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Abstract

Today’s large, public databases of protein–small molecule interaction data are creating

important new opportunities for data mining and integration. At the same time, new

graphical user interface-based workflow tools offer facile alternatives to custom scripting

for informatics and data analysis. Here, we illustrate how the large protein-ligand data-

base BindingDB may be incorporated into KNIME workflows as a step toward the inte-

gration of pharmacological data with broader biomolecular analyses. Thus, we describe

a collection of KNIME workflows that access BindingDB data via RESTful webservices

and, for more intensive queries, via a local distillation of the full BindingDB dataset. We

focus in particular on the KNIME implementation of knowledge-based tools to generate

informed hypotheses regarding protein targets of bioactive compounds, based on no-

tions of chemical similarity. A number of variants of this basic approach are tested for

seven existing drugs with relatively ill-defined therapeutic targets, leading to replication

of some previously confirmed results and discovery of new, high-quality hits.

Implications for future development are discussed.

Database URL: www.bindingdb.org

Introduction

The last decade has seen a revolutionary rise in the open-

source availability of experimental data connecting proteins,

from humans and other organisms, with the drug-like small

molecules that bind them (1). For example, BindingDB, the

first public molecular recognition database (1–4) currently

serves users with over a million quantitative protein-ligand

interaction data, involving about 7000 proteins and 450 000
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small molecules. This dataset represents a unified collection

of quantitative binding data, which was assembled through

curation of scientific journals and US patents by BindingDB,

combined with ingestion of selected data from other import-

ant databases, notably ChEMBL (5), PubChem (6) and PDSP

Ki (7). BindingDB and other publicly accessible medicinal

chemistry resources now enable gene- and protein-oriented

bioinformatics information to be systematically linked with

drug discovery data, and are thus driving progress in interdis-

ciplinary fields like systems pharmacology (8, 9).

BindingDB provides a range of useful browsing and

search capabilities. As summarized in Table 1, these include

the ability to select an article by journal name, volume and

page number, and then retrieve its compounds and data in

machine-readable format; or to quickly access binding data

for a protein target of interest, based on its name, amino

acid sequence, UniProt (10) ID, or PDB (11) ID. A number

of BindingDB’s search capabilities are also accessible via

URL search templates, which generate human-readable

web-pages, and by RESTful webservices, which provide

data in simple XML formats. The latter offer a straightfor-

ward API by which software running remotely can inter-

actively access data from BindingDB. Alternatively, users

can download parts of the BindingDB dataset, or its entir-

ety, in several different formats, in order to enable entirely

local execution of codes that use BindingDB data. However,

this still requires software development, often through the

use of scripting languages, to carry out flexible analyses of

binding data or integrate it with the vast arrays of informa-

tion contained in other public bioinformatics resources or in

the user’s own local data archives.

Such challenges are increasingly addressed with flexible

workflow environments for data analysis (12), such as

Pipeline Pilot (13), Taverna (14), Kepler (15), Galaxy

(16–18), Loni Pipeline (19) and KNIME (20). The latter is

of particular interest here, as the computational chemistry

community was an early adopter of the KNIME

framework, and the open-source KNIME software is

associated with a freely distributed desktop environment.

The KNIME environment helps non-experts quickly

develop and implement algorithms through the use of hun-

dreds of individual ‘nodes’, each developed to perform a

particular task, and allowing user configuration for custom

data input and output. Nodes are developed in house at

KNIME, as well as by developers in the open-source and

for-profit communities, and are then made available as

downloads. For example, there is a large selection of nodes

for manipulation and analysis of chemical structures, such

as calculation of molecular weight, Markush enumeration,

evaluation of chemical similarity and other cheminfor-

matics tasks [CDK (21), RDKit (22), Schrödinger (23, 24),

ChEMBL (5), Open PHACTS (25), BioSolveIT (26)].

Thus, KNIME facilitates leveraging prior work by allow-

ing users to flexibly combine nodes contributed by various

developers in order to create new workflows.

The present study explores the combined usage of

KNIME and the BindingDB dataset, through development

and illustrative applications of a set of workflows, which

make exclusive use of nodes that are freely available. We first

describe two workflows which use KNIME nodes to interact

with BindingDB’s RESTful web services. The first retrieves

compounds known to bind a specific protein of interest,

based on its UniProt ID; and the second retrieves proteins

known to bind a specific compound of interest. These two

workflows are envisioned as building blocks which can be

incorporated into larger workflows that integrate protein-

ligand binding data into broader bioinformatics analyses.

We also describe a set of more complex workflows,

which implement the concept that a large database of

binding data can provide hypotheses about the mechan-

isms of action of bioactive compounds and predict or

explain the side effects of drugs (4, 27). Such hypotheses

are based on the transitivity principle that a compound A

which is chemically similar (28) to another compound B

has increased likelihood of binding the same proteins as

compound B (4, 27, 29–38). Accordingly, if A is found to

have a biological activity, its mechanism might be due to

binding the same proteins as compound B. Similarly, if A is

a drug, it might generate side-effects by binding the same

proteins as compound B. BindingDB’s Find My

Compound’s Targets (FMCT) tool (Table 1) implements

this idea, allowing users to enter one or more compounds

and use BindingDB data to predict their protein targets.

The present KNIME implementations of FMCT avoid

network delays and possible confidentiality issues by doing

Table 1. Commonly used BindingDB pages and information

sources

Browse by journal article citation bindingdb.org/bind/

ByJournal.jsp

Browse by text name of protein

target

bindingdb.org/bind/

ByTargetNames.jsp

Search or browse by UniProt ID of

target

bindingdb.org/bind/

ByUniProtids.jsp

Search or browse by target

sequence

bindingdb.org/bind/

BySequence.jsp

Search or browse by PDB ID bindingdb.org/bind/

ByPDBids_100.jsp

Documentation of query template

URLs

bindingdb.org/bind/

SearchTemplates.jsp

Documentation of BindingDB

RESTful services

bindingdb.org/Pathways/

BindingDBRESTfulAPI.jsp

‘Find my compound’s target’ tool bindingdb.org/bind/chem-

search/marvin/FMCT.jsp
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the processing locally, using a downloaded representation

of the necessary data from BindingDB. In addition to

detailing the implementation of these workflows, we also

evaluate their predictive performance by applying them to

seven drugs recently identified as having unknown or

uncertain mechanisms of action (32), and comparing the

results to those from the Similarity Ensemble Approach

(SEA) (35), which offers the same general functionality,

but uses additional statistics in an effort to enhance the

accuracy of the inferred compound–protein interactions. In

addition to attempting to assign therapeutic targets to

these drugs, we also seek to flag additional pharmaco-

logical activities, as these may suggest side-effects or drug-

repurposing opportunities.

Materials and methods

This section details the implementation of a set of KNIME

workflows which process and use BindingDB data. The

first subsection concerns two workflows which support

common BindingDB database queries, and the second

concerns several versions of the FMCT tool described

above.

Mining BindingDB for compounds and their

protein targets

The first two workflows use BindingDB’s web-services.

The Target2Compound workflow (Figure 1, top) takes as

input the UniProt ID(s) of one or more proteins, and

returns compounds known to bind the corresponding

protein(s) with an affinity (in nanomolar) above a user-

specified threshold. The Compound2Target workflow

(Figure 1, bottom) takes as input a single SMILES repre-

sentation of a compound, or a drawing from an interactive

KNIME chemical drawing node, contributed by

ChemAxon, and returns all proteins for which an affinity

measurement exists in BindingDB, along with the associ-

ated affinity data. The default mode is to search for exact

compound matches, but one may also search by chemical

Figure 1. Two KNIME workflows to query the BindingDB server. Target2Compound (top) retrieves compounds from BindingDB that are known bind-

ers of a protein target of interest. Separate columns are created in the output for the compounds’ unique BindingDB monomerID, followed by its

SMILES string, affinity types and affinity values. The collected results are stored in a table and can be written out to local disk. In this particular ex-

ample, UNIPROT P21802 is entered into the dialog box, and various compounds are returned. The Compound2Target workflow (bottom) retrieves

protein targets from the BindingDB database that are known to bind a particular compound of interest. Separate columns are created in the output

for monomerID, Protein Target, affinity types (IC50 or KI) and affinity values (in nanomolar). The results are stored in a table which can be written out

to local disk. In the given example, a sigma receptor binder is drawn in the MarvinSketch node, and the resulting output shows the expected targets,

with their respective known affinities for the compounds hits.
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similarity, measured on a scale of 0 to 1, where 1 is essen-

tially an exact match.

