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Limbic Tract Integrity Contributes to Pattern Separation Performance Across the Lifespan
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Accurate memory for discrete events is thought to rely on pattern
separation to orthogonalize the representations of similar events.
Previously, we reported that a behavioral index of pattern separation
was correlated with activity in the hippocampus (dentate gyrus,
CA3) and with integrity of the perforant path, which provides input to
the hippocampus. If the hippocampus operates as part of a broader
neural network, however, pattern separation would likely also relate
to integrity of limbic tracts (fornix, cingulum bundle, and uncinate
fasciculus) that connect the hippocampus to distributed brain
regions. In this study, healthy adults (20–89 years) underwent diffu-
sion tensor imaging and completed the Behavioral Pattern Separation
Task-Object Version (BPS-O) and Rey Auditory Verbal Learning Test
(RAVLT). After controlling for global effects of brain aging, explora-
tory skeleton-wise and targeted tractography analyses revealed that
fornix integrity (fractional anisotropy, mean diffusivity, and radial dif-
fusivity; but not mode) was significantly related to pattern separation
(measured using BPS-O and RAVLT tasks), but not to recognition
memory. These data suggest that hippocampal disconnection, via
individual- and age-related differences in limbic tract integrity, contri-
butes to pattern separation performance. Extending our earlier work,
these results also support the notion that pattern separation relies
on broad neural networks interconnecting the hippocampus.

Keywords: aging, diffusion tensor imaging, episodic memory, fornix, pattern
separation

Introduction

The limbic system refers to a collection of cortical (e.g., hippo-
campus and cingulate gyrus) and subcortical (e.g., amygdala,
hypothalamus, thalamus, and septal nuclei) brain regions and
their connections (MacLean 1949). Initially described as a
network that mediates emotional response (Papez 1937), the
limbic system is also recognized as having a central role in
memory (Mega et al. 1997; Rajmohan and Mohandas 2007).
This can largely be attributed to involvement of the hippocam-
pus (and adjacent medial temporal lobe cortex), which med-
iates a host of mnemonic processes (Squire et al. 2004). Pattern
separation, for example, enables newly encoded events to be
dissociated from similar, previously stored events (Yassa and
Stark 2011). In this way, pattern separation is thought to be a
fundamental component of episodic memory (i.e., memory for
discrete “episodes,” or events; McClelland et al. 1995; Tulving
2002; Norman and O’Reilly 2003).

The hippocampus is connected to other brain regions via 2
major limbic tracts; the fornix and cingulum bundle (Mark
et al. 1995; Schmahmann and Pandya 2009). White matter
fibers from the alveus of the hippocampus and the subiculum
converge on the medial edge of the hippocampus within each
hemisphere to form the fimbria, which traverse the crus of the

fornix before coalescing in the body of the fornix. Fornix fibers
then project either to the hypothalamus and thalamus via the
mammillary bodies, or to septal nuclei and medial and inferior
prefrontal regions. The cingulum bundle consists of white
matter fibers that extend from the hippocampus and entorhinal
cortex to retrosplenial and posterior cingulate cortices and to
the amygdala (hippocampal cingulum). Along the cingulate
gyrus of each hemisphere (superior cingulum), long associ-
ation fibers project into frontal, parietal, and temporal cortices,
with additional fibers projecting into adjacent cingulate
regions, striatum, and thalamus. A third limbic tract of interest
is the uncinate fasciculus, which projects from parahippocam-
pal and superior temporal gyri in the anterior temporal lobe to
medial and inferior prefrontal regions. Importantly, these
limbic tracts (especially the fornix and cingulum) are bidirec-
tional such that the hippocampus sends efferent output to, and
receives afferent input from, the distributed cortical and sub-
cortical regions that it projects to (e.g., Swanson 1977; Wyss
et al. 1979; Mark et al. 1995).

Disconnection of the hippocampus, as a result of damage to
these limbic tracts, was initially associated with memory im-
pairments in human patient and animal lesion studies.
Amnesic patients with damage to the fornix and cingulum, for
example, perform worse on recall and recognition memory
tests (Valenstein et al. 1987; Tucker et al. 1988; Rudge and War-
rington 1991; Aggleton and Brown 1999; Moudgil et al. 2000).
Similarly, episodic-like memory deficits are seen following
fornix lesions in rats (Olton et al. 1982) and monkeys (Gaffan
1994; Buckley et al. 2008). In contrast, damage to the uncinate
fasciculus is associated with only modest impairments on
similar memory tasks in both humans and animals (Von Der
Heide et al. 2013). Taken together, these findings support the
notion that episodic memory is mediated by limbic networks
(especially the fornix and cingulum) that interconnect the
hippocampus with distributed brain regions.

Extrapolating from these effects of pathology-induced
limbic tract disconnection, individual differences in hippocam-
pal connectivity may also account for memory differences in
healthy populations (O’Sullivan et al. 2001; Bartzokis 2004).
One technique that can assess hippocampal connectivity in
intact populations is diffusion tensor imaging (DTI). DTI mea-
sures the rate of molecular water diffusion, or movement
(Beaulieu 2002; Le Bihan 2003). In white matter, diffusion is
guided along the length of axons by microstructures (e.g., cell
membranes and myelin sheaths) that restrict diffusion perpen-
dicular to the axons. Disruption to these white matter micro-
structures, such as age-related axonal degeneration and
demyelination (Peters 2002), has been associated with de-
creases in the degree of restricted diffusion (fractional anisot-
ropy, FA), increases in the rate of overall diffusion (mean
diffusivity, MD), and differences in the rate of diffusion parallel
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(axial diffusivity, AD) and/or perpendicular (radial diffusivity,
RD) to the primary diffusion direction (i.e., along the length of
axons; Bennett et al. 2010; Madden et al. 2012). Microstructural
differences may also be reflected in the shape of anisotropic
diffusion (mode, MO), which characterizes the degree to
which diffusion is linear versus planar, as would be expected
in intact, highly organized regions with a single fiber popula-
tion. Importantly, these DTI-based diffusion indices are sensi-
tive to individual- and age-related differences in a number of
properties of underlying white matter structure (e.g., axonal
size and density, degree of myelination, and coherence of fiber
orientation). Thus, we use them to infer differences in white
matter “integrity” more generally, rather than in a specific
microstructural property.

