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Abstract

To gain insights into complex biological processes, genome-scale data (e.g., RNA-Seq) are

often overlaid on biochemical networks. However, many networks do not have a one-to-one

relationship between genes and network edges, due to the existence of isozymes and pro-

tein complexes. Therefore, decisions must be made on how to overlay data onto networks.

For example, for metabolic networks, these decisions include (1) how to integrate gene

expression levels using gene-protein-reaction rules, (2) the approach used for selection of

thresholds on expression data to consider the associated gene as “active”, and (3) the order

in which these steps are imposed. However, the influence of these decisions has not been

systematically tested. We compared 20 decision combinations using a transcriptomic data-

set across 32 tissues and showed that definition of which reaction may be considered as

active (i.e., reactions of the genome-scale metabolic network with a non-zero expression

level after overlaying the data) is mainly influenced by thresholding approach used. To

determine the most appropriate decisions, we evaluated how these decisions impact the

acquisition of tissue-specific active reaction lists that recapitulate organ-system tissue

groups. These results will provide guidelines to improve data analyses with biochemical net-

works and facilitate the construction of context-specific metabolic models.

Author summary

Over the past two decades, systems biology approaches have permeated all fields of biol-

ogy. Indeed, biological networks are commonly used for the analysis of omics datasets

and to test hypotheses through computational simulations. Many of these types of studies

require one to overlay omics data to a biological network. In many biochemical networks,

such as metabolic networks, there is not a one-to-one relationship between genes and net-

work edges (e.g., metabolic reactions), due to the existence of isozymes and protein com-

plexes. Therefore, decisions must be made on how to overlay data onto networks. For

example, these decisions include (1) how to integrate gene expression levels using the

Boolean relationships between genes, proteins, enzymes, and reactions, (2) the selection

of thresholds on expression data to consider the associated gene as “active” or “inactive”,
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and (3) the order in which these steps are imposed. While these decisions have been made

in many published studies, there has been no systematic evaluation of the impact of these

decisions on the biological accuracy of the resulting networks. To this end, we bench-

marked the different existing decisions made to integrate the data into the network. The

results provide guidelines to improve data analyses with biochemical networks that should

translate to many other network types.

This is a PLOS Computational Biology Methods paper.

Introduction

Most biological systems can be structured as networks, from cell signaling pathways to cell

metabolism. These networks are invaluable for describing and understanding complex biologi-

cal processes. For example, metabolic network reconstructions can illuminate the molecular

basis of phenotypes exhibited by an organism, when used as a platform for analyzing data mea-

suring gene expression, protein expression, enzymatic activity, or metabolite concentrations.

For these analyses, the data are overlaid on the biological networks using Boolean rules that

describe the relationship between the measured molecules (e.g., mRNAs, metabolites) and the

network edges and nodes. These logical rules capture how the molecules influence each other’s

activity (i.e., activation, inhibition, or cooperation), and allow users to quantify each network

edge or define the status of each network component as either “on” or “off”. Therefore, a bio-

logical process can be described in a given context by adding or removing nodes and/or edges

based on genome-scale data.

Genome-scale metabolic networks utilize this Boolean formulation connecting genes to

reaction, and therefore have been used extensively as platforms for analyzing mRNA expres-

sion data to elucidate how changes in gene expression impacts cell phenotypes [1–8]. These

studies have spanned diverse applications from identification of disease mechanisms [9,10] to

identification of drug targets [11,12], and the evaluation of cell responses to drugs [13]. Despite

the success of the many studies integrating omics data with biochemical networks, there are

several challenges in the integration of omics data with networks that are infrequently dis-

cussed. These challenges impact the accuracy of context-specific networks, and include experi-

mental and inherent biological noise, differences among experimental platforms, detection

bias, and the unclear relationship between gene expression and reaction flux [14]. Further-

more, algorithmic assumptions influence the quality and functionality of resulting models and

the physiological accuracy of their predictions [15–19].

While previous work has discussed the impact of various algorithms on obtaining physio-

logically accurate metabolic networks, the influence of the initial steps of data integration with

biological networks has not been clearly evaluated and discussed in the literature. Thus, no

universal rules have been established on how to integrate transcriptomic data, referred to here

as “preprocessing”, leading often to inappropriate decisions for model development. These

preprocessing steps include (1) how to account for network elements (e.g., reactions) that do

not have a one-to-one relationship with genes and reactions (e.g., isozymes, complexes, and

promiscuous enzymes), referred to here as gene mapping, and (2) how to define which genes

are expressed or not, referred to here as thresholding, and (3) the order of gene mapping and

thresholding in data integration. Here we evaluate the influence of the transcriptomic
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preprocessing steps and their consequences on the biological meaning captured by the data.