The use of BindingDB web-services for these two work-

flows ensures that users receive up-to-date information from

BindingDB, and takes advantage of built-in BindingDB

query capabilities, notably chemical aware queries using the

ChemAxon (39) toolkit. Both workflows utilize several

KNIME nodes for handling URL based data. For example,

the XML Reader node can upload a URL string, such as

http://bindingdb.org/axis2/services/BDBService/getLigands

ByUniprot?uniprot¼ in the case of Target2Compound,

and then retrieve the resulting XML document. This docu-

ment is then passed to a series of XPath nodes, which ex-

tract the appropriate data from the XML document.

Predicting the protein targets of a compound

We implemented multiple versions of FMCT (see

Introduction) as KNIME workflows. Each uses a different

chemical similarity metric, but the overall procedures are

essentially the same. In brief, the similarity of the query

compound(s) is computed against every other compound

in a reference database derived from BindingDB (see

below). The compounds in the reference database whose

similarity to the query compound is greater than a user-

specified threshold then are ranked according to their simi-

larity to the query compound, and the proteins known to

be bound by these top-ranked reference compounds are

identified. The initial list of top-scoring proteins identified

in this way normally includes repeats, because several

high-ranking compounds may bind one protein; such

repeats are eliminated by merging protein hits with identi-

cal UniProt IDs. The results are then formatted into a

report and presented to the user. Two sets of FMCT work-

flows were developed. One, designed for use with a single

query compound, provides a full listing of the potential

protein hits, with one protein per row. The second,

designed for use with multiple query compounds, provides

a reduced output table, in which each row lists one

compound and its top three protein hits. As this condensed

summary may not display some protein hits of interest, it is

worth noting that users can modify the workflow to

display more protein hits for each compound, or can make

more extensive changes to provide alternative reporting

formats.

These workflows do not use web-services, but instead

use a KNIME Table Reader node to load a local data

table of BindingDB data. The version of this table based

on BindingDB’s current dataset contains approximately

670 000 rows of BindingDB data, with one binding meas-

urement in each row, supplemented with multiple types

of pre-computed compound fingerprints and chemical

descriptors (see below). In effect, the data Table Reader

encapsulate much of BindingDB in a single KNIME node.

This approach maximizes performance and allows

users to work entirely on their local computer, instead

of having to upload possibly proprietary compounds

to the BindingDB server. In order to speed FMCT

calculations for use with large numbers of query com-

pounds, we also created a reduced version of the full

BindingDB table, which is filtered to include only a few

representative compounds for each protein, as detailed

below.

The FMCT method is based on the notion of chemical

similarity (40–45), and we tested several different similar-

ity metrics. Two of the metrics are based on chemical

fingerprints (46–48). One simply applies the Tanimoto

similarity (49) to the RDKit RDKit chemical fingerprint;

the choice of this particular fingerprint from RDKit’s

multiple options was made based on a suggestion from the

RDKit team (Greg Landrum, personal communication).

With a runtime of several minutes per query compound,

this is easily the fastest FMCT workflow we built. The

second fingerprint-based similarity metric was constructed

from multiple fingerprint-based metrics, as follows. The

current RDKit (22) and CDK (21) KNIME nodes

support a total of 14 different binary compound finger-

prints (Table 2). These can be compared with each other

using three different formulas, Tanimoto, Cosine BitVector

and Dice (28), for a total of 3� 14¼ 42 available similarity

metrics. We applied all 42 methods to about 14 400

compound pairs drawn from known binders of the

dopamine receptor and the thrombin receptor, used

KNIME’s linear correlation node to generate a correlation

Table 2. Chemical fingerprint types available in the CDK and

RDKit packages in KNIME

CDK Standard

CDK Extended

CDK Estate

CDK PubChem

CDK MACCS

RDKit Morgan

RDKit FeatMorgan

RDKit AtomPair

RDKit Torsion

RDKit RDKit

RDKit Avalon

RDKit Layered

RDKit Pattern

RDKit MACCS

An enumeration of these types with each of the three similarity metrics

available (Tanimoto, Cosine BitVector and DICE) results in 42 separate scor-

ing methods.
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table connecting each similarity scoring method, and then

used KNIME’s correlation filter node to extract the 5 of 42

metrics that correlate least with each other (Table 3, and

Supplementary Figure S5), as detailed in Results. We then

implemented a version of FMCT in which the five similar-

ity scores for a given pair of compounds are simply

averaged with each other to yield an overall similarity

metric.

We also implemented versions of FMCT using a

maximum common substructure (MCS) similarity metric

(50–52) available in the KNIME MoSS MCSS Molecular

Similarity node. This node required special treatment,

however, as it produces an all-by-all comparison matrix

within a set of compounds, rather than comparing two

different sets of molecules. We addressed this by construct-

ing a (parallel) chunking loop which iterates through pairs

of molecules in two different columns by extracting each

molecular pair as a row, transposing the columns, and

computing the MCSS similarity of the pair. We then

adjusted the output to provide similarity on a scale of 0–1,

and used this in a separate FMCT workflow, which, again

assigns similarity hits and candidate targets based on a

user-specified similarity threshold.

Finally, even on a fast workstation, the MoSS MCSS

Molecular Similarity node requires about an hour to scan

one query compound across all 670 000 database entries

(see below), so this approach becomes unwieldy if one

wishes to run a large number of queries. The expectation

that two compounds with a high MCS similarity should

tend to also have a reasonably high fingerprint similarity

led to implementation a fourth FMCT approach, which

first runs the fast RDKit FP method, above, with some

default or user-selected similarity threshold; and then

re-ranks the resulting hits according to their MoSS MCSS

similarity scores.

Building the BindingDB tables for the FMCT workflows

The BindingDB tables used by the FMCT implementations

described above were constructed using KNIME, as

follows. A KNIME workflow, termed BDBBuilder

(Figure 2), begins by reading in the standard, tab-

separated-value file of all BindingDB data (http://tinyurl.

com/o7ppdj9), which has one compound-target measure-

ment per row; the version of this file used here has

1 043 465 rows. The workflow first filters out rows lacking

IC50 or KI measurements, or having affinity ranges,

Table 3. Similarity metrics and fingerprint types selected

from the linear correlation filter (see text)

Similarity metric Fingerprint type

KNIME Tanimoto RDKit MACCS

KNIME Tanimoto RDKit FeatMorgan

KNIME Tanimoto RDKit Torsion

KNIME Cosine Bitvector RDKit Morgan

KNIME Tanimoto CDK PubChem

Figure 2. BDBBuilder workflows. These read in BindingDB data, filter for appropriate IC50 and KI data, and convert SMILES strings to suitable molecu-

lar formats. The top workflow (BDBBuilder) generates RDKit and CDK molecules, multiple fingerprint types, and molecular descriptors. The bottom

workflow (BDBBuilderFast) is a simplified version that only generates RDKit RDKit molecules/fingerprints. In both versions, the final node of the work-

flow writes the resulting table to disk.
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indicated by the use of ‘<’ or ‘>’ symbols in the input file.

These filters reduce the number of rows to 677 825.

Additional rows were removed if their compounds failed in

the ‘RDKit From Molecule’ node’s MolSanitize function,

or did not create a ‘CDK Fingerprint’ node’s Fingerprint

string. This additional filter reduced the row count to

approximately 670 000. Each data row was then

supplemented with additional columns containing 2D

chemical fingerprints and descriptors for the compound in

the row. The fingerprints were generated using the

following cheminformatics packages available as KNIME

Community Contributions: CDK, Erlwood, Indigo and

RDKit, each of which has its own fingerprint generation

methods. In each case, the default settings of the nodes

were used in the configuration. Of the nearly 50 fingerprint

options provided, we selected a subset of 10 to retain,

based on correlation analysis of associated similarity scores

with the KNIME Correlation Filtering metanode. Thus,

the 10 fingerprints are those which gave the least corre-

lated similarity scores with each other, when used with a

specific similarity metric. The 38 descriptors available

from the RDKit package were similarly analyzed, and the

10 least correlated descriptors were added to the corres-

ponding data rows. The output file is saved as a KNIME

table, to be read in by a Table Reader node embedded in

the FMCT workflows. Running the entire BDBBuilder

workflow took about 3 h on an Intel Core i7 workstation.

As only fingerprints, not descriptors, are used in the final

workflows, we also developed a simpler version of this

workflow, called BDBBuilderFast (Figure 2), which

generates only RDKit RDKit molecules and fingerprints,

and takes roughly 30 min to run.

In applications where one wishes to predict protein tar-

gets for more than several hundred compounds, using the

full BindingDB tables (above) becomes time consuming.

