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Abstract

The CCAAT/enhancer binding proteins (C/EBPs) are transcription factors involved in hematopoietic cell development and
induction of several inflammatory mediators. Here, we generated C/EBPb and C/EBPe double-knockout (bbee) mice and
compared their phenotypes to those of single deficient (bbEE and BBee) and wild-type (BBEE) mice. The bbee mice were
highly susceptible to fatal infections and died within 2–3 months. Morphologically, their neutrophils were blocked at the
myelocytes/metamyelocytes stage, and clonogenic assays of bone marrow cells indicated a significant decrease in the
number of myeloid colonies of the bbee mice. In addition, the proportion of hematopoietic progenitor cells [Lin(2)Sca1(+)c-
Kit(+)] in the bone marrow of the bbee mice was significantly increased, reflecting the defective differentiation of the
myeloid compartment. Furthermore, microarray expression analysis of LPS- and IFNc-activated bone marrow-derived
macrophages from bbee compared to single knockout mice revealed decreased expression of essential immune response-
related genes and networks, including some direct C/EBP-targets such as Marco and Clec4e. Overall, the phenotype of the
bbee mice is distinct from either the bbEE or BBee mice, demonstrating that both transcription factors are crucial for the
maturation of neutrophils and macrophages, as well as the innate immune system, and can at least in part compensate for
each other in the single knockout mice.
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Introduction

Mature myeloid cells including monocytes/macrophages and

granulocytes differentiate from common myeloid progenitors

(CMP) which originate from hematopoietic stem cells [1,2].

Monocytes/macrophages and granulocytes including basophils,

eosinophils and neutrophils are involved in the innate immune

system for host defense. These cells can phagocytose infectious

agents and produce inflammatory-associated cytokines. Several

murine knockout models revealed that development and differen-

tiation of these cells are controlled by transcription factors; and

one of the major regulators is the CCAAT enhancer binding

protein (C/EBP) family. Members of this family play important

roles for proliferation, differentiation and apoptosis in a variety of

cell types [3–5]. Their amino end contains a transcriptional

activation domain, and the carboxyl terminal region has a basic

leucine zipper motif that forms homo- or hetero-dimers and allows

binding to DNA.

C/EBPa plays a crucial role for granulopoiesis; and mice

deficient for the Cebpa gene lack neutrophils and eosinophils, and

accumulate immature myeloid cells [6,7]. Inactivating mutations

and/or gene silencing via methylation of the promoter region of

the human CEBPA gene often occur in acute myeloid leukemia

[8–11].

C/EBPb expression is dramatically induced during macrophage

differentiation [12,13]; and macrophages from C/EBPb knockout

mice have a defective ability to kill bacteria and tumor cells

[14–16]. Cytokines including IL-6, TNFa and G-CSF are abun-

dantly produced in wild-type macrophages stimulated with mIFNc
and LPS, but their expression is diminished in C/EBPb knockout
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macrophages [14,17,18]. Furthermore, C/EBPb-deficient mice lack

emergent neutrophil production in response to cytokines and/or

infection [19]; and their neutrophils have an enhanced ability to

undergo apoptosis [20], suggesting that C/EBPb is essentially

involved in the production and survival of neutrophils.

Unlike other family members, expression of C/EBPe is restricted

to myeloid lineage cells and not detected in non-hematopoietic

tissues and cells [21,22]. Therefore, myelopoiesis is also regulated by

C/EBPe, and its expression parallels granulocytic differentiation

[21]. C/EBPe interacts with the cell cycle regulators, retinoblasto-

ma and E2F1 during granulopoiesis and induces terminal

differentiation of granulocytes [23]. Recently, we and others have

shown that C/EBPe-deficient mice develop normally, but fail to

generate functional neutrophils with decreased uptake of bacteria

and low expression of secondary and tertiary granule proteins

[22,24,25]. The phagocytic function of C/EBPe-deficient macro-

phages is also impaired, and macrophage-specific genes including

CD14, MCP-3 and PAI-2 are down-regulated [26]. The human

CEBPE gene produces 4 isoforms (32, 30, 27 and 14 kDa C/EBPe
proteins), and function of these isoforms differs. The 32 and 30 kDa

C/EBPe works as transcriptional activator, the 27 kDa protein as

transcriptional repressor, and the 14 kDa form as dominant-

negative regulator [27].

The structure of C/EBPb and C/EBPe proteins is similar;

especially the C-terminal regions of these two molecules with over

70% homology. Since expression of C/EBPb and C/EBPe
overlaps in the development of myeloid cells, both factors play

crucial roles and may, at least in part, functionally compensate for

each other in myelopoiesis and innate immune response.

