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Abstract

Software Selection for Reliability Optimization using Time Series Analysis and

Machine Learning

by

Yali Mu

A software product family generally has multiple product lines or software versions,

each with, in general, a different functionality. Also with new software versions,

functionality usually measured by the number of features, in general, increases. The

availability of several versions of a software family raises several important technical

issues related to trade-off between software functionality and software reliability.

In this thesis, we consider the following issue: given a family of different versions

of the same software product, how does one select versions of the software that

maximize reliability, are measured by the number of software bugs. To resolve this

issue, we develop a framework integrating time series analysis and machine learning

to classify software versions of a given family into clusters based on user-specified

reliability metrics. This classification or separation then enables the user to optimize

the selection of software for maximum reliability.

Time series analysis, in particular is used to predict the future evolution of bugs.

Machine learning methods, in particular Expectation-Maximization clustering and

K-means clustering are applied to prediction-based metrics to classify software into

clusters. We demonstrate the application of this framework to reliability prediction,

classification and optimization of network IOS products.
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1 Introduction

1.1 Background and Motivation

A software product family generally has multiple product lines or software versions,

each with, in general, a different functionality. As a result, the number of defects

or “bugs” in these software versions accumulates rapidly. Bug data for a given

software version is extremely important both for assessing software performance

and for selection of the most reliable software version in a given software product

family.

Software bugs are tracked in the organization database either from customers or from

error reporting software. Accumulated bug reports contain valuable information that

can be used to predict future bug trends, measure the reliability of software, and

optimize the selection of software based on its reliability. In this thesis, we use

methods from time series data analysis to estimate the number of bugs will be in

the future. Using time series analysis, we get results from the prediction of defect

data for every software version, and use these results to help us select the software

version that is most reliable.

For every hardware system, there are many software versions for us to choose from,

and sometimes it is hard for both customers and companies to choose the right

software. Besides choosing software from the aspect of the feature sets it provides,

we also need to optimize our selection by measuring how reliable the software is.

Then we choose the “best” software from many software versions. In this thesis, we

show how to use forecasting methods to measure reliability of each software version,

and then using machine learning methods we show how to group different software

versions in the same family into different clusters based on a selected prediction

metric.

1.2 Thesis Contributions

The objective of the thesis is to optimize the selection of software with respect to

reliability. We use existing time-history of accumulated detected software bugs to
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predict the future evolution of bugs. We use time series methods as the means for

predicting the accumulated number of bug. We then use machine learning methods

to cluster the software version into different groups. The thesis contributions are as

follows:

1. The use of time series analysis to predict the time history of bugs.

2. The use of machine learning techniques, in particular Expectation-Maximization

clustering and K-means clustering, to classify software versions into different

categories based on user-selected reliability metrics.

3. A framework that integrates data preparation, time series analysis and machine

learning to optimize software selection for maximum reliability.

4. The application of this framework to the classification and selection of the

most reliable software for network IOS software.

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows. In section 2, this thesis will

develop the theory it uses. The theory combines time series analysis and machine

learning together to fulfil the goal of optimizing software selection. The approach

discussed in section 2.1 gives an overview of the thesis and how the sections are

related to each other. Then the three steps of the approach, data preparation, time

series analysis, and clustering, are developed, respectively in section 2.2, 2.3 and 2.4.

The defect data transformation is the pre-processing of raw data and getting the data

into right format for prediction. Time series forecasting work describes how to use

two time series methods to do prediction of the defect data. Then in optimization

of software selection, we illustrate how we use the metric for clustering and do the

optimization of software selection in the end. The experiments showing the effec-

tiveness of our approaches is given in section 3.3, where the results of optimization

are detailed. Finally, section 4 discusses future research directions conclusions.
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2 Theory

2.1 Approach

In this section, we will give an overview of this project and briefly talk about the

approach to the goal. The approaches are divided into three major steps:

1. Data Preparation

2. Time Series Analysis

3. Clustering Algorithms

This process is shown in Figure 1 below. It represents the whole process for selecting

reliable software inside one family platform.

Figure 1: Overview of the software Grouping

Step 1: The data preparation involves obtaining the raw data from database and

doing feature selection based on the requirements for data, and also preprocessing

to get the data into the right format for later steps. For different datasets, there

are different ways of preprocessing. This step is the preparation step of data trans-

formation for time series forecasting. The data we use are log files containing the

defect data of every software release. It needs certain steps to put it into time series

format.

Step 2: We use time series model to do the prediction based on historical data.

After the model is tested and proved to be accurate. It then applied to all the data
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in the log file and get prediction results for every software version. The prediction

results are used to form up the metric we need for clustering the software. Because

the metric contains information directly related to defect number and therefore is

associated with the reliability of the software. This step is time series forecasting,

which produces the reliability metrics that will be used in the later step.

Step 3: This step takes the results from the previous steps and produces the final

results. By using the prediction results, we measure the reliability of every soft-

ware and select one group of software which is most reliable by doing clustering to

software inside one family. We used machine learning techniques that is clustering

in our approach. The clustering methods we used are Expectation-Maximization

(EM) algorithm and K-Means algorithm. They are used to group different software

inside one family. The group which appears to be most reliable inside one family

is recommended for use. In this way, we will help the software consulting engineers

select the most reliable versions of software based on the customer needs.

Based on the three steps approach, we divided this section into three subsections

below. Each subsection will illustrate the step in details and explain how the three

steps are related and cooperated together to get the final results.

2.2 Data Preparation

This step is preparation step for time series forecasting. In order to get a good

forecasting of the bugs for software, we need to put the bug data into time series

format. For different companies, the bugs are stored in different ways, and there

are some process that need to be done to get the data into time series format. The

procedure includes following steps:

1. Get the defect data of the software, which contains the relevant information

of the bug and its effected software versions and also its occurring date.

2. Transform the data into the format of software version and corresponding

number of bugs happened every day.

3. Further process the bug data of every software version into number of bugs
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happened every week.

After these steps, the data is in the format we need and can be used to do the predic-

tion. This is a general concept of what we may do in the preprocessing step, things

will change according to the format of the original dataset we get from database.

In the later implementation step, we will talk in detail about what we did in out

project towards our software datasets.

2.3 Time Series Analysis

The approach to forecasting is using time series data analysis to predict the bug

number and distribution ahead of time to get the results that will be useful in the

analysis of the software. The time series analysis is used because the bug numbers

are coming up along with time and therefore we processed them into weekly time

series data. In the first subsection, the thesis will talk about the datasets we used

in this project after the preprocessing. Then it will illustrate two major methods

to do the prediction. The first method introduced is the Box and Jenkins method-

ology, which includes autoregressive (AR) models, the integrated (I) models, and

the moving average (MA) models. These three classes depend linearly on previous

data points. Combinations of these ideas produce autoregressive moving average

(ARMA) and autoregressive integrated moving average (ARIMA) models [1]. An-

other method described in this thesis is called Exponential Smoothing, which also

has many models and can be combined with state space models to improve forecast-

ing results [2]. The state space models were originally developed for estimation and

control in space applications. These models can efficiently fit those bug data, and

have good predictions of them.