DTI studies have largely replicated the effect of hippocampal
disconnection on memory performance using diffusion indices
of limbic tract integrity in healthy adults. Across a number of
studies, decreased integrity of the fornix, cingulum bundle, and
uncinate fasciculus (i.e., decreased FA and increased MD) has
been associated with impaired recall and recognition memory
performance in healthy individuals aged 9–93 years (Mabbott
et al. 2009; Rudebeck et al. 2009; Sasson et al. 2010; Kantarci
et al. 2011; Metzler-Baddeley et al. 2011; Lockhart et al. 2012;
Sasson et al. 2012, 2013; Sato et al. 2012). For studies with older
adults in their sample, these positive limbic integrity-memory
performance relationships are observed even after statistically
controlling for age (cf. Lockhart et al. 2012; Sato et al. 2012).
One limitation of these studies, however, is that they used rela-
tively global indices of memory, often involving composite mea-
sures of free recall and recognition that collapse across many
different mnemonic processes (e.g., pattern separation and com-
pletion, familiarity and recollection). A richer understanding of
episodic memory and its neural substrates could arise if we
separately examine these component mnemonic processes.

Our lab has specifically targeted behavioral pattern separ-
ation using a modified recognition task, that is, the Behavioral
Pattern Separation-Object (BPS-O) task (Kirwan and Stark
2007; Stark et al. 2013). The BPS-O task allows for a behavioral
measure that taps into pattern separation by including highly
similar lure trials. The ability to orthogonalize similar inputs
into distinct, non-overlapping representations (i.e., pattern
separation) is especially important on trials in which highly
similar lure objects must be “separated” from objects that
belong to the memory set, and correctly identified as “similar”
rather than “old.” The BPS-O task also provides a measure of
traditional recognition memory (e.g., the proportion of items
correctly [hits] minus incorrectly [false alarms] identified as be-
longing to the memory set), which places minimal demands on
pattern separation.

Several sources have supported an association between be-
havioral measures of pattern separation and the hippocampus,
in particular, with the dentate gyrus (DG). Using high-
resolution functional magnetic resonance imaging (MRI), for
example, we have observed activity consistent with behavioral
pattern separation (i.e., activity to similar lures that is different
from that to repeated items, and instead more comparable with
activity for novel foils) in the DG/CA3 in younger adults
(Kirwan and Stark 2007; Kirwan et al. 2007; Bakker et al. 2008;
Yassa and Stark 2008; Lacy et al. 2011). A similar, but attenu-
ated, response has also been found in healthy older adults
(Yassa, Lacy, et al. 2011; Yassa, Mattfeld, et al. 2011) and indi-
viduals diagnosed with mild cognitive impairment (Yassa,

Stark, et al. 2010; Bakker et al. 2012). Using high-resolution
DTI, we have also observed that increased integrity of the per-
forant path (i.e., increased FA), which provides input to the
DG and CA3 subfields of the hippocampus from entorhinal
cortex, is related to better behavioral pattern separation as
measured with BPS-O (Yassa, Mattfeld, et al. 2011) and Rey
Auditory Verbal Learning Test (RAVLT) delayed recall (Yassa,
Muftuler, et al. 2010) performance in healthy older adults.
Though not specifically designed to assess pattern separation,
the RAVLT task has many hallmarks of tasks that tap pattern
separation in that distinct memory representations must be
created for items on 2 separate, interfering word lists (Norman
and O’Reilly 2003; Yassa and Stark 2011).

What remains unknown, however, is whether behavioral
pattern separation is mediated by neural networks that extend
beyond the hippocampus. To address this gap, the current
study extended our previous work by examining whether
pattern separation performance is related to integrity of limbic
tracts that connect the hippocampus and adjacent medial tem-
poral lobe structures to distributed brain regions (i.e., fornix,
cingulum bundle, and uncinate fasciculus). Behavioral pattern
separation was measured with the BPS-O and RAVLT tasks,
which are thought to place different demands on pattern sep-
aration. We further extended previous work by assessing these
pattern separation-limbic integrity relationships in healthy
adults across the lifespan (20–89 years) and by using multiple
diffusion indices (i.e., FA, MD, AD, RD, and MO). Both whole-
brain, skeleton-wise, and targeted limbic tractography analyses
were used to provide converging evidence regarding the con-
tribution of limbic tract integrity to pattern separation perform-
ance, controlling for the effect of age to isolate the
contribution of white matter integrity to performance. Finally,
we tested the hypothesis that age-related declines in pattern
separation are mediated by differences in limbic tract integrity,
consistent with the notion that age-related cortical disconnec-
tion accounts for cognitive aging (O’ Sullivan et al. 2001; Bart-
zokis 2004).

Materials and Methods

Participants
A lifespan sample of 110 healthy adults aged 20–89 years (51.8 ± 18.9
years, 68 females) were recruited from the University of California,
Irvine and nearby Orange County communities. Informed consent was
obtained from each participant, and the University of California, Irvine
Institutional Review Board, approved the experimental procedures.
Participants were compensated for their time.

Prior to participation, all individuals were screened for health condi-
tions that may interact with their neurological status (e.g., dementia,
stroke, diabetes, etc.), use of psychoactive medication (e.g., neuro-
leptics, sedatives, etc.), and contraindications for MRI scanning
(e.g., being pregnant, having ferrous metal implants, or being
claustrophobic).

