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Abstract

The informR package greatly simplifies the analysis of complex event histories in 𝖱 by providing 

user friendly tools to build sufficient statistics for the relevent package. Historically, building 

sufficient statistics to model event sequences (of the form a→b) using the egocentric 

generalization of Butts’ (2008) relational event framework for modeling social action has been 

cumbersome. The informR package simplifies the construction of the complex list of arrays 

needed by the rem() model fitting for a variety of cases involving egocentric event data, multiple 

event types, and/or support constraints. This paper introduces these tools using examples from real 

data extracted from the American Time Use Survey.
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1. Introduction

The relational event framework (Butts 2008) is an approach to modeling complex 

interaction sequences (e.g., among social actors, or between actors and their environments) 

as discrete events in continuous time. The relevent package (Butts 2015) for 𝖱 (𝖱 Core 

Team 2014) provides one implementation of this framework, with specialized functionality 

for easily fitting dyadic relational event models, as well as a general purpose function, 

rem(), that supports a broader class of models (including models with multiple event types, 

endogenous support constraints, etc.). Unfortunately, rem() requires the use of user-

generated inputs that can be quite difficult to construct, historically limiting its usefulness. 

The informR package (Marcum 2015) for 𝖱 contains a set of functions that assist in the 

creation and manipulation of sufficient statistics to be modeled using the rem() function, 

thereby broadening the class of models that can be easily fit using relevent. In the simplest 

case, and given some data, the package creates the two objects required by the rem() 
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regression function for ego-centric relational event model fitting: eventlist and 

statslist. These two objects can be complex and non-intuitive to create without 

specialized code; informR greatly simplifies the procedure. The package allows users to 

specify sufficient statistics for general families of event sequences (or patterns, called s-

forms as introduced below) to include in statslists. Additionally, tools for adding and 

dropping covariates from statslists are included in the package. This paper illustrates 

how to use the informR package using included data from a subset of the US Department of 

Labor Statistics’ American Time Use Survey. Package informR is available from the 

Comprehensive 𝖱 Archive Network (CRAN) at http://CRAN.R-project.org/

package=informR.

While informR is intended to interface with relevent, we note that various other packages 

for 𝖱 support event modeling through survival analysis (often called event history analysis 

in the social sciences, or failure/reliability analysis in engineering fields; Blossfeld and 

Rohwer 2002). Mills (2011) provides a good introduction to those packages and methods 

involving the estimation of event hazards for, e.g., the timing of death or the likelihood of 

marrying by a particular age. Additionally, in the CRAN Task View on “Survival Analysis” 

(Allignol and Latouche 2014) a list is maintained that describes packages for the analysis of 

time to event data. Packages such as survival (Therneau and Grambsch 2000; Therneau 

2014) and muhaz (Gentleman 2010) can be used to fit closely related models, although they 

do not currently support the full range of models described e.g., by Butts (2008). Users of 

these packages may be able to employ informR to help generate inputs for their associated 

functions as well, although we do not explore these potential applications in this paper.

1.1. The relational event modeling framework

Before discussing the use of the informR package, it is useful to briey review the relational 

event modeling framework. A relational event as discussed by Butts (2008) is a discrete 

event (taken to have zero duration in continuous time) in which some actor (e.g., person, 

organization, or other entity) directs some action towards some target (e.g., another person, a 

location or object, or even the actor him/her/itself).1 Events may be of distinct types, but are 

here treated as otherwise unvalued (though see e.g., Brandes, Lerner, and Snijders (2009) for 

valued extensions); the risk set of events at any given time point (a subset of the Cartesian 

product of the set of possible senders, possible receivers, and possible event types) may be 

fixed, or may itself evolve as a function of the past event history. These features make the 

relational event framework useful for modeling complex social dynamics (e.g., 

conversation, radio or email communication, or adversarial interactions) or behavioral 

sequences involving complex interactions between an individual and his or her environment 

(so-called “egocentric” relational events).

Most relational event modeling to date has focused on the case in which event hazards can 

be taken to be piecewise constant functions of sender, receiver, or higher-order covariates, 

and the past event history. The inputs to these functions are taken to represent factors that 

1By considering sets of individuals or objects to be valid senders or receivers one can likewise represent “hypergraphic” events 
involving multiple interactants; likewise, actions emitted by a sender having no well-defined target can be represented by adding a 
“null receiver” to the set. For an example of the former, see e.g., DuBois, Butts, McFarland, and Smyth (2013).
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enhance or inhibit the propensity for actors to take particular actions, as determined by their 

associated parameters. A typical development (per Butts 2008, pp. 159–166) is as follows. 

Let S be the set of all potential senders, R the set of all potential receivers, and C the set of 

all potential event types. A relational event a is defined as a tuple (s, r, c, t) ∈ S × R × C × ℝ, 

with the last element representing the time at which the event occurs. For notational 

convenience, we also define s(a) ∈ S, r(a) ∈ R, c(a) ∈ C, and τ (a) ∈ ℝ to be the event’s 

sender, receiver, type, and time (respectively). Let At = (a1, …, aM) be the set of all events to 

have occurred by time t (i.e., the event history at t); the set of possible (i.e., non-zero hazard) 

events at t is then designated by At) ⊆ S × R × C × {t}. The hazard of an arbitrary event, a, 

at time t is then parameterized as

(1)

(2)

where u is a p-vector of statistics, θ ∈ ℝp, and Xt is a set of covariates. In the piecewise 

constant model, it is assumed that hazards change only when events occur (hence λ does not 

depend directly on t), and hence Xt may likewise change only at realized events. The impact 

of this latter restriction may be easily relaxed by the introduction of exogenous events (not 

discussed in Butts 2008), as described below. We note that while the log-linear form is a 

natural choice for hazard modeling (as it guarantees non-negativity and allows coefficients 

to be interpreted in terms of logged rate multipliers), other functions can also be employed; 

since the relevent package supports only the log-linear case, this is our focus here.

Given the above formulation, the development of the likelihood for an observed event 

history is fairly straightforward. We extend the above-cited development only by the 

introduction of exogenous events, which are implemented in package relevent but were not 

discussed in the above paper. We assume that we observe an event history At over time 

interval [0, t), treating time 0 as the onset of risk for all potential events; for notational 

convenience, we define the null event a0 with τ (a0) = 0 to mark the onset of the observation 

period. In general, we model the event history as being the result of a continuous time event 

process in which the hazard of any potential event is given by Equation 1. Some events, 

however, may be considered exogenous, in the sense that (1) their hazards are assumed 

unrelated to the observed events, and (2) their hazards are not a function of θ. Exogenous 

events may represent the actions of environmental or other entities that affect (but are not 

affected by) the system under study, or they may be used as “book keeping” devices to 

model systems in which hazards change for reasons other than endogenous events. For 

instance, “clock events” that occur deterministically at fixed periods in time (e.g., every 

hour, day, etc.) can be used to model changes in hazards due to time period, and exogenous 

events can also be used to capture the impact of changes in covariates (i.e., Xt changing at 

times other than those associated with endogenous events). We here denote endogeneity via 

the indicator ε, such that ε(ai) = 1 if ai ∈ At is endogenous, and 0 otherwise. Subject to this 

minor extension, the joint likelihood of At under the above-described process becomes (per 

ibid., Equation 2)
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(3)

Butts (2008) also considers the case in which the temporal order of events is known, but the 

event times are not. The observed data likelihood of At here becomes a product of 

categorical distributions with outcome probabilities proportional to the event hazards. With 

the minor addition of exogenous events, this likelihood is given by (per ibid., Equation 3)

(4)

which depends only on the hazards of the potential and realized events (and not the 

interevent times). Note that, like Equation 3, the likelihood of Equation 4 depends upon the 

assumption of piecewise constant hazards.

The estimation function rem() in the relevent package, along with its dyadic-data cousin 

rem.dyad(), fits both ordinal and interval time relational event models (Butts 2015). As 

discussed below, the interval time likelihood model is fit by supplying data on event types 

and complete timing of events to rem() with timing argument timing = "interval", 

while the ordinal time model is fit by supplying only the ordered events with timing = 

"ordinal". The scope of the discussion here will cover how to construct model statistics 

and to format data in both cases using the informR toolkit.

As discussed in detail in subsequent sections, the basic model specification for rem() 

involves two arguments: the eventlist (a matrix, or list thereof, containing the observed 

event sequence in one column and, optionally, the timing information in another) and the 

statslist (a three dimensional – event number by event type by statistic – array, or list 

thereof, containing the sufficient statistics for the model). Package informR aids in the 

construction of these objects. The complete signature of rem() is documented as follows:

rem(eventlist, statslist, supplist = NULL, timing = c("ordinal",

  "interval"), estimator = c("BPM", "MLE", "BMCMC", "BSIR"),

  prior.param = list(mu = 0, sigma = 1000, nu = 4), mcmc.draws = 1500,

  mcmc.thin = 25, mcmc.burn = 2000, mcmc.chains = 3, mcmc.sd = 0.05,

  mcmc.ind.int = 50, mcmc.ind.sd = 10, sir.draws = 1000, sir.expand = 10,

  sir.nu = 4, verbose = FALSE).

As there are no “canned” sufficient statistics for the rem() model-fitting routine, users must 

supply their own properly formatted data structure to eventlist and array of sufficient 

statistics to statslist. The purpose of package informR is to simplify the construction of 
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the eventlist and statslist objects for a variety of egocentric relational event models, 

greatly reducing the difficulty of specifying and fitting such models in practice. The balance 

of the paper focuses on the informR tools, and how they may be used to assist with 

common modeling tasks of sequence analysis in the REM framework.

2. Getting started

The informR package can be downloaded and installed from CRAN; the package depends 

upon the abind (Plate and Heiberger 2011) and relevent packages for 𝖱, which can also be 

obtained from CRAN as of the time of this writing. Load the package in the usual way using 

library("informR"). The example data used in this paper is packaged in informR and 

can be loaded with data("atus80ord", package = "informR") and 

data("atus80int", package = "informR"), respectively for the ordinal and interval 

cases. The only individual level covariate included in this subset is the sex of the respondent 

(1 = Male).

