
domain (1.5–5.0 Hz) was largely unaltered except at 2 phases late in the night. (C) The LF domain 
(0.2–1.5 Hz) was reduced in the mutants (Hom, Het) throughout the night. Please see Table 1 for 
results of statistical tests. Asterisks indicate P < 0.05 between the genotypes at each of the hourly 
bins (ZT or CT). 
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Figure 2. 4 

Baroreceptor evaluations were used to determine the autonomic responsivity to blood pressure 
perturbations (WT, n = 7; Het, n = 6; Hom, n = 9). As expected, the WT mice had normal reflex 
responses. (A) When the blood pressure was transiently lowered with nitroprusside (NP, 40 lg/kg), 
the heart rate was elevated. (B) When the blood pressure was transiently increased with angiotensin 
II (AT, 4 lg/kg), the heart rate dropped in compensation. The impact of ATII and NP were blocked 
by pretreatment with sympathetic and parasympathetic receptor antagonists (750 lg/kg propranolol, 
75 lg/kg glycopyrrolate). The Hom Q175 mice had very blunted HR responses to NP (n = 9). While 
some of the Het Q175 (2 out of 6 animals) showed a greatly reduced response to the NP injection, 
the overall NP-response was not significantly different from WT. WT, wild-type, ATII, 
administration of angiotensin II. 

 

 



 

 

86  

 
 
Figure 2. 5 

Echocardiogram indicates structural and functional differences early in the disease progression. 
Structural (A) and functional (B, C) parameters of the heart from WT (n = 8) and BACHD (n = 9) 
mice were measured from 3 to 15 mo of age. The age-dependent progression in heart dysfunction 
of Q175 mice was evaluated in a separate cohort of mice using echocardiograms starting at 3 
months of age and progressing to 12 months (WT, n = 12; Het, n = 10; Hom, n = 10). Both cardiac 
structural (Lv mass (D), EDD, ESD) and functional (Lv % FS, E/A ratio, and Lv EF (E)) deficits 
were observed and exhibited significant effects of age and genotype (Table 3). ^ P<0.05 within 
WT vs. 3 mo. # P<0.05 within BACHD vs. 3 mo. * P<0.05 for genotypic differences.  
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Figure 2. 6 

Histological analyses indicated heart pathology in the Q175 mouse. (A) Representative images of 
Masson’s trichrome stained hearts of each genotype showing that the gross dimensions of the Hom 
Q175 heart were strikingly smaller. (B) Mutants had reduced cardiomyocyte size as well as altered 
cytoarchitecture as shown by WGA staining. (C) Masson’s trichrome stain revealed greatly 
increased incidence of fibrotic lesions in Q175 Hom hearts. (D) These infarcts were present in 
each genotype, but were more common (about 3–4 folds) in both ventricles and anteriorly in the 
interventricular septum of the Hom Q175. Please see Table 5 and 6 for the results of statistical 
tests. Data are shown as the Mean ± SEM (n = 5–6 animals/genotype). *P < 0.05. The comparison 
between the number of infarcts was made with Kruskal–Wallis ANOVA followed by Dunn’s 
Multiple Comparison Test. 
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Figure 2. 7 

Histological analysis finds evidence of fibrosis and hypertrophy in the BACHD hearts. Examples 
of Masson’s Trichrome stained heart sections from 15 mo old WT and BACHD mice (A). 
Quantification of fibrosis by measuring the integrated density of fibrotic tissue and divided by 
tissue area detected significantly increased areas of fibrosis in BACHD mice (B). Examples of 
hematoxylin and eosin (H&E) stained heart sections from 15 mo old WT and BACHD mice (C). 
Morphometry measurements comparing heart weight relative to body weight between 15 mo old 
WT and BACHD mice (D). * P<0.05 for genotypic differences. 
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Figure 3. 1 

Genetic reduction of mHTT expression in the heart of BACHD mice. The full-length mHTT with 
two loxP sites enables cell specific reduction of mHTT using Cre-crecombinase (Cre). Mice 
hemizygous for the BACHD transgene will be crossed to mice hemizygous for the cardiomyocyte-
specific Myh6-Cre transgene. Approximately 25% of the offspring will be double transgenic 
(BACHD;Myh6-Cre), BMYO, with the mHtt floxed out in the cardiomyocytes.  
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Figure 3. 2 