All participants were also screened to score within the age-expected
range [i.e., within 1.5 standard deviations (SDs) of the mean for their
age group] on a comprehensive neuropsychological test battery that as-
sessed general cognition using the Mini-Mental State Exam (Folstein
et al. 1975); memory using the RAVLT (Rey 1941) and Wechsler
Memory Scale Logical Memory (Wechsler 1997b); executive function-
ing using Trails A and B (Reitan and Wolfson 1985), Verbal Fluency
(Spreen and Benton 1977), and Letter Number Sequencing (Wechsler
1997a); working memory using Digit Span (Wechsler 1997a); and
general intelligence using Wechsler Adult Intelligence Score III
(Wechsler 1997a). Demographic and neuropsychological data are pre-
sented in Table 1.
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Scanning Protocol
Participants were scanned using a Philips Achieva 3.0-T MRI system
fitted with an 8-channel SENSE receiver head coil. A mirror mounted
on the head coil allowed them to view the computer screen during
scanning. Fitted padding was used to minimize head movements.

A single diffusion-weighted echo-planar imaging sequence was ac-
quired using the following parameters: time repetition (TR)/time echo
(TE) = 12 883/49 ms, field of view (FOV) = 230 × 230 mm, flip = 90°, 60
axial slices, and 2 mm3 spatial resolution. Gradients (b = 800 s/mm2)
were applied in 32 orthogonal directions, with one image having no
diffusion weighting (b = 0). A high-resolution T1-weighted MPRAGE
was also acquired using the following parameters: TR/TE = 11/4.6 ms,
FOV = 240 × 231 mm, flip = 18°, 200 sagittal slices, and 0.75 mm3

spatial resolution.

Measures of Behavioral Pattern Separation
The BPS-O task consists of separate encoding and test phases. During
the encoding phase, participants viewed 128 common objects (i.e., the
memory set) and indicated whether they were “indoor” or “outdoor”
objects using a button press. During the test phase, participants were
shown 192 objects that consisted of exact repetitions of memory set
objects (64 targets), objects similar to those in the memory set (64
lures), and new objects not previously seen (64 foils). Participants
judged whether each object was “old,” “similar,” or “new” using a key-
board press. For both task phases, each object was presented as a color
photograph on a white background for 2 s with a 0.5 s interstimulus
interval (see Stark et al. 2013 for additional details).

For the BPS-O task, a behavioral correlate of pattern separation is
quantified by a behavioral pattern separation (BPS) score that estimates
the probability of correctly responding “similar” to highly similar lure
objects minus the probability of incorrectly responding “similar” to
novel foil objects (to correct for any bias in responding “similar”
overall). Note that correct “similar” responses are strongly correlated
with incorrect “old” responses to lure objects (r =−0.93, P < 0.001),
which in addition to the low rate of “new” responses indicates that par-
ticipants tradeoff between these responses. Thus, higher BPS scores
reflect better pattern separation performance, as measured by an in-
crease in correct “similar” responses, and a corresponding decrease in
incorrect “old” responses, to lure trials. Furthermore, whereas correct
“similar” responses to similar lure objects likely reflect accurate behav-
ioral pattern separation, incorrect “old” responses to similar lure
objects may reflect inaccurate pattern completion, insufficient pattern
separation, or both. Thus, while no behavioral metric provides a
process-pure estimate of the cognitive process of interest, our BPS

measure provides a better index of correct behavioral pattern separ-
ation than incorrect pattern completion.

The BPS-O task also provides a measure of traditional recognition
memory (Recognition), calculated as the probability of correctly re-
sponding “old” to target objects (hits) minus the probability of incor-
rectly responding “old” to novel foil objects (false alarms). In contrast
to the BPS score, the Recognition measure places minimal demands on
pattern separation. Instead, simple familiarity can be used to dissociate
repeated targets and novel foils from other dissimilar objects in the test
phase.

A second task previously used as a behavioral correlate of pattern
separation (Stark et al. 2010, 2013) is the RAVLT (Rey 1941). In this
task, participants listen to and then recall a list of 15 words (List A). List
A is repeated across 5 trials, after which a second list of words (List B)
is presented and recalled for a single trial. Participants are then asked
to recall List A immediately after the List B trial (RAVLT Immediate) and
again after a 30-min delay (RAVLT Delay). The RAVLT has hallmarks of
memory tasks that tap pattern separation, including the use of recall
(and not recognition) and the presence of the interfering List B that
places high demands on arbitrary associative learning (Norman and
O’Reilly 2003; Norman 2010). Thus, demands on pattern separation
are likely higher for RAVLT Delay relative to RAVLT Immediate
performance.

Diffusion Data Analysis

Preprocessing
Diffusion-weighted data were separately processed for each participant
using a combination of FSL (FMRIB Software Library; Behrens et al.
2003), AFNI (Analysis of Functional NeuroImages; Cox 1996), and
ANTs (Advanced Normalization Tools; Avants et al. 2009). To correct
for head movement, all volumes were aligned to the b = 0 image
(ANTs). Diffusion tensors were independently fit to each voxel
(DTIfit), using a binary mask to limit tensor fitting of brain space
(3dSkullStrip). The output yielded voxel-wise diffusion maps of FA,
MD, AD (λ1), RD (average of λ2 and λ3), and MO.

Skeleton-Wise Correlations
Exploratory skeleton-wise correlations between diffusion indices (FA,
MD, AD, RD, and MO) and demographic (age) and mnemonic (BPS,
Recognition, RAVLT Immediate, and RAVLT Delay) measures were per-
formed using Tract-Based Spatial Statistics (Smith et al. 2006). Each in-
dividual’s FA map was nonlinearly aligned to the FMRIB58_FA_1-mm
template in MNI152 standard space. Aligned images were averaged
across all participants to form a mean FA image, which was used to
generate a “skeleton” of white matter voxels common to all partici-
pants. After thresholding at 0.2 to exclude nonwhite matter voxels,
aligned FA images from each participant were projected onto the mean
FA skeleton by searching for maximum FA values perpendicular to the
skeleton (see Smith et al. 2006). For each individual’s non-FA maps
(MD, AD, RD, and MO), the same nonlinear registrations used for FA
were applied. Aligned, non-FA images were then averaged across all
participants to form a mean non-FA image, which was projected onto
the mean FA skeleton.