The example data come from the pooled 2003–2008 American Time Use Survey (ATUS). 

The ATUS is a nationally representative sample of the non-institutionalized adult US 

population. The survey collects information on how people spend their time during a single 

randomly selected day. The type of each activity and its duration is recorded. The included 

subset represents event histories from respondents aged 80 and above. In addition to the 

activity variables, unique identifiers and respondent’s gender are also included in the subset. 

The two data.frames that hold the event history data differ in that atus80ord contains 

only sequences of activity spells and atus80int restructures each activity spell observation 

into two event types, a starting event and a stopping event. Thus, in atus80ord, the first 

informant’s (20030101031049) first activity spell is coded as Sleeping but in atus80int, 

this same activity spell is recorded as two observations Sleeping|START and Sleeping|

STOP and associated with event timing in the Time column. Naturally, nrow(atus80int) 

== 2 * nrow(atus80ord). There are 62,352 and 124,704 respective observations on 

3,430 individuals. To make this clear, consider the print output of the first five activity spells 

from the following code snippet:

R> library("informR")

R> data("atus80ord", package = "informR")

R> data("atus80int", package = "informR")

R> atus80ord[1:5, ]

                Activities       TUCASEID SEX

1348              Sleeping 20030101031049   2

1349                Eating 20030101031049   2

1350 Private personal care 20030101031049   2

1351  Household Production 20030101031049   2

1352                Eating 20030101031049   2
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R> atus80int[1:10, ]

                                      Events    Time       TUCASEID SEX

200301010310491               Sleeping|START       0 20030101031049   2

200301010310492                Sleeping|STOP     240 20030101031049   2

200301010310493                 Eating|START 240.001 20030101031049   2

200301010310494                  Eating|STOP     270 20030101031049   2

200301010310495  Private personal care|START 270.001 20030101031049   2

200301010310496   Private personal care|STOP     300 20030101031049   2

200301010310497   Household Production|START 300.001 20030101031049   2

200301010310498    Household Production|STOP     780 20030101031049   2

200301010310499                 Eating|START 780.001 20030101031049   2

2003010103104910                 Eating|STOP     810 20030101031049   2

The Time column of the atus80int data set records the time, in cumulative minutes, that 

the event took place in each respondent’s event history. The duration elapsed between each 

pair of “starting” and “stopping” events constitute a spell of that type of activity. Each 

“stopping” event is offset from the next starting event by 0.001 minutes, which enforces the 

“no simultaneous events” assumption of the relational event framework. For example, actor 

20030101031049 started sleeping at time 0, woke up 4 hours later (240/60), then she began 

to eat breakfast a fraction of a second later, which took about 30 minutes to eat etc.

Having summarized the structure of the example data, we next discuss how package 

informR can be used to construct sequence statistics for the rem() function. The first step 

is to create an eventlist object using the gen.evl() function. For ordinal time relational 

event models, the gen.evl() function takes two arguments: (1) eventlist, which is a 

two-column matrix or a data frame consisting of event observations in the first column and 

an event history grouping factor in the other (e.g., a unique informant id), and (2) an 

optional parameter called null.events which is a character vector of event types that 

should be treated as exogenous or otherwise not modeled directly. In this case, we are going 

to use the respondent id variable, TUCASEID, as the grouping factor and since there are no 

truly exogenous events in this data, we treat missing spell types (NA) as exogenous (i.e., for 

illustrative purposes only):

R> atus80ord[which(is.na(atus80ord[, "Activities"])), "Activities"] <-

+    "MISSING"

R> rawevents <- cbind(atus80ord$Activities, atus80ord$TUCASEID)

R> evls <- gen.evl(rawevents, null.events = "MISSING")

R> names(evls)

[1] "eventlist"   "event.key"   "null.events"

R> evls$eventlist[[1]]
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[1] 1 2 3 4 2 4 1

attr(,"char")

[1] "a" "b" "c" "d" "b" "d" "a"

R> evls$event.key

      id  event.type

 [1,] "a" "Sleeping"

 [2,] "b" "Eating"

 [3,] "c" "Private personal care"

 [4,] "d" "Household Production"

 [5,] "e" "Travel"

 [6,] "f" "Communication"

 [7,] "g" "Leisure"

 [8,] "h" "Personal Care"

 [9,] "i" "MISSING"

[10,] "j" "Waiting"

[11,] "k" "Volunteering"

[12,] "l" "Caregiving"

[13,] "m" "Education"

[14,] "n" "Work Production"

R> evls$null.events

[1] "MISSING"

The resulting object evls stores the eventlist in evls$eventlist. Inevls$eventlist 

each element is a vector of numeric unique event type ids, which have a corresponding 

alphabetic attribute that is used in regular expression matching in other methods – the 

character vector attribute of the first eventlist can be obtained using attr(evls

$eventlist[[1]], "char"). The package currently supports event histories with 52 

event types or less. The event types are mapped to their respective alphabetic ids in evls

$event.key. Because we passed a vector to null.events in gen.evl(), the evls object 

contains a list of the exogenous events in evls$null.events. Correspondingly, any event 

type listed in null.events is assigned a numeric id value of 0 in the eventlist for 

consistency with how rem() handles exogenous events.2

Because event histories with fewer than two events cannot identify standard relational event 

models, any event history in the data having fewer than two events is dropped and a warning 

is issued. Additionally, gen.evl() can be used to build eventlist objects for the interval 

time relational event model; the only difference is that eventlist is passed as a three-

column matrix where the first two columns index the events and the temporal information, 

2Exogenous events are not directly modeled but may affect the sufficient statistics of an event sequence, as described in Section 1.1. 
See the documentation in help("rem") for additional details.
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respectively, and the third column indexes the event history grouping factor. Finally, as 

gen.evl() conditions on the observed event types to generate the event key, users may 

need to append non-observed yet potential events to it after the fact. We revisit both of these 

latter points below.

With the eventlist stored in evls$eventlist, we can create the second object required 

to fit a model using rem(), the statslist. A simple statslist object will store the 

intercept sufficient statistics for the egocentric relational event model. This is accomplished 

through the gen.intercepts() function. This function takes four arguments, evl, 

basecat, type and contr. The evl argument expects an object passed from 

gen.evl(), as above. The basecat parameter allows a user to specify which event type 

should be treated as the baseline category for the ordinal relational event model – if not 

specified, the default behavior is to take the first event type in alphabetic order. The type 

argument is used to indicate whether effects specified within the statslist are to be 

considered “global” (type = 1) or “local” (type = 2) by rem(); global effects are 

assumed to be homogeneous (i.e., pooled) across event histories, while local effects are 

allowed to vary for each event history. The default behavior is to assign all statistics to be 

global. Though not used in this example, the logical argument contr is used to indicate 

whether or not the resulting statslist should include contrasts by dropping a baseline 

category. When generating statistics for the interval relational event model, this parameter 

should usually be passed as contr = FALSE – which also overrides any value passed to 

basecat.

R> alpha.ints <- gen.intercepts(evls, basecat = "Sleeping")

R> length(alpha.ints)

[1] 3430

R> dim(alpha.ints[[1]][[1]])

[1]  7 13 12

R> alpha.ints[[1]][[1]][1, , ]

                     Eating Private personal care Household Production Travel

Sleeping                  0                     0                    0      0

Eating                    1                     0                    0      0

Private personal care     0                     1                    0      0

Household Production      0                     0                    1      0

Travel                    0                     0                    0      1

Communication             0                     0                    0      0

Leisure                   0                     0                    0      0

Personal Care             0                     0                    0      0

Waiting                   0                     0                    0      0

Marcum and Butts Page 8

J Stat Softw. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Volunteering              0                     0                    0      0

Caregiving                0                     0                    0      0

Education                 0                     0                    0      0

Work Production           0                     0                    0      0

                     Communication Leisure Personal Care Waiting Volunteering

Sleeping                         0       0             0       0            0

Eating                           0       0             0       0            0

Private personal care            0       0             0       0            0

Household Production             0       0             0       0            0

Travel                           0       0             0       0            0

Communication                    1       0             0       0            0

Leisure                          0       1             0       0            0

Personal Care                    0       0             1       0            0

Waiting                          0       0             0       1            0

Volunteering                     0       0             0       0            1

Caregiving                       0       0             0       0            0

Education                        0       0             0       0            0

Work Production                  0       0             0       0            0

                      Caregiving Education Work Production

Sleeping                       0         0               0

Eating                         0         0               0

Private personal care          0         0               0

Household Production           0         0               0

Travel                         0         0               0

Communication                  0         0               0

Leisure                        0         0               0

Personal Care                  0         0               0

Waiting                        0         0               0

Volunteering                   0         0               0

Caregiving                     1         0               0

Education                      0         1               0

Work Production                0         0               1

Once both an eventlist and a statslist is generated, we can fit a baseline egocentric 

discrete relational event model using rem(). In this example, we employ the Bayesian 

posterior mode (BPM) estimator, along with a weakly informative independent Student’s t 

prior:

R> alpha.fit <- rem(eventlist = evls$eventlist, statslist = alpha.ints,

+    estimator = "BPM", prior.param = list(mu = 0, sigma = 100 , nu = 4))

R> summary(alpha.fit)

Egocentric Relational Event Model (Ordinal Likelihood)

Marcum and Butts Page 9

J Stat Softw. Author manuscript; available in PMC 2015 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



                       Post.Mode    Post.SD  Z value  Pr(>|z|)

Eating                −0.0524425  0.0156947  −3.3414 0.0008335 ***

Private personal care −0.6843110  0.0189127 −36.1827 < 2.2e-16 ***

Household Production   0.3306130  0.0143563  23.0292 < 2.2e-16 ***

Travel                 0.0078847  0.0154572   0.5101 0.6099800

Communication         −0.7191476  0.0191342 −37.5844 < 2.2e-16 ***

Leisure                0.5687237  0.0137056  41.4956 < 2.2e-16 ***

Personal Care         −1.8716218  0.0299893 −62.4097 < 2.2e-16 ***

Waiting               −3.6080413  0.0674144 −53.5203 < 2.2e-16 ***

Volunteering          −3.5948544  0.0669831 −53.6681 < 2.2e-16 ***

Caregiving            −3.3621502  0.0598342 −56.1911 < 2.2e-16 ***

Education             −5.0212337  0.1352830 −37.1165 < 2.2e-16 ***

Work Production       −3.7153701  0.0710354 −52.3031 < 2.2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 319859.4 on 61537 degrees of freedom

Residual deviance: 245959.8 on 61525 degrees of freedom

        Chi-square: 73899.6 on 12 degrees of freedom, asymptotic p-value 0

AIC: 245983.8 AICC: 245983.9 BIC: 246092.2

Log posterior: −124191.7

Prior parameters: mu=0 sigma=100 nu=4

The Bayesian“p values” here can be interpreted as two times the posterior probability that 

the true value of the associated parameter has a sign opposite that of the posterior mode 

(under an asymptotic z-approximation); this is equivalent to the result that would be 

obtained via a standard (frequentist) two-sided z-test of the hypothesis that the parameter 

value is zero, under the assumption that the posterior standard deviation is the standard 

error.