Confirmation of the genetic reduction of human mHTT mRNA and protein expression in the heart 
in BMYO mice. (A) Quantification of mHtt expression levels normalized to GAPDH in the 
striatum and heart in WT, BACHD, and BMYO mice (n=3 per genotype; *P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001, one-way ANOVA). (B) Western blot with the expanded polyQ 
specific antibody, 1C2, to detect mHTT protein levels in WT, BACHD, and BMYO mice. GAPDH 
was used as control. The following quantification shows the mHTT protein levels normalized to 
GAPDH in the striatum and heart of WT, BACHD, and BMYO mice.  n=3 per genotype; *P<0.05, 
one-way ANOVA.  
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Figure 3. 3 

Left ventricular (LV) ejection fraction and diastolic function were improved in BMYO mice. The 
ratio of early to late diastolic filling (E/A ratio). n=8 per genotype; *P<0.05 vs WT.  
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Figure 3. 4 

Hypertrophy and fibrosis markers were lower in BMYO hearts compared with BACHD hearts. 
The gene expression is normalized to GAPDH. n=3-4 per genotype; Age=6mo. *P<0.05.  
 

 
 
 

 



 

 

93  

 
 
 
Figure 3. 5 

Masson’s Trichrome staining showing fibrosis in the hearts of the BACHD and BMYO mice.  n=3 
per genotype. Age=6mo. Scale bar = 200 µm.  
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Figure 3. 6 

Activity, rhythmic power, and grip strength are improved in BMYO mice. The averaged level of 
hourly cage activity (au/hr). The strength of the activity rhythm is indicated by the power (% 
variance) of the χ2 periodogram analysis. Grip strength (N/g) is maximal strength divided by the 
animal’s body weight. Total errors indicate the total number of errors made by an animal on the 
challenging beam test. Age = 6mo, n=5-8 per genotype; *P<0.05 vs WT.  
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Figure Appendix 1 

Relative gene expression of core clock, clock driven transcription factors, and metabolism genes 
in the hearts of the four groups of mice at ZT 2, 6, 10, 14, 18, and 22.  The relative expression is 
normalized to GAPDH (n=4 per group for each time point). The four groups are WT ad lib (WA), 
WT TRF (WT), BACHD ad lib (BA), and BACHD TRF (BT). Age = 6 mo.   
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Table 1 

Electrocardiographic parameters in young Q175 and WT animals held in a LD cycle. ECG values 
were continuously measured and placed into hourly bins  

One-way ANOVA was used to assess differences between the genotypes in the day or night. A 
paired t-test was used to access day/night differences within a genotype.  
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Table 2 

Echocardiographic parameters in Q175 and WT animals beginning at 3 mo of age. 

Two-dimensional, M-mode echocardiography and spectral Doppler images enabled measurement 
of heart dimension and function including Left ventricle mass (Lv mass), end-diastolic dimension 
(EDD), end-systolic dimension (ESD), posterior wall thickness (PWT), ventricular septal 
thickness (VST), aorta ejection time (Ao-ET), ratio of the early (E) to late (A) ventricular filling 
velocities (E/A ratio), fractional shortening (FS%), Lv Ejection Fraction (Lv EF).  

1 P < 0.05 significant difference compared to WT.  
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Table 3 

Two-way ANOVA was used to determine whether each of the echocardiographic parameters 
measured in Q175 and WT mice were significantly different. 

Genotype and age were the two factors. Measurements were made when the mice were 3, 6, 9, 
and 12 months of age.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lv mass&
(mg) EDD&(mm) ESD&(mm) Ao!ET&(ms) FS&(%) Lv EF

Genotype F = 23.1,
P < 0.001

F = 34.1,
P < 0.001

F = 6.1,
P = 0.003

F = 21.6,
P < 0.001

F = 8.6,
P < 0.001

F = 10.6,
P < 0.001

Age F = 6.4,
P < 0.001

F = 6.6,
P < 0.001

F = 0.2,
P = 0.887

F = 3.1,
P = 0.031

F = 4.5,
P = 0.005

F = 5.0,
P = 0.003

Interaction F = 3.2,
P = 0.006

F = 2.9,
P = 0.01

F = 0.5,
P = 0.780

F = 0.5,
P = 0.787

F = 1.6,
P = 0.156

F = 1.5,
P = 0.197
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Table 4 

Echocardiographic parameters in BACHD and WT animals beginning at 3 mo of age. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

101  

Table 5 

Morphological measurements in WT and Q175 mutants. were performed in heart coronal sections 
at the mid-ventricular level chosen based on the visual presence of papillary muscles in the left 
ventricle (Lv). 