For all diffusion indices, skeletonized data were subjected to
skeleton-wise (i.e., voxel-wise analyses within the mean skeleton) cor-
relations. Threshold-free cluster enhancement (TFCE) was employed
with 2D optimization (height = 2, extent = 1, and connectivity = 26) to
enhance cluster-like structures without prior definition of a cluster-
forming threshold (Smith and Nichols 2009). A TFCE value was calcu-
lated for each voxel within the mean skeleton, representing the
weighted sum of the entire local cluster signal (i.e., height × extent of
the voxel neighborhood). The TFCE value of each voxel was then
tested against a null distribution of maximum TFCE values across the
skeleton, generated from 5000 random permutations using the Ran-
domise tool. The output contained statistical maps FWE-corrected for
multiple comparisons across space (TFCE, P < 0.05). Due to incomplete
DTI data (significantly cropped field of view), 2 participants were ex-
cluded from these analyses.

Table 1
Demographic and neuropsychological test data

20–39 40–59 60–74 75–89

Demographic variables
Mean age 28.7 ± 5.6 49.5 ± 5.7 67.3 ± 4.2 78.9 ± 4.3
N 34 31 31 14
Male/female 11/23 13/18 11/20 7/7

Neuropsychological tests
MMSE 29.5 ± 0.7 29.1 ± 1.1 28.7 ± 1.3 28.4 ± 1.4
RAVLT Immediate 12.3 ± 1.9 11.7 ± 2.9 10.9 ± 2.6 10.4 ± 2.5
RAVLT Delay 12.4 ± 2.1 11.5 ± 2.8 10.9 ± 2.7 10.4 ± 2.5
WMS LM Immediate 51.4 ± 7.9 43.9 ± 7.9 46.3 ± 7.9 45.6 ± 7.9
WMS LM Delay 35.0 ± 5.3 29.1 ± 6.7 29.4 ± 6.8 28.9 ± 5.0
Trails A 19.9 ± 6.0 23.5 ± 7.0 26.1 ± 6.7 29.5 ± 8.4
Trails B 45.6 ± 14.7 56.9 ± 20.0 62.5 ± 17.0 69.6 ± 19.6
Verbal Fluency 45.8 ± 10.3 44.6 ± 9.9 44.6 ± 12.4 47.5 ± 9.9
Category fluency 22.6 ± 4.7 22.2 ± 4.4 20.9 ± 4.3 19.6 ± 4.8
LN Sequencing 11.1 ± 2.3 10.6 ± 2.3 10.0 ± 1.9 9.1 ± 2.2
Digit Span 18.4 ± 3.6 18.1 ± 3.7 16.9 ± 3.9 18.1 ± 3.9
WAIS III IQ 114.6 ± 8.6 115.7 ± 8.6 117.5 ± 11.0 116.8 ± 9.4

Notes: Demographic and neuropsychological test scores (mean ± SD) are presented separately for
4 age groups (20–39, 40–59, 60–74, and 75–89 years) within our lifespan sample.
MMSE: Mini-Mental State Exam; RAVLT: Rey Auditory Verbal Learning Test; WMS LM: Wechsler
Memory Scale Logical Memory; LN Sequencing: Letter Number Sequencing; WAIS III: Wechsler
Adult Intelligence Score third Edition; IQ: Intelligence Quotient.
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Tractography
To complement the skeleton-wise analyses while focusing specifically
on the limbic tracts of interest, probabilistic fiber tracking was con-
ducted separately in each participant using FMRIB’s Diffusion Toolbox
(Behrens et al. 2003). A probability distribution function of the
primary diffusion direction was first estimated for each voxel (BED-
POSTX). Then, for each tract of interest, connectivity distributions
between seed, waypoint, and target regions (see below) were gener-
ated using 5000 streamline samples that traveled along the probability
distribution functions of local voxels (ProbtrackX; steplength = 0.5
mm, curvature threshold = 0.2). The output contained a connectivity

value for each voxel that represents the number of streamline samples
that passed through that voxel.

One midline (fornix) and 3 bilateral (superior cingulum, hippocam-
pal cingulum, and uncinate fasciculus) limbic tracts were generated
using seed, waypoint, and target masks that were traced in standard
space and then aligned to subject space (see Fig. 1; see also Concha
et al. 2005). For bilateral tracts, these masks were traced separately for
the left and right hemispheres. For the fornix tract, seed, waypoint,
and target masks (20 axial × 20 sagittal × 6 coronal voxels) were traced
to encompass the column/anterior body, commissure, and bilateral
crus of the fornix, respectively. For superior cingulum tracts, these

Figure 1. Heat maps show the 4 limbic tracts of interest: fornix, bilateral superior cingulum, bilateral hippocampal cingulum, and bilateral uncinate fasciculus. Yellow values indicate
that a given voxel was part of the tract in more participants.
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masks were traced in cingulate gyrus white matter adjacent to the genu
(6 axial × 20 sagittal × 20 coronal voxels), body (20 axial × 20 sagittal ×
6 coronal voxels), and splenium (6 axial × 20 sagittal × 20 coronal
voxels) of the corpus callosum, respectively. For hippocampal cingu-
lum tracts, seed masks were the target masks from the superior cingu-
lum tracts (i.e., in cingulate gyrus white matter adjacent to the
splenium of the corpus callosum), with waypoint and target masks (20
axial × 20 sagittal × 6 coronal voxels) centered around white matter at
the head and tail of the hippocampus, respectively. For uncinate fascic-
ulus tracts, seed, waypoint, and target masks were traced in temporal
lobe white matter adjacent to the amygdala (6 axial × 20 sagittal × 20
coronal voxels), inferior frontal white matter below the putamen (20
axial × 20 sagittal × 6 coronal voxels), and the frontal pole (6 coronal
slices), respectively. For all tracts, a white matter mask limited tracking
to voxels with FA > 0.15.

Resulting tracts were thresholded at 20% of the maximum connect-
ivity value, leaving only those voxels with a high likelihood of being
connected to the seed and target regions. Mean diffusion (FA, MD, AD,
RD, and MO) values were calculated for all 7 tracts for each participant
by binarizing the thresholded tracts and multiplying them by the indi-
vidual’s diffusion maps. Due to incomplete DTI data (corrupt
MPRAGE), one participant was excluded from these analyses.