In the present study, we generated C/EBPb and C/EBPe
double knockout mice and analyzed their hematopoietic system, as

well as their inflammatory response. Compared to the single

knockout and wild-type mice, the double knockout mice were

highly susceptible to fatal infections, had morphologically

immature neutrophils, lacked production of important host

defense-related genes, and had an impaired proliferative activity

of hematopoietic stem cells. Since this aberrant phenotype was not

found in the single knockout mice, our findings indicate that both

C/EBPb and C/EBPe are required for the maturation of

neutrophils and macrophages, as well as the innate immune

system, and can at least in part compensate for each other in the

single knockout genotype.

Materials and Methods

Cytokines, antibodies and other reagents
Murine granulocyte/macrophage-colony stimulating factor

(GM-CSF), G-CSF, stem cell factor (SCF), interleukin-3 (IL-3),

and human IL-6 were purchased from Calbiochem (San Diego,

CA, USA). Human erythropoietin (EPO) was from Amgen

(Thousand Oaks, CA, USA), murine macrophage stimulating

factor (M-CSF) and interferon-c (mIFNc) from PeproTech, Inc.

(Rocky Hill, NJ, USA), MethoCult media M3234 from StemCell

Technologies (Vancouver, British Columbia, Canada), RPMI

1640 medium and phosphate-buffered saline (PBS) from Invitro-

gen (Carlsbad, CA, USA), and fetal bovine serum (FBS) from

Atlanta Biologicals (Lawrenceville, GA, USA). Anti-phospho-

STAT3 (Tyr705) and anti-STAT3 antibodies were obtained from

Upstate Cell Signaling (Lake Placid, NY, USA) and Santa Cruz

Biotechnology (Santa Cruz, CA, USA), respectively.

Generation and genotyping of mice
Mice were bred under sterile conditions in the animal housing

facility at Cedars-Sinai Medical Center, and all animal experiments

were in accordance with the guidelines of Cedars-Sinai Research

Center and the NIH (IACUC protocol number is 2292). Single

knockout mice of either C/EBPb (bbEE; C57bl/6) or C/EBPe (BBee;

129/SvEv x NIH Black Swiss) were generated as described previously

[14,22]. Heterozygous-deficient mice of both C/EBPb and C/EBPe
(BbEe) were generated by mating bbEE males and BBee females under

pathogen-free conditions; and BbEe mice were intercrossed to

produce homozygous-deficient mice for both genes (bbee).

Mouse tail-tips were digested in buffer containing 10 mM Tris-

HCl (pH 8.0), 100 mM EDTA, 0.5% SDS and 0.1 mg/mL

proteinase K (Sigma-Aldrich, St. Louis, MO, USA), overnight at

50uC. Genomic DNA was isolated by phenol/chloroform

extraction followed by ethanol precipitation, and resuspended in

1 mL of TE buffer. To determine genotype of mice, 5 primers

termed NF14 (59- ATG CAA TCC GGA TCA AAC GTG GCT

GAG-39), NENF1823R (59- CTT TAA TGC TCG AAA CGG

AAA AGG TTC -39), Neo1500 (59- ATC GCC TTC TAT CGC

CTT CTT GAC GAG -39), mepsilon S (59- GCT ACA ATC

CCC TGC AGT ACC -39) and, mepsilon AS (59- TGC CTT

CTT GCC CTT GTG -39) were utilized. To detect each allele,

the following combination of primers were used: NF14 and NENF

1823R for wild-type allele of the Cebpb gene, Neo1500 and NENF

1823R for knockout allele of the Cebpb gene, mepsilon S and

mepsilon AS for wild-type allele of the Cebpe gene, and mepsilon S

and Neo1500 for knockout allele of the Cebpe gene. Genomic PCR

was performed using FailSafe PCR buffer of PreMix I for the

Cebpb gene and PreMix F for the Cebpe gene (Epicentre

Biotechnologies, Madison, WI, USA).

Isolation of neutrophils and mononuclear bone marrow
cells, and cultivation of macrophages

Neutrophils were collected by peritoneal lavage with ice-cold

PBS at 18 h after intraperitoneal injection with 1.5 mL of 4%

sterile thioglycollate (Sigma-Aldrich). After centrifugation, perito-

neal cells were resuspended in RPMI 1640 supplemented with

10% FBS. To isolate non-adherent neutrophils, the lavage cells

were cultured for 3 h, and non-adherent cells were collected.

Cytospins were prepared and stained with Diff-Quick (Dade

Behring, Dudingen, Switzerland).