Specifically, we do this by evaluating 20 different combinations of preprocessing steps, using

transcriptomic data from 32 tissues. By evaluating the resulting 640 tissue-specific active reac-

tion lists, we identify which decisions have the largest impact on list content, and which deci-

sions best capture the similarities seen within tissues from the same organ-systems. This study

aims to help researcher make proper decision on omics data integration by stress-testing exist-

ing methods and proposing improvements on their implementation. This results in guidelines

for overlaying transcriptomic data in metabolic networks and the lessons learned should be

applicable to the analysis of transcriptomic data in all sorts of biological networks used for sys-

tems biology analysis.

Results

Preprocessing decisions for overlaying omics data on biochemical networks

Biochemical and other network types provide valuable platforms for analyzing and interpret-

ing data. In these networks, links between nodes often represent enzyme-catalyzed reactions,

and as such there is often not a one-to-one relationship between the genes and reactions. This

relationship is represented using logical rules, referred as Gene-Protein-Reaction rules (GPRs,

Fig A in S1 Text). When overlaying mRNA abundances on biochemical networks, GPRs are

used to define which genes are the main determinants of the enzyme activity catalyzing a reac-

tion. We refer here to this step as gene mapping. The most common assumption for multimeric

enzyme complexes is that the gene with the minimum expression governs the activity. For iso-

enzymes, the activity may either depend on the total expression of all isoenzyme genes [20] or

the isoenzyme gene with highest expression [21] (Fig 1A).

Furthermore, the absolute mRNA abundance is often considered to represent a gene’s

potential activity by using a thresholding approach. That is, if the gene is expressed at a level

above a threshold, it is often considered to be active. This threshold definition has been imple-

mented in many different ways in the literature, from the use of only a single threshold to

more complex rules involving multiple thresholds. For example, one unique threshold value

can be applied to all genes (i.e., the global thresholding approach, [22,23]) while others have

applied different thresholds to each gene (i.e., the local thresholding approach, [24,25]) (Fig

1B). When using one single threshold in a global context (i.e., global T1), the genes presenting

an expression above this value are considered as active (i.e., ON) while the others are inactive

(i.e., OFF) (Fig 1C). However, when multiple samples are available, one can compute a gene-

specific threshold based on the distribution of the expression levels observed for this gene over

all the samples (e.g., a local rule that sets a threshold equal to the mean expression level across

all samples). This gene-specific thresholding approach can be implemented in combination

with a defined global threshold for genes presenting low expression values among all the sam-

ples (e.g., below the usual detection level associated to the measurement method) to prevent

their inclusion with the active genes for some samples (i.e., local T1). Therefore, the genes

whose expression is below the value defined by this global lower bound will always be consid-

ered as inactive (i.e., OFF), while other genes will fall under the local rule for gene-specific

threshold definition (i.e., MAYBE ON) (Fig 1C). Another similar extreme case can be encoun-

tered when the gene expression level is high in all the samples. Therefore, we propose to also

analyze the influence of using one lower and one upper threshold values defined based on the

distribution of expression level off all the genes in all the samples (i.e. local T2). Doing so, the

local rule for gene-specific threshold definition is actually applied only to the genes whose

expression is between the range of values defined by the lower and upper bounds (i.e., MAYBE

ON), ensuring that genes presenting low expression values among all the samples are always
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considered as inactive (i.e., OFF) while the ones with very high expression values among all the

samples are always considered as active (i.e., ON) (Fig 1C).

Preprocessing of transcriptomic data for their integration into biochemical networks relies

mainly on these two decisions: gene mapping and thresholding, but these can be implemented

in different orders, with either gene mapping or thresholding occurring first (Fig 1D). There-

fore, multiple combinations of these decisions could be made when overlaying data onto bio-

chemical networks, and these decisions may influence the data integration and the subsequent

biological interpretation (see Table 1, Fig 1, and a detailed explanation about the decisions pre-

sented in Methods section).

Here, we integrated transcriptomic data from 32 different tissues in the Human Protein

Atlas [25] with the Human genome scale model Recon 2.2 [26] using 20 different

Fig 1. Formulation and implementation of preprocessing decisions. (A) Two types of gene mapping methods (GM1 and GM2) are compared. (B) Two types of

thresholding approaches (global and local) are compared. (C) Formulation of three combinations of number of states (Global T1, Local T1, and Local T2) (D) Decisions

about the order in which thresholding and gene mapping are performed. For Order 1, gene expression is converted to reaction activity followed by thresholding of

reaction activity; for Order 2, thresholding of gene expression is followed by its conversion to reaction activity.

https://doi.org/10.1371/journal.pcbi.1007185.g001
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combinations of the 3 main preprocessing decisions (Table 1, Fig 1). This resulted in 640 dif-

ferent tissue-specific profiles of “expression” values for all gene-associated reactions in Recon

2.2. To specifically evaluate the immediate impact of the preprocessing decisions on the result-

ing networks (i.e., list of reactions of a genome-scale model (GEM) with a non-zero expression

level after overlaying the data), we focused our analysis on the content of the networks them-

selves (i.e., the definition of active biochemical pathways therein) and the biological interpreta-

tion of these networks.