Results

Age-Related Differences in Behavioral Pattern Separation
To assess the effect of aging on behavioral pattern separation,
separate simple regression analyses were conducted between
age and each of the behavioral mnemonic measures, using a
Bonferroni correction for multiple comparisons (P < 0.0125
across 4 tasks). These data are presented in Figure 2. BPS-O and
RAVLT performance are presented as a function of age in
Tables 1 and 2, respectively. As expected (Toner et al. 2009;
Yassa, Mattfeld, et al. 2011; Stark et al. 2013), results revealed
that increasing age was associated with significantly impaired

BPS (B =−0.006, t(108) =−6.58, P < 0.001), RAVLT Immediate
(B =−0.039, t(108) =−3.18, P < 0.01), and RAVLT Delay (B =
−0.042, t(108) =−3.33, P < 0.01), but there was no effect of age
on Recognition (P > 0.19).

While both BPS and the RAVLT measures were sensitive to
age-related declines relative to Recognition, the BPS score ac-
counted for approximately three times the amount of age-related
variance in behavioral pattern separation performance (i.e., 28.6
vs. 8.6%). A comparison of their (standardized) regression coeffi-
cients (Meng et al. 1992) further revealed that the relationship
between age and BPS was significantly greater than the effect of
age on RAVLT Immediate (z =−3.10, P < 0.01), RAVLT Delay (z =
−3.09, P < 0.01), and Recognition (z =−4.31, P < 0.001).

Skeleton-Wise Analyses

Age-Related Differences in White Matter Integrity
To assess the effect of aging on whole-brain white matter integ-
rity, skeleton-wise correlations were conducted between age
and each diffusion index (FA, MD, AD, RD, and MO). These
data are presented in Figure 3. Consistent with previous
reports (see Madden et al. 2009 , 2012; Bennett and Madden
2014 for reviews), results revealed that older adults had signifi-
cantly lower FA than younger adults in white matter through-
out the brain. These age-related decreases in FAwere primarily
accompanied by age-related increases in MD and RD. Only a
few white matter regions, such as the fornix and genu of the
corpus callosum, also showed age-related increases in AD.

We also observed, for the first time, significant age-related
differences in MO (see Fig. 3, bottom). Increases in MO with
age were found in bilateral superior corona radiata and anter-
ior thalamic radiations. In contrast, age-related decreases in
MO were primarily seen in white matter regions that also

Figure 2. Scatterplots show relationships between age and performance on the BPS-O and RAVLT tasks. Results revealed that increased age was significantly associated with
decreased BPS, RAVLT Immediate, and RAVLT Delay (P<0.0125, Bonferroni corrected for 4 comparisons). However, there was no significant effect of age on Recognition.
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exhibited an age-related decrease in FA, such as the fornix, in-
dicating a change in both the shape and degree of anisotropic dif-
fusion as a function of age. Whereas MO has been assessed in
individuals diagnosed with mild cognitive impairment and Alz-
heimer’s disease (Douaud et al. 2011), to our knowledge this is
the first examination of MO in healthy adults.

White Matter Integrity Correlates of Behavioral Pattern
Separation
Relationships between white matter integrity and behavioral
pattern separation were first assessed using a skeleton-wise cor-
relation between FA and BPS. Results revealed that better per-
formance was significantly associated with higher FA in the
fornix (body, commissure, and crus), frontal white matter (an-
terior pericallosal and forceps minor), and superior white
matter (superior corona radiata and anterior superior longitu-
dinal fasciculus). However, given the widespread effects of
aging on FA discussed in the previous section, we were further
interested in separating global effects of aging on white matter
integrity from specific relationships between white matter integ-
rity and mnemonic performance. Thus, we reassessed the rela-
tionship between FA and BPS after controlling for mean FA
(calculated as average FA within the white matter skeleton).
Results revealed that only the relationship between fornix FA
and BPS remained significant, indicating that integrity of the
fornix contributes to pattern separation above and beyond the
effect of age. These data are presented in Figure 4. Separate
skeleton-wise correlations between BPS and each non-FA diffu-
sion index (MD, AD, and RD) further supported this observa-
tion, revealing that increased fornix integrity (i.e., lower
diffusivity) was associated with better BPS, after controlling for
the corresponding mean diffusion index.

Skeleton-wise correlations between each diffusion index
and each RAVLT measure revealed a similar pattern of results.
After controlling for the corresponding mean diffusion index,
better RAVLT Immediate performance was associated with
higher FA in the fornix and better performance on both RAVLT
measures was associated with lower diffusivity (MD, AD, and
RD) in the fornix.

Aside from the fornix, higher BPS scores were associated
with decreased integrity (i.e., increased MD, AD, and RD) in
white matter adjacent to the right globus pallidus, and better
RAVLT Immediate and RAVLT Delay performance were related
to decreased FA in white matter adjacent to nucleus accum-
bens. There were no significant relationships between Recog-
nition and any diffusion index, or between MO and any
mnemonic measure.

Tractography Analyses

Age-Related Differences in Limbic Tract Integrity
To assess the specific effect of aging on limbic tract integrity, sep-
arate simple regression analyses were conducted between age
and FA from each limbic tract. Reported effects for FA survived
Bonferroni correction for multiple comparisons (P < 0.007 across
7 tracts). Results revealed that older adults had significantly
lower FA than younger adults in the fornix (B =−1.90 × 10−3,
t(107) =−9.76, P < 0.001), left (B =−0.80 × 10−3, t(106) =−3.58,
P < 0.005) and right (B =−0.64 × 10−3, t(107) =−2.98, P < 0.004)
superior cingulum, and left (B =−0.45 × 10−3, t(106) =−3.60,
P < 0.005) and right (B =−0.44 × 10−3, t(106) =−2.76, P < 0.007)
uncinate fasciculi, but not the hippocampal cingulum tracts,
P > 0.69. Finding that fornix FA accounted for approximately six
times the amount of age-related variance relative to other limbic
tracts is consistent with previous DTI studies that observed
age-related declines in integrity of these limbic tracts that were
especially prominent for the fornix (Stadlbauer et al. 2008; Mi-
chielse et al. 2010; Jang et al. 2011).