We therefore used a KNIME workflow, termed

ClusteredData, to create a condensed version of the table,

which includes only representative binding compounds for

each protein target. We grouped compounds by their

protein targets, and then applied a Tanimoto similarity

method to their RDKit fingerprints, at a distance threshold

of 0.8, to define clusters of compounds within each pro-

tein-specific group. Several representative, high-affinity

compounds were then chosen as representatives from each

cluster, and inserted into a KNIME table with the same

structure as the full table described above. This procedure,

which required about 120 h of CPU time on a desktop Intel

Core i7 machine, resulted in a significant reduction of

number of compounds, from 670 000 to approximately

21 000, and thus greatly expedited the FMCT studies. The

consequences for the FMCT analysis are considered in

Results.

Results

This section presents the operation of the KNIME/

BindingDB workflows described in Materials and

Methods, and provides sample inputs and outputs.

Readers are encouraged to download (tinyurl.com/

jwqoulm and www.knime.org/example-workflows), test

them with their own queries, and use them as starting

points for their own applications. It is worth noting that

workflows which use BindingDB web-services may be

slowed unpredictably by network traffic, so extensive

usage may benefit from using the downloaded BindingDB

table (see Materials and Methods), as this enables queries

to be executed on the user’s computer, while also affording

maximum privacy. The setup instructions provided with

the downloadable package of workflows provides sugges-

tions for addressing issues that occasionally arise when

running KNIME, such as server timeout errors or memory

restrictions, through adjustments to the KNIME.INI con-

figuration file.

Finding compounds for targets and targets

for compounds, based on known binding

interactions

Operation of workflows

The Target2Compounds workflow (Figure 1, top) accepts

a protein target, specified with a UniProt accession

number, and returns compounds that this target binds with

an affinity better than a specified cutoff. The default cutoff

is 10mM (KI or IC50), but the user can optionally change

this by modifying the Affinity Cutoff node (Figure 1, top

left). Note that a UniProt accession number corresponds to

a single protein chain, and this search can yield compounds

binding multimeric proteins that contain one matching

chain and other non-matching chains. As shown in the

open dialog box (Figure 1, top left), the UniProt Primary

Accession Number should be entered into the UniProt

String Input node. The workflow is then executed by

right-clicking on the MarvinView node at the end of the

workflow. This triggers a query to BindingDB’s RESTful

API webservice, which returns query results in XML

format. Downstream nodes process the XML and parse it

for individual entries, generating a tabular output with one

row for each compound that binds the UniProt target. One

may then display the results by selecting the MarvinView

node’s Execute and Open Views option. Each row of the

resulting table (Figure 1, top right) contains a SMILES

string (transformed to a 2D structure in the MarvinView

Node display) for the respective compound, the primary

UniProt accession number of the desired target (along with

possible obsolete UniProt accession numbers for the same
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chain), the compound’s BindingDB Monomer ID, a

statement of the affinity type (KI or IC50) and then the

measured affinity (nM). Such tables can optionally be fed

into subsequent chemical informatics nodes to look for

common scaffolds or other patterns, combined with

Target2Compounds outputs for other targets to look

for overlaps or specificity patterns, or used as seeds for

chemical database searches. The table of compounds

can also be saved to disk in standard file formats, such as

SDF (53) or comma-separated value (CSV), for subsequent

use.

The Compound2Targets workflow (Figure 1, bottom)

is the inverse of Targets2Compounds: it retrieves protein

targets that bind a particular compound of interest. The

default mode is to accept a compound via a MarvinSketch

node (Figure 1, bottom left), which can be loaded with a

SMILES string or by manual drawing, and to retrieve

binding data for this exact compound, if it is found in

BindingDB. The user may, optionally, replace the default

exact-match search with a similarity search, by changing

parameters in the node labeled Similarity Threshold

(Figure 1, bottom left). Right-click and selecting Execute

and Open Views on the Interactive Table node (Figure 1,

bottom right) run the workflow and show the results. This

workflow converts the query compound to a SMILES

string and queries the BindingDB RESTful API webservice.

The resulting hits in XML format are read, processed and

parsed for individual entries. The output table provides a

list of the compound hits, identified and sorted by their

BindingDB Monomer IDs, along with all of BindingDB’s

available data on the affinities of these compounds for

their targets. As above, this table can be saved to disk in a

number of standard formats, or can be piped into

additional nodes added by the user for further data integra-

tion and processing.

Sample workflow usage and results

Mutations in the protein Fibroblast Growth Factor

Receptor 2 are associated with breast cancer (54), so it is

of interest to identify compounds which bind it. Using its

UniProt ID, P21802, to initiate a query with the

Target2Compounds workflow yields a substantial collec-

tion of binders (Figure 1, top). This workflow could

be embedded within a larger KNIME workflow which

would identify entire pathways of interest and use

Target2Compounds to annotate them with information

about known binders. Further, a user could browse for a

particular pathway of interest on this page: http://bind

ingdb.org/Pathways/pathways.jsp, click the BindingDB

link that lists all the known proteins and associated

UNIPROT IDs for that pathway, and then query each of

these in the Target2Compound workflow. Although not

currently set up to run a batch of targets, a simple KNIME

Loop construct would speed this process.

Alternatively, given a compound active against a target

of interest, one may wish to identify other targets of the

same compound, in order to study specific, polypharma-

cology, or mechanisms of toxicity. For example, the

compound in Figure 3 may already be known to bind

P. falciparum enoyl-acyl-carrier protein reductase

with submicromolar IC50 (55), but a query with

Compound2Targets reveals submicromolar potency

against other, varied targets, including a human immuno-

deficiency virus integrase and protein kinase PIM1. Such

information may be useful in selecting a compound as a re-

search probe or as a starting point for medicinal chemistry

Figure 3. Sample query and results of Compound2Target workflow. Left: Query compound (IUPAC, 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-

chromen-4-one; SMILES, Oc1cc(O)c2c(c1)oc(-c1cc(O)c(O)c(O)c1)c(O)c2¼O; InChI, 1S/C15H10O8/c16-6-3-7(17)11-10(4-6)23-15(14(22)13(11)21)5-1-

8(18)12(20)9(19)2-5/h1-4,16-20,22H), which binds enoyl-acyl-carrier protein reductase with an IC50 of 400 nM. Right: Tabular output of

Compound2Target workflow, showing significant potency (nM) of the same compound (similarity¼ 1) against multiple targets.
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optimization; or it may be taken as a caution regarding

possible off-target effects of compounds in a specific struc-

tural class. Such applications are further developed in the

following subsection describing the FMCT method.

Using FMCT workflows to hypothesize new

targets for compounds

Operation of target-finding workflows

These workflows predict possible new protein targets for

compounds of interest. Straightforward applications of the

concept of chemical similarity (28), they search the

BindingDB dataset for compounds similar to a query

compound, and suggest the targets of these compounds as

potential targets of the query compound. In this way, the

FMCT functionality, which was already available on

the BindingDB web-site (bindingdb.org/bind/chemsearch/

marvin/FMCT.jsp), can be run locally in KNIME and,

optionally, incorporated into a user’s larger analytic

workflows.

We implemented and tested four FMCT variants, which

differ only in the similarity metrics they use. As detailed in

Materials and Methods, one uses Tanimoto similarity with

the RDKit RDKit chemical fingerprint; the second uses the

average of five different fingerprint-based similarity

metrics; the third uses a similarity metric based on the

maximal common substructure (MCS); and the fourth is

merely a re-ranking of the hits from the first metric based

on MCS similarity. This takes advantage of the speed of

the fingerprint method to identify similar compounds,

while using the slower MCS similarity metric to highlight

those similarities which also have the strongest substruc-

ture matches. It thus represents an attempt to obtain results

similar to those from the pure MCS method, but at lower

computational cost.

One set of FMCT workflows provides detailed results

for a single query compound. For these, the generalized

workflow for all four similarity metrics is shown in

Figure 4; the differences among the four similarity metrics

lie beneath this view, in the comparisons meta-node, which

performs the similarity calculations. To run any of these

workflows, the user double-clicks on the MarvinSketch

Input Compound node and uses the resulting window to

draw, paste or open a file with a small molecule compound

of interest. Next, one can optionally modify the green

Similarity Threshold and Affinity Cutoff nodes with

desired values. Finally, one right clicks the MarvinView

Predict Targets of My Compound node and selects Execute

and Open Views; when the run is complete, the green light

will turn on below this node. Right-clicking on it and

choosing View: MarvinView shows the output table of

similar compounds, their similarities to the input com-

pound and their associated targets. If too many results are

found, one may rerun the analysis with a higher (more

Figure 4. Workflow for FMCT methods designed for single query compounds. These workflows suggest what protein target(s) a compound of interest

is likely to bind, based on the targets known to bind similar compounds. The MarvinSketch mode allows entry of the query compound. The Affinity

Cutoff and Similarity Threshold nodes allow the user to set the stringency of these search parameters; affinity is specified in nM, and similarity on the

usual 0–1 scale. When the run is complete, the green light will turn on below the MarvinView node, and one can right-click on it and choose ‘View:

MarvinView’ to see the table of similar compounds, their similarities to the input compound and their associated targets. This figure depicts the

workflow for FMCT performed by single RDKit fingerprint similarity. Workflows which also use the average of five different fingerprint similarity

metrics, the RDKit RDKit results, sorted by MCS similarity, and a pure MCS similarity metric averaged, and single plus MCS resort (see main text)

have very similar top-level views. The differences lie in the ‘Comparisons’ meta-node, which performs the calculations.