2.3.1 Time Series Dataset

A time series is defined as an ordered sequence of data points with respect to time.

Time series have traditionally been used in the field of econometrics, but nowadays,

it has many applications in a wide range of fields. The time series datasets we use

for the experimental results in this thesis are the accumulated number of bugs per
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week for some version of software released by Cisco Systems. For each software

version, there is a dataset representing the number of reported bugs over time. We

use 16 datasets to train our forecasting model. These datasets are plotted in Figure

2. In order to illustrated the forecasting methods used we will focus our discussion

on dataset version “12.4(24)T” plotted in Figure 3. We will refer to this dataset as

“Data1” in later discussions. It should be noted from Figure 2, that software bug

data is by their nature non-seasonal. As a result we will not touch upon seasonality

considerations in our model.

Figure 2: Accumulated number of bugs for software.

Figure 3: Accumulated number of bugs for “Data1”.

Decomposition

Time series decomposition decomposes a time series into trend, seasonal, cyclical

and irregular components. The trend component accounts for the long term trend
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of the data. The seasonal component represents seasonal variations while the cyclical

component considers repeated but non-periodic fluctuations in the data. Finally, the

residuals can be seen to be the unpredictable irregular changes in the data collected.

As a first step in extracting each of these components, we can use a moving average

to pre-process the time series. This will filter out any random ”white noise” from the

data, to make the time series smoother and puts emphasis on certain informational

components contained in the time series. The equation for moving average is given

by:

Tt =
1

2a+ 1

a∑
k=−a

Xt+k

where t means the time and 2a+1 are the last observed data points for the mov-

ing average interval. Applying this equation to time series, we can get the trend

of the dataset. Another possibility for evaluating the trend of a time series is to

use nonparametric regression techniques. Many statistical software packages define

methods to decompose time series data using various established techniques [3].

Stationary and Non-stationary

The prevailing assumption of time series analysis, according to the classical linear

regression model, is that the residuals of the estimated equations are stochastically

independent from each other. This means that its statistical properties are essen-

tially constant through time [3]. We call data series which satisfy this property sta-

tionary. Methods like Regression, Autoregressive, and Moving Average and mixed

methods all require that the dataset is stationary. We can check this property using

decomposition methods. If the trend component of the residual is going up or down

all the way, then the time series is non-stationary, but if the trend fluctuates with

a constant variation, the model is most likely to be stationary. Modelling methods

like ARIMA and exponential smoothing can also process non-stationary time series.

2.3.2 Box-Jenkins Models

This subsection introduces the Box-Jenkins models, by first explaining how these

models are built and then how to test these models and produce forecasts. Later,

it illustrates some sample models in exponential smoothing, and then combines it
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with state space models to compute forecast for the datasets. Finally it compares

the two models and draws some conclusions about them.

The Box-Jenkins approach consists of a four-step iterative procedure [4]:

• Tentative identification: historic data is used to tentatively identify an appro-

priate Box-Jenkins Model

• Parameter estimation: historic data is used to estimate the parameters of the

tentatively identified model

• Diagnostic checking: various diagnostics are used to check the adequacy of

the tentatively identified model and if need be to suggest an improved model,

which is then regarded as a new tentatively identified model

• Forecasting: once a final model is obtained, it is used to forecast future time

series values

ARMA Models

ARMA models are combined by two parts: autoregressive and moving average. It

is always denoted by ARMA (p,q), where p, q are non-negative integers that refer

to the order of autoregressive and moving average parts of the model. We can build

only autoregressive or moving average model by setting the other one to 0. The

general equations for ARMA models are as follows (Zt is white noise): Xt represents

the present value and φ is parameter for autoregressive and θ is parameter for moving

average.
AR(p) : Xt = φ1Xt−1 + . . . + φpXt−p + Zt {Zt} ∼ WN(0, σ

2
)

MA(q) : Xt = Zt + θ1Zt−1 + . . . + θqZt−q {Zt} ∼ WN(0, σ
2
)

ARMA(p, q) : Xt − φ1Xt−1 − . . .− φpXt−p = Zt {Zt} ∼ WN(0, σ
2
)

+ θ1Zt−1 + . . . + θqZt−q

Tentative Identification

In order to use Box-Jenkins models, we have to first determine whether the time

series we wish to forecast is a stationary time series. If it is not, we must transform

the time series into a series of stationary time series values. If the original time series

values are non-stationary and non-seasonal, then using the first differencing trans-

formation or the second differencing transformation will usually produce stationary
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time series values. The first differencing transformation is dividing two adjacent

values to generate a new value, and the second differencing is to repeat the first

differencing based on its results. The results of applying differencing to one of the

sample datasets “Data1” are seen in Figure 4. The original dataset is not stationary,

and the first difference is also not stationary. The second and the third difference

are stationary and we can use the second difference to perform forecasting.

Figure 4: Difference of “Data1”.

The ACF (Autocorrelation Function) measures the liner predictability of the series

at present time based only on last time. It has a range from -1 to 1, of which 1

means positive relationship, 0 means little or no relationship and 1 mean negative

relationship of two nearby time points. ACF can be used to help us find a working

series of stationary time series values. If the ACF of time series values either cuts

off fairly quickly or dies down fairly quickly, then the time series values should be

considered stationary. If the ACF of time series values dies down extremely slowly,

then the time series values should be considered non-stationary. In such case, data

transformation is necessary. We then compute the ACF for the transformed data.

The ACF of sample dataset- “data1” is shown in Figure 5.

PACF (Partial Autocorrelation Function) is used to measure the autocorrelation

between one number and the k-th nu mber afterwards. The numbers between them

are removed. In time series analysis, the PACF plays an important role in data

9



Figure 5: Difference and ACF of “Data1”.

analyses aimed at identifying the extent of the lag in an autoregressive model. The

use of this function was introduced as part of the Box-Jenkins approach to time

series modeling, where by plotting the PACF one could determine the appropriate

lags p in an AR(p) model or in an extended ARIMA(p,d,q) model.

We can use the ACF and PACF to determine how the ARMA model would be

like. For the non-seasonal moving average model, the ACF cuts off after lag k, and

PACF dies down in a fashion dominated by damped exponential decay. For the non-

seasonal autoregressive model, the PACF cuts off after lag k, and ACF dies down in

a damped exponential fashion. From Figure 6, we can conclude that the ACF cuts

off after lag 1, and the PACF dies down, so the model for this dataset is MA(1),

which is after two times of difference. The model for MA(1) is Zt = at−θ1at−1, Zt =

yt − 2yt−1 + yn+2, where yt is the value observed at time t.

Figure 6: ACF and PACF of residuals of “Data1”.
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Parameters Estimation

After the model is identified, we need to estimate parameters in the ARMA models.

we can use the least squares point estimate or the maximum likelihood estimation

to calculate the value of θ and φ. Using the least squares point estimate to calculate

value of θ in MA(1) model built for dataset-”Data1”, we estimated θ to be 0.88578

as shown in Table 1.