The results of this crude baseline model suggest that all endogenous events except 

Household Production and Leisure are significantly less likely to occur than Sleeping, and 

that Travel is not significantly more likely to occur than Sleeping. Note that, in the ordinal 

timing case of the egocentric relational event model, an intercept-only model such as this is 

equivalent to a series of Poisson models, and the sample means are approximately equal to 

the BPM estimates in this case:

R> pois.mle <- log(prop.table(table(atus80ord$Activities))[-c(7, 10)] /

+    prop.table(table(atus80ord$Activities))[10])

R> round(cbind(BPM = alpha.fit$coef[order(names(alpha.fit$coef))],

+    pois.mle), 4)

                          BPM pois.mle

Caregiving            −3.3622  −3.3622

Communication         −0.7191  −0.7191
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Eating                −0.0524  −0.0524

Education             −5.0212  −5.0212

Household Production   0.3306   0.3306

Leisure                0.5687   0.5687

Personal Care         −1.8716  −1.8716

Private personal care −0.6843  −0.6843

Travel                 0.0079   0.0079

Volunteering          −3.5949  −3.5949

Waiting               −3.6080  −3.6080

Work Production       −3.7154  −3.7154

3. Sequence statistics

While intercept-only models are interesting, the real strength of the informR tools comes 

from their ability to generate sufficient statistics to model complex event sequences using 

rem(). Here, we introduce the term s-form (or “sequence form”) to describe canonical 

sequences of events that we wish to model. Each s-form has a prefix and suffix. The prefix 

may consist of any combination of valid event types and represents the event sequence that 

precedes an event to be predicted. Correspondingly, the suffix should be a single event type 

representing the event to be predicted by the preceding events of the prefix. The suffix is 

always the final event type in the s-form framework.

For example, a simple s-form might consist of the event sequence a→b→c, which is read as 

“event a leads to event b which predicts event c” – or, less deterministically, “event a 

followed by event b predicts event c” Here, the prefix is “a→b” and the suffix is event “c.” 

As discussed below, it is possible to parameterize s-forms in several different ways using 

package informR. The informR package uses simple regular expressions (regex) based on 

the alphabetic ids mapped to the event types in the event.key element in an eventlist 

object to represent s-forms. Two special regex operators are permitted in s-form expressions: 

the “|” character (alternation operator) and the “+” character (repetition operator) (Friedl 

2006, pg. 18). The | operator is used to differentiate between two possible event paths and 

the + operator is used to indicate repetition, or persistence, of the preceding event. A single 

+ operator may be nested within an | statement (see Section 3.1 on complex sequences, 

below, for example code) but nested | statements are not currently supported. The columns 

of Table 1 respectively report various useful canonical s-forms, their corresponding regex 

form, and their definitions. Building sufficient statistics using the s-form framework is 

accomplished through the functions gen.sformlist() and glb.sformlist(). The first 

function, gen.sformlist(), can be used to construct statistics for specific sequences. For 

example, digram and trigram s-forms (e.g, a→b and a→b→c) are easily constructed using 

this function. The second function, glb.sformlist(), pools multiple s-form regular 

expressions into a single statistic. This is particularly handy for modeling, say, a class of 

behaviors that is characterized by multiple s-forms sharing a common feature. Both 

functions are wrappers for an internal function, gen.sform(), which has limited 

functionality to the user. The mandatory arguments for gen.sformlist are: evl, an 

eventlist object, and sforms, a character vector of regex s-forms. The mandatory arguments 
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for glb.sformlist are: evl, an eventlist object, sforms, a list of character vectors of 

regex s-forms, and new.names, which is a character vector of variable names that has the 

same length as sforms. Additional optional arguments for both functions include: cond = 

FALSE, interval = FALSE, and warn = TRUE, which I will discuss below. Using the 

examples provided in Table 1, generating sufficient statistics for modeling inertial (or 

persistence) effects of the endogenous events is done by:

R> a1 <- paste(evls$event.key[−9, 1], evls$event.key[−9, 1], sep = "")

R> beta.sforms <- gen.sformlist(evls, a1)

The beta.sforms object is a list of three dimensional arrays, the length of which is equal 

to the number of valid event histories in the dataset (i.e., the length of evls$eventlist). 

Each element of beta.sforms consists of an i, j, k array where i indexes the event, j 

indexes the event type, and k indexes the sufficient statistic to a corresponding element 

passed to gen.sformlist by sforms. Examining the first event of the first element of 

beta.sforms reveals the structure of the output:

R> beta.sforms[[1]][1, , ]

  aa bb cc dd ee ff gg hh jj kk ll mm nn

a  0  0  0  0  0  0  0  0  0  0  0  0  0

b  0  0  0  0  0  0  0  0  0  0  0  0  0

c  0  0  0  0  0  0  0  0  0  0  0  0  0

d  0  0  0  0  0  0  0  0  0  0  0  0  0

e  0  0  0  0  0  0  0  0  0  0  0  0  0

f  0  0  0  0  0  0  0  0  0  0  0  0  0

g  0  0  0  0  0  0  0  0  0  0  0  0  0

h  0  0  0  0  0  0  0  0  0  0  0  0  0

j  0  0  0  0  0  0  0  0  0  0  0  0  0

k  0  0  0  0  0  0  0  0  0  0  0  0  0

l  0  0  0  0  0  0  0  0  0  0  0  0  0

m  0  0  0  0  0  0  0  0  0  0  0  0  0

n  0  0  0  0  0  0  0  0  0  0  0  0  0

which shows that the row and column labels of each event matrix correspond to the 

alphabetic ids of the event types in event.key and their inertial s-forms, respectively. For 

completeness, it is useful to walk through the relationship between the inertial sufficient 

statistics and the event history. Let us take the first three events from the event history 

associated with atus80ord respondent “20030101033341” as our example.

R> evls$eventlist$"20030101033341"
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[1] 1 2 2 7 1

attr(,"char")

[1] "a" "b" "b" "g" "a"

R> sapply(attr(evls$eventlist$"20030101033341", "char")[1:3],

 sf2nms, event.key = evls$event.key)

         a          b          b

"Sleeping"   "Eating"   "Eating"

This subsequence consists of the actor sleeping followed by two instances of eating. The 

sf2nms() is a convenience function that substitutes the character representation of the 

event types with their respective names. The corresponding inertial s-forms for these two 

event types are a→a, b→b. These are located in the beta.sforms$"20030101033341" 

sformlist:

R> beta.sforms$"20030101033341"[1:4, , c("aa", "bb")]

, , aa

  a b c d e f g h j k l m n

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

, , bb

  a b c d e f g h j k l m n

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 0 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0 0 0 0 0

Thus, the inertial statistics relate back to the eventlist in the following way: the first event 

has alphabetic id “a”, so the “a” column in the next event row (row 2) is equal to 1 in the 

“aa” element of the array. Likewise, the second and third events have alphabetic id “b,” so 

the “b” column in the third and fourth rows are set equal to 1 in the “bb” element of the 

array. This is the general framework for the underlying statistic construction methods of the 

informR package.

To use the newly created sufficient statistics in a relational event model, the beta.sforms 

sformlist object needs to be appended to a statslist. This is easily done using the 

slbind() function, which takes an sformlist and a statslist in arguments 
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sformstats and statslist, respectively. Optionally, slbind() can “translate” the 

alphabetic ids back into event type names (i.e., from “bb” to “EatingEating”) if optional 

arguments new.names = TRUE and event.key = evls$event.key are passed to it. For 

convenience, the function sfl2statslist() can be used to directly convert an sformlist 

object to a statslist (i.e., without appending it to an already existing statslist as above), 

though name translation is not currently supported.

R> beta.ints <- slbind(beta.sforms, alpha.ints, new.names = TRUE,

+    event.key = evls$event.key)

The new statslist, beta.ints, can now be directly passed to rem():

R> beta.fit <- rem(evls$eventlist, beta.ints, estimator = "BPM",

+    prior.param = list(mu = 0, sigma = 100, nu = 4))$coef

R> round(cbind(beta.fit[13:25]), 4)

                                              [,1]

SleepingSleeping                           −1.0863

EatingEating                               −3.8336

Private personal carePrivate personal care −2.5093

Household ProductionHousehold Production   −0.0121

TravelTravel                               −0.3470

CommunicationCommunication                  0.4067

LeisureLeisure                             −0.1748

Personal CarePersonal Care                  0.3683

WaitingWaiting                              1.6504

VolunteeringVolunteering                    3.2567

CaregivingCaregiving                        3.2422

EducationEducation                         −8.3913

Work ProductionWork Production              2.9646

The inertial statistics suggest that, for the older US population, most spells of activity are not 

likely to be immediately repeated, net of the overall tendency for the event to occur at all. 