Page 8 of 22 Database, Vol. 2015, Article ID bav087

,


stringent) compound similarity threshold, and/or a lower

(more stringent) affinity cutoff (input as nanomolar).

A second set of these workflows provides less detailed

target predictions for batches of query compounds, which

are uploaded into an SDF Reader node. For the sake of a

compact output, these workflows generate a table of results

which does not show one suggested target per row, but in-

stead lists one compound per row, with only the top three

candidate targets in the associated columns. This allows for

quick viewing of results for a large set of query compounds,

but the incomplete target report can lead to missing an inter-

esting target which does not make the top three. Users may

therefore wish to adjust the output criteria to provide a

more complete report. It should also be noted that process-

ing a large batch of query compounds can become quite

time-consuming, particularly for the relatively slow calcula-

tion using the MCS metric. As detailed in Materials and

Methods, we sought to address this problem by using clus-

tering to generate a smaller reference set with representative

compounds; the results are summarized in the section

‘Accelerated target-finding with a reduced reference set’.

Application examples: hypothesizing new targets of

bioactive compounds

We applied the single-compound FMCT workflows, with

the four similarity metrics described above, to seven

compounds previously identified (32) as drugs with

unknown mechanisms of action. Previously, the SEA

method was used to suggest one or more therapeutic tar-

gets for each of these compounds, and new experiments

were done to determine whether they in fact bound the

suggested targets. Here, we compare the top target hits

from the present FMCT implementations (Table 4, col-

umns 1–4) with the published SEA hits (Table 4, first SEA

column). In addition, because the published SEA hits are

only a subset of those suggested by the SEA algorithm, and

because there may have been updates in the underlying

databases since that research was done, we also looked

more broadly at the SEA output for these seven drugs

(Table 4, second SEA column) by running them again on

the SEA website (http://sea.bkslab.org/search/). The prior

SEA analysis of these compounds focused on discovering

protein targets that might explain their therapeutic

Table 4a. Target hypotheses for cloperastine, a CNS-active cough suppressant, according to the present FMCT workflows

(columns 1–4), a prior SEA paper (32) (column 4) and the SEA website http://sea.bkslab.org/search/ (column 5)

RDKit similarity Five averaged similarities RDKit similarity Pure MCS SEA 2012

paper

SEA web

MCS re-sort

0.77–0.71 0.71–0.68 0.64–0.63 0.92–0.85 8�10�128–10�15

*Sodium-dependent

dopamine transporter

*Sodium-dependent

serotonin transporter

Sigma non-opioid

intracellular receptor 1

Histamine H1 receptor

Muscarinic acetylcholine

receptor M5

*Muscarinic acetylcholine

receptor M1

Muscarinic acetylcholine

receptor M2

Muscarinic acetylcholine

receptor M3

Muscarinic acetylcholine

receptor M4

Potassium voltage-gated

channel subfamily H

member 2

*Sodium-dependent

dopamine transporter

*Sodium-dependent

serotonin transporter

*Norepinephrine

transporter

Sigma non-opioid

intracellular receptor 1

*Sodium-dependent

noradrenaline

transporter

5-hydroxytryptamine

receptor 2

D(2) dopamine receptor

Alpha-1A adrenergic

receptor

Histamine H1 receptor

D(3) dopamine receptor

Sigma non-opioid intra-

cellular receptor 1

Histamine H1 receptor

Muscarinic acetylcholine

receptor M5

*Muscarinic acetylcholine

receptor M1

Muscarinic acetylcholine

receptor M2

Muscarinic acetylcholine

receptor M3

Muscarinic acetylcholine

receptor M4

Potassium voltage-gated

channel subfamily H

member 2

Solute carrier family 22

member 1

Solute carrier family 22

member 2

Acetylcholine-binding

protein

CHRNA7-FAM7A fu-

sion protein

Dopamine D3 receptor

*Dopamine D4

receptor

Dopamine Receptor D2

*Leukotriene A4

hydrolase

Dopamine D1 receptor;

DA D1 receptor

Dopamine receptor D5

Neuronal acetylcholine

receptor subunit

beta-2

Sodium- and chloride-

dependent GABA

transporter 1

r receptor

Histamine

H1 receptor

Histamine

H3 receptor

*Dopamine

transporter

*Serotonin

transporter

*Leukotriene A4

hydrolase

*Sigma opioid

receptor

Histamine H3

receptor

*Norepinephrine

transporter

Dopamine D4

receptor

*Transporter

Serotonin 4

(5-HT4)

receptor

*Muscarinic

acetylcholine

receptor M1

The SEA web-search used the ChEMBL v. 16 database, a binding affinity cutoff of 10 mM, and Scitegic ECFP4 fingerprints. In each case, outputs were grouped

by unique Targets, and the top 10 hits are shown, with the best hits at the top, except for the SEA 2012 paper data, which are not ranked. FMCT Target names

are drawn from UniProt (10). SEA web-site Target names are taken as reported. Bold indicates a match between FMCT and the published SEA results, and aster-

isks indicate matches between FMCT and SEA results from the SEA web-site. The range of similarity values for the listed target predictions are given under each

column heading, where available, as generated by the corresponding methods.
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mechanisms. Here, we consider whether new target predic-

tions made by FMCT could account not only for thera-

peutic mechanism but also for other known

pharmacological activities, such as side-effects. We now

consider each of the drugs in detail.

Cloperastine

Cloperastine (Figure 5, top left) is a cough-suppressant

which acts to suppress the CNS cough center (56).

Discovered in studies of derivatives of the first-generation

antihistamine diphenhydramine (Figure 5, top right) (57),

it also possesses antihistaminic activity. The SEA study

suggested and experimentally confirmed binding of

cloperastine to the sigma receptor, and noted that this

could explain its antitussive activity, based on the known

relationship of activity at the sigma receptor type 1 to

cough (58). (It is perhaps worth noting, however, that not

only binding but also activation of the receptor would

presumably be required to further verify this proposal.)

Unsurprisingly, given the origin of cloperastine, it was also

predicted and found to bind two subtypes of the histamine

receptor. The SEA web-site similarly suggests sigma opioid

receptor and one of the histamine receptor types as a top

hits, but also assigns high scores (low E-values) to

transporters of serotonin, dopamine and norepinephrine,

as well as two neurotransmitter receptors, and, perhaps

surprisingly, the enzyme leukotriene A4 hydrolase.

The FMCT results overlap strongly with those from

SEA (Table 4a). Thus, all three of the fingerprint-based

FMCT methods include the sigma receptor type 1 and

histamine receptor type 1 among the top 10 hits (bold

font). The latter was determined to be a hit for cloperastine

based on this compound’s RDKit fingerprint similarity of

0.71 to diphenhydramine. Almost all of the additional hits

from the SEA web-site also are hits for the fingerprint-

based FMCT methods (Table 4a, asterisks). In addition,

the unexpected enzyme hit, leukotriene A4 hydrolase,

appears in only one of our methods, the pure MCS

approach; the compound that led to this hit (Figure 5,

bottom) has a very high MCS similarity score of 0.92 with

cloperastine. An RDKit fingerprint similarity of these two

compounds is only 0.41, which explains why it was not

identified in any of our other methods. The higher

similarity determined by MCS may be due to the likeness

of individual substituents; one may imagine breaking

cloperastine at the ether group and moving this, along with

the connected piperidine ring, to the methylene joining the

two phenyl groups. Whether the activities of these two

compounds are similar will depend in large part on the 3D

configuration and importance of these individual substitu-

ents in binding interactions with the protein target; readers

are encouraged to decide for themselves whether the two

compounds are indeed structurally similar.

More interestingly, one of the new FMCT hits gains

substantial plausibility from external data. Thus, two

FMCT methods suggest an interaction with the D(2)

dopamine receptor, and a search of PubChem reveals a

screening hit for cloperastine itself with the D(2) dopamine

receptor (59). (Note that this datum is not in BindingDB,

because BindingDB imports only confirmatory PubChem

BioAssay data, and this is only a primary screening result.)