Active reaction sets are influenced by preprocessing decisions

Decisions regarding gene mapping, thresholding (i.e., approach and number of states), and

order of steps affect the definition of active reaction sets. Specifically, the sets of active reac-

tions (i.e., reactions of the GEM with a non-zero expression level after overlaying the data) var-

ied considerably in size from 358 reactions to 3286 reactions across all tissues, depending on

preprocessing decisions and tissue type (Fig 2A). To assess the impact of each decision, we

conducted a principal component analysis (PCA) of the reaction sets considered as active,

depending on the preprocessing decisions (i.e., a PCA on the matrix of all active reactions vs.

all combinations of decisions and tissues; see Methods for details). The first principal compo-

nent explains >35% of the overall variance in active reaction content (Fig 2B). The threshold-

ing related parameters (global/local and T1/T2) provide the most significant contribution to

the variation in the first principal component (38.5%), with the differences between the global

and local approaches having the greatest impact (Fig 2C, 2F and Fig B in S1 Text). The effect of

thresholding impacted the networks more than the differences across tissues, which only

explained 15.8% of the variation in the first principal component. Tissue specific effects did

not dominate until the second principal component, where it explained 73% of the variation

in the component. The order of the preprocessing steps only provides a small contribution to

the explained variation in the first principal component (Fig 2C and 2D). Meanwhile, the type

of gene mapping has the least influence on active reaction sets (Fig 2C and 2E). These results

indicate that the identification of active reactions is most heavily affected by the thresholding

approach (as defined in Fig 1B), followed by the state definition used for thresholding (as

defined in Fig 1C) and the order of preprocessing steps (as defined in Fig 1D) while the gene

mapping method does not seem to have an influence.

Table 1. Decisions involved in transcriptomic data preprocessing.

Decisions Variables Existing approaches Biological meaning

Gene Mapping GPR transformation for expression

selection

AND/OR = MIN/MAX Isoenzyme reaction activity is given by isoenzymes presenting the

maximum activity

AND/OR = MIN/SUM Isoenzyme reaction activity is given by the sum of the isoenzyme

activities

Thresholding Approach local Gene-specific threshold values

global Unique threshold value for all the genes

Number of states 2 states = 1 global threshold OFF/ON

2 states = 1 global threshold and 1

local rule

OFF/MAYBE ON

3 states = 2 global thresholds and 1

local rule

OFF/MAYBE ON/ ON

Order of the

steps

Gene Mapping (GM)

Thresholding (T)

GM + T The cutoff of activity is defined at the reaction level

T + GM The cutoff of expression is defined at the gene level

https://doi.org/10.1371/journal.pcbi.1007185.t001
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Preprocessing decisions influence ability to capture tissue similarities

within organ-systems

We assessed the similarities of tissues belonging to the same organ-system, based on the

knowledge of the set of active reactions. We assumed that organ-system groups are formed by

Fig 2. Preprocessing decisions affect the definition of active reactions sets. (A) Twenty different combinations of preprocessing decisions led to a large diversity

number of reactions considered as active. (B) The first three principal components (PCs) explain most of the variance in the number of active reactions in a GEM. (C)

Thresholding contributes the most to the first PC and more specifically the main contributor is the thresholding approach (i.e. local or global). (D, E and F). The

influence of thresholding parameter selection is clear in the first PC (F), while the networks are less influenced by the gene mapping method (E) and the order of

preprocessing steps used (D).

https://doi.org/10.1371/journal.pcbi.1007185.g002
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tissues working collaboratively to achieve a specific function (e.g., the gastrointestinal system

turns food into energy). Therefore, we hypothesized that similarities of tissues within an organ

system may lead to a more similar set of active metabolic reactions within the system, in com-

parison to other systems, as suggested by previous transcriptomic analyses [27,28]. To this

end, we calculated Euclidean distances between pairs of tissues belonging to the same organ-

system (Fig 3, Fig C in S1 Text, see Methods for more details). Our results highlight the influ-

ence of preprocessing decisions on the significance of tissue grouping at the reaction level.

Moreover, we observed that some decisions improved the significance of tissue grouping:

Order 2 works generally better than Order 1. Local T2 also is better than GlobalT1 and

LocalT1. However, there was not a clearly superior approach for gene mapping in our analysis

(Fig 4, Fig D in S1 Text).

Some organ classification systems will group dissimilar organs together into a single organ-

system, and we wondered if our analysis would still suggest the removal of such tissues from

the organ-systems based on metabolic differences. For example, our previous analysis was

done without associating the placenta to the Female reproductive organ-system group. How-

ever, the Human Protein Atlas groups it into the Female reproductive organ group (S1 Table).