Table 1: Conditional Least Squares Estimation of “Data1”.
Conditional Least Squares Estimation

Parameter Estimate Standard Error t Value Approx Pr¿—t— Lag

MU -0.14217 0.04011 -3.54 0.0006 0
MA1,1 0.88578 0.04151 21.34 ¡.0001 1

Constant Estimate -0.14217
Variance Estimate 14.07289
Std Error Estimate 3.751385
AIC 692.732
SBC 698.4045
Number of Residuals 126

Diagnostic Checking

After the parameters estimation, we have to check whether the model we build

is accurate. We can use some values and test to check the model. The first one

introduced in this thesis is the t value, which is calculated by the equation t = θ̂
Sθ̂

,

where θ denote any particular parameter in a Box-Jenkins model, and θ̂ denote the

point estimate of θ, and Sθ̂ denote the standard error of the point estimate θ̂. If the

absolute value of t is large, then we should include θ in our model. In our test, the

t = 21.34 from Table 1, which is much larger than zero. As a result θ is included in

our model.

Analysing residuals is a good way to check whether the model is adequate. we can

check the ACF and PACF of the residuals. From Figure 7 it is evident that both

ACF and PACF cut off after lag 1, so the model is accurate.

Another checking value is called the P value, which is used to test the hypothesis

that the model is correct. Normally, if the value of P is greater than 0.05, the

model is adequate. The P values of our model are all above 0.05 according to our

calculations from Figure 8, so the model is adequate.
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Figure 7: Residual Correlation Diagnostics for “Data1”.

Forecasting

From the above analysis, the model we build is adequate. But in cases where the

model is not adequate, we need to change equations or set up another model. Af-

ter the checking is done, we can use this model to forecast values of future time

points. Based on the model of MA(1), we use R to compute forecasts for our dataset

“Data1”. The modelling and forecasting is divided into four parts by the number of

training and test data points. The training data used for building up the model are

the first 50 weeks, the first 80 weeks, the first 100 weeks and the full dataset. With

the exception of the full data set, remaining time series data for each trial run was

used to test the accuracy of our model. The results are plotted in Figure 9.

ARIMA Models

The ARIMA models are developed from ARMA models, and have an added pa-

rameter named d, which represents the degree of difference. This model can deal

with non-stationary time series by differencing dataset first. There are many soft-

ware tools like SAS and R that can automatically build up an ARIMA model. The

ARIMA model for the ARMA model build for “Data1” is ARIMA(0,2,1).

12



Figure 8: Diagnostic Checking of time series “Data1”.

Figure 9: Forecasting results for “Data1”.

2.3.3 Exponential Smoothing

Exponential smoothing is a very popular scheme to produce a smoothed time series

and assigns exponentially decreasing weights as the observation get older. That is,

more recent data points affect the forecast trend more heavily than older data points.

This unequal weighting is accomplished by using one or more smoothing constants.

It provides a forecasting method that is most effective when the components like

trend and seasonal factors of the time series may changing over time. Historically,

the exponential smoothing methods were intuitive methods not based on any for-
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mal statistical models, but the state space models have now provided a statistical

framework for the exponential smoothing methods.

The basic equation for predicting the next value of a given time series xt at the

period t = T is to take weighted sums of past observations. It is as follows (α is the

smoothing constant): X̂t=T (1) = α·XT +α(1−α)·XT−1+α(1−α)2 ·XT−2+. . . This

basic form should only be used when time series data has no systematic trend and

seasonal components. The “Holt-Winters” developed from exponential smoothing

is used to deal with time series containing trend and seasonal variation. There are

three smoothing parameters required: α for the level, β for the trend, and γ for the

seasonal variation.

In this subsection, we will look at Holt-Winters methods first, and then introduce

the state space model with a single source of error for the exponential smoothing

models. The exponential smoothing models underlying state space is notated as

ETS model by Hyndman et. [5] The ETS stands for Error, Trend, and Seasonal,

which is a summary of all exponential smoothing models underlying state space.

Holt-Winters Method

The Holt-Winters exponential smoothing is used when the data exhibits both trend

and seasonality. The two main HW models are the Additive Model for time series ex-

hibiting constant seasonality and the Multiplicative Model for time series exhibiting

increasing seasonality. Because we can see from the overall curve of the “Data1” that

the seasonality is constant, we only need to use the additive Holt-Winters method.

The additive Holt-Winters prediction function (for time series with period length p)

is as follows: Ŷ [t+h]=a[t]+h*b[t]+s[t-p+1+(h-1) mod p], where a[t], b[t] and s[t]

are given by

a[t] = α(Y [t]− s[t− p]) + (1− α)(a[t− 1] + b[t− 1])

b[t] = β(a[t]− a[t− 1]) + (1− β)b[t− 1]

s[t] = γ(Y [t]− a[t]) + (1− γ)s[t− p]

Using the formulas above, the Holt-Winters model was used to model time series

data of “Data1”. The prediction results are plotted in Figure 10. It can be seen

14



from the results that Holt-Winters method is not a very accurate prediction for this

dataset. This is because the trend is additive and the curve will increase all the way.

The accuracy of forecasting results of Holt-Winters model is list in Table 2:

Table 2: Accuracy analysis of Holt-winters Model for “Data1”.
ME RMSE MAE MPE MAPE MASE

334.284 621.403 335.495 33.322 33.491 28.615

Figure 10: Holt-Winters Forecasting of “Data1”.

ETS Models

Every exponential smoothing method has a corresponding state space model. An

exponential smoothing method is an algorithm for producing pint forecasts only.

The underlying stochastic state space model gives the same point forecasts, but also

provides a framework for computing prediction intervals and other properties. In this

subsection, we will illustrate how the state space models combine with exponential

smoothing. The combination is called ETS model, and the following table lists all

the combinations of trend and seasonality in this model. There error term has two

values that are additive and multiplicative. The trend term has five values that are

None, Additive, Additive Damped, Multiplicative, and Multiplicative Damped. The

seasonal component has three values None, Additive, and Multiplicative.

The observed time series are denoted by y1, y2, . . . yn. A forecast of yt+h based on

15



Table 3: ETS models combination.

Trend Component
Seasonal Component

N (None) A (Additive) M (Multiplicative)

N (None) N, N N, A N, M
A (Additive) A, N A, A A, M

Ad (Additive damped) Ad, N Ad, A Ad, M
M (multiplicative) M, N M, A M, M

Md(Multiplicative damped Md, N Md, A Md, M

all of the data up to time t is denoted by ˆyt+h|t. To illustrate the method, we give

the point forecasts and updating equations for method (A, A), the Holt-Winters

additive method:

Level : Lt = α(yt − st−m) + (1− α)(Lt−1 + bt−1)

Growth : Bt = β∗(Lt − Lt−1) + (1− β∗)bt−1

Seasonal : St = γ(yt − Lt−1 − bt−1) + (1− γ)st−m

Forecast : ŷt+h|h = Lt + bth+ st−m+hm+

Where m is the length of seasonality, and hm+ = [(h-1) mod m] + 1. The three

smoothing parameters are α, β, and γ. For each combination of model, they have a

set of corresponding formulas to model and forecast. In the dataset of “Data1”, we

just need to investigate on the ETS(A, Ad, N) from the analysis of AIC (Akaikes

Information Criterion), see details in [6].