Bone marrow cells were harvested from adult mice at 6–8 weeks

of age. Mononuclear cells were isolated from bone marrow cells

using Lymphocyte Separation Medium (Mediatech, Manassas,

VA, USA). Mononuclear cells were cultured with 10 ng/mL mM-

CSF in RPMI 1640 with 10% FBS for 7 days to induce

macrophage differentiation. Non-adherent cells were removed,

and morphological inspection showed that .98% of cells were

macrophages. The bone marrow-derived macrophages were

cultured either with or without 100 ng/mL LPS (Sigma-Aldrich)

and 100 ng/mL mIFNc.

Microarray analysis of gene expression
Total RNA was extracted from the stimulated macrophages

with the RNeasy Mini kit with on-column DNase digestion

(Qiagen, Valencia, CA, USA), and 3–5 mg of high-quality RNA

were converted, labeled and subsequently hybridized to the Mouse

430 2.0 oligonucleotide chips (Affymetrix, Santa Clara, CA, USA)

according to the manufacturer’s protocol. The microarray screens

were conducted at the DNA Microarray facility of UCLA, Los

Angeles. The probes were normalized with the MASv5.0 software

for processing Affymetrix oligonucleotide array data, and genes

were considered to be differentially expressed with a fold change

level of #2 or $2, respectively. The Multi Experiment Viewer

(MeV) v4.4.1 software was used to analyze the normalized

expression data in clusters. Microarray data is MIAME compliant

Analysis of C/EBPb and C/EBPe Double Knockout Mice
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and the raw data has been deposited in the Gene Expression

Omnibus (GEO) database, number GSE23821.

Signaling pathway analysis
To set up a potential network based on the regulated genes to

identify the molecular events and to generate a signaling network

based on the known interaction/relations among target genes/

proteins, we applied a reliable bioinformatics approach, Ingenuity

Pathways Analysis (IPA, Ingenuity Systems, http://www.ingenuity.

com, Mountain View, CA, USA). The software ranks networks by a

score that takes into account the number of focus genes and the size

of the networks, indicating the likelihood of the focus genes in a

network being found together by chance. The higher the score

(score = 2log(p-value) from Fisher’s exact test analysis), the lower is

the probability of finding the observed Network Eligible Molecules

in a given network by chance. Genes in our microarray data set that

were collectively deregulated in the comparison of BBEE, bbEE,

and/or BBee with bbee were considered for the pathway analysis.

RT-PCR, analysis of peripheral blood cell counts and
chromatin immunoprecipitation (ChIP) assay

Total RNA was isolated from bone marrow cells and bone

marrow-derived macrophages using RNeasy Mini Kit (Qiagen).

Total RNA (1 mg) was converted into cDNA by reverse

transcription with Superscript III (Invitrogen). Gene expression

was quantified with real-time quantitative PCR (iCycler, Bio-Rad,

Hercules, CA, USA) using Sybr Green; and expression levels of

target genes were normalized with b-actin.

Peripheral blood samples were obtained from the ocular sinus

and counted using a HEMAVET 850 (Drew Scientific Inc.,

Dallas, TX, USA).

For chromatin immunoprecipitation assay, ChIP assay kit

(Upstate Biotechnology, Lake Placid, NY) was used, and

chromatin was prepared for IP as instructed by the manufacturer

protocol. The sonicated chromatin was immunoprecipitated with

Table 2. Genotype and number of newborns from BbEe
intercrosses.

Genotype Number of newborns Ratio

BBEE 10 6.85%

BbEE 19 13.01%

bbEE 3 2.05%

BBEe 28 19.18%

BBee 8 5.48%

BbEe 36 24.66%

Bbee 22 15.07%

bbEe 13 8.90%

bbee 7 4.79%

146 100%

BbEe mice were intercrossed to produce homozygous-deficient mice for both
genes (bbee). All allele frequencies were in a manner following Mendelian law.
doi:10.1371/journal.pone.0015419.t002

Table 1. Primer sequences.