The placenta is functionally and histologically different from the other tissues of this group,

being derived from both maternal and fetal tissue. This biological difference was successfully

Fig 3. Influence of preprocessing decisions on capturing tissue similarities. Visual representation using a Principal Coordinates Analysis of the similarity between

tissues grouped by organ system for each preprocessing decision (numbers in legends are the mean Euclidean distance of the tissues belonging to each group; F–

Female reproductive group, G–Gastrointestinal group, and L–Lymphatic group).

https://doi.org/10.1371/journal.pcbi.1007185.g003
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captured when we compared the tissue similarity analysis with and without the placenta in the

Female reproductive organ-system group (Fig E in S1 Text).

LocalT2 reduces false negative predictions

Our results above showed that tissues belonging to the same organ system grouped together.

This suggests that active reaction sets of tissues contain biological meaning that facilitates

grouping tissues belonging to the same organ system. To this end, we identified pathways

known to be active in a tissue based on literature. We found 154 pathway-tissue pairs (i.e. a

given pathway is known to take place in a given tissue; S2 Table; Fig F1 in S1 Text) and used it

to evaluate different thresholding methods (See Methods, Fig F in S1 Text). This resource sug-

gested that pathways could be classified into three categories based on observed ubiquity (i.e.,

how many tissues wherein the pathways were active): tissue-specific (low ubiquity, pathway is

known to occur in 1–2 tissues); group-specific (medium ubiquity, pathway is known to occur

in 3–10 tissues belonging to the same organ-system group); and ubiquitous (pathway is known

to occur in nearly all tissues) (Fig F2 in S1 Text). The coverage of each of the pathways (as

defined in Recon 2.2) in each of the active reaction sets was evaluated using two metrics: (i)

ubiquity, and (ii) false negative rate. We evaluate here the false negative rate (i.e., when a path-

way known to be present in a tissue is not enriched in this tissue) as opposed to false positive

Fig 4. Preprocessing decisions influence the significance of tissue grouping at organ-system level. We compared

the mean Euclidean distance observed between tissues belonging to the same organ-system to the mean Euclidean

distance for 10000 randomly selected groups with the same number of tissues. The significance of the grouping (P-

value) is computed as the proportion of random distances lower than the observed distance for each organ-system.

https://doi.org/10.1371/journal.pcbi.1007185.g004
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rate since pathways may also be present in non-canonical tissues (i.e. tissues in which the path-

way may be poorly studied).

We first quantified across tissues the ubiquity of each pathway for each thresholding

method, resulting in a predicted ubiquity matrix. Pathways grouped together into 5 clusters

(Fig G4 in S1 Text). We found that 2 of our 3 ubiquitous pathways matched the pathway clus-

ter P5, 2 out of our 6 group-specific pathways were found in clusters P2 & P3, and 8 of the 20

tissue-specific pathways matched to cluster P4 (Fig G4 in S1 Text). The coverage of pathway

types in different pathway clusters suggests that different thresholding methods can be distin-

guished in their ability to enrich certain types of pathways based on where they are localized

across tissues (tissue-specific, group-specific, or ubiquitous). Therefore, we tested the ability of

thresholding methods to accurately predict presence of a pathway in the right tissue (hyper-

geometric test, enriched if p< 0.05). For this, we compared the false negative rates for each

of the thresholding methods (global50, global75, local25, local25-90, and local25-75) in the

5 clusters. We found that global75 generated the most false negatives among pathways in P2,

global50 and local25 generated highest false negatives in P3, and local25 and local25-90 gener-

ated the most false negatives in P5 (Figs. H and I in S1 Text).

Interestingly, difference in the number of false negative pathways in P4 were never signifi-

cant between the different methods. However, nearly 40% of tissue-specific pathways existed

in cluster P4, likely because nearly all methods perform equally in making accurate predictions

about tissue-specificity of pathways (i.e., pathways with very low ubiquity). The results, here,

indicate that nearly all methods perform equally well in predicting highly tissue-specific path-

ways such as heme synthesis (Fig 5A) and bile acid synthesis (Fig 5B). However, they perform

differently when considering group-specific and/or ubiquitous pathways such that global50

and global75 captured fewer accurate tissues for androgen/estrogen metabolism (Fig 5B) and

xenobiotic metabolism; and local25 and local25-90 did not capture ubiquity of glycolysis/glu-

coneogenesis and citric acid cycle (see Methods; Fig 5C). Further, we also found that local25-

75 never produced significantly (Fig I in S1 Text) less false negatives in pathway clusters P2,

P3, and P5 (Fig H in S1 Text). Therefore, these results together suggest that local25-75 presents

most accurate list of active reactions.

Discussion

Several methods have been developed to integrate transcriptomic data in GEMs, thus enabling

the comprehensive study of metabolism for different cell types, tissue types, patients, or envi-

ronmental conditions [8,12,22,23,29,30]. However, while these, and many other studies rely

on preprocessing decisions to integrate the transcriptomic data in biochemical networks, each

study makes different decisions without reporting the reason for their approach. Indeed, no

rigorous comparison of the impacts of such decisions has been previously reported clearly in

the literature.