Intriguingly, there are clinical case reports of dystonic

reactions to cloperastine (60, 61), and dystonia is

associated with agents that block the D(2) dopamine

receptor. The SEA web-site similarly suggests the D4

dopamine receptor, though not D2, as a potential target of

Cl

O
N

O

O

O

O
N

N

Figure 5. Cloperastine (top left), diphenhydramine (top right) and a known 1.8-mM inhibitor of leukotriene A4 hydrolase (bottom).
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cloperastine. In summary, the straightforward chemical

similarity methods implemented in FMCT yield a new

target prediction which is encouragingly consistent with

both in vitro and clinical data.

Nepinalone

Nepinalone (Figure 6), another cough suppressant, is

documented by a remarkably scant literature. The SEA

method again identified the sigma receptor as a target of

this drug, and confirmed binding in vitro, thus offering a

potential therapeutic mechanism. All four FMCT methods

similarly identified sigma receptor 1 as a top hit; and four

other hits from the SEA web-site also appear in the FMCT

results (Table 4b). For example, a steroid isomerase en-

zyme is highly ranked by SEA and two fingerprint methods

in FMCT. It is thus encouraging that the sigma receptor

and the isomerase have similar protein sequences, and that

inhibitors of the isomerase bind the sigma receptor (62).

The isomerase link might point to a novel side-effect

mechanism for nepinalone, but this possibility is difficult

to assess, due to the paucity of information on this drug.

More generally, the top 10 targets suggested by the

FMCT methods are more varied than those suggested for

cloperastine, as they include additional enzymes and

receptors. This variety may trace in part to the lower range

of chemical similarities here than for cloperastine: the

number of other compounds and hence candidate targets

expands rapidly as one lowers the chemical similarity

threshold. Although it is not clear that any particular

similarity cutoff should be applied when one assesses the

results of this type of analysis, it is clear that less

confidence should be placed in target predictions based on

lower similarity scores.

Clemastine

Clemastine (Figure 7) is yet a third antitussive, which also

has clinical antihistaminic and anticholinergic effects. The

SEA study predicted and experimentally confirmed the

sigma 1 receptor as a protein target of this compound.

Perhaps surprisingly, then, the sigma 1 receptor does not

Table 4b. Target hypotheses for nepinalone

RDKit similarity Five averaged

similarities

RDKit similarity Pure MCS SEA 2012

paper

SEA web

MCS re-sort

0.95-0.64 0.68–0.54 0.63–0.58 0.74–0.70 3�10�22 – 4�6

*Sigma non-opioid

intracellular receptor 1

D(2) dopamine receptor

*3-beta-hydroxysteroid-

Delta(8),Delta(7)-

isomerase

C-8 sterol isomerase

D(3) dopamine receptor

Vesicular acetylcholine

transporter

Aminopeptidase M

5-hydroxytryptamine re-

ceptor 2A

*Nociceptin receptor

Corticosteroid 11-beta-

dehydrogenase isozyme

1

*Sigma non-opioid

intracellular receptor 1

*3-beta-hydroxysteroid-

Delta(8),Delta(7)-

isomerase

C-8 sterol isomerase

D(2) dopamine receptor

Vesicular acetylcholine

transporter

Sigma opioid receptor

Nociceptin receptor

*Histamine H3 receptor

Muscarinic acetylcholine

receptor M2

5-hydroxytryptamine

receptor 2A

Vesicular acetylcholine

transporter

*Nociceptin/Orphanin

FQ, NOP receptor

Alpha-2A adrenergic

receptor

Alpha-2C adrenergic

receptor

Adrenergic Alpha2

Adrenergic Alpha2D

Alpha-2B adrenergic

receptor

*Sigma non-opioid

intracellular receptor 1

Glutamate-NMDA-

MK801

5-hydroxytryptamine

receptor 3A

Dopamine D3 receptor

Dopamine Receptor D2

Glutamate receptor ion-

otropic, NMDA 2B

Serotonin Receptor 1A

*Sigma opioid receptor

Vesicular acetylcholine

transporter

Sodium-dependent

dopamine transporter

Sodium-dependent nor-

adrenaline transporter

Sodium-dependent sero-

tonin transporter

Histamine H1 receptor

r receptor *Sigma opioid

receptor

*3-beta-

hydroxysteroid-

Delta(8),Delta(7)-

isomerase

Histamine

N-methyltransferase

*Histamine H3

receptor

*Nociceptin receptor

*Sigma-1 receptor

Sodium channel

protein type II alpha

subunit

Serotonin 2c (5-HT2c)

receptor

Histamine H1

receptor

Muscarinic acetylcho-

line receptor M5

See Table 4a for details.

O

N

Figure 6. Nepinalone.
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appear among the top-ranked SEA web-site hits (Table 4c).

Correspondingly, none of the FMCT methods identifies

this target (Table 4c) either. There is significant overlap

among the FMCT and SEA web-site predictions,

particularly if one combines the subtypes of the muscarinic

acetylcholine receptor (Table 4c); and the prediction of

muscarinic activity is consistent with experimental

evidence that clemastine promotes neuronal remyelination

through activity at muscarinic receptors in oligodendro-

cytes (63).

The present FMCT results also go beyond the results dis-

played by SEA, as FMCT reveals that clemastine itself has

been shown to bind the lipid storage regulatory proteins

perilipin 1 and 5 with 11 and 15 mM potencies, respectively

(64). Although a literature search did not uncover any evi-

dence that clemastine’s binding of the perilipins is clinically

relevant, this activity could ultimately prove significant. The

fact that these exact matches were not identified by web-

based SEA tool may be attributed to its use of a 10-mM af-

finity threshold, which is not met by the 11 and 15mM

affinities of clemastine for the perilipins.

Benzquinamide

Benzquinamide (Figure 8, left) is an obsolete antiemetic

and anxiolytic drug (65). Although it is typically described

as having antihistaminic and antimuscarinic activity

(http://www.drugbank.ca/drugs/DB00767), the SEA ana-

lysis did not identify the histamine or muscarinic acetyl-

choline receptors as likely targets, and in fact went on to

exclude these experimentally as high-affinity targets (32).

Instead, the SEA analysis suggested the alpha-2 adrenergic

receptor as a protein target, and this binding was con-

firmed experimentally. The similarity of known binders of

the alpha-2 adrenergic receptors and binders of dopamin-

ergic receptors then led to prediction and experimental

confirmation that benzquinamide also binds to the dopa-

mine (D2) receptor. Curiously, none of the FMCT methods

suggests adrenergic receptors as targets, and these are also

absent from the SEA web-site predictions. On the

other hand, two of the fingerprint-based FMCT methods

immediately yield the D(2) dopamine receptor as top hits

Table 4c. Target hypotheses for clemastine

RDKit similarity Five averaged

similarities

RDKit similarity Pure MCS SEA 2012 paper SEA web

MCS re-sort

1.00–0.70 0.92–0.58 0.92–0.64 1.00–0.79 10�10�29– 4�27

Perilipin-1

Perilipin-5

*Solute carrier family 22

member 1

Muscarinic acetylcholine

receptor M1

Sodium-dependent

dopamine transporter

Sodium-dependent

serotonin transporter

Norepinephrine

transporter

Muscarinic acetylcholine

receptor M2

D(2) dopamine receptor

D(3) dopamine receptor

Perilipin-1

Perilipin-5

*Solute carrier family

22 member 1

Neuronal acetylcholine

receptor subunit

alpha-7

Neuronal acetylcholine

receptor; alpha4/beta2

Nicotinic acetylcholine

receptor alpha4/beta2/

alpha5

*Neuronal acetylcholine

receptor subunit

alpha-10

Sodium-dependent

dopamine transporter

Sodium-dependent

serotonin transporter

Norepinephrine

transporter

Perilipin-1

Perilipin-5

*Solute carrier family 22

member 1

Norepinephrine

transporter

Sodium-dependent

serotonin transporter

Sodium-dependent dopa-

mine transporter

Muscarinic acetylcholine

receptor M1

Muscarinic acetylcholine

receptor M2

Sodium-dependent dopa-

mine transporter

D(3) dopamine receptor

*Solute carrier

family 22

member 1

Perilipin-1

Perilipin-5

Sodium channel

protein type 2

subunit alpha

D(3) dopamine

receptor

D(4) dopamine

receptor

D(2) dopamine

receptor

Sodium-dependent

dopamine

transporter

Muscarinic

acetylcholine

receptor M2

*Histamine H1

receptor

r receptor *Solute carrier family

22 member 1

Muscarinic acetylcho-

line receptor M5

Muscarinic acetylcho-

line receptor M4

Serotonin 6 (5-HT6)

receptor

Cytochrome P450

2C19

Histamine H2

receptor

*Histamine H1

receptor

*Neuronal acetylcho-

line receptor protein

alpha-10 subunit

Synaptic vesicular

amine transporter

C-X-C chemokine re-

ceptor type 7

See Table 4a for details.
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Figure 7. Clemastine.
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(Table 4d), whereas the SEA web-site provides the similar

D(1) dopamine receptor. A number of other top hits also

are common between the SEA web-site and the FMCT re-

sults, but we were not able to uncover external confirm-

ation or clinical correlates for these.