Since the Lv were not perfectly round, we refer to the lumen measurements as 
circumference/perimeter. Values are presented as the Mean ± SEM. WT, n = 5; Het Q175, n = 6; 
Hom Q175, n = 6).  

• a P < 0.001 versus WT.  
• b P < 0.05.  
• c P < 0.005.  
• d P < 0.0005 versus WT.  
• e P < 0.05.  
• f P < 0.005 versus Het one-way ANOVA followed by Bonferroni's multiple comparison test.  

 
 

WT Het&Q175 Hom Q175
One!way&
ANOVA

Body&Weight&
(g) 28 ± 0.7 26 ± 0.4 21 ± 0.4a F = 64.5,&

P < 0.001&
Heart&
Weight&(mg) 153 ± 4 151 ± 1 125 ± 2a H = 19.4,&

P < 0.001&
Total&heart&
cross&
sectional&
area&(mm2)&

31.2 ±1.3 27.1 ±1.7 20.7 ±0.7d,f F = 16L&
P = 0.0002&

Circumferen
ce/perimeter&
(mm)

20.0 ±0.3 18.8 ±0.6 17.2 ±0.5c F = 7.9L&
P = 0.0049&

Interventricul
ar&septum&
thickness&
(mm)

1.1 ± 0.1 1.1 ± 0.1 1.0 ± 0.06 F = 0.6,&
P = 0.561&

Lv&thickness&
(mm) 1.09 ±0.06 1.09 ±0.07 1.12 ±0.05 F = 0.08,&

P = 0.917&
Lv&lumen&
cross&
sectional&
area&(mm2)&

8.9 ± 1.0 6.8 ± 0.&6 4.0 ± 0.3d,e F = 13.7,&
P = 0.0005&

Lv&lumen&
circumferenc
e/perimeter&
(mm)

10.7 ±0.6 10.0 ±0.6 8.2 ± 0.5b F = 5.26L&
P = 0.0198
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Table 6 

Histological measurements of hearts of 15 mo WT and BACHD mice. 
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Table 7 

Echocardiographic parameters in BACHD, BMYO and WT animals at 3 mo and 6 mo of age. 
Two-dimensional, M-mode echocardiography and spectral Doppler images enabled 
measurement of heart dimension and function including Left ventricle mass (Lv mass), end-
diastolic dimension (EDD), end-systolic dimension (ESD), posterior wall thickness (PWT), 
ventricular septal thickness (VST), ratio of the early (E) to late (A) ventricular filling velocities 
(E/A ratio), fractional shortening (FS%), Lv Ejection Fraction (Lv EF), heart rate (HR). One-way 
ANOVA was used to evaluate the possible significance of the findings. If normality or equal 
variance tests failed, then a Kruskal-Wallis one way ANVOA on ranks was used instead.   
 

 BACHD BMYO WT Stats 
Age (mo) 3 3 3  

Lv mass (mg) 62 ± 6 64 ± 4 54 ± 4 F(2) = 1.784; P = 0.193 
EDD (mm) 4.0 ± 0.1 4.0 ± 0.1 4.0 ± 0.1 F(2) = 0.023; P = 0.977 
ESD (mm) 2.6 ± 0.1 2.8 ± 0.2 2.5 ± 0.2 F(2) = 1.111; P = 0.348 
Ao-ET (ms) 58 ± 1 59 ± 1 55 ± 2 F(2) = 3.668; P = 0.043 

FS (%) 30 ± 2 35 ± 1 37 ± 2 F(2) = 3.186; P = 0.062 
E/A 1.9 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 F(2) = 0.027; P = 0.973 