The exceptions, obviously, include communication, personal care, waiting, volunteering, 

caregiving, and work production. The conditional probabilities of each activity spell being 

followed by exactly the same type of activity spell can be derived in the usual way from 

Equation 4. Consider, for example, the conditional probability that a spell of communication 

is immediately followed by another spell of communication. Given that the most recent 

event was a communication event, only the CommunicationCommunication sequence 

term has a satisfied prefix and is hence active (adding 0.4067 to the log hazard of a 

Communication event). The conditional probability of the next event being a 

communication spell is then equal to the total hazard of a communication event (the baseline 

times the digram effect), divided by the total hazard of all events (the communication hazard 
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plus the baseline hazards for all other events). This can be computed for the above model as 

follows:

R> comComHaz <- exp(sum(beta.fit[c(5, 18)]))

R> allOthHaz <- exp(beta.fit[(1:12)[−5]])

R> comComHaz / sum(comComHaz + allOthHaz)

[1] 0.05074562

Hence, we predict an approximately 5% chance of the next event being a communication 

spell given a Communication event (small, but about 1.5 times the base rate for this spell 

type).

3.1. Constructing complex sequences

The inertial s-forms provide a relatively simple example of how to construct sequence 

statistics for rem(). Let us now consider a couple more complex cases using some 

gerontological theories about the older US population to motivate our statistics. For 

example, the older population is believed to have their sleep frequently interrupted by the 

need to use the bathroom or perform some other personal care activity, or interrupted in 

order to help another older person (usually a spouse) with similar needs (Barker and 

Mitteness 1988). These types of activities are captured in the data by “Private personal 

care”, “Personal Care”, and “Caregiving” spell types. Without loss of generality, we can use 

the | operator to combine information from the two slightly different personal care spell 

types in our s-form construction. Thus, we can model the likelihood of sleep being 

interrupted by personal care by using the s-form:

and the likelihood of sleep being interrupted by providing care with the s-form: 

We use the persistence + operator after the “l” in the latter s-form because the inertial effect 

of caregiving was very large and significant in the previously fit model (beta.fit, above), 

which gives us reason to suspect that if caregiving is going to interrupt sleep, it will do so as 

a sequence of caregiving spells rather than a single instance. Specifying the special operators 

causes gen.sformlist() to use a slower algorithm for identifying valid subsequences and 

a note is issued:

R> a2 <- c("a(c|h)a", "al+a")

R> gamma.sforms <- gen.sformlist(evls, a2)

Note:
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          a(c|h)a S-form(s) contains special regex syntax.

           Using slow search methods.

Note:

          al+a S-form(s) contains special regex syntax.

           Using slow search methods.

R> gamma.ints <- slbind(gamma.sforms, beta.ints, new.names = TRUE,

+    event.key = evls$event.key)

R> gamma.fit <- rem(evls$eventlist, gamma.ints, estimator = "BPM",

+    prior.param = list(mu = 0, sigma = 100, nu = 4))

R> summary(gamma.fit)

Egocentric Relational Event Model (Ordinal Likelihood)

                                   Post.Mode   Post.SD  Z value  Pr(>|z|)

Eating                              0.100907  0.016147   6.2495 4.118e-10 ***

Private personal care              −0.787081  0.019822 −39.7081 < 2.2e-16 ***

Household Production                0.339104  0.015493  21.8873 < 2.2e-16 ***

Travel                              0.052881  0.016301   3.2440  0.001179 **

Communication                      −0.746241  0.020027 −37.2617 < 2.2e-16 ***

Leisure                             0.616306  0.014958  41.2014 < 2.2e-16 ***

Personal Care                      −2.036929  0.030837 −66.0543 < 2.2e-16 ***

Waiting                            −3.621061  0.068077 −53.1903 < 2.2e-16 ***

Volunteering                       −3.672055  0.069781 −52.6227 < 2.2e-16 ***

Caregiving                         −3.432682  0.064196 −53.4723 < 2.2e-16 ***

Education                          −5.019067  0.135321 −37.0901 < 2.2e-16 ***

Work Production                    −3.766753  0.073064 −51.5542 < 2.2e-16 ***

SleepingSleeping                   −0.848855  0.066511 −12.7626 < 2.2e-16 ***

EatingEating                       −3.858526  0.189726 −20.3373 < 2.2e-16 ***

Private personal carePriva...      −2.27346   0.201444 −11.2858 < 2.2e-16 ***

Household ProductionHouseh...      −0.040021  0.027019  −1.4812  0.138548

TravelTravel                       −0.371463  0.038617  −9.6192 < 2.2e-16 ***

CommunicationCommunication          0.386483  0.058181   6.6428 3.078e-11 ***

LeisureLeisure                     −0.208772  0.023220  −8.9909 < 2.2e-16 ***

Personal CarePersonal Care          0.556270  0.171652   3.2407  0.001192 **

WaitingWaiting                      1.632468  0.508972   3.2074  0.001339 **

VolunteeringVolunteering            3.238798  0.255101  12.6961 < 2.2e-16 ***

CaregivingCaregiving                3.214235  0.211677  15.1846 < 2.2e-16 ***

EducationEducation                 −4.440779 38.358737  −0.1158  0.907835

Work ProductionWork Production      2.946673  0.318480   9.2523 < 2.2e-16 ***

Sleeping(Priv... |Pers... )Sleeping 1.215852  0.031546  38.5421 < 2.2e-16 ***

SleepingCaregiving+Sleeping        −0.370198 0.267511  −1.3839  0.166401

---
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Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 315678.6 on 61537 degrees of freedom

Residual deviance: 241397.7 on 61510 degrees of freedom

        Chi-square: 74280.92 on 27 degrees of freedom, asymptotic p-value 0

AIC: 241451.7 AICC: 241451.7 BIC: 241695.4

Log posterior: −123425.3

Prior parameters: mu=0 sigma=100 nu=4

The results suggest that, ceteris paribus, spells of sleep tend to be interrupted by personal 

care activities (β = 1.216***) but not by caregiving (β = −0.370n.s.). However, overall 

tendencies for sleep interruption to occur from any activity are unaccounted for in this 

model. To control for this, we could construct individual sufficient statistics for all possible 

trigrams (or, if theoretically meaningful, higher order sequences) and estimate their 

individual effects. Alternatively, we could pool those trigrams into a single sufficient 

statistic and save degrees of freedom. To accomplish this, use the glb.sformlist() 

function:

R> sleep.sfs <- paste("a", letters[2:14], "a", sep = "")

R> sleep.sforms <- glb.sformlist(evls, sforms = list(sleep.sfs),

+    new.names = "InterSleep")

R> sleep.ints <- slbind(sleep.sforms, gamma.ints)

R> sleep.fit <- rem(evls$eventlist, sleep.ints, estimator = "BPM",

+    prior.param = list(mu = 0, sigma = 100, nu = 4))

R> round(cbind(BPM = sleep.fit$coef, Z = sleep.fit$coef /

+    sleep.fit$sd)[26:28, ], 4)

                                                          BPM     Z

Sleeping(Private personal care|Personal Care)Sleeping  1.5334  44.7723

SleepingCaregiving+Sleeping                           −0.2575  −0.9647

InterSleep                                            −1.2908 −22.2002

Interestingly, the negative coefficient for the overall tendency for sleep interruption trigrams 

is negative (−1.291***), strongly suggesting that interruptions to sleep are not likely. That 

is, whatever happens following a spell of sleep is not likely to result in more sleeping. When 

sleep interruptions do occur, however, they are most likely to be the result of some personal 

care activity.

4. Additional s-form parametrizations

The preceding exercise demonstrates how the informR package can handle statslist 

construction of most combinations of canonical s-forms. For example, consider a relatively 

complex s-form:
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which contains both a persistence term and a divergence term preceding the suffix and 

which would be passed as “a + (b|c)d.” One exception to this is when an s-form contains 

more than one persistence term inside a divergence statement, such as:

To obtain a properly formed sufficient statistic for such cases, the best strategy is to write 

down each possible valid outcome of the s-form regex and pass them to glb.sformlist 

with the sform parameter. Using this s-form as an example, there are two possible paths 

from “a” to “d” that the internal gen.evl function can interpret. These are expressed by the 

following s-form regexes: “a(b + |c)d” and “a(b|c+)d.”

R> tmp.sforms <- glb.sformlist(evls, list(c("a(b+|c)d", "a(b|c+)d")),

+    new.names = "a(b+|c+)d")

 Note:

          a(b+|c)d S-form(s) contains special regex syntax.

           Using slow search methods.

 Note:

          a(b|c+)d S-form(s) contains special regex syntax.

           Using slow search methods.

R> evls$eventlist[[1]]

[1] 1 2 3 4 2 4 1

attr(,"char")

[1] "a" "b" "c" "d" "b" "d" "a"

Examine the sformlist output that corresponds with the “a(b + |c+)d” s-form:

R> tmp.sforms[[1]]

, , a(b+|c+)d

  a b c d e f g h j k l m n
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1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 1 0 0 0 0 0 0 0 0 0 0

3 0 1 0 1 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0

From the example output, we see that the first three events in the event history are “a”, “b”, 

“c” (corresponding to spells of sleeping, eating, then personal care activities). This selected 

sub-sequence of the event history, not coincidentally, fulfills one of the many possible 

outcomes from the complex s-form that we specified. Following our prior discussion on the 

relationship between the s-form, the event history, and the statslist, we can see that since “a” 

occurs the sufficient statistic for the s-form predicts that “b” or “c” will happen next and 

both respective columns are incremented in the second event row of the statslist. The second 

event is “b”, and since we predict at least one “b” with the “+” character in the s-form, both 

“b” and the suffix event “d” columns are incremented in the third event row. Event “c” is no 

longer a predicted outcome because “c” did not occur after “a.” Recall that there may be 

more than one way to specify s-form regexes. Here, we could have achieved the same result 

with c("ab+d", "ac+d") in the sform parameter.

Creative use of the above strategy may provide a work-around for many cases that are not 

natively supported by package informR, such as s-forms with nested disjunctions.