Follow-up analyses conducted between age and non-FA dif-
fusion indices (MD, AD, RD, and MO) for each tract revealed a
pattern of results that is consistent with the skeleton-wise ana-
lyses. That is, for each tract that showed an age-related de-
crease in FA, there was a corresponding increase in MD
(B > 0.75 × 10−6, P < 0.001) and RD (B > 0.86 × 10−6, P < 0.001).
There was also an age-related increase in AD in the fornix tract
(B = 6.92 × 10−6, t(107) = 6.66, P < 0.001) and a decrease in MO
in the right superior cingulum tract (B =−0.002, t(107) =−4.22,
P < 0.001).

Limbic Tract Integrity Correlates of Behavioral Pattern
Separation
A more targeted assessment of relationships between limbic
tract integrity and behavioral pattern separation was conducted
using separate multiple regression analyses. For each tract, sep-
arate models tested whether each diffusion index (FA, MD, AD,
RD, and MO) predicts each behavioral mnemonic measure
(BPS, Recognition, RAVLT Immediate, and RAVLT Delay). As
with the skeleton-wise correlations, these analyses controlled
for mean diffusion indices (calculated separately for each
measure as the average diffusion index within each indivi-
dual’s white matter mask). Reported effects survived Bonferro-
ni correction for multiple comparisons (P < 0.0025 across 5
integrity and 4 mnemonic measures).

Overall, results further strengthened the pattern observed in
the skeleton-wise analyses, with increased fornix tract integrity
relating to better behavioral pattern separation. Increased

Table 2
BPS-O performance

Age group BPS Recognition Targets Lures Foils

“Old” “Similar” “New” “Old” “Similar” “New” “Old” “Similar” “New”

20–39 0.41 ± 0.16 0.78 ± 0.10 0.82 ± 0.11 0.14 ± 0.10 0.04 ± 0.04 0.40 ± 0.16 0.52 ± 0.17 0.08 ± 0.08 0.03 ± 0.03 0.11 ± 0.07 0.86 ± 0.08
40–59 0.26 ± 0.23 0.82 ± 0.10 0.84 ± 0.09 0.11 ± 0.07 0.04 ± 0.05 0.49 ± 0.16 0.42 ± 0.18 0.09 ± 0.06 0.03 ± 0.04 0.17 ± 0.11 0.80 ± 0.13
60–74 0.12 ± 0.21 0.82 ± 0.10 0.87 ± 0.10 0.08 ± 0.08 0.05 ± 0.05 0.62 ± 0.18 0.25 ± 0.17 0.13 ± 0.09 0.05 ± 0.05 0.13 ± 0.11 0.82 ± 0.13
75–89 0.16 ± 0.13 0.76 ± 0.12 0.84 ± 0.08 0.09 ± 0.06 0.07 ± 0.04 0.62 ± 0.17 0.26 ± 0.16 0.12 ± 0.07 0.08 ± 0.10 0.11 ± 0.10 0.81 ± 0.12

Notes: In addition to BPS and Recognition scores, the proportion (mean ± SD) of each response type (“old,” “similar,” and “new”) is presented for each trial type (target, lure, and foil) separately for 4 age
groups (20–39, 40–59, 60–74, and 75–89 years) within our lifespan sample. These data reveal an age-related decline in BPS, but not recognition. Increasing age is also associated with an increase in
incorrect “old” responses and a decrease in correct “similar” responses to lure items.
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fornix tract FA was significantly related to better BPS (B = 1.89,
t(106) = 4.35, P < 0.001), with marginally significant relation-
ships for fornix tract MD (B =−290.56, t(106) =−2.72, P < 0.008)
and RD (B =−331.28, t(106) =−2.96, P < 0.004). Marginally sig-
nificant positive relationships were also observed between

fornix tract FA and both RAVLT Immediate (B = 15.05,
t(106) = 2.86, P < 0.006) and RAVLT Delay (B = 15.25,
t(106) = 2.80, P < 0.007). However, although fornix tract FA ac-
counted for more than twice the amount of variance in BPS
versus RAVLT performance (i.e., 15.9 vs. 6.9%), a comparison

Figure 3. Statistical maps show white matter clusters in which 5 complementary measures of white matter integrity significantly decreased (blue-light blue) or increased
(red-yellow) with age (TFCE, P<0.05). Skeleton-wise correlations revealed that older adults had significantly decreased FA, and increased MD, AD, and RD compared with younger
adults. MO, on the other hand, revealed both age-related increases and decreases. The lack of age effects in occipital and cerebellar cortices is due to cropped field of view. Axial
slices are presented in radiological orientation (right = left).
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of their (standardized) regression coefficients (Meng et al.
1992) revealed that the effect of fornix tract FA on BPS was not
significantly different than that of fornix tract FA on RAVLT Im-
mediate, z = 1.39, P > 0.16, or RAVLT Delay, z = 1.41, P > 0.15,
performance. However, the effect of fornix tract FA on BPS
was significantly different than that of fornix tract FA on Recog-
nition, z = 1.93, P < 0.05. No other relationship between limbic

tract diffusion indices and the behavioral mnemonic measures
attained significance. The data for fornix tract FA are presented
in Figure 5.

Finally, given that we observed significant effects of age on
fornix tract FA and BPS, we assessed whether fornix tract FA
mediated the effect of age on BPS (see Baron and Kenny
1986). When age was the sole predictor of BPS, 28.6% of the

Figure 4. Statistical maps show white matter clusters that had a significant positive relationship (red-yellow) between FA and BPS before (top) and after (bottom) controlling for
the effect of aging on FA (denoted by “| mean FA”; TFCE, P< 0.05). Skeleton-wise correlations revealed that, after controlling for mean FA, increased fornix FA remained
significantly related to better BPS performance. Scatterplots show the relationships between fornix tract FA and BPS before (top) and after (bottom) controlling for mean FA for
significant voxels common to both skeleton-wise analyses. Axial slices are presented in radiological orientation (right = left).