ETS(A, Ad, N) Model

The ETS(A, Ad, N) model has additive error, damped additive trend and no sea-

sonality. It is the same as the damped Holt’s method. The state space equation has

an observation equation and one or more state equations. The observation equa-

tion and state equations for the ETS(A, Ad, N) model is as follows (where φ is the

damping parameter).

State Equations: Lt = Lt−1 + φBt−1 + αεt ; Bt = φBt−1 + αγεt

Observation Equations: ˆyt+h|t = Lt + φBt−1 + εt

The algorithms and modelling frameworks for automatic time series forecasting are

implemented in R’s forecast package. Using this model to model and predict the

dataset-”Data1”, we obtain the results as shown in Figure 11. The R command to
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Figure 11: Forecasting results for “Data1”.

compute the results for this model given below:

ETS (A,Ad,N) Call: forecast::ets(y = data1, model = “AAN”, damped = TRUE,

lambda = TRUE, opt.crit = c(”mae”), nmse = 10, bounds = c(”admissible”), re-

strict = TRUE)

Box-Cox transformation: lambda= 1

Smoothing parameters: alpha = 1.0037 beta = -0.0121 phi = 0.9869

Initial states: l = 19.8422 b = 24.4775 sigma: 3.5098

AIC AICc BIC 952.4796 952.9714 966.7397

From Figure 11, we can see that this model is more accurate than what we have

before. This is because the properties of this dataset-”Data1” fit well of this method.

It has additive trend and the trend is not increasing at the fixed amount, but having

a decreasing growth. So the damped additive trend with additive error fits well for

this dataset. This model is better than the ARIMA models for this dataset. So we

use ETS models to predict the rest 15 datasets.
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2.3.4 Model Comparison and Selection

From the results, we can see that for the dataset “Data1”, the ARIMA model is

good to some extent. For the Box and Jenkins methods, however, the dataset does

not have the required combinations of trend and periods to make the method fit the

data. On the other hand, exponential smoothing excels at accurately predicting the

trend for dataset-”Data1”, while the ARIMA models are not very suitable. This is

easy to understand because the overall curve of this dataset has a damped additive

trend and no periods. When we use an ETS model, we can set the trend to be

damped additive and adjust the parameters to be adequate for prediction.

According to the above analysis, we have to choose methods for prediction based

on the overall structure of our dataset. We have to understand the features of

these models and choose the best one that fits. If the curve is simple and only

combines with level (which is the first point of dataset) and trend, then we may use

some simple methods like linear regression and simple exponential smoothing (Not

discussed in this thesis, see [7]). If all these methods will not give good results, we

may look at ARIMA models and some other exponential smoothing models. The

exponential smoothing state space models are all non-stationary. If a stationary

model is required, ARIMA models are better.

2.4 Clustering Algorithms

After the forecasting, we will get the reliability metrics for every software version.

The reliability metrics are derived from forecasting results, which are three values:

“Maximum number of bugs”, ”When will the maximum number of bugs be reached”

and “How many bugs haven’t been discovered yet”. They are used as the attributes

of every software version in the clustering. By analysing the metrics we get for every

version, we find that we want to find software with low values of the three attributes.

Because they are unlabelled data, so we need to use unsupervised methods to cluster

them into different groups and recommend the group with the lowest combined value

to use.
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2.4.1 Reliability Metrics

For the prediction of the many software in every family, we focus on three values we

want to get out of the prediction which are useful for evaluating our software. The

three values we need to find in our prediction for every dataset, which are maximal

value for predicted bugs; the number of weeks to reach this maximal value; and the

difference between the maximal value and the number of bugs at present. The three

values are important because the maximum number of bugs means that the total

number of bugs can be found in the life cycle of this software. If the number is small,

it means the software is rather stable and has fewer error. Another value is when

will the maximum number of bugs be reached, it also represents the stage of this

software at its life cycle, when it compared with its number of weeks at present. The

third value is very straight forward to mean how many bug haven’t been discovered

yet.

We use Figure 12, which shows the time history of accumulated software bugs, to

define three metrics for software reliability. With respect to Figure 12, we define the

following variables of interest:

B(t) = cumulative number of detected bugs at time t;

T = present time;

BT= B(T) = number of bugs that have been detected at present time, T;

BM= max number of accumulated bugs;

TM = time at which B(t) = BM ;

B′ = estimate of the number of undetected bugs = (BM −BT );

T ′ = (TM − T ).

The three software reliability metrics that we use are max number of accumulated

bugs, BM ; the time at which max number of bugs reaches, TM ; and the estimate of

the number of undetected bugs, B′.

Clustering algorithms are used when we want to find similar data in a dataset and

group them by their similarity. We want the points in a cluster to be as similar

as possible to each other and as different as possible to other points in another

cluster. In our project, we use the clustering algorithms to group the software
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Figure 12: Forecasting metric for the software reliability.

versions into different clusters by the three features. The clustering algorithms we

use are Expectation-Maximization(EM) algorithm and K-means. In this subsection,

we will give some background of the two clustering algorithms.

2.4.2 EM Algorithm

EM algorithm is an unsupervised clustering method which using statistical method

to estimate the parameters of the mixture model of the data. EM finds the clusters

by determining a mixture of Gaussians that fit a given data set. Each Gaussian has

an associated mean and convariance matrix. The approach of EM is probabilistic

and it looks for the component density parameters that maximize the likelihood of

the sample. The log likelihood given the sample χ = xtt is [9]

L(Φ|χ) = logΠtp(x
t|Φ) =

∑
t

log
k∑
i=1

p(xt|Gi)p(Gi)

where Φ includes the priors p(Gi) and also the sufficient statistics of the component

densities p(xt|Gi).

In order to solve for the parameters, the algorithm use iterative optimization of two

steps. One is Expectation(E) step and another is Maximization(M) step. The goal

of the algorithm is to find the parameter Φ that maximizes the likelihood of the

observed values of χ. It needs to use an extra hidden variables Z and express the
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underlying model using both, to maximize the likelihood of the joint distribution

of X and Z, the complete likelihood L(Φ|χ,Z). The two steps are below, where l

indexes iteration.