For PCR analysis

G-CSFR F GGGTCCACCAACAGTACAGG

G-CSFR R CAACCAGGAGCTCAGGCTAC

b-actin F CCTGAGGAGCACCCTGTG

b-actin R ATCACAATGCCTGTGGTACG

MRC1 F TGGAGAGCTGGCGAGCATCAAG

MRC1 R ACCATCACTCCAGGTGAACCCCTC

MARCO F CCACCTGATCCTGCTCACGGC

MARCO R GCCCACTGCAGCGAGAAGAAGG

CLEC4E F GTGGAGGGTCAGTGGCAATGGG

CLEC4E R GGTGGCACAGTCCTCCACCA

SOCS2 F TCAGCTGGACCGACTAACCT

SOCS2 R CAGGTGAACAGTCCCATTCC

CD38 F TCTTCCTGGGACGCTGCCTCA

CD38 R AGTGGGGCGTAGTCTTCTCTTGT

TNFa F ATCCGCGACGTGGAACTGGC

TNFa R TGAGTGTGAGGGTCTGGGCCAT

For ChIP analysis

MARCO promoter F TGCCACAGGTTCAACAGGGA

MARCO promoter R TGGGTTCAAATCTCCAGACC

CLEC4E promoter F TCTGGCTCATCAAACACGGGGA

CLEC4E promoter R CTCTGCCCACACCACACAGC

b-actin F ACCTGTTACTTTGGGAGTGGCAAGC

b-actin R GTCGTCCCAGTTGGTAACAATGCC

doi:10.1371/journal.pone.0015419.t001

Analysis of C/EBPb and C/EBPe Double Knockout Mice
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either 5 mg of anti-C/EBPb or anti-C/EBPe antibodies (Santa

Cruz Biotechnology) or normal rabbit IgG antibody as negative

control (Upstate Biotechnology). Immunoprecipitated DNA was

subsequently analyzed by PCR using primers specific for the

promoter region of the respective target genes (the Marco and

Clec4e genes). C/EBP binding sites were elucidated by using a web-

based search tool on http://www.cbrc.jp/research/db/

TFSEARCH.html. Input chromatin was analyzed for b-actin as

a positive control. PCR products were analyzed by 2.5% agarose/

ethidium bromide gel electrophoresis. All primer sequences are

shown in Table 1.

Colony assay and Western blot analysis
Colony assays were performed as described previously [20].

Briefly, mononuclear bone marrow cells (26104) were cultured in 1%

methylcellulose (Stemcell Technologies, Vancouver, BC, Canada)

Figure 1. C/EBPb2/2C/EBPe2/2 mice are highly susceptible to fatal infections. (A) Comparison between wild-type (BBEE) and C/EBPb2/2C/
EBPe2/2 (bbee) mice (both at 4 weeks of age). The bbee mice were smaller than BBEE mice and had rougher hair. (B) Body weight of four genotypic
subtypes of mice (n = 3 per genotype). Body weights of bbEE and BBee mice were comparable to BBEE mice; but bbee mice weighed less than the
other subtypes of mice at 4 weeks after birth (p = 0.05, t-test). (C) Kaplan Meier survival curves of four genotypic subtypes of mice. The bbee mice died
2–3 months after birth due to fatal bacterial infections. (D) Enlarged spleen and abscess formation in the liver in the bbee mice. Spleen size (left panel)
was increased in the bbee mice (2 months). Liver (right panel) had visible abscesses (2 months).
doi:10.1371/journal.pone.0015419.g001

Table 3. Blood cell counts in BBEE, bbEE, BBee, and bbee mice.

Cell types BBEE (n = 3) bbEE (n = 4) BBee (n = 3) bbee (n = 4)

White blood
cells

(K/uL) 15.8463.22 13.963.39 8.8562.66 10.99562.74

Neutrophils (K/uL) 1.8561.33 2.39560.55 1.5360.38 2.0660.93

Lymphocytes (K/uL) 13.5261.91 11.117562.93 6.3362.08 8.1162.03

Monocytes (K/uL) 0.4560.03 0.347560.04 0.960.22* 0.7660.21*

Red blood cells (M/uL) 8.95562.2 9.50560.7 7.5061.15 8.2760.9

Platelets (K/uL) 6106492.15 424627.02 452667.52 436656.68

Blood samples from mice of each genotype were analyzed (K, 61000). Values
represent the mean 6 SD.
*Number of monocytes was significantly higher in BBee and bbee mice
compared with BBEE mice (p,0.05, t-test).
doi:10.1371/journal.pone.0015419.t003

Analysis of C/EBPb and C/EBPe Double Knockout Mice
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supplemented with either IL-3 (10 ng/mL), IL-6 (10 ng/mL), SCF

(20 ng/mL), and EPO (3 U/mL); or GM-CSF (20 ng/mL); or G-

CSF (60 ng/mL); or G-CSF (60 ng/mL) and SCF (20 ng/mL).

For Western blot detection of phospho-STAT3, bone marrow cells

were cultured either with or without 100 ng/mL of G-CSF for

30 min. These samples were subjected to SDS-PAGE followed by an

electro-transfer to polyvinylidene difluoride membranes which

subsequently were probed with anti-phospho-STAT3 or anti-STAT3

antibodies. The signals were developed with Supersignal West Pico-

Chemiluminescent (Pierce Biotechnology, Rockford, IL, USA).