4.1. Conditioning out the prefix

The default settings of gen.sformlist() and glb.sformlist() produce sufficient 

statistics that allow the model to inuence the hazards of each non-initial element in the s-

form, given what has happened up to that point in the event history. For example, an s-form 

term a→b→c will add its corresponding parameter value to the hazard of b given that a has 

just transpired and to the hazard of c given that a→b has just transpired. Thus, this term’s 

contribution to the likelihood of the event history grows larger as events of a occur and the 

subsequence of events a→b occur. For certain applications, however, it is useful to estimate 

only the hazard of the suffix event given the preceding events (i.e., without realizing 

contributions to the likelihood from any prefix elements). To accomplish this, set cond = 

TRUE in gen.sformlist() and glb.sformlist().

The names of the s-forms in the output will be slightly different when using 

gen.sformlist with cond = TRUE as the prefix is enveloped between parentheses to 

indicate a conditional s-form. Here is an example comparing the a→b→c s-form with and 

without the prefix contributions to the likelihood:

R> abc.sform <- gen.sformlist(evls, c("abc"), cond = FALSE)

R> abc.cond.sform <- gen.sformlist(evls, c("abc"), cond = TRUE)

R> abc.sform[[1]]
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, , abc

  a b c d e f g h j k l m n

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0

R> abc.cond.sform[[1]]

, , (ab)c

  a b c d e f g h j k l m n

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0

It should be clear that, in the case of simple digrams, there is no distinction between a→b 

and (a)→b because only the hazard of the suffix event is affected in both cases. By contrast, 

a→b→c and (a→b)→c, are different: specifically, the former term is equivalent to the 

combination of terms (a)→b and (a→b)→c with the paramaters for the latter constrained to 

be equal. Unconditional s-forms are thus a parsimonious way to capture the tendency for a 

given chain of events to take place, while conditional s-forms allow for the specification of 

terms that affect only the end of a complex event sequence.

4.2. Modifying statslists

The above examples illustrate how easy it is to build complex statslists using the 

informR package, including how multiple statslist models may be combined using the 

slbind() function. This section demonstrates how to modify statslists to create new 

models by dropping and adding elements. Dropping elements of statslists is easy using the 

sldrop() function. This function takes three arguments, statslist, varname, and 

type and returns a new statslist that omits any sufficient statistic column matching any 

name in varname. The type argument is used to indicate whether the new statslist 

should be “global” or “local” – as in previously discussed methods.

Our example will create s-forms to test for communication-terminated sequences of events 

(i.e., sequences of events that ultimately lead to a Communication spell):
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R> sforms <- c("bf", "ef", "gf", "cf", "egf", "cef", "af")

R> delta.sforms <- gen.sformlist(evls, sforms)

R> delta.ints <- slbind(delta.sforms, alpha.ints)

R> delta.fit <- rem(evls$eventlist, delta.ints)

R> summary(delta.fit)

Egocentric Relational Event Model (Ordinal Likelihood)

                       Post.Mode    Post.SD  Z value   Pr(>|z|)

Eating                −0.0524428  0.0156947  −3.3414  0.0008335 ***

Private personal care −0.6843113  0.0189127 −36.1827  < 2.2e-16 ***

Household Production   0.3306127  0.0143563  23.0291  < 2.2e-16 ***

Travel                −0.0029505  0.0157808  −0.1870  0.8516886

Communication         −0.9306083  0.0315665 −29.4809  < 2.2e-16 ***

Leisure                0.5750562  0.0141408  40.6664  < 2.2e-16 ***

Personal Care         −1.8716223  0.0299893 −62.4097  < 2.2e-16 ***

Waiting               −3.6080436  0.0674145 −53.5203  < 2.2e-16 ***

Volunteering          −3.5948566  0.0669832 −53.6681  < 2.2e-16 ***

Caregiving            −3.3621520  0.0598343 −56.1911  < 2.2e-16 ***

Education             −5.0212453  0.1352840 −37.1163  < 2.2e-16 ***

Work Production       −3.7153727  0.0710355 −52.3030  < 2.2e-16 ***

bf                     0.2833377  0.0533442   5.3115  1.087e-07 ***

ef                     0.7859901  0.0463006  16.9758  < 2.2e-16 ***

gf                     0.3104193  0.0440410   7.0484  1.810e-12 ***

cf                    −0.3320642  0.0864922  −3.8392  0.0001234 ***

egf                   −0.0497697  0.0276494  −1.8000  0.0718562 .

cef                    0.1498079  0.0418826   3.5769  0.0003478 ***

af                    −0.4283528  0.0821778  −5.2125  1.863e-07 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 315678.6 on 61537 degrees of freedom

Residual deviance: 245476.3 on 61518 degrees of freedom

        Chi-square: 70202.27 on 19 degrees of freedom, asymptotic p-value 0

AIC: 245514.3 AICC: 245514.3 BIC: 245685.8

Log posterior: −141756.8

Prior parameters: mu=0 sigma=1000 nu=4

The coefficients for communication preceded by travel leads to leisure ("egf") and 

"Travel" are not significant. We can drop the sufficient statistics for these terms from the 

model using the sldrop() function and then compare the models by BIC:

R> delta.ints2 <- sldrop(delta.ints, c("egf", "Travel"))
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R> delta.fit2 <- rem(evls$eventlist, delta.ints2)

R> names(delta.fit2$coef)

 [1] "Eating"                "Private personal care" "Household Production"

 [4] "Communication"         "Leisure"               "Personal Care"

 [7] "Waiting"               "Volunteering"          "Caregiving"

[10] "Education"             "Work Production"       "bf"

[13] "ef"                    "gf"                    "cf"

[16] "cef"                   "af"

R> c(delta.fit$BIC, delta.fit2$BIC)

[1] 245685.8 245667.1

The more parsimonious model is preferred by BIC.

The function slbind.cond() allows to add interaction variables to a statslist object. 

The slbind.cond() function adds actor-by-event conditional or interaction variables to a 

statslist object. This function is useful when an event history, or part thereof, depends 

upon some variable (actor characteristics, temporality, etc). The function takes seven 

arguments: intvar, a numeric variable; statslist, the statslist object; var.suffix, a 

character string to append to the name of the new variable; sl.ind, the column indexes of 

the events to be interacted with the intvar in each matrix element of the statslist; who.evs, 

for local statistic construction, the indexes of the actors to receive the new variable; and, 

type, an indicator for local or global statistics. Additional arguments can be passed to 

abind() using 𝖱’s ellipsis arguments (…).

In the following example, a model that interacts an indicator for whether or not the 

respondent is female with the terms in the sleep interruption s-forms modeled above is fit to 

the data. This is motivated by the hypothesis that older males, due to declining bladder and 

prostate function, are more likely to have their sleep interrupted to urinate (Tikkinen, 

Tammela, Huhtalal, and Auvinen 2006) and that older females are more likely to be 

caretakers of their afflicted spouses (Willette-Murphy, Todera, and Yeaworth 2006).

R> sl.ind <- 26:27

R> fem.evs <- unlist(glapply(atus80ord$SEX, atus80ord$TUCASEID, unique,

+    regroup = FALSE))

R> fem.evs <- ifelse(fem.evs == 1, 1, 0)

R> gamma.ints2 <- slbind.cond(fem.evs, gamma.ints, sl.ind = sl.ind,

+    var.suffix = "FEM")

R> sl.ind <- 26:29

R> gamma.fit2 <- rem(evls$eventlist, gamma.ints2, estimator = "BPM",

+    prior.param = list(mu = 0, sigma = 100, nu = 4))

R> round(cbind(BPM = gamma.fit2$coef[sl.ind], Z = gamma.fit2$coef[sl.ind] /
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+    gamma.fit2$sd[sl.ind]), 4)

                                                              BPM       Z

Sleeping(Private personal care|Personal Care)Sleeping      1.2195 32.9940

SleepingCaregiving+Sleeping                               -0.5895 -1.6327

Sleeping(Private personal care|Personal Care)Sleeping.FEM -0.0120 -0.1929

SleepingCaregiving+Sleeping.FEM                            0.5522  1.0512

Despite the gender interaction coefficients being in the hypothesized direction, the effects 

are not statistically significant in this model. Older men are not more likely to have their 

sleep interrupted for personal care activities and older women are not more likely to have 

their sleep interrupted to perform caregiving activities in this population.

5. Using interval time data

The rem() function can fit models for sequences of events when the exact (or nearly exact) 

timing of the events is known by providing the appropriate data in eventlist and setting 

the timing argument to “interval.” In general, generating s-form sufficient statistics for 

interval time models is the same as the ordinal time case, though there are subtle differences. 

We will review how to construct s-forms for the interval time likelihood relational event 

model in this section.

First, recall that the interval time data must contain three columns where the first column 

indexes the events, the second column indexes the temporal information of when the event 

transpired, and the third column indexes an event history grouping factor. In the example 

data, atus80int, an “event” is recorded when an actor either starts or stops a particular 

activity spell. Eventlist objects and statslist objects for intercept models are created for this 

data using gen.evl() and gen.intercepts(), respectively, but with the interval time 

data arguments needing to be specified. As the interval timing models take slightly longer to 

fit, the example uses only a random subset (N = 500) of the data:

R> evlsint <- gen.evl(atus80int[, 1:3])

R> set.seed(570819)

R> evlsint$eventlist <- evlsint$eventlist[sample(1:length(evlsint$eventlist),

+    500)]

R> evlsint$event.key

      id  event.type

 [1,] "a" "Sleeping|START"

 [2,] "b" "Sleeping|STOP"

 [3,] "c" "Eating|START"

 [4,] "d" "Eating|STOP"

 [5,] "e" "Private personal care|START"

 [6,] "f" "Private personal care|STOP"

 [7,] "g" "Household Production|START"
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 [8,] "h" "Household Production|STOP"

 [9,] "i" "Travel|START"

[10,] "j" "Travel|STOP"

[11,] "k" "Communication|START"

[12,] "l" "Communication|STOP"

[13,] "m" "Leisure|START"

[14,] "n" "Leisure|STOP"

[15,] "o" "Personal Care|START"

[16,] "p" "Personal Care|STOP"

[17,] "q" "NA|START"

[18,] "r" "NA|STOP"

[19,] "s" "Waiting|START"

[20,] "t" "Waiting|STOP"