E − step : Q(Φ|Φl) = E[L(Φ|χ,Z)|χ,Φl]

M − step : Φl+1 = arg max
Φ

Q(Φ|Φl)

Iterate the two steps above, the E-step is used to estimate Z given χ and current

Φ and the M-step is used to fine new Φl given Z, χ, and old Φ. In general lines,

the algorithm’s input are the data set (x), the total number od clusters(M), the

accepted error to converge(e) and the maximum number of iterations. For each

iteration, first is executed the E-step(Expectation), that estimates the probability

of each point belongs to each cluster, followed by the M-step(Maximization), that

re-estimate the parameter vector of the probability distribution for each class. The

algorithm finishes when the distribution parameters converges or reach the maximum

number of iterations.

2.4.3 K-means Algorithms

K means is used to partition n observations into k clusters in which each observation

belongs to the cluster with the nearest mean. It is a simple learning algorithm for

clustering analysis. The first step is to find k reference vectors which best represent

data, mj , j = 1, · · · , k. Then calculate the value of ‖xt −mi‖ = minj ‖xt −mj‖ for

every x by using nearest reference. The re-construction error for every iteration is

defined as

E(mi
χ
i=1) =

∑
t

∑
i

bti‖xt −mi‖

where bti = 1 if ‖xt −mi‖ = minj ‖xt −mj‖ and 0 otherwise.

The reference vector is set to the mean of all the instances that it represents. This

is an iterative procedure because once we calculate the new mi, b
t
i change and need

to be recalculated, which in turn affect mi. These two steps are repeated until mi

stabilize. The pseudo-code of the k means algorithm is given in 13.
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Figure 13: K-means algorithm. [9]

K-means algorithm is for clustering, that is for finding groups in the data, where the

groups are represented by their centres, which are the typical representatives fo the

groups. In this project, we used k means to separate our data into different groups.

2.4.4 Number of Clusters K

Choosing how many number of clusters to divide the dataset is a very important

part of clustering methods. How to choose the number of K is a nagging problem

and there is no agreed upon solution. Sometimes, people just declare it arbitrarily

and sometimes the problem determines K. Even through there is no absolute answer

for it, there are many ways to help us to get the optimal number for K.

In EM algorithm implemented in Weka, it used cross validation to select the number

of clusters. The cross validation divided the data into n parts. Then for each part of

the data, it use this part as the testing set and the other n-1 parts as the training sets.

A clustering model is computed for each iteration and the value of goal function,

like compute the distances from the points to the centroids, calculated for the test

set. This process repeat for n times. These n values are calculated and averaged for

each alternative number of clusters and the cluster number selected that minimizes

the test set errors.

In K Means, however there is no implemented method to find the value of K. We

can also use cross validation to compute the value of K before using K Means. There

are other ways to get the optimal K value. There is one method named “Rule of

Thumb”, which sets the number of k to k =
√
n/2. The n is the number of data
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points. Another way is to use the Information Criterion Approach, that is construct

a likelihood function for the clustering model. Then based on the K means model,

determine the information criterion values. Further information can be found in

[12].

Besides those methods to determine the value of K, we can also consider the problem

from the aspect of actual needs for the number of clusters in reality. In our problem,

the number of K means the number of segments regarding to the software reliability.

For example, if we want to segment our software into 4 segments: Very high reliabil-

ity; High reliability; Median reliability, and low reliability. And for the four of them,

we can highly recommend the first segment and recommend the second segment and

fairly recommend the third segment and not recommend the last segment. In this

case, we are not dividing our data based purely on the attributes of data, but divide

our data based on the real needs of the problem.

3 Implementation

In this section, we will talk about how we applied the three steps approach to real

problems in details. The implementation involves three major steps including defect

data transformation, time series forecasting and optimization of software selection.

Step 1 and 2 are the preparation steps for the later ones. From the last step, we

will get our results and have the most reliable software selected from many relative

software versions.

The software we want to measure are Internetwork Operating System(IOS) Software

released from Cisco Systems. These IOSs are belonging to different family platforms

and they are selected inside one family as IOSs inside one family tend to have similar

features and functions.

3.1 Defect Data Transformation

The defect data for the IOSs we want to analyse are mainly the bug data recorded in

the Oracle database of Cisco. The table we use is called “SD BUG DATA”. There

are many attributes in this bug data. The attributes of the table is shown in Table
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4.

Table 4: Attributes of SD BUG DATA.
SWQ BUG KEY BUG ID

HEADLINE TEXT ALT HEADLINE ACTIVE FLAG
ALT HEADLINE TEXT ALT RELEASE NOTE ACTIVE FLAG

ALT RELEASE NOTE TEXT ALT RELEASE NOTE TEXT
ALT RELEASE NOTE TEXT3 KEYWORD TEXT

LIFECYCLE STATE CODE FEATURE
LIFECYCLE STATE NAME PRODUCT CODE

PROJECT CODE RELEASE NOTE STATUS CODE
RELEASE NOTE TEXT RELEASE NOTE TEXT2

RELEASE NOTE TEXT3 S1S2 WITHOUT WORKAROUND FLAG
BUG LAST MODIFIED DATE SECURITY STATUS NAME

SECURITY STATUS ID SEVERITY NAME
SOFTWARE COMPONENT NAME SUBMITTER USER ID

VERSION AFFECTED NAMES1 VERSION AFFECTED NAMES2
VERSION AFFECTED NAMES3 VERSION APPLY TO NAMES

VERSION FIXED IN NAMES VERSION NAMES
VERSION TO BE FIXED NAMES CREATE DATE

UPDATE DATE RELEASE NOTE BLANK CODE
REGRESSION BUG FLAG SEVERITY CODE

SWQ SEVERITY KEY PRODUCT RUNS IOS FLAG
PRODUCT NAME SWQ SW COMPONENT KEY

SWQ MDF SERIES KEY SWQ MDF SOFTWARE FAMILY KEY
SWQ MDF PRODUCT INTERFACE KEY SWQ SUB TECHNOLOGY KEY

SWQ TECHNOLOGY KEY TECHNOLOGY NAME
SUB TECHNOLOGY NAME SW COMPONENT NAME
SW COMPONENT DESCR SWQ LIFECYCLE STATE KEY

RESOLUTION STATUS CODE

For this project, we mainly focus on the number of the bugs for each IOS, and the

time associated with each bug record. First, we need to do feature extraction from

this data. Selecting the attributes that are useful for this project and store them in

a different table for further analysis. Then, after we create our own table for bug

analysis, we pre-processing the raw data to clear the data and put them into desired

format for next step.

3.1.1 Feature Extraction

From the table 4 , we can see there are many features for the bug data, of which

there are some features that are useful for this project as we want to predict the

number of bugs for every IOS. For our project, we only use five relevant features:

1. BUG ID

2. VERSION AFFECTED NAMES1

3. VERSION AFFECTED NAMES2

4. VERSION AFFECTED NAMES3

5. CREATE DATE
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By creating a table from the five features, we can get the data we need. The

BUG ID stores the ID of every bug, and the VERSION AFFECTED NAMES1,

VERSION AFFECTED NAMES2, VERSION AFFECTED NAMES3 store all the

names of the IOS versions affected by this bug, and the create date is the time of

occurring this bug. A sample data of this table is shown in table 5.

