
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Energy efficient parallel neuromorphic architectures with approximate
arithmetic on FPGA

Qian Wanga,⁎, Youjie Lia, Botang Shaob, Siddhartha Deya, Peng Lia

a Department of Electrical and Computer Engineering, Texas A &M University, College Station, TX 77843 USA
b Freescale Semiconductor, Inc., Austin, TX 78735, USA

A R T I C L E I N F O

Communicated by Duan Shukai

Keywords:
Spiking neural network
Neuromorphic system
Approximate computing
Parallel architecture

A B S T R A C T

In this paper, we present the parallel neuromorphic processor architectures for spiking neural networks on
FPGA. The proposed architectures address several critical issues pertaining to efficient parallelization of the
update of membrane potentials, on-chip storage of synaptic weights and integration of approximate arithmetic
units. The trade-offs between throughput, hardware cost and power overheads for different configurations are
thoroughly investigated. Notably, for the application of handwritten digit recognition, a promising training
speedup of 13.5x and a recognition speedup of 25.8x are achieved by a parallel implementation whose degree of
parallelism is 32. In spite of the 120 MHz operating frequency, the 32-way parallel hardware design
demonstrates a 59.4x training speedup over the single-thread software program running on a 2.2 GHz general
purpose CPU. Equally importantly, by leveraging the built-in resilience of the neuromorphic architecture we
demonstrate the energy benefit resulted from the use of approximate arithmetic computation. Up to 20%
improvement in energy consumption is achieved by integrating approximate multipliers into the system while
maintaining almost the same level of recognition rate achieved using standard multipliers. To the best of our
knowledge, it is the first time that the approximate computing and parallel processing are applied to FPGA
based spiking neural networks. The influence of the parallel processing on the benefits of approximate
computing is also discussed in detail.

1. Introduction

The human brain controls all our body movements, cognitive
activities, emotions and other complex tasks. When it comes to
complex tasks such as face recognition and language learning, a human
brain can solve such problems with ease demonstrating much im-
proved energy and space efficiency and show even better performance
than supercomputers [1]. Brain-inspired computing has attracted
much research interest, not only because of its application as a practical
tool in areas such as pattern recognition, but also as a means of
developing an understanding of mammalian brains and ultimately
increasing our understanding of intelligence and consciousness.

Although most real world applications such as the processing of
sensory inputs and pattern recognition can be realized by software
models on Von Neumann machines, software simulation of complex
biologically plausible models is intrinsically slow and may require
tremendous energy consumption and space resources to solve these
real-world problems. Brain-inspired neuromorphic hardware systems
provide an appealing architectural solution to the above problems.

They show good energy efficiency, potentially improved scalability and
great suitability for pattern recognition problems. In addition, since
one important property of neural networks is their parallel distributed
nature, it is highly desirable to develop efficient parallel neuromorphic
architectures for significantly acceleration. Meanwhile, the inherent
error resilience and fault tolerance offered by brain-inspired architec-
tures provide promising opportunities for leveraging approximate
computing for additional energy and silicon area benefits. [2–10].

Traditionally, analog circuits are used to implement silicon neurons
[11,12]. However, they are difficult to reconfigure and intrinsically
sensitive to process, voltage and temperature (PVT) variations [13,14].
For example, a same analog circuit design may probably demonstrate
require different performance under different environments. In addi-
tion, large-scale integration of spiking neurons is hindered by the use of
area consuming capacitors to keep synaptic weights [15]. The impact of
PVT variations on the performance of digital neuromorphic designs is
thoroughly investigated by [16], which provides guidance on the design
of robust digital spiking neural circuits.

FPGAs offer great flexibility and reconfigurability for fast prototyp-

http://dx.doi.org/10.1016/j.neucom.2016.09.071
Received 15 January 2016; Received in revised form 11 June 2016; Accepted 2 September 2016

⁎ Corresponding author.
E-mail addresses: qwangku@tamu.edu (Q. Wang), lyj2013apply@tamu.edu (Y. Li), jackieshao2011@gmail.com (B. Shao), sidhart.de@email.tamu.edu (S. Dey),

pli@tamu.edu (P. Li).