[21,] "u" "Volunteering|START"

[22,] "v" "Volunteering|STOP"

[23,] "w" "Caregiving|START"

[24,] "x" "Caregiving|STOP"

[25,] "y" "Education|START"

[26,] "z" "Education|STOP"

[27,] "A" "Work Production|START"

[28,] "B" "Work Production|STOP"

R> evlsint$eventlist$"20040706041558"

      [,1]     [,2]

 [1,]    1    0.000

 [2,]    2  240.000

 [3,]    3  240.001

 [4,]    4  300.000

 [5,]    7  300.001

 [6,]    8  310.000

 [7,]   13  310.001

 [8,]   14  340.000

 [9,]   13  340.001

[10,]   14  450.000

[11,]    3  450.001

[12,]    4  510.000

[13,]    1  510.001

[14,]    2  570.000

[15,]   13  570.001

[16,]   14  870.000

[17,]   13  870.001

[18,]   14 1020.000

[19,]    1 1020.001
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[20,]    2 1650.001

attr(,"char")

 [1] "a" "b" "c" "d" "g" "h" "m" "n" "m" "n" "c" "d" "a" "b" "m" "n" "m" "n"

[19] "a" "b"

R> int.base <- gen.intercepts(evlsint, type = 1, contr = FALSE)

Note that we now have twice as many event types as we did during the ordinal data 

example. Each event list in evlsint$eventlist is now a two-column matrix where the 

first column indexes the numeric code of the event type and the second column indexes the 

timing information. Failing to set contr = FALSE in gen.intercepts() in the interval 

case may result in an improperly identified model.

Before we can proceed with fitting the intercepts-only model, we need to consider that not 

all sequences of events are possible – the event support, At), is not in this case fixed. Since 

events in the present formulation indicate onsets and terminii of activity spells, the most 

trivial constraint we must enforce is that a START event for a given activity cannot occur if 

there has been a previous START event for that activity without the most recent event of that 

activity being a STOP spell (i.e., we cannot initiate an activity in which we are already 

engaged). Likewise, we cannot terminate an activity without starting it: a STOP event for a 

given activity cannot occur unless the most recent event for that activity is a START event. 

Likewise, there are obvious physical constraints that should induce additional restrictions on 

event ordering, such as the fact that one cannot, e.g., initiate eating without first ceasing to 

sleep. In the particular case of the ATUS, many of these issues are simplified by the nature 

of the study, which defines activities such that subjects can be engaged in at most one 

activity at any given time, and that activity begins with the onset of the first spell of the day. 

This amounts to a blanket constraint that (1) no START event can occur unless the previous 

event was a STOP event and (2) the only event that can immediately follow a START event is 

a STOP event of the same activity type. rem() allows for the specification of arbitrary 

constraints of this type, using the supplist argument (which allows users to specify at 

each point in the event history those events that were at risk for occuring). As documented in 

help("rem"), supplist is defined as follows:

If desired, support constraints for the event histories can be specified using 

supplist. supplist should be a list with one element per history, each of which 

should be an event order by event type logical matrix. The ijth cell of this matrix 

should be TRUE if an event of type j was a possible next event given the preceding 

code i − 1 events, and FALSE otherwise. (By default, all events are assumed to be 

possible at all times.) As with the model statistics, the elements of the support list 

must be user supplied, and will often be history-dependent. (E.g., in a model for 

spell-based data, event types will come in onset/termination pairs, with terminal 

events necessarily being preceded by corresponding onset events.) (Butts 2015)

Failure to specify support constraints where applicable can badly bias coefficient estimates, 

and it is hence important that they be considered when fitting complex relational event 

models.
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Turning back to our example data, we can create a support list satisfying the constraints of 

the ATUS data with the following 𝖱 code:

R> eT <- evlsint$event.key[, 2]

R> supplist <- list()

R> for (i in 1:length(evlsint$eventlist)) {

+    supplist[[i]] <- matrix(0, nrow = NROW(evlsint$eventlist[[i]]),

+      ncol = length(eT))

+    colnames(supplist[[i]]) <- eT

+  }

R> for (i in 1:length(evlsint$eventlist)) {

+    evl <- evlsint$eventlist[[i]]

+    supplist[[i]][1, grep("START", eT)] <- 1

+    for (j in 2:(NROW(evl))) {

+      CE <- evl[j, 1]

+      PE <- evl[j - 1, 1]

+      if (PE == 0) supplist[[i]][j, grep("STOP", eT)] <- 1

+      if (PE != 0) {

+        if (grepl("START", eT[PE])) supplist[[i]][j, eT[CE]] <- 1

+        if (grepl("STOP", eT[PE])) supplist[[i]][j,

+          grepl("START",eT)] <- 1

+      }

+    }

+  }

Now we can fit a new baseline model by passing supplist = supplist to rem():

R> intfit.base<-rem(evlsint$eventlist, int.base, supplist = supplist,

+    timing = "interval", estimator = "BPM")

R> summary(intfit.base)

Egocentric Relational Event Model (Interval Likelihood)

                             Post.Mode    Post.SD   Z value  Pr(>|z|)

Sleeping|START               4.967864  0.028421  174.7954 < 2.2e-16 ***

Sleeping|STOP               −5.690678  0.028421 −200.2278 < 2.2e-16 ***

Eating|START                 4.900197  0.029399  166.6787 < 2.2e-16 ***

Eating|STOP                 −3.589547  0.029399 −122.0974 < 2.2e-16 ***

Private personal care|START  4.282762  0.040032  106.9833 < 2.2e-16 ***

Private personal care|STOP  −3.497837  0.040032  −87.3759 < 2.2e-16 ***

Household Production|START   5.272565  0.024405  216.0465 < 2.2e-16 ***

Household Production|STOP   −3.760817  0.024405 −154.1017 < 2.2e-16 ***

Travel|START                 4.934185  0.028904  170.7114 < 2.2e-16 ***
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Travel|STOP                 −2.790073  0.028904  −96.5301 < 2.2e-16 ***

Communication|START          4.256786  0.040555  104.9624 < 2.2e-16 ***

Communication|STOP          −3.899224  0.040555  −96.1457 < 2.2e-16 ***

Leisure|START                5.509079  0.021683  254.0755 < 2.2e-16 ***

Leisure|STOP                −4.653257  0.021683 −214.6055 < 2.2e-16 ***

Personal Care|START          3.217249  0.068199   47.1741 < 2.2e-16 ***

Personal Care|STOP          −3.998140  0.068199  −58.6242 < 2.2e-16 ***

NA|START                     2.698641  0.088388   30.5316 < 2.2e-16 ***

NA|STOP                     −4.242211  0.088388  −47.9951 < 2.2e-16 ***

Waiting|START                1.343119  0.174078    7.7156 1.199e-14 ***

Waiting|STOP                −3.856553  0.174078  −22.1542 < 2.2e-16 ***

Volunteering|START           1.213907  0.185695    6.5371 6.273e-11 ***

Volunteering|STOP           −4.582844  0.185695  −24.6794 < 2.2e-16 ***

Caregiving|START             1.430130  0.166667    8.5808 < 2.2e-16 ***

Caregiving|STOP             −4.013357  0.166667  −24.0801 < 2.2e-16 ***

Education|START             −0.207479  0.377964   −0.5489     0.583

Education|STOP              −4.302118  0.377964  −11.3823 < 2.2e-16 ***

Work Production|START        1.430130  0.166667    8.5808 < 2.2e-16 ***

Work Production|STOP        −4.863244  0.166667  −29.1795 < 2.2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 174603.4 on 18228 degrees of freedom

Residual deviance: 21536.87 on 18200 degrees of freedom

        Chi-square: 153066.6 on 28 degrees of freedom, asymptotic p-value 0

AIC: 21592.87 AICC: 21592.96 BIC: 21811.57

Log posterior: −38795.9

Prior parameters: mu=0 sigma=1000 nu=4

Per Equation 1, the coefficients for the intercept model are estimates of the log hazards (log 

λ) for each event type, at each point in the event history for which the corresponding event 

type is possible (i.e., in At)). Under this model (and due to the exclusivity constraint of the 

ATUS), the starting event coefficient for a given activity is proportional to the log 

probability that any given spell in the event history will be of the corresponding activity 

type. This can be verified by simple tabulation:

R> bpm.start <- (exp(intfit.base$coef[grep("START",

+    names(intfit.base$coef))]) /

+    sum(exp(intfit.base$coef[grep("START", names(intfit.base$coef))])))

R> in.ids <- which(atus80int$TUCASEID %in% names(evlsint$eventlist) &

+    grepl("START", atus80int$Events))

R> mle.start <- prop.table(table(atus80int[in.ids, "Events"]))

R> round(cbind(BPM = sort(bpm.start), MLE = sort(mle.start)), 4)

                               BPM    MLE
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Education|START             0.0008 0.0008

Volunteering|START          0.0032 0.0032

Waiting|START               0.0036 0.0036

Caregiving|START            0.0039 0.0039

Work Production|START       0.0039 0.0039

NA|START                    0.0140 0.0140

Personal Care|START         0.0236 0.0236

Communication|START         0.0667 0.0667

Private personal care|START 0.0685 0.0685

Eating|START                0.1269 0.1269

Travel|START                0.1313 0.1313

Sleeping|START              0.1358 0.1358

Household Production|START  0.1842 0.1842

Leisure|START               0.2334 0.2334

By turns, the inverse exponents of the stopping event coefficients can here be interpreted as 

the average duration of a particular spell of activity. For example, the average length of a 

spell of sleeping in this population is  minutes, or roughly 5 hours. This 

follows from the piecewise constant hazard assumption, which (together with the support 

constraints) results in an exponential waiting time distribution for STOP events following a 

corresponding START event.