Table 5: Sample Data for the Selected Attributes of the SD BUG DATA.
BUG ID CSCsb77521 CSCsb80410
VERSION
AFFECTED
NAMES1

12.2(18r)S3
12.2(18r)SX1
12.2(18r)SX2
12.2(18r)SX3
12.2(18r)SX4
12.2(99)SX1003
12.2(99)SX1004
12.2(99)SX1005
12.2(99)SX1006
12.2(99)SX1007
12.2(99)SX1008
12.2(99)SX1009
12.2(99)SX1010
12.2(99)SX1011
12.2(99)SX1012
12.2(99)SX1013
12.2(99)SX1014
12.2(99)SX1015
12.2(99)SX1016
12.2(99)SX1017
12.2(99)SX1018
12.2(99)SX1019
12.2(99)SX1020
12.2(99)SX1021
12.2(99)SX1022
12.2(99)SX1023
12.2(18)IXA
12.2(18)SXD
12.2(18)SXD1
12.2(18)SXD2
12.2(18)SXD3
12.2(18)SXD4
12.2(18)SXD5
12.2(18)SXD6
12.2(18)SXD7
12.2(18)SXE ...

12.2(9)S 12.2(11)S
12.2(11)S1 12.2(11)S2
12.2(11)S3 12.2(14)S
12.2(14)S1 12.2(14)S2
12.2(14)S3 12.2(14)S4
12.2(14)S5 12.2(14)S6
12.2(14)S7 12.2(14)S8
12.2(14)S9
12.2(14)S9a
12.2(14)S10
12.2(14)S11
12.2(14)S11a
12.2(14)S12
12.2(14)S13
12.2(14)S13a
12.2(14)S14
12.2(14)S15
12.2(14)S16
12.2(14)S17
12.2(14)S18
12.2(14r)S1
12.2(14r)S2
12.2(14r)S3
12.2(14r)S4
12.2(14r)S5
12.2(14r)S6
12.2(14r)S7
12.2(14r)S8
12.2(14r)S9
12.2(17r)S1
12.2(17r)S2
12.2(17r)S4
12.2(17r)S5
12.2(17r)S6 12.2(18)S
12.2(18)S0a
12.2(18)S1
12.2(18)S2 12.2(18)S3
12.2(18)S4 12.2(18)S5
12.2(18)S6 12.2(18)S7
12.2(18)S8 12.2(18)S9
12.2(18)S10
12.2(18)S11
12.2(18)S12
12.2(18r)S3 12.2(20)S
12.2(20)S1 12.2(20)S2
12.2(20)S2a
12.2(20)S3 12.2(20)S4
12.2(20)S4a ...

VERSION
AFFECTED
NAMES2
VERSION
AFFECTED
NAMES3
CREATE DATE 05/10/2006 18:21:59 05/10/2006 18:21:59

There are many IOS versions affected by the same bug, and we want to find for

every IOS, its bug records and their created date. Based on the data we have, we

need to do further process in order to get the data into right format for prediction.

We need to separate the IOSs and for each of them, record its bugs and created

date. This process needs lots of space, so in order to save space for processing, we
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only create one table for storing BUG ID and BUG DATE. Then for every selected

IOS, we store its BUG ID and BUG DATE by the reusing the same table.

3.1.2 Data Preprocessing

After the first step in feature extraction, we get three attributes we need to do the

prediction of bugs number for every IOS. The three attributes are the bug id, the IOS

affected by the bug, and the create date for this bug. Then we create another table

to process the data, which means for every IOS, we get bugs that affected it and its

date of creating. In order to use time series analysis to predict the bug number, we

have to do more process for this data. We need to count the accumulated number

of bugs for every IOS in the interval of week from the first date to the last date.

Table 6: Sample Data after the Preprocessing step 3 of IOS “12.1(19)EA1b”.
BUG DATE BUG COUNT
5/10/2006 16,808
5/24/2006 36
6/3/2006 16
6/8/2006 1
6/13/2006 2
6/15/2006 1
6/19/2006 1
6/20/2006 2
6/23/2006 1
6/28/2006 1
7/6/2006 2
7/12/2006 1
7/15/2006 1
7/18/2006 1
7/25/2006 2
8/2/2006 2
8/6/2006 2
8/8/2006 1
8/10/2006 1
8/22/2006 1
8/24/2006 1
... ...

There are some steps for us to get the final right data for prediction.

• Get the IOS name for which we want to do prediction;

• Store the data of BUG ID and BUG CREATE DATE for this IOS by searching

the data from table 5 using SQL;
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• Count the number of bugs for the same day and store it in a table of two

attributes: BUG COUNT and BUG DATE in a increasing order. Table 6

shows the sample results after this step.

• Group the accumulated number of bug counts into weeks and this is the data

we used to do prediction.

Table 7: Sample Data for the Final Step of IOS “12.1(19)EA1b”.
Number Accumulated
of Weeks Bugs Number
1 18
2 36
3 47.2
4 52.8
5 55.5
6 59.33333333
7 61
8 62.75
9 64
10 66.28571429
11 68.25
12 70
13 73.5
14 74.5
15 75.5
16 80
17 83
18 86
19 88
20 90
21 91.8
22 92.73333333
23 95
24 98
25 101
26 101.5384615
27 103
28 104.1428571
... ...

In the last step, we get the first date of the bug record for each IOS, and then count

the total number of bugs happened in the first week and record the number, and

in this way, we get the accumulated number of bugs into weeks until the last date

of the bug record. After this process is done, we get the final datasets we used to

do prediction. Because the bugs number has no seasonality, we choose to store it in

weekly in order to do prediction.
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We choose 48 IOSs to build up and test our model. The 48 IOS are chosen randomly

from the whole IOSs datasets. Then we repeat the steps above to get the data into

right format. The 16 of them are used as training data, and 32 of them are used as

testing data in the following analysis.

3.2 Time Series Forecasting

We developed the appropriate model based on the training data in the theory section,

now we need to find out apply the selected model to our datasets. This involves first

find the requirements for the data that can be applied to the model and also get the

accuracy by using testing data. In this, we need to find how many minimal data

points we need in order to have a good forecasting for one dataset. Then based

on the requirements and the model we have, we use testing data to go over the

forecasting process and get the prediction accuracy. At last, we applied all the data

in the 36 families to the model and get the results for evaluating the software.

Then in the end, the thesis will talk about using the forecasting results to build up

the reliability metrics which will be used in the clustering.

3.2.1 Requirements for data

The requirement is how many minimal data points we need in order to have a good

forecasting for one dataset. We try to use training data to forecast for 52 weeks

ahead. For the 16 training data we have, for each of the 16 IOS release, forecasting

for 26 and 51 weeks ahead based on 13, 17, 21, 26, 30, 34, 39, 43, 47, 51 weeks of

data. Then, we analyse the forecasting results and its difference and error. Take the

“Data1” for example, its accuracy analysis is showing in table 8.