All three fingerprint-based FMCT analyses furthermore

predict that benzquinamide may bind multidrug resistance

protein 1, also known as P-glycoprotein. Emetine, the simi-

lar compound in BindingDB which led to this prediction is

shown in Figure 8 (right). Given this prediction, we did a

literature search, which yielded apparent confirmation in a

paper (66) stating that ‘Benzquinamide inhibits P-

glycoprotein-mediated drug efflux and potentiates anti-

cancer agent cytotoxicity in multidrug resistant cells’. It is

not immediately clear why the SEA method did not make

this prediction, given the chemical similarity of benzquina-

mide to emetine, and the fact that emetine binds the multi-

drug resistance protein with an affinity better than 10mM.

Lobenzarit

The drug lobenzarit (Figure 9, left) is an immunomodula-

tor (67) which is used to treat rheumatoid arthritis. The

prior SEA analysis suggested and experimentally confirmed

inhibition of COX-2 by lobenzarit, leading to the

N

O

O

NH

O

O

O

OO

O

O N

N

Figure 8. Benzquinamide (left) and emetine (right), a chemically similar compound identified by FMCT that is known to bind multidrug resistance

protein 1.

Table 4d. Target hypotheses for benzquinamide

RDKit similarity Five averaged

similarities

RDKit similarity Pure MCS SEA 2012

paper

SEA web

MCS re-sort

0.86–0.80 0.64–0.58 0.84–0.77 0.64–0.52 10�10�77–10�02

*Synaptic vesicular

amine transporter

*Dipeptidyl peptidase 4

Peptidyl-prolyl cis–

trans isomerase

FKBP1A

Cytochrome P450 2D6

*D(1A) dopamine

receptor

D(2) dopamine

receptor

Multidrug resistance

protein 1

COUP transcription

factor 2

Nuclear receptor ROR-

alpha

*Putative hydrolase

RBBP9

Synaptic vesicular

amine transporter

*Dipeptidyl peptidase 4

*Orexin receptor type 1

*Orexin receptor type 2

Cytochrome P450 2C9

Cytochrome P450 2D6

COUP transcription

factor 2

Multidrug resistance

protein 1

Nuclear receptor

ROR-alpha

*Putative hydrolase

RBBP9

Synaptic vesicular

amine transporter

*Dipeptidyl peptidase 4

Multidrug resistance

protein 1

COUP transcription

factor 2

Nuclear receptor

ROR-alpha

*Putative hydrolase

RBBP9

Steroidogenic factor 1

D(2) dopamine

receptor

*D(1A) dopamine

receptor

Melatonin receptor

type 1B

Synaptic vesicular

amine transporter

*Dipeptidyl

Peptidase IV

(DPP-IV)

Sodium-dependent

dopamine

transporter

Norepinephrine

transporter

Integrin beta-3

Acetylcholinesterase

Interstitial

collagenase

Collagenase 3

5-hydroxytrypt-

amine receptor 4

Kallikrein-related

peptidase 5

preproprotein

Dopamine

receptor (D2,

D3, D4)

Adrenoceptor

a2 receptor

*Synaptic vesicular

amine transporter

*Orexin receptor 1

*Orexin receptor 2

Melatonin receptor 1B

*Putative hydrolase

RBBP9

*Dipeptidyl peptidase IV

Small conductance cal-

cium-activated potas-

sium channel protein 1

Carbonic anhydrase XIV

*Dopamine D1 receptor

Carbonic anhydrase VII

See Table 4a for details.
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suggestion that COX-2 inhibition may be the therapeutic

mechanism of this drug. Somewhat surprisingly, COX-2

does not rise to the top 10 of the SEA web-site’s target

rankings. However, it does appear, listed as prostaglandin

G/H synthase 2, in two of the FMCT rankings, along with

the closely related enzyme prostaglandin G/H synthase 1

(Table 4e). Two hits from the SEA web-site list, both

alpha-keto reductases, do appear in all four of the FMCT

lists, but there is otherwise little concordance between the

two methods.

All four FMCT methods also predict binding of loben-

zarit to a phospholipase A2, a prediction not made by

SEA. The phospholipase inhibitor responsible for this pre-

diction, tolfenamic acid (Figure 9, top right), is clearly

HO O

H
N

Cl

OHO

Cl

Cl F
F

F

HO

H
N

N

O

Cl
H
N
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H
N

O

HO

Figure 9. Lobenzarit (top left), tolfenamic acid (top right, a known inhibitor of phospholipase A2), diclofenac (bottom left) and niflumic acid (bottom

right).

Table 4e. Target hypotheses for lobenzarit

RDKit similarity Five averaged

similarities

RDKit similarity Pure MCS SEA 2012

paper

SEA web

MCS re-sort

0.91–0.77 0.76–0.68 0.82–0.70 0.85–0.80 10�10�156– 2�20

*Aldo-keto reductase family

1 member C3

*Aldo-keto reductase family

1 member C2

Hexokinase

Androgen receptor

Cysteine protease ATG4B

Phospholipase A2

Anthranilate

phosphoribosyltransferase

17-beta-Hydroxysteroid

Dehydrogenase 5 (17-

beta-HSD5, AKR1C3)

NAD-dependent protein

deacetylase sirtuin-1

Carbonic anhydrase 1

*Aldo-keto

reductase family 1

member C3

*Aldo-keto

reductase family 1

member C2

Hexokinase

Androgen Receptor

(AR)

Cysteine protease

ATG4B

Phospholipase A2

Androgen receptor

Aldo-keto reductase

family 1 member C1

Prostaglandin G/H

synthase 2

Prostaglandin G/H

synthase 1

*Aldo-keto reductase family

1 member C3

*Aldo-keto reductase family

1 member C2

Hexokinase

Androgen receptor

Cysteine protease ATG4B

Phospholipase A2

Anthranilate

phosphoribosyltransferase

17-beta-Hydroxysteroid

Dehydrogenase 5 (17-

beta-HSD5, AKR1C3)

NAD-dependent protein

deacetylase sirtuin-1

Carbonic Anhydrase IX

*Aldo-keto reductase

family 1 member C2

*Aldo-keto reductase

family 1 member C3

Aldo-keto reductase

family 1 member C1

Androgen Receptor

Prostaglandin G/H

synthase 1

Prostaglandin G/H

synthase 2

Cysteine protease

ATG4B

Phospholipase A2

17-beta-

Hydroxysteroid

Dehydrogenase 5

(17-beta-HSD5,

AKR1C3)

Carbonic Anhydrase IX

COX-2 *Aldo-keto reductase

family 1 member C2

*Aldo-keto-reductase

family 1 member C3

Beta-ketoacyl-ACP

synthase III

Glutamate receptor

ionotropic kainate 1

UDP-galactose

4-epimerase

Aldo-keto reductase

family 1 member C1

Interleukin-8

Hydroxycarboxylic

acid receptor 2

Calcium-activated

potassium channel

subunit alpha-1

Liver glycogen

phosphorylase

See Table 4a for details.
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similar to lobenzarit (Figure 9, top left). Tolfenamic acid is

actually an existing non-steroidal anti-inflammatory drug,

and hence a known COX (cyclooxygenase) inhibitor, in ac-

cord with the SEA and FMCT hits on this target.