FACS analysis of bone marrow cells
Fc receptors were blocked using purified rat anti-mouse CD16/

CD32 monoclonal antibodies (BD Pharmingen, Franklin Lakes,

NJ, USA). Cells were then stained using rat anti-mouse antibodies

(BD Pharmingen) at concentrations recommended by the

manufacturer. Analysis of the primitive hematopoietic cell

compartment containing the c-Kit+/Sca-1+/Lineage2 (KSL)

fraction was carried out using a combination of APC mouse

Lineage antibody cocktail (to deplete cells expressing hematopoi-

etic lineage markers), CD117 (c-kit) FITC and Sca-1 PE. Cells

were incubated with FACS antibodies for 15 minutes at 4uC and

washed once with PBS before analysis on a FACS Calibur (BD

Biosciences). Compensation was performed using BD CompBeads

Anti-Rat Ig, k. FACS analysis was performed using the Flo-Jo

program (Tree Star Inc, Palo Alto, CA).

Results

Generation of double knockout (bbee) mice
Heterozygous-deficient mice [C/EBPb and C/EBPe (BbEe)]

were generated by mating C/EBPb2/2 (bbEE) males and C/

EBPe2/2 (BBee) females, since bbEE female mice are sterile [28].

Genotypes of all newborn mice were BbEe; and they appeared

normal (data not shown). These mice were intercrossed to produce

homozygous-deficient mice for both genes (bbee). As shown in

Table 2, all allele frequencies were in a manner following

Mendelian law; and 7 out of 146 mice (4.79%) were bbee mice

including 4 females and 3 males.

Size of bbee mice were smaller than wild-type (BBEE) mice; and

their hair was rough (Figure 1A). Body weight of bbee mice at 4 weeks

after birth was 11.7561.04 g (mean 6 S.D.), whereas, BBEE mice

were 13.2560.5 g (p = 0.05, t-test; Figure 1B). Morphological

features observed by histochemical analysis showed that all tissues

examined including lung, liver, pancreas, spleen, heart, kidney and

testis of bbee mice were normally developed (data not shown).

Furthermore, a bbee male was mated with a Bbee female; and 2 of 7

newborns were bbee mice (data not shown), showing that bbee males

are fertile. Taken together, these results indicate that embryogen-

esis, early development, as well as organogenesis including male

reproduction of bbee mice were normal.

Susceptibility to infections of double knockout (bbee)
mice

Analysis of peripheral blood cell counts revealed that the

numbers of white blood cells, neutrophils, red blood cells and

platelets were almost the same among BBEE, bbEE, BBee and bbee

mice (Table 3). Lymphocyte counts in BBee and bbee mice were

lower than in the two other genotypes, but the difference was not

significant. Only the number of monocytes was significantly higher

in BBee and bbee mice compared to BBEE and bbEE.

Interestingly, bbee mice died between 2–3 months of age

(Figure 1C). These mice had enlarged spleens (Figure 1D, left

panel) and suffered from systemic infections with abscess formation

Figure 2. Morphological characterization of neutrophils harvested by lavage from peritoneal cavity. Morphological characterization of
neutrophils harvested by lavage from peritoneal cavity. Wild-type, C/EBPb2/2 (bbEE), C/EBPe2/2 (BBee) and C/EBPb2/2C/EBPe2/2 (bbee) mice were
injected with 1.5 mL of 4% thioglycollate into their peritoneal cavity. After 18 h, neutrophils were harvested by lavage. Cytopreps of cells were
stained with Diff-Quick.
doi:10.1371/journal.pone.0015419.g002

Analysis of C/EBPb and C/EBPe Double Knockout Mice
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in their livers (Figure 1D, right panel), lungs and peritoneum (data

not shown). In vitro culture of visible hepatic, peritoneal and lung

abscesses revealed infections with Streptococcus viridians, Enterococcus

species and Escherichia coli in the bbee mice (data not shown). Mice

with bbEE and BBee as a genotype showed no signs of infection

during life or at autopsy, with survivals equivalent to BBEE mice.

These results demonstrated that bbee mice were highly susceptible

to bacterial infections.

Block of morphological differentiation of neutrophils in
bbee mice

Next, we examined the morphology of the neutrophils as one of

the major contributors of host defense. Neutrophils harvested from

the thioglycollate stimulated peritoneal cavity of BBEE and bbEE

mice were morphologically mature with segmented nuclei

(Figure 2). In BBee mice, terminal differentiation of neutrophils

was incomplete with atypical bi-lobed nuclei. Notably, the bbee

mice showed a highly defective differentiation of neutrophils with

large and in part indented nuclei (Figure 2), representing a

potential block at the myelocytes to metamyelocytes stage of

differentiation.