Sequence statistics for interval time models are created and manipulated in the usual way 

(see above for details). Caution should be taken to ensure that sequences of events are 

properly specified in the s-form to include the onset and termination of each spell. Here, we 

illustrate the power of rem() to estimate highly complex conditional sequence statistics 

with the help of package informR via our sleep interruption example. Specifically, we will 

construct a model with terms for sleep interrupted by any other spell of activity and by 

personal care spells. We are defining the sleep interruption effects to be conditional on (1) 

sleeping, then (2) waking, then (3) doing something else, and finally, (4) going back to 

sleep. The sufficient statistics will be parametrized to model both the onset of sleeping and 

the duration of the spell, given that sleep followed by the other activities had previously 

occurred. This may be represented by a pair of s-forms: (Sleeping|Start → Sleeping|Stop → 

Something|Start → Something|Stop) → Sleeping|Start, for the onset of a conditional sleeping 

spell, and (Sleeping|Start → Sleeping|Stop → Something|Start → Something|Stop → 

Sleeping|Start) → Sleeping|Stop for the duration of the conditional spell. To construct the 

model, we need to use glb.sformlist() as both s-forms pool information from multiple 

spells into single elements of the statistic:

R> sleepA <- paste("ab", c(letters[seq(1, 26, 2)], "A"),

+    c(letters[seq(2, 26, 2)], "B"), "a", sep = "")

R> sleepB <- paste("ab", c(letters[seq(1, 26, 2)], "A"),

+    c(letters[seq(2, 26, 2)], "B"), "ab", sep = "")
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R> sleep.glbs <- glb.sformlist(evlsint,

+    list(sleepA, sleepB, c("abefa", "abopa"), c("abefab", "abopab")),

+    cond = TRUE, new.names = c("Inter.Sl.Ons", "Inter.Sl.Dur",

+    "PerCare.Sl.Ons", "PerCare.Sl.Dur"))

R> sleep.int <- slbind(sleep.glbs, int.base)

R> intfit.sleep <- rem(evlsint$eventlist, sleep.int, supplist = supplist,

+    timing = "interval", estimator = "BPM")

R> summary(intfit.sleep)

Egocentric Relational Event Model (Interval Likelihood)

                            Post.Mode   Post.SD   Z value  Pr(>|z|)

Sleeping|START               4.989059  0.029361  169.9212 < 2.2e-16 ***

Sleeping|STOP               −5.707896  0.029248 −195.1566 < 2.2e-16 ***

Eating|START                 4.900197  0.029399  166.6787 < 2.2e-16 ***

Eating|STOP                 −3.589547  0.029399 −122.0974 < 2.2e-16 ***

Private personal care|START  4.282762  0.040032  106.9833 < 2.2e-16 ***

Private personal care|STOP  −3.497837  0.040032  −87.3759 < 2.2e-16 ***

Household Production|START   5.272565  0.024405  216.0465 < 2.2e-16 ***

Household Production|STOP   −3.760817  0.024405 −154.1017 < 2.2e-16 ***

Travel|START                 4.934185  0.028904  170.7114 < 2.2e-16 ***

Travel|STOP                 −2.790073  0.028904  −96.5301 < 2.2e-16 ***

Communication|START          4.256786  0.040555  104.9624 < 2.2e-16 ***

Communication|STOP          −3.899224  0.040555  −96.1457 < 2.2e-16 ***

Leisure|START                5.509079  0.021683  254.0755 < 2.2e-16 ***

Leisure|STOP                −4.653257  0.021683 −214.6055 < 2.2e-16 ***

Personal Care|START          3.217249  0.068199   47.1741 < 2.2e-16 ***

Personal Care|STOP          −3.998140  0.068199  −58.6242 < 2.2e-16 ***

NA|START                     2.698641  0.088388   30.5316 < 2.2e-16 ***

NA|STOP                     −4.242211  0.088388  −47.9951 < 2.2e-16 ***

Waiting|START                1.343119  0.174078    7.7156 1.199e-14 ***

Waiting|STOP                −3.856553  0.174078  −22.1542 < 2.2e-16 ***

Volunteering|START           1.213907  0.185695    6.5371 6.273e-11 ***

Volunteering|STOP           −4.582844  0.185695  −24.6794 < 2.2e-16 ***

Caregiving|START             1.430130  0.166667    8.5808 < 2.2e-16 ***

Caregiving|STOP             −4.013357  0.166667  −24.0801 < 2.2e-16 ***

Education|START             −0.207479  0.377964   −0.5489   0.58305

Education|STOP              −4.302118  0.377964  −11.3823 < 2.2e-16 ***

Work Production|START        1.430130  0.166667    8.5808 < 2.2e-16 ***

Work Production|STOP        −4.863244  0.166667  −29.1795 < 2.2e-16 ***

Inter.Sl.Ons                −0.890707  0.184920   −4.8167 1.459e-06 ***

Inter.Sl.Dur                 0.353266  0.187985    1.8792   0.06021 .

PerCare.Sl.Ons               1.314628  0.232737    5.6485 1.618e-08 ***

PerCare.Sl.Dur               0.021551  0.243891    0.0884   0.92959
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---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 174603.4 on 18228 degrees of freedom

Residual deviance: 21489.30 on 18196 degrees of freedom

        Chi-square: 153114.1 on 32 degrees of freedom, asymptotic p-value 0

AIC: 21553.30 AICC: 21553.41 BIC: 21803.24

Log posterior: −42776.04

Prior parameters: mu=0 sigma=1000 nu=4

We again note that, overall, sleep interruption is rare, the evidence for which is captured by 

the negative coefficient for Inter.Sl.Ons (β = −0.891***), which, is interpreted as the 

conditional log hazard of returning to sleep versus doing some thing else; this has a 

correspondingly low conditional probability of 0.0568. However, given that sleep 

interruption occurs at all, it tends to decrease the average sleeping spell by a factor of 0.7024 

( ), or roughly 90 minutes.

R> exp(−0.890707 + 4.989059) /

+    sum(exp(intfit.sleep$coef[grep("START", names(intfit.sleep$coef))]))

[1] 0.05677088

Moving onto interruptions directly caused by personal care needs, we see that, net of the 

overall tendency for interruption to occur, a spell of personal care that follows a sleeping 

spell increases the chances that the next event will indeed be sleeping. Ergo, personal care 

activities, such as using the bathroom, or changing clothes, interrupt spells of sleeping in this 

population (with conditional probability 0.5151). However, such interruptions do not 

significantly affect the average duration of sleep.

5.1. Dyadic data

As we have discussed throughout this paper, the general modeling function in the relevent 
package is rem(). For dyadic relational event data (where events are sender, receiver, action 

type tuples), the rem.dyad() function is appropriate for modeling large numbers of dyadic 

relational event statistics (currently, 34 classes of sufficient statistics are available, though 

users could specify more than that using the covariate terms). In principle, rem() can be 

used to fit models for dyadic relational event data as well as the ego-centric data 

demonstrated here; this allows support for a wider range of event types, self-directed events, 

support constraints etc., at the cost of the simplicity and computational optimizations 

afforded by rem.dyad(). While the primary purpose of the informR package is to aid in 

the construction of models for ego-centric data, some of its functions may be useful for 

constructing such dyadic models to use with rem(). As a proof-of-concept, a simple 

example of how informR tools can be used to construct dyadic models based on the 
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example in the rem.dyad() documentation from the relevent package is provided in the 

Appendix A.

6. Conclusion

This paper has outlined the basic functionality of the informR package for 𝖱. Sufficient 

statistics to model event sequences for both ordinal and interval time data were constructed 

and employed in relational event models using real data and the relevent package. In 

addition, code for manipulating these statistics and constructing conditional models was 

introduced. The informR package greatly simplifies the use of the rem() modeling 

function, specifically, and the modeling of event histories with dependent sub-features more 

generally. It is hoped that this toolkit will lead to wider use of relational event models for 

complex event sequences, particularly by researchers engaged with non-dyadic data.

Computational details

The version of package informR used in this tutorial is 1.0–5 and the version of package 

relevent is 1.0–4.

The average batch run-time (n = 30) of the examples employed in this tutorial was 12.5 

minutes on a 2.2 GHz Intel T6600 processor with 3.8 GB of RAM (absolute maximum 

memory consumption was 1.8 GB as estimated by the bourne-shell program top) using 

Linux kernel v2.6.32.
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A. Dyadic models

In this appendix, we demonstrate a proof-of-concept for fitting a model of dyadic data with 

rem() from the relevent package. Normally, dyadic data is modeled using rem.dyad() 

and the examples here are derived from the example code in that relevent package function. 

Since rem.dyad() and rem() are optimized using different routines – optim() and trust 
(Geyer 2014), respectively – results may differ slightly between models. The example is 

simple: we fit a relational event model of fixed-effects for sending and receiving. Extension 

to other sorts of dyadic relational event terms can be performed using techniques similar to 

those shown here.

In this example, we estimate fixed effects for sending and receiving ties among an artificial 

network of five actors using both estimating functions: rem.dyad() and rem(). With 

rem.dyad(), these terms are conveniently added to the dyadic relational events model by 

passing c("FESnd", "FERec") to the argument effects of that function. With rem(), 

however, the burden of generating the sufficient statistics to add to the model falls entirely 

on the user. Like the egocentric (non-dyadic) cases described in the main text of this 

manuscript, the informR tools are also helpful in this case. Specifically, we can use 

gen.evl() and gen.intercepts(), with minor modifications, to facilitate model fitting 

with rem(). For completeness, we fit both ordinal and interval likelihood models. Also, we 

demonstrate the use of maximum likelihood estimation (MLE) to fit these models.