Lv EF 63 ± 2 68 ± 1 71 ± 3 F(2) = 3.952; P = 0.035 
HR (bpm) 459 ± 10 481 ± 10 514 ± 23 H(2) =3.126; P = 0.209 

     
Age (mo) 6 6 6  

Lv mass (mg) 66 ± 4 68 ± 2 55 ± 2 F(2) = 5.210; P = 0.015 
EDD (mm) 4.2 ± 0.1 4.2 ± 0.1 4.1 ± 0.1 F(2) = 2.149; P = 0.142 
ESD (mm) 2.6 ± 0.1 2.8 ± 0.2 2.5 ± 0.2 F(2) = 1.111; P = 0.348 
Ao-ET (ms) 53 ± 2 51 ± 2 54 ± 2 F(2) = 0.647; P = 0.534 

FS (%) 30 ± 2 35 ± 1 37 ± 2 F(2) = 3.186; P = 0.062 
E/A 1.9 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 F(2) = 0.027; P = 0.973 

Lv EF 63 ± 2 69 ± 2 71 ± 2 F(2) = 6.689; P = 0.006 
HR (bpm) 457 ± 8 512 ± 10 494 ± 12 H(2) = 6.743; P = 0.034 
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Table 8 

Quantitative real-time PCR (RT-qPCR) measurements of gene expression in the hearts of 
BACHD, BMYO and WT animals at 6 mo of age. Primers targeted collagen 1a (Col1a), myosin 
heavy chain, α isoform (Myh6), ventricular/slow myosin heavy chain isoform (Myh7), MYH7 
genecardiac sarcomeric genes, Myh6 and Myh7, the GATA4 transcription factor (GATA4), and 
brain natriuretic peptide (BNP).  In each case, expression was normalized to the expression of 
GAPDH. One-way ANOVA was used to evaluate the possible significance of the findings. If 
normality or equal variance tests failed, then a Kruskal-Wallis one way ANVOA on ranks was 
used instead.   

 BACHD BMYO WT Stats 

Col1a 0.0156 ± 
0.005 

0.0031 ± 
0.003 

0.0002 ± 
0.0001 F(2) = 6.410; P = 0.026 

Myh6 1.179 ± 
0.254 

0.185 ± 
0.118 

0.027 ± 
0.0.010 F(2) = 15.245; P = 0.003 

Myh7 0.020 ± 
0.012 

0.005 ± 
0.003 

0.001 ± 
0.0003 F(2) = 2.095; P = 0.194 

GATA4 0.0011 ± 
0.0003 

0.00001 ± 
0.00004 

0.00002 ± 
0.000006 H(2) = 7.318; P = 0.004 

BNP 0.006 ± 
0.002 

0.003 ± 
0.0003 

0.002 ± 
0.0003 H(2) = 6.745; P = 0.010 
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Table 9 

Behavioral measurements of motor function from BACHD, BMYO and WT animals at 6 mo of 
age. Infrared monitors were used to measure total cage activity over a 10-day duration. The 
average activity levels during a 24 hr cycle are reported below.  In addition, the strength of 
diurnal rhythms in cage activity were assessed using periodogram and the results reported as 
power (% variation).  Maximal forelimb grip strength was measured by a meter during the night 
and normalize to body weight.  Finally, performance on a challenging beam was measured and 
the number of errors (mis-steps) are shown below. One-way ANOVA was used to evaluate the 
possible significance of the findings. If normality or equal variance tests failed, then a Kruskal-
Wallis one way ANVOA on ranks was used instead. Age = 6 mo.    

 

 BACHD BMYO WT Stats 
Activity (a.u) 

per 24 hrs 2504 ± 224 2884 ± 
227 4741 ± 317 F(2) = 21.440; P < 0.001 

Power (% 
variation) 26.0 ± 0.9 27.0 ± 1.9 35.8 ± 1.1 F(2) = 17.053; P < 0.001 

Grip strength 
(N/g) 

0.083 ± 
0.003 

0.090 ± 
0.002 

0.097 ± 
0.003 F(2) = 5.323; P = 0.013 

Challenging 
beam (errors) 20.2 ± 2.1 27.0 ± 2.4 16.9 ± 2.1 H(2) = 7.802; P = 0.020 
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