Impaired response to cytokines and accumulation of
undifferentiated hematopoietic progenitor cells in bbee
bone marrow

Next, we examined hematopoietic progenitor cells to assess

whether they respond to cytokines and produce mature cells in

vitro. Bone marrow cells from the bbee mice, as well as the other 3

type of mice, were cultured with either combinations of four

cytokines (IL-3, IL-6, EPO and SCF), GM-CSF, G-CSF, or

Figure 3. Characterization of hematopoietic cells in C/EBPb2/2C/EBPe2/2 mice. (A) Colony assay in methylcellulose. Light-density,
mononuclear bone marrow cells (26104) were cultured in 1% methylcellulose supplemented with either IL-3 (10 ng/mL), IL-6 (10 ng/mL), SCF (20 ng/
mL), and EPO (3 U/mL); or GM-CSF (20 ng/mL); or G-CSF (60 ng/mL); or G-CSF (60 ng/mL) and SCF (20 ng/mL). Colonies were scored if they contained
$50 cells at day 7 of culture. Results represent the mean 6 SD of 3 mice. (B) Expression of G-CSF receptor (G-CSFR) in mononuclear bone marrow
cells. Expression of G-CSFR mRNA was examined by RT-PCR. b-actin was used as an internal control. (C) Expression of STAT3 in mononuclear bone
marrow cells. The cells were stimulated either with or without G-CSF (100 ng/mL) for 30 min. Levels of phospho-STAT3 (pSTAT3) and STAT3 were
detected by Western blot analysis.
doi:10.1371/journal.pone.0015419.g003
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combination of two cytokines (G-CSF and SCF). Interestingly, the

number of clonogenic cells of the bbee mice was markedly

diminished compared to clonogenic growth of wild-type, bbEE

and BBee bone marrow cells (Figure 3A).

The level of G-CSF receptor mRNA in the bone marrow cells of

the bbee mice was similar to levels present in the other three types

of mice (Figure 3B). G-CSF stimulation is known to induce

activation of STAT3 via stimulation of the G-CSF receptor.

Phospho-STAT3 was detected in the G-CSF-stimulated bone

marrow cells at comparable levels in all four types of mice

(Figure 3C). Taken together, these results indicate that bbee

hematopoietic progenitor cells have an impaired ability to form

colonies, but the secondary signals stimulated by G-CSF appeared

to be intact in these cells.

The primitive hematopoietic cell compartment containing

hematopoietic stem cells is known as the c-Kit+/Sca-1+/Lineage2

(KSL) fraction. FACS analysis demonstrated that BBEE, bbEE and

BBee bone marrow cells contained 5–7% c-Kit+/Sca-1+ cells in the

Lineage negative fraction (Figure 4). In contrast, bbee bone marrow

cells had a markedly increased cell population in this fraction

(20.8%), suggesting that a block of hematopoietic differentiation

leads to accumulation of KLS cells in the bone marrow of bbee

mice.

Dysregulated gene expression of bone marrow-derived
macrophages from bbee mice

Additionally, we analyzed the gene expression profile of bone

marrow-derived macrophages to explore which inflammatory

mediators were aberrantly regulated in the bbee mice compared to

single deficient mice. Using microarray analysis, we detected a

total of 145 genes that were collectively deregulated in the

comparison of cells from either BBEE, bbEE, or BBee with bbee. A

cluster analysis represents the 45 most deregulated genes out of the

collective of the 145 genes (Figure 5). These included immune

response-related genes, as well as proinflammatory cytokines

including Tnfa, and Il-6.

Expression levels of macrophage mannose receptor 1 (Mrc1), C-

type lectin domain family 4, member e (Clec4e), macrophage

receptor with collagenous structure (Marco), suppressor of cytokine

signaling 2 (Socs2), Tnfa and Cd38 mRNA in activated bone

marrow derived macrophages were also determined by quantita-

tive RT-PCR. As shown in Figure 6, and consistent with our

microarray data, Mrc1, Clec4e, Marco, Tnfa and Cd38 were clearly

downregulated, and Socs2 was upregulated in bbee compared to

bbEE or Bbee macrophages.

Furthermore, we used the IPA software to assess the molecular

pathways and their respective biological functions of the

deregulated genes in the macrophages of the bbee mice compared

to single deficient mice. Ingenuity analysis identified 10 pathways,

whereas two met statistical and biological relevance for our study.

Both pathways had statistical scores of .30, and unique gene

clusters related to innate immunity and either TNFa or NFkB

signaling, respectively (Figure 7). Taken together, these results

show that activated macrophages of bbee mice have aberrant gene

expression of some essential proinflammatory cytokines and

networks, suggesting that both C/EBPb and C/EBPe are critically

involved in their regulation in macrophages.