Here, we highlighted how different preprocessing decisions might influence information

extracted from tissue specific gene expression data. We evaluated the influence of each prepro-

cessing decision quantitatively by studying the active reaction sets and qualitatively by evaluat-

ing tissue grouping at an organ-system level. Our analysis suggested that thresholding related

decisions have the strongest influence over the set of active pathways, and more specifically the

thresholding approach (i.e., global or local; Fig 1C). This can be explained by the considerable

influence of the decision on thresholding on the number of genes selected as expressed (Fig J

in S1 Text). We note that threshold value choice for global thresholding was previously found

to be the dominant factor influencing cell type-specific model content when context specific

extraction methods were benchmarked [18]. When using global thresholds, the number of the
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Fig 5. Comparison of active reaction lists obtained using different thresholding methods with manually-curated resource. Tissues where pathways are known

to be active are bolded and colored on the y-axis and colored on the binary heatmap. (A) All thresholding methods accurately capture heme synthesis in bone

marrow but not in liver. Global50 enriches the pathway in many other tissues but the pathway is known to occur only in bone marrow and liver. (B) Androgen and

estrogen synthesis and metabolism is known to occur in brain, adrenal gland, skin, adipose tissue, bone marrow, skeletal muscle, and smooth muscle. Global75

enriches the pathway in higher number of tissues; and global50 and local25 does not enrich it in lower number of tissues compared to other methods. (C) Citric acid

cycle is known to occur in all tissues but local25 and local25-90 does not enrich in many of the tissues compared to other methods. Thus, suggesting that local25-75

performs better than other thresholding methods in all pathway types together (Fig F in S1 Text).

https://doi.org/10.1371/journal.pcbi.1007185.g005
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genes selected to be active significantly decreases with increasing threshold value. However,

the use of local thresholding leads to a smaller variation in the number of genes predicted to be

active (Fig K in S1 Text). Furthermore, for similar state and value attribution (e.g., T1 25th per-
centile), the use of the global thresholding approach leads to the selection of a larger number of

genes predicted to be active in all tissues than the local approach (Fig J in S1 Text). Therefore,

using a global threshold leads to fewer differences between tissues and a higher correlation of

active reaction sets across tissues (Fig L in S1 Text), thus losing improved tissue specificity of

the networks seen with the local thresholding approaches (Fig 4). This may have an important

impact on analyses of tissue specific metabolism. Furthermore, the use of global thresholding

is likely to lead to many false-negative reactions (i.e., reactions predicted to be inactive but are

active), such as housekeeping genes that might be lowly expressed since they make essential

vitamins, prosthetic groups, and micronutrients that are needed in low concentrations. Inter-

estingly, the use of the T2 state definition seems to be less dependent on threshold values

attributed than the T1 state definition when using a local approach (Fig K in S1 Text). There-

fore, the use of a T2 state definition in combination of a local approach seems to successfully

overcome the arbitrary aspect of threshold value selection and its influence on data

preprocessing.

The order of preprocessing steps only moderately influences the definition of active reac-

tions sets (Fig 1C). This decision implies two different interpretations of the influence of the

RNA transcript levels on the determination of the enzyme abundance and activity associated

to a given reaction. Indeed, the Order 1 suggests that the measured expression levels determine

the enzyme abundance available for a reaction while its associated activity will be defined

depending on the gene chosen as the main determinant of the reaction behavior. On the other

hand, the Order 2 relies on a comparison of the activities of each gene associated with enzymes

that might catalyze a reaction without directly accounting for the absolute transcript abun-

dance. Our analyses suggest that Order 2 provides more significant grouping for the Gastroin-
testinal and Lymphoreticular systems and does not considerably influence the grouping of the

Female reproductive system. Advances in fluxomic measurement techniques will be invaluable

to further investigate this preprocessing decision. Indeed, this would allow the analysis of the

correlation between the RNA transcript levels and gene activity (expression data transformed

using thresholding) of all the genes contributing to the definition of a reaction activity. Fur-

thermore, this correlation analysis will further help with biological interpretation of this pre-

processing decision and further refine guidelines for gene mapping decisions.

In our analysis, both gene mapping methods handle the AND relationships within a GPR

rule in the same way but they differ in the treatment of OR relationships by either considering

the maximum expression value (GM1) or a sum of expression values (GM2). Therefore, GM1

assumes that a reaction activity is determined by only one enzyme while GM2 accounts for the

activity of all potential isoenzymes for a reaction. Surprisingly, while most of the reactions in

Recon 2.2 are associated with at least two isoenzymes (Fig M1 in S1 Text), the distributions of

these reaction activities do not significantly change between the gene mapping approaches

(Fig N in S1 Text). Indeed, even if there is a significant difference in the number of genes

mapped to the model depending on the techniques used: an average of 58.3% of the genes pres-

ent in the model and available in the HPA dataset are mapped to the model reactions using