Figure 5. Scatterplots show relationships between fornix tract FA and performance on the BPS-O and RAVLT tasks, after controlling for mean FA (denoted by “| mean FA”; i.e.,
fornix tract FA values represent residuals from the relationship with mean FA). Results revealed that increased fornix tract FA was significantly associated with better BPS, and
marginally associated with better RAVLT Immediate and RAVLT Delay performance (P<0.0025, Bonferroni corrected for 20 comparisons). However, there was no significant effect
of fornix tract FA on Recognition.
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variance in performance was age-related. When entering
fornix FA into the model before age, only age remained a sig-
nificant predictor, accounting for 29.0% of the variance. Thus,
fornix tract FA did not significantly mediate the effect of age on
BPS. The mediation analysis further revealed that fornix tract
FA did not exhibit an age-independent relation to BPS. This is
potentially due to chronological age being such a strong pre-
dictor variable, accounting for large portions of the variance in
both white matter integrity and cognitive performance. In this
way, chronological age can overshadow the contribution of
neurobiological substrates, such as white matter tract integrity,
to cognitive performance. Importantly, when controlling for
the specific effect of age on white matter integrity (i.e., mean
FA) in both the skeleton-wise and tractography analyses, we
observed a significant, albeit smaller, contribution of fornix
tract FA to behavioral pattern separation, with fornix tract FA
accounting for 16.0% of the variance in behavioral pattern
separation across our lifespan sample. The relationship between
fornix tract FA and BPS showed a similar trend in both younger
(20–59 years; R2 = 0.04, P < 0.11) and older (60–89 years;
R2 = 0.07, P < 0.09) adults.

Discussion

Whereas our earlier work demonstrated that behavioral
pattern separation was associated with integrity of an intrinsic
hippocampal connection (i.e., the perforant path; Yassa,
Muftuler, et al. 2010; Yassa, Stark, et al. 2010), the current
study tested the hypothesis that pattern separation also relies
on neural networks that extend beyond the hippocampus.
Integrity of limbic tracts that connect the hippocampus to dis-
tributed brain regions (fornix, cingulum bundle, and uncinate
fasciculus) were examined in relation to pattern separation per-
formance (measured directly using BPS-O and indirectly using
RAVLT tasks) in a lifespan sample of healthy adults (20–89
years). Our primary result revealed that increased integrity of
the fornix (i.e., increased FA; decreased MD, AD, and RD) was
significantly related to better BPS scores. These fornix integ-
rity-pattern separation relationships were observed using both
standard-space, skeleton-wise analyses and subject-space, trac-
tography analyses, indicating that the effect of fornix integrity
on pattern separation performance cannot be attributed to
potential alignment issues across participants. The potential in-
fluence of partial volume effects was also mitigated by thresh-
olding procedures in both the skeleton-wise and tractography
analyses that resulted in mean fornix FA values within the
expected range for normal appearing white matter (FA >0.30).

Similar relationships between fornix integrity and behavior-
al pattern separation were also observed when using the
RAVLT task; a widely used mnemonic task with features
thought to rely on pattern separation (e.g., recall and interfer-
ence; Norman and O’Reilly 2003; Norman 2010). That is, as
with the BPS measure, results revealed that increased fornix in-
tegrity (i.e., increased FA and/or decreased MD, AD, and RD)
was related to better RAVLT Immediate and RAVLT Delay per-
formance. However, whereas these fornix integrity-pattern
separation relationships were significant in the skeleton-wise
analyses, they did not attain significance in the tractography
analyses. Thus, to the extent that fornix integrity reflects a
neural substrate of pattern separation, the BPS score, which
was significantly related to fornix integrity in both analyses,
may be a more sensitive index of behavioral pattern separation

than RAVLT performance. Because the RAVLT Immediate and
RAVLT Delay measures were highly correlated (r = 0.90, P <
0.0001), we were not able to detect potential differences in
these measures as a function of the degree to which they place
different demands on pattern separation. Future research will
be necessary to replicate and extend these examinations of
fornix integrity in relation to tasks that differ in their demands
on pattern separation, after controlling for task difficulty. Dis-
ambiguating task difficulty and behavioral pattern separation
is inherently complicated because the degree of demands on
pattern separation is likely a substantial contributor to the
overall difficulty of a task. Thus, we believe that our measures
of BPS, RAVLT Immediate, and RAVLT Delay are a good first
step toward this goal.

Taken together, finding relationships between fornix integ-
rity and the BPS and RAVLT measures support the notion that
behavioral pattern separation is mediated by broader neural
networks that extend beyond the hippocampus. Whereas the
fornix is predominantly thought of as a hippocampal efferent,
projecting either to the hypothalamus and thalamus via the
mammillary bodies or to septal nuclei and medial and inferior
prefrontal regions, it has also been found to contain afferent
fibers that terminate in the hippocampal formation (Swanson
1977; Mark et al. 1995; Schmahmann and Pandya 2009). Thus,
it is possible that the fornix transmits hippocampal outputs to
these subcortical and cortical regions for further processing in
relation to the task demands (e.g., recollection and response se-
lection) and/or that outputs from these regions inform the
pattern separation computations mediated by the hippocampal
DG/CA3. DTI data unfortunately lack the directional informa-
tion necessary to adjudicate between these possibilities. None-
theless, our findings suggest that behavioral pattern separation
is mediated by a distributed network of brain regions that
connect to the hippocampus via the fornix, supporting earlier
work that has emphasized the role of broad neural networks in
mnemonic processes that include, but are not limited to, the
hippocampus (e.g., Zola-Morgan and Squire 1993; Gaffan
2002).