C/EBPb and/or C/EBPe bind to the promoter region of
the Marco and Clec4e genes

Since the promoter regions of the Marco, Clec4e, Socs2, Tnfa and

Cd38 genes contain putative C/EBP-binding sites (Figure 6), we

examined the binding of C/EBPb and C/EBPe to the promoter

regions of the Marco and Clec4e genes in macrophages. Chromatin

immunoprecipitation assay revealed that both C/EBPb and C/

EBPe can bind to a C/EBP-binding site of either Marco or Clec4e in

wild-type macrophages (Figure 8). The binding of the two C/EBP

transcription factors was enhanced after stimulation of the

macrophages with LPS and mIFNc (Figure 8). Furthermore, C/

EBPe bound to these promoter regions in bbEE macrophages, and

C/EBPb interacted with these sites in BBee macrophages,

suggesting that C/EBPb and C/EBPe can compensate for each

other in single knockout macrophages.

Figure 5. Cluster analysis of microarray data of bone marrow
derived macrophages stimulated with LPS and mIFNc. Expres-
sion data established from activated macrophages revealed a total of
145 genes that were collectively deregulated in the comparison of cells
from either wild-type (BBEE), C/EBPb2/2 (bbEE), or C/EBPe2/2 (BBee)
with C/EBPb2/2C/EBPe2/2 (bbee). Cluster analysis performed with Multi
Experiment Viewer (MeV) v4.4.1 indicates 45 of the most deregulated
genes out of the collective of 145 genes.
doi:10.1371/journal.pone.0015419.g005

Figure 4. Ratio of hematopoietic progenitor cells. The lineage-negative fraction of bone marrow cells was sorted with FITC-conjugated anti-c-
Kit and PE-conjugated anti-Sca-1 antibodies. The hematopoietic progenitor cell population [KSL population (c-Kit+, Sca-1+, and Lineage2; blue dots)]
was compared between the wild-type (BBEE), C/EBPb2/2 (bbEE), C/EBPe2/2 (BBee) and C/EBPb2/2C/EBPe2/2 (bbee) mice.
doi:10.1371/journal.pone.0015419.g004
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Figure 6. Validation of mRNA expression of Mrc1, Clec4e, Marco, Socs2, Tnfa, and Cd38 in bone marrow-derived macrophages
stimulated with LPS and mIFNc. Expression levels of macrophage mannose receptor 1 (Mrc1), C-type lectin domain family 4, member e (Clec4e),
macrophage receptor with collagenous structure (Marco), suppressor of cytokine signaling 2 (Socs2), Tnfa and Cd38 mRNA in bone marrow derived
macrophages stimulated with LPS and mIFNc were determined by quantitative RT-PCR. C/EBP-binding site in the promoter region of these genes are
also indicated.
doi:10.1371/journal.pone.0015419.g006
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Discussion

Myelopoiesis is highly regulated by transcription factors

including C/EBPa, C/EBPb and C/EBPe. These transcription

factors play important roles in myelopoiesis as highlighted by the

studies of single knockout murine models [13,29,30], providing

several unexpected findings. For example, C/EBPa-deficient

mice, which normally do not have neutrophils, can produce them

in the presence of a high concentration of cytokines with rapid

upregulation of C/EBPb in myeloid progenitors. Also, C/EBPb-

Figure 7. Pathway-based analysis. (A, B) Microarray expression analysis established from activated macrophages resulted in 2 pathways which
were significantly (p,0.001) involved in the comparison of wild-type (BBEE), C/EBPb2/2 (bbEE), and/or C/EBPe2/2 (BBee) with C/EBPb2/2C/EBPe2/2

(bbee). They both represent inflammatory response pathways involving pro-inflammatory cytokines and chemokines, as well as Toll-like receptor
signaling molecules. Solid lines denote direct interactions, while dotted lines represent indirect interactions of genes/proteins. Green: downregulated
(#2 fold); Red: upregulated ($2 fold) molecules.
doi:10.1371/journal.pone.0015419.g007

Analysis of C/EBPb and C/EBPe Double Knockout Mice

PLoS ONE | www.plosone.org 10 November 2010 | Volume 5 | Issue 11 | e15419



deficient mice are unable to produce ‘‘emergency’’ neutrophils

when stimulated by either cytokines or infection, suggesting that

C/EBPb is important for the production of these neutrophils

[19,20].