GM1 while 89.5% are mapped using GM2. The expression value of genes that are unmapped

using GM1 but mapped with GM2 is often below the 50th percentile of the overall transcrip-

tomic data available (Fig O in S1 Text) and therefore seems to not significantly influence the

distribution of the reaction activities obtained. This is why the decisions relating to the gene

mapping method do not influence the set of active reactions in the case of the transcriptomic

dataset used in this study. However, it may not be the case for all transcriptomic datasets,
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especially if more metabolic genes are associated to high gene expression values. In this context,

the development of more biologically meaningful gene mapping methods might be the key to cap-

ture differences between cell-types or tissues. Current gene mapping methods consider all

enzymes as specialists (i.e., one enzyme is associated to one reaction). However, numerous

enzymes are actually “generalists” as they exhibit promiscuity [31,32] (Fig M4 in S1 Text). This

functional promiscuity of an enzyme may be manifested in the form of competition between reac-

tions catalyzed by this enzyme, and therefore influence the catalytic activity of an enzyme. In this

context, future work may benefit from exploring strategies to handle enzyme promiscuity [33].

In conclusion, decisions must be made on how to best handle and incorporate transcrip-

tomic data into biochemical networks. This benchmarking study emphasizes for the first time

the importance of carefully evaluating these decisions and associated parameters. Our analysis

highlights that the choice of thresholding approach influences the active reaction sets the most,

even more than tissue-specific effects. Meanwhile, gene mapping decisions had the lowest

influence. We showed that some decisions better capture the functional tissue similarity across

different organ systems. Overall, our analysis showed that transcriptomic data preprocessing

decisions influence the ability to capture meaningful information about tissues. However, cur-

rent preprocessing techniques present important limitations and decisions associated to this

process should be made very carefully. Indeed, numerous steps and decisions involved in the

estimation of enzyme abundance and activity from transcriptomic data rely on biological

assumptions that have not yet been leveraged.

With the increasing availability and affordability of omic measurement techniques, studies

filling the gap between mRNA expression and enzymatic activity will be of crucial importance.

In this context, we hope that the guidelines provided by this study will help researchers develop

more robust and biologically meaningful preprocessing techniques, leading to more accurate

models, and deeper insights into the tissue-specific behavior of an animal.

Methods

Transcriptomic data

We used the Human Protein Atlas transcriptomic dataset (HPA) which includes RNA-Seq

data of 20344 genes across 32 different human tissues [25]. Out of 20344 genes, 1663 can be

mapped to the metabolic genes present in Recon 2.2 (99.4% of coverage) [26]. S3 Table pres-

ents the 10 genes of Recon 2.2 that are not associated with expression values in the HPA data-

set and Fig P in S1 Text presents the distribution of gene expression values in the HPA dataset.

Genome-scale model of human metabolism–Recon2.2

Recon 2.2 [26] includes 1673 genes, 5324 metabolites and 7785 reactions. 3061 reactions do

not have GPR associations. The remaining 4724 reactions are associated to 1797 different

enzymes and about 20% of these reactions can be catalyzed by multiple isoenzymes. Almost

21% of the enzymes are formed by enzyme complexes (up to 46 subunits—reaction: NAD-

H2_u10m) and about 54% of the enzymes are promiscuous enzymes (Fig M in S1 Text).

Gene mapping

In metabolic networks, the relationship between genes and reactions is represented using logi-

cal rules, referred as Gene-Protein-Reaction rules (GPRs). These rules describe the association

between the genes responsible for the expression of protein subunits forming the enzyme that

catalyzes a reaction (AND for enzyme complexes; OR for isoenzymes). This relationship link-

ing enzymes to reactions may have different types of GPR patterns. Some relationships are
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simple, with one gene encoding one enzyme that catalyzes one reaction. However, many are

more complicated, in which one enzyme catalyzes multiple reactions (promiscuous), multiple

proteins form an enzyme complex that catalyzes one reaction (multimeric), multiple enzymes

catalyze one reaction (isoenzymatic), or multiple enzymes could catalyze multiple reactions

(isoenzymatic promiscuous) [32] (Fig A in S1 Text). Gene mapping methods (GMMs) require

combined use of the GPR rule and gene expression data to determine the enzyme activity asso-

ciated to a reaction. In this regard, two methods have been used prominently in the field:

i. Selection of the minimum expression value among all the genes associated to an enzyme

complex (AND rule) and the maximum expression value among all genes associated with an

isoenzyme (OR rule). We refer to this method as GM1 [21].

ii. Selection of the minimum expression value among all the genes associated to an enzyme

complex (AND rule) and sum of expression values of all the genes associated to an isoen-

zyme (OR rule). We refer to this method as GM2 [20].