As previously noted, the current results complement our
earlier DTI work in which we showed that increased integrity
of the perforant path was significantly associated with better
BPS (Yassa, Mattfeld, et al. 2011) and RAVLT Delay (Yassa,
Muftuler, et al. 2010) in healthy older adults. In contrast to the
fornix and perforant path, however, integrity of the cingulum
bundle and uncinate fasciculus tracts did not relate to behavior-
al pattern separation in this study. Whereas the fornix and per-
forant path consist of white matter fibers that directly project
from hippocampal subfields (Witter 2007; Schmahmann and
Pandya 2009), fibers of the cingulum bundle and uncinate fas-
ciculus connect to the hippocampus indirectly via entorhinal
cortex and parahippocampal regions (Sørensen 1985; Schmah-
mann and Pandya 2009). Thus, the present result may indicate
that pattern separation relies on the integrity of networks that
directly (i.e., perforant path and fornix) versus indirectly (i.e.,
cingulum bundle and uncinate fasciculus) connect the hippo-
campus to distributed cortical and subcortical regions.

In contrast to the results for behavioral pattern separation
(measured using BPS-O and RAVLT tasks), Recognition did not
relate to integrity from any white matter region. This finding is
inconsistent with previous DTI studies that have shown signifi-
cant relationships between fornix integrity and performance
on recognition memory tasks (Rudebeck et al. 2009; Sasson
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et al. 2013). However, relative to the measure of recognition
used here (i.e., hits minus false alarms, using dissimilar novel
foils in a speeded task), both prior studies employed recogni-
tion memory tasks that may have placed demands on behavioral
pattern separation (e.g., emphasizing recollection vs. familiarity
and involving associative learning with related conjunctions;
Norman and O’Reilly 2003; Norman 2010). Specifically, Rude-
beck et al. found that fornix integrity was preferentially related
to their hippocampal-dependent recognition-based measure of
recollection, but not familiarity. Sasson et al., on the other hand,
used a factor score combining immediate and delayed verbal
and nonverbal recognition of paired associate memory. Thus, to
the extent that behavioral pattern separation was tapped by their
more complex and demanding recognition memory measures,
the current results suggest that fornix integrity is sensitive to be-
havioral pattern separation, but not to simple components of rec-
ognition memory (e.g., item-only familiarity). Furthermore,
because our results for RAVLT performance replicated previously
observed relationships between fornix integrity and recall
memory (Metzler-Baddeley et al. 2011), we propose that pattern
separation is a component process that accounts, at least in part,
for previously observed relationships between fornix tract integ-
rity and recall and recognition performance.

In addition to the novel finding that fornix integrity relates
to behavioral pattern separation in our lifespan sample (as
seen in the skeleton-wise and tractography analyses), the
current study replicated and extended well-documented effects
of cognitive and brain aging. For example, consistent with pre-
vious behavioral reports (Toner et al. 2009; Yassa, Mattfeld,
et al. 2011; Stark et al. 2013), results revealed that increasing
age was associated with significantly impaired pattern separ-
ation measured using BPS, RAVLT Immediate, and RAVLT
Delay; but there was no effect of age on Recognition. The BPS
score was found to account for approximately three times as
much age-related variability in behavioral pattern separation
than either RAVLT measure, further supporting the notion
that it may be a more sensitive index of pattern separation
performance.

Consistent with previous DTI studies (see Madden et al.
2009, 2012 for review), the present results also revealed that
older adults had significantly lower white matter integrity than
younger adults. Our skeleton-wise and tractography analyses
tested for linear relationships between age and each diffusivity
index, which fit our data better than nonlinear models. We ob-
served age-related declines in FA throughout the brain that
were primarily accompanied by age-related increases in MD
and RD. This pattern of results is in line with the notion that
healthy aging has widespread effects on white matter micro-
structure, including mild demyelination or axonal shrinkage
(Peters 2002; Gunning-Dixon et al. 2009). However, a few
white matter regions, including the fornix and genu of the
corpus callosum, also showed age-related increases in AD and/
or decreases in MO. Thus, select regions may be more suscep-
tible to age-related declines in white matter microstructure,
possibly resulting from severe demyelination and axonal de-
generation, that lead to increased AD (e.g., genu of the corpus
callosum) and ultimately decreased MO (e.g., fornix; Bennett
et al. 2010).

To ensure that relationships between limbic tract integrity
and behavioral pattern separation were not attributed to the
previously described age effects, our analyses controlled for
the effect of aging on white matter integrity. Importantly, the

current results indicate that fornix integrity contributes to be-
havioral pattern separation above and beyond the global effect
of age on white matter. Whereas initial skeleton-wise analyses
showed that better BPS was related to increased FA in the
fornix and in clusters of frontal and superior white matter, only
fornix FA remained significantly positively related to BPS after
controlling for mean FA. Within the DTI aging literature, a
central question is whether age-related cognitive declines are
due to localized effects of aging within specific white matter
tracts thought to mediate the cognitive processes of interest or
more global age-related changes shared across all white matter
(Penke et al. 2010; Lövdén et al. 2012). By controlling for the
effect of aging on white matter integrity, relationships between
fornix tract integrity and behavioral pattern separation reported
here can be attributed to local differences in white matter integ-
rity across individuals rather than global effects of aging on in-
tegrity. Additional support for this conclusion comes from the
finding that MO exhibited significant changes with aging, but
MO did not relate to any behavioral measure as would be ex-
pected if the fornix integrity-pattern separation relationships
were attributed to global effects of aging.

Finally, mediation analyses in the current study revealed that
age-related declines in pattern separation performance were
not significantly mediated by fornix tract integrity. One inter-
pretation of the mediation results is that fornix tract FA and
BPS are only related to each other because of their relationship
to chronological age. However, as discussed in the Results
section, we believe that this finding is due to the fact that
chronological age accounts for such a large portion of the vari-
ance in both fornix tract FA and behavioral pattern separation
that it overshadows the smaller, yet significant, relationship
between these measures. The present data are not consistent
with predictions of cortical disconnection theories, which
propose that age-related differences in white matter connectiv-
ity between brain regions disrupt coordinated processing
within those regions, ultimately leading to decreased cognitive
functioning in older adults (O’Sullivan et al. 2001; Bartzokis
2004). However, the positive fornix integrity-pattern separ-
ation relationships observed in both the skeleton-wise and
tractography analyses after controlling for the specific effect of
aging on white matter integrity are consistent with the notion
that individual differences in hippocampal connectivity
mediate this component mnemonic process in healthy adults
across the lifespan.
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