BindingDB’s additional contribution is that tolfenamic

acid is a 7.7-mM inhibitor of phospholipase A2. This result

derives from a counterscreen (PubChem AID 588400), ra-

ther than a primary screen. Interestingly, phospholipases

A2 have been implicated in a variety of inflammatory and

autoimmune disorders, including rheumatoid arthritis, one

of lobenzarit’s indications. We therefore tested lobenzarit

in the same phospholipase inhibition assay that turned up

tolfenamic acid as an inhibitor, while also re-testing tolfe-

namic acid. Contrary to the prediction based on molecular

similarity, lobenzarit showed no significant inhibition at

concentrations up to 300 mM, whereas tolfenamic acid was

found to have an IC50 of 20mM, similar to the previously

reported value of 7mM; see Supplementary Figure S6. This

result clearly argues against the target hypothesis. On the

other hand, it seems equally clear that one would not want

to miss uncovering the chemical similarity of lobenzarit to

tolfenamic acid evident in Figure 9; and it is still of interest

to consider whether lobenzarit might inhibit another

phospholipase involved in inflammatory pathways. Some

further support for this concept is afforded by recent co-

crystal structures of the similar (Figure 9) anti-inflamma-

tory agents diclofenac [2b17 (68)] and niflumic acid [1td7

(69)] with a snake phospholipase A2 (UniProt

PA2A3_NAJSG) having 51% sequence identity with

human phospholipase A2 (UniProt PA21B_HUMAN).

Cyclobenzaprine

Cyclobenzaprine (Figure 10) is a centrally acting muscle re-

laxant. Its known activity at the 5-hydroxytryptamine

(serotonin) receptor 2A might explain its therapeutic activ-

ity (http://www.drugbank.ca/drugs/DB00924), and it may

also act at adrenergic receptors (70). The SEA analysis fur-

ther predicted and confirmed binding to the M1, M2 and

M3 muscarinic acetylcholine receptors, and suggested that

this hitherto unknown interaction could play an important

role in cyclobenzaprine’s therapeutic activity. (It is perhaps

worth mentioning that, although modulation of muscarinic

receptors might explain changes in smooth muscle tone, it

seems less clear that it could account for the relaxation of

skeletal muscle, for which cyclobenzaprine is used.) The

SEA analysis also suggested and confirmed binding at the

H1 histamine receptor. Both the present FMCT methods

(Table 4f) and the SEA web-server provide very similar tar-

get predictions, especially if one lumps together different

subtypes of each receptor. All of the FMCT prediction

methods also suggest several new targets, but we were un-

able to find confirmatory data in the literature; some of

these could be of interest to follow up experimentally.

Nefopam

Nefopam (Figure 11, left) is a centrally active analgesic, for

which the SEA publication suggested and confirmed binding

to serotonin receptors. Allowing less compelling E-values

furthermore turned up the dopamine transporter, which was

also confirmed as a hit, along with the serotonin and nor-

epinephrine transporters. The present FMCT methods

(Table 4g) predict primarily muscarinic receptor and hista-

mine receptor binding, in agreement with the SEA web-

server, but we were unable to find literature bearing on these

predictions. It might be of concern that the top 10 FMCT

hits did not include the serotonin and norepinephrine trans-

porters, but these do appear a little lower in the lists; e.g.

positions 20–22 for the single RDKit fingerprint method,

where they appear with chemical similarity scores of 0.61.

Comparison of fingerprint versus MCS similarity in FMCT

Inspection of Table 4 reveals that the fingerprint-based

FMCT methods tend to give similar target predictions,

whereas the pure MCS method often generates distinctive

results. It is instructive to examine the specific example of

cloperastine, for which pure MCS suggests leukotriene A4

hydrolase as a protein target, but the fingerprint methods

do not. The similar compound in BindingDB which gener-

ates this MCS similarity hit is shown in Figure 5 (bottom),

where it may be compared with cloperastine itself

(Figure 5, top left). Perhaps not surprisingly, the RDKit fin-

gerprint similarity between these two compounds is only

0.41. The pure MCS similarity metric also yields distinct

target suggestions for cyclobenzaprine (aldose reductase)

and nefopam (HIV-1 reverse transcriptase; see Figure 11,

right). The fingerprint approaches appear to correlate

somewhat more strongly with the web-based SEA results

than does the pure MCS approach, probably because the

similarity metric underlying SEA is a type of chemical fin-

gerprint, rather than one based on MCS. Overall, the pure

MCS approach provides distinctive target suggestions

that may merit attention. However, it is far more time-

consuming than the fingerprint methods, so we tested a

N

Figure 10. Cyclobenzaprine.
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hybrid approach in which MCS similarities were computed

for only the most similar fingerprint hits, and the finger-

print hits were re-ranked by MCS similarity. Although the

resulting method is faster, it does not succeed at highlight-

ing the interesting hits found by pure MCS, as evident by

inspection of Table 4.

Accelerated target-finding with a reduced reference set

The fingerprint-based FMCT methods require a few mi-

nutes on a single commodity computer to scan a query

compound against the full 670 K compound reference set,

whereas the MCS method requires over an hour. These cal-

culations thus can become time-consuming in applications

where one wishes to process multiple compounds, such as

a commercial compound catalog. One solution is to use

parallel processing to reduce the wall-clock time, but it is

also of interest to reduce the overall computational re-

quirements. We conjectured that similar results might be

returned if compounds were scanned not against the full

reference set, but instead against a reduced set generated

by clustering all compounds in the full set based on RDKit

fingerprint similarity, and keeping only one representative

compound from each cluster (see Materials and Methods).

The reduced reference set contained only 21K compounds,

a roughly 30-fold reduction, and the FMCT workflows

were accordingly accelerated; for example, the pure MCS

workflow requires only a few minutes per compound when

used with the reduced reference set. However, the

increased speed came at the cost of a significantly reduced

ability to recover important hits. For example, although

the full reference set allowed FMCT to rediscover 13 of the

20 confirmed target hits reported in the SEA paper for

the seven drugs (as well as several plausible new targets),

the present reduced reference set turned up only four. To il-

lustrate the performance of the clustering technique, and

perhaps an explanation for the lack of predictions with the

reduced set, we highlight two cluster sets from a single tar-

get, Dopamine D4 (Figure 12). As is apparent by looking

at these compound structures, the diversity within the

Table 4f. Target hypotheses for cyclobenzaprine

RDKit similarity Five averaged

similarities

RDKit similarity Pure MCS SEA 2012

paper

SEA web

MCS re-sort

0.85–0.85 0.77–0.77 0.79–0.79 0.91–0.68 10�10�46 – 3�03

D(2) dopamine

receptor

*5-hydroxytryptamine

receptor 2A

Histamine H1 receptor

5-hydroxytryptamine

receptor 1A

*Muscarinic acetyl-

choline receptor M5

Muscarinic acetylcho-

line receptor M1

Muscarinic acetylcho-

line receptor M2

Muscarinic acetylcho-

line receptor M3

*Muscarinic acetyl-

choline receptor M4

Norepinephrine

transporter

*Muscarinic acetyl-

choline receptor M5

*5-hydroxytryptamine

receptor 2A

5-hydroxytryptamine

receptor 1A

Histamine H1 receptor

Muscarinic acetylcho-

line receptor M1

Muscarinic acetylcho-

line receptor M2

Muscarinic acetylcho-

line receptor M3

*Muscarinic acetyl-

choline receptor M4

Norepinephrine

transporter

Sodium-dependent

noradrenaline

transporter

D(2) dopamine

receptor

5-hydroxytryptamine

receptor 2A

*5-hydroxytryptamine

receptor 2C

5-hydroxytryptamine

receptor 6

*Muscarinic acetyl-

choline receptor M5

Norepinephrine

transporter

5-hydroxytryptamine

receptor 1A

Histamine H1 receptor

Muscarinic acetylcho-

line receptor M1

Muscarinic acetylcho-

line receptor M2

Adenosine A3

Receptor

Histamine H1

receptor

Sodium-dependent

noradrenaline

transporter

Sodium-dependent

dopamine

transporter

Aldose reductase

Protein skinhead-1

*Alpha-1A adrenergic

receptor

D(2) dopamine

receptor

Sigma non-opioid

intracellular

receptor 1

D(1A) dopamine

receptor

Muscarinic

M1 receptor

Muscarinic

M2 receptor

Muscarinic

M3 receptor

Histamine

H1 receptor

*Histamine H1

receptor

*Alpha-1a adrenergic

receptor

*Muscarinic acetylcho-

line receptor M4

Serotonin 2b (5-HT2b)

receptor

*Serotonin 2c (5-HT2c)

receptor

*Muscarinic acetylcho-

line receptor M5

Alpha-1b adrenergic

receptor

Alpha-2b adrenergic

receptor

Pleiotropic ABC efflux

transporter of mul-

tiple drugs

Histamine H2 receptor

See Table 4a for details.
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Figure 11. Nefopam (left) and a 40-mM inhibitor of HIV-1 reverse tran-

scriptase inhibitor (right) identified by the pure MCS metric as similar to

nefopam.
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cluster sets varies considerably, as does the value of select-

ing a representative member of each set at random.