After doing the same analysis for every dataset in training data, the minimal number

of weeks of data need to do a good prediction can be summarised. If the prediction

error is less than 5%, then we say the prediction is good. For the total 16 datasets we

have the prediction results indicate that for more than 75% of data have good pre-

diction after 21 weeks of data used, and more than 93% of data have good prediction

after 26 weeks of data used. The information is summarised in table 9.
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Table 8: Analysis of forecasting results for “Data1”
Weeks of 12.4(24)T

actual data plus plus
used for 51 51 weeks Difference Prediction

prediction weeks Actual error( %)
13 1078 1480.013332 402.0133321 37.29
17 1137 1305.870919 168.8709195 14.85
21 1170 1156.275403 13.7245968 01.17
26 1210 1207.845787 2.154213117 00.18
30 1247 1153.941799 93.05820132 07.46
34 1276 1276.196635 0.196634956 00.02
39 1307 1306.539397 0.460602972 00.04
43 1326 1286.350738 39.64926163 02.99
47 1357 1358.442376 1.442376223 00.11
51 1382 1378.840285 3.159714526 00.23

Table 9: Prediction results for all the training data
Table(X–prediction is not good; V–prediction is good)

IOS versions
# of weeks used to do prediction

13 17 21 26 30 34 39 43 47 51
12.4(24)T X X V V V V V V V V
15.0(1)M V V V V V V V V V V
15.1(1)T X X V V V V V V V V
15.1(2)T X V V V V V V V V V
15.1(3)T X X X X V V V V V V
15.1(4)M X V V V V V V V V V

12.2(18)SXF V V V V V V V V V V
12.2(33)SXH X V X V V V V V V V
12.2(33)SXI X V V V V V V V V V
12.2(33)SRC V V V V V X V V V V
12.2(33)SRD V V V V V V V V V V
12.2(33)SRE V V X V V V V V V V
12.2(33)XNE X X V V V V V V V V
12.2(33)XNF X X X V V V V V V V

15.0(1)S X V V V V V V V V V
15.1(1)S V V V V V V V V V V

We identified that between 21 and 26 weeks of data can be used to get a good

prediction of 52 weeks ahead, then we narrow our search to find exactly number of

weeks need to get more than 90% of good predictions. We use 22, 24 and 26 three

number to retry the prediction and get the results in table 10. From table 10 we can

see that given the 16 training datasets, predict for 52 weeks ahead, more than 90%

of forecasting is good after 24 weeks; 100% of forecasting is good after 28 weeks. So

the best starting point for forecasting is 24 weeks for these training data.

After we know that 24 is the minimal amount of data need to have a forecasting.

We select our testing data and predict for these who satisfies the requirements. The

32 testing data all satisfies the requirement. We test its accuracy on all the testing

data. We still use the difference of the predicted value minus the actual value and

then divide the actual value as the percentage of error. If the percentage of error

is less than 5%, we say the prediction is good. For this standard, 87.5 % of testing
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Table 10: Prediction results of using 22, 24 and 26 weeks of data
Table(X–prediction is not good; V–prediction is good)

IOS versions
# of weeks used
to do prediction
22 24 26

12.4(24)T V V V
15.0(1)M X V V
15.1(1)T V V V
15.1(2)T V V V
15.1(3)T X V X
15.1(4)M V V V

12.2(18)SXF V V V
12.2(33)SXH X V V
12.2(33)SXI V V V
12.2(33)SRC V V V
12.2(33)SRD V V V
12.2(33)SRE V V V
12.2(33)XNE V V V
12.2(33)XNF V V V

15.0(1)S V V V
15.1(1)S V V V

data have good predictions after using the first 24 weeks of data. This accuracy is a

little bit lower than the accuracy on the training data, but it is acceptable for more

than 85%. So the 24 weeks of data is identified as the starting point for predictions,

and any dataset that contains data less than 24 weeks are not able to predicted

accurately.

3.2.2 Forecasting based on Family

The requirement for prediction is that the minimal number of week needs to use for

forecasting 52 weeks ahead is 24 weeks. It used to select the datasets from the data

we need to forecast. We have 36 families that have many IOSs need to forecast.

The first step is get the datasets for each IOS in every family. This step involves

repeat the data pre-processing and then get the right format for prediction. After

this, we can predict for every IOS in the 36 families. In our prediction process, we

only predict the datasets that satisfies our requirement. Most of the datasets for

IOS satisfies our requirement and only a few can’t be predicted.

Then we predict for over 5,000 IOS software releases across 36 different product

families, and get the reliability metrics for each prediction. The Table 11 shows the
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partial results for prediction of the 2 families.

Table 11: Partial Prediction Results for Family: C3560 and C3750.
C3560

IOS MAX # of weeks Difference
Name BUGS reaching (MAX-

Max Present)
12.1(19)EA1c 272 295 0
12.2(25)SEE1 5015 368 19
12.2(25)SEE2 4979 415 32
12.2(25)SEE3 4644 382 23
12.2(35)SE5 5466 925 755
12.2(37)SE 5241 769 491
12.2(37)SE1 5197 766 501
12.2(40)SE 5033 785 574
12.2(44)SE2 4171 595 356

C3750
IOS MAX # of weeks Difference

Name BUGS reaching (MAX-
Max Present)

12.1(14)EA1a 282 295 0
12.1(19)EA1c 272 295 0
12.2(25)SEE1 5015 368 19
12.2(25)SEE2 4979 415 32
12.2(25)SEE3 4644 382 23
12.2(35)SE5 5466 925 755
12.2(37)SE 5241 769 491
12.2(37)SE1 5197 766 501
12.2(40)SE 5033 785 574

The number of bugs when one IOS release reaches its maturity is called the maximal

value of bugs. We measure this maximal value of bugs is by measuring the number

of bugs remain the same for over one year. When the bug number not changing

for over one year, we mark this value as the maximal value of bugs for this IOS.

The time for which the number reaches at first it the number of weeks we want

to use as number of weeks for reaching the maturity. This maximize value and

the number of weeks for reaching this maximization, and the difference between the

maximization and the number of bugs at present are three major factors for building

up the forecasting measurement metrics for evaluating IOS releases. When grouping

many IOS releases inside one family, the performance of one IOS is compared with

others inside one family based on their reliability metrics. The forecasting results are

used to optimize the selection inside the family. Basically for the results of one IOS

release, the less the three values the better the quality of this IOS. When putting the
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three measure values together, we will put weight on them and using the weighted

combined metrics to evaluate these IOS releases. [8]

3.3 Optimization of Software Selection

3.3.1 Optimize using Clustering

In this section, we talks about how we use the forecasting result-reliability metrics

to optimize the selection of software versions. For these IOSs, they are divided by

different families according to their features. There are total 36 families that have

IOS for more than 20 and we need to optimize the selection of IOSs inside family

by using the reliability metrics. In the previous section, we collect the name of IOS

and do the prediction for every IOS for one family. In this section we cluster them

into different groups based on the reliability metrics, and rank the groups according

to their level of performance.