Thresholds

Thresholding Approaches: Thresholding approaches describe the scheme of threshold imposi-

tion on the gene expression value for a gene and/or reaction to be considered as “active”.

i. Global approach: The threshold value is the same for all the genes. The global approach is

often applied when only one sample or condition is available and/or no information is avail-

able in the literature to define an expression threshold for a single gene. The “global thresh-

old” is most often defined using the distribution of expression values for all the genes, and

across all samples if multiple samples are available. This type of thresholding approach has

been used, for example, in combination with a model extraction method called Gene Inac-

tivity Moderated by Metabolism and Expression (GIMME) [22].

ii. Local approach: The threshold value is different for all the genes. The local approach is

often applied when multiple samples are available as it allows a comparison of expression

relative to many other samples and conditions. The “local threshold” for a gene is most

often defined as the mean expression value of this gene across all the samples, tissues, or

conditions [24,25,29].

The definition of thresholding criteria requires one to decide on how to partition the gene

expression or reaction activity. In this regard, the ON/OFF state definition is often used in the

literature. This type of state definition requires only one value to qualify if a gene/reaction is

active. For example, when using one single threshold in a global context (i.e., hereafter referred

as global T1), the genes presenting an expression above this value are considered as active (i.e.,

ON) while the others are inactive (i.e., OFF). However, this type of gene expression partition in a

local context (e.g., expression threshold of a gene defined by its mean expression across all sam-

ples) presents limitations when facing genes with very low or very high expression values for all

the samples. Indeed, when a gene presents always very low expression values, the use of the

mean as threshold will lead to the consideration of its expression in some samples. Contrarily,

some genes may be associated with very high expression values in all the samples. Doing so,

while this gene should be considered as active, the current state partition will lead to considering

this gene as non-expressed in all the samples presenting an expression value below the mean.

To overcome this problem, we propose to implement the gene-specific thresholding

approach in combination with the definition of a global threshold definition for genes present-

ing low expression values among all the samples (e.g., below the usual detection level associ-

ated to the measurement method) to prevent their definition as an active set for some samples
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(i.e., local T1). Therefore, the genes whose expression is below the value defined by this global

lower bound will always be considered as inactive (i.e., OFF), while other genes will fall under

the local rule for gene-specific threshold definition (i.e., MAYBE ON). The T1 state definition

of local thresholding approach can be defined as follows “the expression threshold for a gene is
determined by the mean of expression values observed for that gene among all the tissues BUT
the threshold must be higher or equal to a lower percentile bound globally defined”.

Another similar extreme case can be encountered for genes with high expression values in

all samples. To this end, we propose to introduce an upper and a lower bound can be intro-

duced to define the expression values for which a gene should always be considered as

expressed or non-expressed. This will ensure that genes with very low expression values across

all the samples will never be considered as active (i.e., OFF) and genes with very high expres-

sion across samples are always considered as active (i.e., ON). Doing so, the local rule for gene-

specific threshold definition is applied only to the genes whose expression is in between the

range of values defined by the lower and upper bounds (i.e., MAYBE ON). The definition of

the local threshold with a T2 state definition can be expressed as follows: “the expression thresh-
old for a gene is determined by the mean of expression values observed for that gene among all
the tissues BUT the threshold:(i) must be higher or equal to a lower percentile bound globally
defined and (ii) must be lower or equal to an upper percentile bound globally defined.”

Threshold values: The threshold values depend on the approach (i.e., local or global) and on

the number of states (i.e., T1 or T2) used for thresholding. The global approach can only be

associated with T1 state definition as it requires the assignment of only one threshold value.

On the other hand, the local thresholding approach can be used in combination with either a

T1 or a T2 state definition, as mentioned above. In the context of this study, we have chosen to

compare the following combination of threshold value attribution:

i. Global thresholding values: The global threshold values chosen in this study are either the

50th or the 75th percentile (named respectively global50 and global75). We also assessed the

impact of using the 25th and the 90th percentiles. These thresholds exhibited tissue-specific

sets of active genes that were more highly correlated and therefore decreased the ability to

differentiate between tissues (global25, Fig L in S1 Text) or more uncorrelated with more

highly expressed genes removed, leading to a decreased ability to connect similar tissues

(global90, Fig J in S1 Text).

ii. Local thresholding values: we used the 25th percentile of the overall gene expression distri-

bution as lower bound for the local thresholding approach. This combination is referred as

local25 when used alone. Note that, in the case of the HPA dataset, the 25th percentile is

equal to 1.2 FPKM and the detection limit of RNA-Seq technique is often considered at 1

FPKM (Fig P in S1 Text). Two different upper bounds have been used for the T2 state defi-

nition of the local approach: the 75th (referred as local25-75) or the 90th (referred as local25-
90) percentiles of the overall gene expression distribution. The choice of the 75th percentile

as upper bound is based on the distribution of the mean expression value for each gene in

the HPA dataset. Indeed, more than half of the genes are associated to a mean higher than

the 50th percentile of gene expression distribution (Fig Q in S1 Text). To objectively assess

the influence of the choice of this upper bound, we also compared the results obtained by

imposing an upper bound of 90th percentile.