Packaging and dissemination of workflows

and data tables

The main user workflows described above, and the data

tables they use, are available for download at the websites

for BindingDB (tinyurl.com/jwqoulm). They also can be

accessed through the KNIME desktop, via the KNIME

Explorer, under EXAMPLES, as described here: http://

www.knime.org/example-workflows, and filtering for

‘BindingDB’. In all cases, the left-most nodes displayed in

the workflow accept user input, and the right-most nodes

collect and display output. The output is displayed in a

KNIME table by default, but can be also saved in a variety

of formats (CSV, SDF, MOL, etc.) or channeled to other

workflows/nodes for follow-on analysis. The same reposi-

tories also provide a number of related utility workflows,

such as the BDBBuilder and ClusteredData workflows,

used to produce BDBBuilder Table and ClusteredData

Table, respectively. These may be used to update the data

tables used by the FMCT workflows as new BindingDB

data become available on the BindingDB Download page.

Discussion

Integration of BindingDB into KNIME workflows

The integration of BindingDB with KNIME workflows

sets the stage for incorporation of BindingDB data into

a wider range of applications, which can take advantage

of the growing ecosystem of KNIME nodes and

workflows supporting chemical informatics, bioinfor-

matics and data analytics (https://tech.knime.org/knime-

community) (71). Various use-cases may be envisioned,

for example:

• Target2Compounds may be used to annotate biomolecu-

lar signaling pathways with information about available

small molecule modulators, as a step to moving from sys-

tems biology to systems pharmacology.

• FMCT workflows can suggest mechanistic targets for

compounds discovered to be active in high-

throughput phenotypic assays, such as ones in which

cellular changes induced by millions of compounds are

detected by microscopy and categorized by automated

image analysis.

• The Compound2Targets and FMCT workflows may find

application screening commercial catalogs for known

and potential activities.

Table 4g. Target hypotheses for nefopam

RDKit similarity Five averaged similarities RDKit similarity Pure MCS SEA 2012

paper

SEA web

MCS re-sort

0.72–0.72 0.59–0.59 0.66–0.66 0.88–0.88 2�10�19– 4�01

Potassium voltage-gated

channel subfamily H

member 2

*Muscarinic acetylcholine

receptor M5

*Histamine H1 receptor

Muscarinic acetylcholine

receptor M1

Muscarinic acetylcholine

receptor M2

Muscarinic acetylcholine

receptor M3

Muscarinic acetylcholine

receptor M4

Solute carrier family 22

member 1

Solute carrier family 22

member 2

Multidrug and toxin

extrusion protein 1

*Muscarinic acetylcholine

receptor M5

*Histamine H1 receptor

Muscarinic acetylcholine

receptor M1

Muscarinic acetylcholine

receptor M2

Muscarinic acetylcholine

receptor M3

Muscarinic acetylcholine

receptor M4

Potassium voltage-gated

channel subfamily H

member 2

Solute carrier family 22

member 1

Solute carrier family 22

member 2

Multidrug and toxin ex-

trusion protein 1

Muscarinic acetylcholine

receptor M4

*Muscarinic acetylcholine

receptor M5

*Histamine H1 receptor

Multidrug and toxin

extrusion protein 1

Muscarinic acetylcholine

receptor M1

Muscarinic acetylcholine

receptor M2

Muscarinic acetylcholine

receptor M3

Potassium voltage-gated

channel subfamily H

member 2

Solute carrier family 22

member 1

Solute carrier family 22

member 1

HIV-1 Reverse

Transcriptase

Dopamine

transporter

Serotonin

transporter

Norepinephrine

transporter

Serotonin

receptor 2A

Serotonin

receptor 2B

Serotonin

receptor 2C

Dopamine D5

receptor

*Muscarinic

acetylcholine

receptor M5

Dopamine D1

receptor

*Histamine H1

receptor

Adenylate

cyclase type V

Dopamine

transporter

Alpha-1a adren-

ergic receptor

Sigma opioid

receptor

Norepinephrine

transporter

Serotonin 2c

(5-HT2c)

receptor

See Table 4a for details.
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• The FMCT workflow may be used to generate reports of

possible side-effects of compound series being considered

for development into candidate drugs.

Further applications will become possible as additional

computational and analytic methods are encapsulated into

KNIME nodes. For example, at least two companies offer

KNIME nodes with ligand-protein docking functionalities

(www.schrodinger.com/knimeworkflows, http://www.

molsoft.com/gui/knime.html).

The workflows described here exemplify two modes of

accessing BindingDB data. In the first, KNIME nodes ac-

cess BindingDB’s web-services on-the-fly. This always uses

the most up-to-date results and does not require download-

ing and processing large files. In the second, the full

BindingDB dataset is processed into a KNIME table which

resides on the user’s computer. This avoids possible

network and server delays during use, is appropriate for

large-scale data access and allows the user to ensure repro-

ducibility of his or her query results. It also maximizes

privacy and allows for customized queries that go beyond

what is offered in the web-services. It is worth noting that

users wishing to adjust the criteria for winnowing

BindingDB’s large dataset into the local KNIME table can

do this by modifying the workflows used to build the

table, BDBBuilder, BDBBuilderFast or CondensedData.

Moreover, a full BindingDB data dump is available for

download, so users can set up their own local installations

of the entire database.

Predicting protein targets for compounds with

BindingDB data

The present study also illustrates the emergent value of a

large enough database of protein-ligand binding data, as a

tool to predict protein targets for compounds of interest.

Valuable data from a published application of the SEA

methodology (32) provided a platform to evaluate several

different FMCT implementations. Although the SEA and

FMCT studies are more anecdotal than statistical, they

nonetheless provide a useful initial picture of how the vari-

ous methods perform. Overall, the FMCT methods provide

excellent recovery of the target proteins correctly identified

by SEA. Although FMCT does miss several targets cor-

rectly identified by SEA, it also identifies valid or highly

plausible targets that do not appear to be highly ranked by

SEA. These differences between FMCT and SEA may result

from a combination of factors, including differences be-

tween the reference databases used, the application of a

10-mM affinity cutoff in the web-based SEA application,

and the different ways that chemical similarity is computed

and used to predict targets for query compounds. Thus, in

using the web-based SEA application we selected the

ChEMBL database; but ChEMBL does not include some

compound-protein affinity data present in BindingDB. It is

thus worth noting that the SEA web-page also allows one

to use alternative databases, including KEGG (72) and

WOMBAT (73). In addition, although SEA takes a holistic

statistical approach to associating compounds with poten-

tial targets, FMCT is based on simple pairwise compari-

sons of compounds, and the two approaches naturally

yield different, and seemingly complementary, target

predictions.

Of the similarity metrics tested here, the fast RDKit fin-

gerprint method performed as well as or better than the

more complex alternatives. However, the MCS similarity

metric occasionally provided interesting results distinct

from those provided by the fingerprint methods. Because

the MCS similarity metric is relatively slow to compute,

we tried using MCS to rerank a reduced set of targets al-

ready highly ranked by a fingerprint method, but, although

this saved computer time, it did not recover all the interest-

ing hits provided by the full MCS method. We also experi-

mented with accelerating FMCT by using a much smaller

reference dataset, which was constructed by clustering all

compounds in the full reference set according to chemical

similarity, and extracting a single representative compound

from each cluster. However, this approach led to substan-

tially reduced recovery of validated and plausible targets

for the query compounds examined here. The results might

be improved in future work by allowing a more generously

sized reference set in order to reduce the diversity of the

compounds in each cluster, and potentially by using a dif-

ferent clustering method.

For general users, it is worth pointing out that the core

fingerprint-based FMCT functionality is also freely access-

ible to users via interactive pages at the BindingDB website,

which does not require any familiarity with KNIME (www.

bindingdb.org/bind/chemsearch/marvin/FMCT.jsp). This

web implementation yields similar, but non-identical results,

as it employs a different set of chemical fingerprints, gener-

ated with JChem (74), to compute chemical similarity.

For users interested in KNIME, the present workflows

provide a starting point for development of novel imple-

mentations of FMCT, and for incorporation of this func-

tionality into more comprehensive workflows. For

example, one might employ other chemical similarity met-

rics, such as ones based on molecular shape (75–78) or

three-dimensional pharmacophore models based on avail-

able protein-ligand co-crystal structures. It is also interest-

ing to envision broader integrations, such as a merger of

FMCT predictions with natural language processing of the

scientific literature to automatically generate annotations

of genes and pathways with compound and targeting pre-

dictions; or the use of machine-learning techniques already
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available in KNIME nodes to craft more powerful chemin-

formatics analysis tools. Thus, the use of KNIME to ana-

lyze BindingDB data and to integrate it with additional

data types potentiates a range of useful biomedical and

translational applications.

Supplementary Data

Supplementary data are available at Database Online.
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