We begin by drawing an artificial network from a simple relational events process unfolding 

among five actors:

R> set.seed(867)

R> n <- 5

R> tmax <- 25
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R> roweff <- rnorm(n)

R> roweff <- roweff - roweff[1]

R> coleff <- rnorm(n)

R> coleff <- coleff - coleff[1]

R> lambda <- exp(outer(roweff, coleff, "+"))

R> diag(lambda) <- 0

R> ratesum <- sum(lambda)

R> esnd <- as.vector(row(lambda))

R> erec <- as.vector(col(lambda))

R> time <- 0

R> edgelist <- vector()

R> while (time < tmax) {

+    drawsr <- sample(1:(n^2), 1, prob = as.vector(lambda))

+    time <- time + rexp(1, ratesum)

+    if (time < tmax)

+      edgelist <- rbind(edgelist, c(time, esnd[drawsr], erec[drawsr]))

+    else

+      edgelist <- rbind(edgelist, c(tmax, NA, NA))

+ }

To fit a dyadic relational event model with rem(), we must convert the edgelist data used 

by rem.dyad() to eventlist form. To do this, we first note that the set of all distinct event 

types in the sense of rem() consists of all ordered sender/receiver pairs, of which there are 

20. We enumerate the set of event types here using simple sender/receiver concatenation, 

with the informR function gen.evl() thus producing an eventlist suitable for use with 

other informR routines. Also, since this relational events process occurs within a single 

observation period on a single network, the grouping factor column is set to an arbitrary 

constant value (here, 1). We also specify an exogenous event at the end of observation.

R> evl <- gen.evl(cbind(apply(edgelist[, 2:3], 1, paste, collapse = "."),

+    rep(1, NROW(edgelist))), null.events = "NA.NA")

The evl object now contains the required combination of timing and event type 

information. The latter can be found in the event key, i.e.:

R> evl$event.key

     id  event.type

 [1,] "a" "1.5"

 [2,] "b" "4.3"

 [3,] "c" "2.5"

 [4,] "d" "5.3"

 [5,] "e" "4.5"
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 [6,] "f" "4.2"

 [7,] "g" "5.2"

 [8,] "h" "2.3"

 [9,] "i" "1.3"

[10,] "j" "4.1"

[11,] "k" "3.2"

[12,] "l" "2.1"

[13,] "m" "3.5"

[14,] "n" "5.1"

[15,] "o" "3.1"

[16,] "p" "5.4"

[17,] "q" "1.2"

[18,] "r" "1.4"

[19,] "s" "2.4"

[20,] "t" "NA.NA"

Note that the order of the event codes is based on the order in which events are encountered 

in the data, and hence the event key must be explicitly searched when creating statistics. 

Also, upon inspection of the event key, we note that this particular model did not exhaust all 

possible 20 (n2 − n) events; actor 3 never sends to actor 4. One of the limits of the informR 
package is that it conditions on the observed set of actions and not on the set of possible 

actions. As a result, we need to append this potential event to the event key.

R> evl$event.key <- rbind(evl$event.key, c("u", "3.4"))

To fit the fixed effect model, we must create intercept dummies for each event involving the 

same sender, and as well as a set for each receiver. We can accomplish this by first using 

gen.intercepts() with the contrasts parameter set to FALSE (gen.intercepts(evl, 

contr = FALSE) and then manipulating the resulting statslist array directly.

R> ev.ints <- gen.intercepts(evl, contr = FALSE)

R> sformlist <- c(

+    lapply(2:n, function(z) {

+      str <- paste(z, ".", sep = "")

+      grep(str, evl$event.key[−20, 2])}),

+    lapply(2:n, function(z) {

+      str <- paste(".", z, sep = "")

+      grep(str, evl$event.key[−20, 2])

+    })

+  )

R> b1 <- lapply(sformlist, function(x) ev.ints[[1]][[1]][, , x])
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R> b1.l <- lapply(b1, apply, MARGIN = 1:2, sum)

R> FEs <- array(unlist(b1.l), dim = c(nrow(b1.l[[1]]), ncol(b1.l[[1]]),

+    length(b1.l)))

R> dimnames(FEs) <- list(dimnames(b1[[1]])[[1]], dimnames(b1[[1]])[[2]],

+    c(paste("FESnd", 2:n, sep = "."),paste("FERec", 2:n, sep = ".")))

We can then fit the models using rem.dyad() and rem(). There are minor differences in 

function signatures and default behavior as the two functions have different development 

histories. Here, we have set the argument fit.method in rem.dyad() to "MLE", which is 

equivalent to the argument estimator in rem() and we set the argument hessian to 

TRUE in rem.dyad().

R> fit.rem.dyad <- rem.dyad(edgelist, n, effects = c("FESnd", "FERec"),

+    fit.method = "MLE", hessian = TRUE)

R> fit.rem <- rem(evl$eventlist, sfl2statslist(list(FEs)), estimator = "MLE")

R> lapply(list(rem.dyad = fit.rem.dyad, rem = fit.rem), summary)

$rem.dyad

Relational Event Model (Ordinal Likelihood)

         Estimate   Std.Err  Z value  Pr(>|z|)

FESnd.2  0.115533  0.075571   1.5288 0.1263159

FESnd.3 −1.427850  0.137976 −10.3486 < 2.2e-16 ***

FESnd.4  0.581748  0.067459   8.6237 < 2.2e-16 ***

FESnd.5 −0.345661  0.101777  −3.3962 0.0006832 ***

FERec.2 −0.258956  0.112914  −2.2934 0.0218250 *

FERec.3  0.893957  0.085375  10.4709 < 2.2e-16 ***

FERec.4 −1.927157  0.226697  −8.5010 < 2.2e-16 ***

FERec.5  1.253683  0.084184  14.8922 < 2.2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 4871.061 on 813 degrees of freedom

Residual deviance: 4074.199 on 805 degrees of freedom

        Chi-square: 796.862 on 8 degrees of freedom, asymptotic p-value 0

AIC: 4090.199 AICC: 4090.378 BIC: 4127.804

$rem

Egocentric Relational Event Model (Ordinal Likelihood)

              MLE   Std.Err  Z value  Pr(>|z|)

FESnd.2  0.115526  0.075571   1.5287 0.1263399

FESnd.3 −1.427881  0.137977 −10.3487 < 2.2e-16 ***

FESnd.4  0.581745  0.067459   8.6236 < 2.2e-16 ***

FESnd.5 −0.345653  0.101777  −3.3962 0.0006833 ***
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FERec.2 −0.258950  0.112913  −2.2934 0.0218271 *

FERec.3  0.893943  0.085375  10.4708 < 2.2e-16 ***

FERec.4 −1.927213  0.226701  −8.5011 < 2.2e-16 ***

FERec.5  1.253660  0.084183  14.8920 < 2.2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 4871.061 on 813 degrees of freedom

Residual deviance: 4074.199 on 805 degrees of freedom

        Chi-square: 796.862 on 8 degrees of freedom, asymptotic p-value 0

AIC: 4090.199 AICC: 4090.378 BIC: 4127.804

As can be seen by the output, the results of the two ordinal model fitting routines are quite 

consistent. As we discussed above, there are minor differences in precision between the 

output of rem.dyad() and rem(). These small discrepancies arise due to the fact that the 

two functions use different optimizer routines: optim(), and trust(), respectively.

Finally, for completeness, we fit the interval timing likelihood models thusly:

R> evl2 <- gen.evl(cbind(apply(edgelist[, 2:3], 1, paste, collapse = "."),

+    edgelist[, 1], rep(1, NROW(edgelist))), null.events = "NA.NA")

R> evl2$event.key <- rbind(evl2$event.key, c("u", "3.4"))

R> fit.rem.dyad2 <- rem.dyad(edgelist, n, effects = c("FESnd", "FERec"),

+    fit.method = "MLE", ordinal = FALSE, hessian = TRUE)

R> fit.rem2 <- rem(evl2$eventlist, sfl2statslist(list(FEs)),

+    estimator = "MLE", timing = "interval")

R> lapply(list(rem.dyad = fit.rem.dyad2, rem = fit.rem2), summary)

As with the ordinal cases, these models are consistent and, happily, lack the null-deviance 

bug:

$rem.dyad

Relational Event Model (Temporal Likelihood)

         Estimate   Std.Err  Z value  Pr(>|z|)

FESnd.2  0.109054  0.063964   1.7049  0.088207 .

FESnd.3 −1.434714  0.131277 −10.9289 < 2.2e-16 ***

FESnd.4  0.575397  0.054698  10.5196 < 2.2e-16 ***

FESnd.5 −0.353124  0.090571  −3.8989 9.665e-05 ***

FERec.2 −0.269518  0.091848  −2.9344  0.003342 **

FERec.3  0.883657  0.056590  15.6152 < 2.2e-16 ***

FERec.4 −1.938053  0.216464  −8.9532 < 2.2e-16 ***

FERec.5  1.243079  0.052571  23.6457 < 2.2e-16 ***

---
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Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 835.564 on 813 degrees of freedom

Residual deviance: 38.71497 on 806 degrees of freedom

        Chi-square: 796.849 on 7 degrees of freedom, asymptotic p-value 0

AIC: 54.71497 AICC: 54.89408 BIC: 92.32082

$rem

Egocentric Relational Event Model (Interval Likelihood)

              MLE   Std.Err  Z value  Pr(>|z|)

FESnd.2  0.109054  0.063964   1.7049  0.088207 .

FESnd.3 −1.434712  0.131277 −10.9289 < 2.2e-16 ***

FESnd.4  0.575397  0.054698  10.5196 < 2.2e-16 ***

FESnd.5 −0.353124  0.090571  −3.8989 9.665e-05 ***

FERec.2 −0.269519  0.091848  −2.9344  0.003342 **

FERec.3  0.883657  0.056590  15.6152 < 2.2e-16 ***

FERec.4 −1.938054  0.216464  −8.9532 < 2.2e-16 ***

FERec.5  1.243079  0.052571  23.6457 < 2.2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 835.564 on 813 degrees of freedom

Residual deviance: 38.71497 on 805 degrees of freedom

        Chi-square: 796.849 on 8 degrees of freedom, asymptotic p-value 0

AIC: 54.71497 AICC: 54.89408 BIC: 92.32082
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Table 1

Examples of canonical s-forms, s-form regular expression representations, and s-form definitions for modeling 

relational events using informR and rem().

s-form regex Definition

a→a aa Inertial term: s-form of the type “event a predicts event a”.

a→b ab Basic digram transition term: s-form of the type “event a predicts event b”.

a + b Transition term with persistence: s-form of the type “some series of events a predicts event b”.

a→b→c abc Basic trigram transition term: s-form of the type “event a followed by event b predicts event c”.

(a|b)c Transition term with disjunction: s-form of the type “event a OR event b predicts event c”.
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