C/EBP family proteins share a high degree of amino acid

sequence similarity in their dimerization and DNA-binding

domains, and potentially bind the same cis-elements in promoters

[3,4]. This may allow for one family member to compensate for

the loss of another. For example, we previously showed that C/

EBPa-deficient mice expressing C/EBPb from the Cebpa gene

locus had normal hematopoiesis, indicating that C/EBPb can

substitute for functions of C/EBPa in hematopoietic cells [31]. C/

EBPa-deficient mice have a severe loss of liver function; in

contrast, the C/EBPa-deficient mice expressing C/EBPb from the

Cebpa locus displayed normal liver function [32]. Double knockout

mice of C/EBPa and C/EBPb die between E10 and E11 and

have a defective placenta; contrary, single knockout mice of C/

EBPa and C/EBPb develop normally at that embryonic stage

[33]. In addition, the activities of C/EBPa, C/EBPb and C/EBPd
are redundant in LPS-induced expression of IL-6 and monocyte

chemoattractant protein-1 [34].

C/EBPe is involved in the functional maturation of neutrophils

and macrophages both of which represent major elements of the

innate immune system. A recent study showed that C/EBPb and

C/EBPe regulate the expression of cytokines including IL-8 in

human neutrophils [35], demonstrating that C/EBP proteins play

important roles for induction of cytokine expression in neutrophils.

Importantly, a highly immature state of neutrophils was detected

in the bbee mice with a potential differentiation arrest at the

myelocytes/metamyelocytes stage. Taken together, C/EBPb and

C/EBPe are required not only for cytokine expression, but also for

the terminal differentiation of the neutrophil.

Our colony formation assay revealed that bbee mononuclear

bone marrow cells formed decreased numbers of myeloid colonies

compared with the single knockout and wild-type mice in the

presence of various cytokines including G-CSF, although expres-

sion of G-CSF receptor mRNA in the bbee cells was intact.

Regulation of G-CSF receptor expression is controlled by C/

EBPa [36], and bbee bone marrow cells expressed C/EBPa (data

not shown). In addition, STAT3 activation, which is one of the

downstream signals of G-CSF, also appeared to be intact, since the

phosphorylation status of STAT3 stimulated with G-CSF was

comparable among all 4 types of mice. The molecular mechanism

of the impaired growth response to cytokines including G-CSF

remains to be explored.

A slightly impaired response to cytokines was also found in bbEE

bone marrow cells (current study and references 19 and 20), but

bbee bone marrow cells showed a severe lack of response. One

possible explanation for this finding is obtained from our

hematopoietic cell fraction (KSL) analysis. KSL cells dramatically

accumulated in the bone marrow of bbee mice. We assume that the

accumulation is in part the result of impaired responses to

differentiation-related cytokines. Therefore, these data strongly

suggested that C/EBPb and C/EBPe are required for commit-

ment of hematopoietic progenitor cells under cytokine stimulation

to myeloid cells.

C/EBPb is dramatically induced during macrophage differen-

tiation [12,13]. C/EBPb-deficient macrophages have a defect in

their ability to kill bacteria [14–16], and the C/EBPb isoform

34 kDa protein is responsible for induction of inflammatory

Figure 8. Chromatin immunoprecipitation (ChIP) assay in bone marrow derived macrophages stimulated with LPS and mIFNc. Bone
marrow derived macrophages stimulated with LPS and mIFNc were subjected to ChIP assay by using anti-C/EBPb, anti-C/EBPe or normal IgG
antibodies. C/EBP-binding region of the Marco (A) and Clec4e (B) genes were amplified by specific primers.
doi:10.1371/journal.pone.0015419.g008
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cytokines in macrophages [37]. Expression of C/EBPe is

upregulated during granulocyte differentiation, but not macro-

phage differentiation [21]; however, macrophages from C/EBPe-
deficient mice have functional abnormalities [26]. Importantly,

our current study revealed that the expression of several important

proinflammatory cytokines and immune mediators is significantly

repressed in activated bone marrow-derived macrophages from

bbee mice as compared to single deficient mice. Some promoter

regions of proinflammatory cytokine genes such as Marco and

Clec4e contain C/EBP binding sites, and both C/EBPb and C/

EBPe can bind and regulate their expression. In single knockout

mice, either C/EBPb or C/EBPe might compensate for the loss of

the other transcription factor allowing expression of the target

gene. In contrast, bbee mice have neither transcriptional activators,

C/EBPb and C/EBPe, resulting in highly dysregulated gene

expression in their macrophages.

In summary, the findings from the present study demonstrated

that in contrast to the single knockout mice, synergistic effects of

the absence of both genes were found in the double knockout

mice. Severe aberrations involving the hematopoietic system and

the innate immune response were present in the double knockout

mice that were found either as a comparatively mild abnormality

or even normal in the single knockout mice, indicating that C/

EBPb and C/EBPe can in part substitute for each other in the

BBee or bbEE mice, respectively.
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