Ordering of preprocessing steps

The preprocessing for transcriptomic data could be done in two possible ways as described

below:
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i. Order 1: The gene expression values are associated to reactions using one of the gene map-

ping methods. These “reaction expressions” can further be used to define the set of active

reactions by imposing thresholds of activity.

ii. Order 2: The thresholding is used to define the activity of each gene based on gene expression

data. These “gene activities” are mapped to the reactions using one of the mapping methods.

For Order 1, thresholding is imposed on these “reaction expressions” and no longer on the

gene expression. This leads to the necessity to adapt the local threshold definition in the case of

a preprocessing combination using Order 1 with GM2 gene mapping. Indeed, as the GM2

approach map multiple genes to a reaction, the activity of this reaction can no longer be

defined by using the gene expression distribution. Therefore, the activity threshold for a reac-

tion is determined by the sum of mean expression values observed for the genes mapped to

this reactions) among all the tissues, but the mean expression value of each gene mapped to

the reaction must be higher or equal to a lower percentile bound globally defined. Further-

more, it must be lower or equal to upper percentile bound globally defined.

Principal Component Analysis (PCA)

A binary matrix is constructed in which each row represents one of the 20 preprocessing

approaches for each tissue (i.e., total of 640 rows) and each column represents a reaction of the

GEM (i.e., 7785 columns): a reaction being active (1) or not active (0) in the GEM. The PCA

analysis was conducted on this matrix after the removal of reactions being active for all or no

preprocessing combinations and having each row centered to have zero mean. The variance

explained by the different factors (each preprocessing decision and the tissue origin) within

each of the principal components is calculated as follows. Within one factor, the maximum

Pearson correlation coefficient (R) of the component scores and categories is calculated across

all possible orderings of the categories. Reported is the R2 scaled to percentages.

Assessment of tissues similarities

The set of active reactions have been used to compute the Euclidean distance between each tissue.

We associated each tissue to an organ system using the classification proposed in the Human Pro-

tein Atlas (S1 Table) and computed the average Euclidean distance between tissues belonging to

the same organ system. Note that, we only considered organ systems presenting more than two

tissues within the same group (i.e., Female Reproductive, Lymphatic and Gastrointestinal). To

compute the significance of our results, we generated the mean Euclidean distance for 10000 ran-

domly selected group with the same number of tissues and computed the exact p-value (i.e., pro-

portion of random distance lower than the observed distance) associated to each organ system.

Manual identification of pathway-tissue pairs

Pathway-tissue pairs were manually searched using the tissue and pathway names. The search

results directed to published articles were then manually selected. The articles that specifically

studied the presence of enzymes in the tissues (extracted post-mortem) or culture of human

cells were chosen as evidence. We also considered review articles that discussed pathways,

their ubiquity among human cell types, or role of a pathway in the tissue (S2 Table).

Calculating enrichment of pathways in active reaction sets

To evaluate the biological differences in core reaction lists obtained from different threshold-

ing methods, we tested if, for a thresholding method, a given pathway was enriched
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(hypergeometric p-value < 0.05) in a given tissue based on the number of reactions associated

to the pathway (K), the total number of reactions selected (N), the number of reactions selected

that associated to the pathway in that tissue (x), and the total number of reactions associated to

a pathway. Hypergeometric p-value was calculated using the MATLAB function, hygecdf.
For a given thresholding method, our analysis resulted in enrichment matrix (a binary matrix),

E. The value of Eij was assigned as 1 if ith pathway was enriched in jth tissue, otherwise the value

was assigned as 0 (Fig G3 in S1 Text). The enrichment of a pathway in the active reaction set of a

tissue was interpreted as a strong statistical support that the pathway is predicted to be active in the

tissue by the thresholding method. We compared this matrix to the known pathway-tissue pairs

(Fig G5 in S1 Text) for analysis of false negatives in each thresholding method (Fig G6 in S1 Text).

This matrix was then converted into a vector by summing along the tissue dimension; thus,

indicating the number of tissues where a given pathway was enriched. This vector was made

for each thresholding method; thus, we ended up with a matrix describing number of tissues a

pathway is predicted to occur when a thresholding method is used. Here, we call this matrix

predicted ubiquity matrix, UP. The value of UP
ik indicates the number of tissues ith pathway

was enriched in by kth thresholding method. The predicted ubiquity matrix was then clustered

to identify similarity in ubiquity predictions of thresholding methods among different path-

ways (Fig G4 in S1 Text). We used complete linkage and Euclidean distance metric for hierar-

chical clustering. The pathways were then divided into 5 clusters.

Data and software availability

The Human Protein Atlas transcriptomic dataset (HPA) were acquired from supplementary

material of [25]. Recon 2.2 model was downloaded from https://github.com/u003f/recon2/

tree/master/models. The MATLAB code for applying the different preprocessing combina-

tions is available in COBRA toolbox v3.0, in the papers section [34].
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