We have introduced two clustering methods K Means and EM in this project. We

use Weka to do the clustering. For the 36 families, we select one family C3560 to

illustrate how we use clustering to optimize our selection of IOS inside one family.

The instances are IOSs in this family, and the attributes for every instance are the

three metrics. The clustering algorithm is used to find the IOS with the lowest value

of the three attributes. Because the range of the three attributes are different, we

need first to normalize the three attributes into the range of 0 to 1. Then we perform

the two algorithms to our datasets. For family C3560, there are totally 52 IOS, and

so 52 instances. Import the data into weka and first normalize the value of three

attributes. Then in later subsection, we will talk about the two clustering methods

and their results.

3.3.2 Clustering Results of EM

Performing the EM algorithm in the dataset, we get four clusters based on the cross

validation. In the later experiment of K Means, we also use four as our number

of clusters. The number of clusters may change according to the real needs of the

grouping. In our experiment, we use four as it is the optimal value for this family
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based on the cross validation. If there are any other requirements from customers

or software engineers for different ways of segment the software versions, other value

may also be applied. For our four clusters, there are 12 IOS in cluster 1, and 7

IOS in cluster 2, and 11 IOS in cluster 3, and 22 IOS in cluster 4. The plot of the

data points in different clusters is shown in Figure 14. The names of the IOS and

clustering results is shown in Table 12.

Figure 14: Clustering results of family C3560 by EM.

Table 12: Partial Clustering Results for IOS in family C3560.
Number IOS Attribute1 Attribute2 Attribute3 Cluster Name

37 12.2(44)SE3 0.717251 0.329256 0.387688 cluster1
38 12.2(44)SE5 0.709825 0.32314 0.379175 cluster1
39 12.2(44)SE6 0.695925 0.345566 0.416503 cluster1
40 12.2(46)SE 0.654227 0.313456 0.377865 cluster1
41 12.2(50)SE 0.597867 0.446993 0.445972 cluster1
42 12.2(50)SE1 0.621858 0.609582 0.59332 cluster1
43 12.2(50)SE2 0.621858 0.609582 0.59332 cluster1
45 12.2(50)SE4 0.428218 0.683996 0.656843 cluster1
47 12.2(52)SE 0.737624 1 1 cluster1
48 12.2(53)SE 0.489528 0.453109 0.454486 cluster1
49 12.2(53)SE1 0.489528 0.453109 0.454486 cluster1
50 12.2(53)SE2 0.569307 0.763507 0.743942 cluster1
1 12.1(19)EA1b 0.00019 0 0 cluster2
2 12.1(19)EA1c 0.00019 0 0 cluster2
3 12.1(19)EA1d 0 0 0 cluster2
44 12.2(50)SE3 0.343298 0.157492 0.167649 cluster2
46 12.2(50)SE5 0.395849 0.109072 0.117223 cluster2
51 12.2(55)SE 0.294935 0.173802 0.178127 cluster2
52 12.2(55)SE1 0.161081 0.181448 0.189915 cluster2

From Figure 14 and Table 12, we can see that the best IOS to select is in cluster 2,

and then cluster 4, and then cluster 3 and cluster 1 is the last one to select from.

Based on the values of the three metrics of IOS, we select the best ones into cluster

2, and select IOS from this group in order to have minimal number of bug both in
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the present and in future. The selected IOS are more reliable comparing with other

IOS in the same group.

3.3.3 Clustering Results of K-means

We also used K-means to do the clustering for our datasets. The results are almost

the same as using EM algorithm except few points in the boundary. The cluster 1 has

8 instances, which corresponding cluster 1 in EM. The cluster 2 has 21 instance which

corresponding cluster 4 in EM. The cluster 3 has 8 instances which corresponding

cluster 2 in EM. The cluster 4 has 15 instances which corresponding cluster 3 in

EM. The plot of the results is shown in Figure 15 and the Table 13 gives the partial

IOS of clusters.

Figure 15: Clustering results of family C3560 by K-means.

Table 13: Partial K-means Clustering Results for IOS in family C3560.
Number IOS Attribute1 Attribute2 Attribute3 Cluster Name

41 12.2(50)SE 0.597867 0.446993 0.445972 cluster1
42 12.2(50)SE1 0.621858 0.609582 0.59332 cluster1
43 12.2(50)SE2 0.621858 0.609582 0.59332 cluster1
45 12.2(50)SE4 0.428218 0.683996 0.656843 cluster1
47 12.2(52)SE 0.737624 1 1 cluster1
48 12.2(53)SE 0.489528 0.453109 0.454486 cluster1
49 12.2(53)SE1 0.489528 0.453109 0.454486 cluster1
50 12.2(53)SE2 0.569307 0.763507 0.743942 cluster1
5 12.2(20)SE 0.614242 0 0.008513 cluster2
6 12.2(20)SE1 0.611196 0 0.006549 cluster2
7 12.2(20)SE3 0.612338 0 0.006549 cluster2
8 12.2(20)SE4 0.613861 0 0.008513 cluster2
9 12.2(25)SE 0.930693 0.005097 0.034709 cluster2
10 12.2(25)SEA 0.844821 0.007136 0.055665 cluster2
11 12.2(25)SEB 0.858149 0.008155 0.055665 cluster2
12 12.2(25)SEB1 0.856626 0.007645 0.057629 cluster2

34



From the plotting, and the clustering results by K-means, we find that the best

group to select from is cluster 3. Then the second is cluster 2, and then third cluster

4, and the last one is cluster 1. When we choose the IOS from the same family, we

can use this clustering results to help us choose the most reliable IOS when they all

satisfy our requirements in other aspects.

4 Conclusions and Future Work

In order to choose the most suitable and reliable software release for a particular

application, data analysis techniques that can process data into useful information is

needed. This thesis proposes a novel approach that applies bug prediction and clus-

tering method together to extract useful information from bug log files to optimize

software selection. Different kinds of modelling techniques are explored at each stage

of the project. First, time series analysis techniques are used to estimate software

reliability by predicting the total number of bugs in a particular version. We found

that using exponential smoothing yields better prediction results than Jenkins Box

methods. Then in the application stage, we use our forecasting results to built up

set of software reliability metrics from our data. These metrics can then be used as

input to clustering methods which will group software versions based on rankings.

We give priority to clusters of software that have a minimal number of total bugs

(both found and not yet discovered). The most stable software versions are then put

forward in our recommendations.

In this thesis we focused on reliability as a criterion for software selection. How-

ever, other aspects of software such as the feature set can equally be important in

making decisions. For instance one version of the software could have been heavily

optimized compared to a previous version and the customer needs that gain in spite

of the additional bugs. Also the severity of bugs is not taken into consideration in

our analysis. Typically we would pick a version with many minor bugs that have

workarounds over one with a major bug without a workaround that can cause the

entire system to fail. Further research work in this area is needed to incorporate all

these factors make our recommendations more reliable and meaningful.
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