Neurocomputing 221 (2017) 146–158

0925-2312/ © 2016 Elsevier B.V. All rights reserved.
Available online 02 October 2016

crossmark

http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.09.071
http://dx.doi.org/10.1016/j.neucom.2016.09.071
http://dx.doi.org/10.1016/j.neucom.2016.09.071
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.09.071&domain=pdf


ing and hardware acceleration of software algorithms. To facilitate the
application of SNNs in embedded systems and develop processing
acceleration for large data sets, there have been several attempts to
implement software algorithms in FPGA. Numerous examples of SNNs
have been implemented using FPGAs in the past [17–20], which show
promising speedups compared with software programs running on
general purpose CPUs. However, none of these works investigate the
potential benefits of approximate computing and parallel processing in
terms of energy consumption and efficiency of resource utilization. The
main goal of this paper is to develop parallel digital neuromorphic
architectures on FPGA and investigate the potential application of
approximate arithmetic units to reduce hardware cost and power
consumption.

The proposed architectures are demonstrated under the context of
an FPGA based spiking neuromorphic learning system, which fully
explores the parallelism in key processing steps. We also integrate a
recent approximate Booth multiplier design [21] to replace the
relatively bulky full precision multipliers, which contribute significantly
to the area and energy estate of the overall system. Importantly,
through the use of a real-life pattern recognition application, we show
how such arithmetic units can be employed without incurring any
significant loss of recognition performance for the end application. In
return, the use of approximate computing offers noticeable energy and
area benefits. Such reduction in energy dissipation and/or area over-
head provides room for further throughput improvement via increased
parallelism.

Realizing FPGA-based spiking neural networks (SNNs) entails
addressing a number of critical issues pertaining to memory organiza-
tion, parallel processing, hardware reuse for different operating modes
and tradeoffs between throughput, area, and power overheads. The
proposed neuromorphic system makes use of a large number of
available block-RAMs for storing synaptic weights. To support parallel
processing, multiple block-RAMs are instantiated in the system which
allows multiple synaptic weights to be accessed simultaneously. We
systematically demonstrate the tradeoffs between processing speed,
power or energy and area overheads as a result of employment of
varying levels of parallelisms and/or approximate multiplications.

The proposed neuromorphic processor is implemented on a Xilinx
Virtex-6 FPGA. The handwritten digits from the MNIST dataset [23]
are used to test the recognition performance of the system. The
architectures with standard multipliers achieve a recognition rate of
89.1%, and those utilizing the approximate multipliers maintain an
excellent recognition rate of 87.7%. The proposed spiking neural
network involves 1591 neurons and 638,208 synapses, which shows
comparable performance to a recent software reference [34] although
our network has a smaller size. Energy consumption of the architecture
without parallel processing is reduced by 20% when the approximate
multipliers are used. A promising 13.5x training speedup and a 25.8x
recognition speedup are achieved by the parallel architecture whose
degree of parallelism is 32.

Algorithm 1. Pseudocode of the learning algorithm based on STDP.

Given an input training pattern (i.e. a digit image)
for t=1 to Iteration_num
/* Update membrane potential of each neuron */

for i=1 to N

V i V i K W j i S j( ) = ( ) + ∑ ( , )· ( )mem mem SYN j
N
=1

K E i V+ · ( ) −EXT LEAK

end for
/* Check the firing activity of each neuron */

for i=1 to N
if (V i V( ) ≥mem Threshold)

S i( ) = 1, T i t( ) =fire , V i V( ) =mem rest

else

S i( ) = 0
end if

end for
/* Update synaptic weights with STDP rule */

for i=Lfirst to Llast
if (S i( )== 1)

for j=Mfirst to Mlast

T j t T jΔ ( ) = − ( )fire

A j i A j i e offset( , ) = ( , )· ++ +
( )

1
T j
τ

Δ ( )
1

A j i A j i e offset( , ) = ( , )· +− −
( )

2
T j
τ

Δ ( )
2

W j i A j i A j i offsetΔ ( , ) = ( , ) + ( , ) ++ − 3

W j i W j i ΔW j i( , ) = ( , ) + ( , )
end for

end if
end for

end for (sufficient iteration cycles)
return W

2. Spiking neural networks

The proposed spiking neural network is designed for character
recognition where each training pattern (i.e. a letter or a digit) enters
the input layer as encoded external input spikes. Fig. 1(a) shows one
example of such spiking neural networks. This example involves 212
neurons. The neurons labeled from 1 to 196 are the excitatory neurons
in the input layer, and those labeled from 197 to 205 are the excitatory
neurons in the output layer. The neurons with labels from 206 to 212
are the inhibitory neurons, which introduce strong negative feedback to
the excitatory neuron population, so as to realize the winner-take-all
(WTA) mechanism in this network. As shown in Fig. 1(a), the synaptic
weights involving inhibitory neurons are all fixed, while the feed-
forward synapses connecting the input layer to the output layer are
plastic. These plastic synapses are able to change their strength based
on an adopted biologically-inspired STDP (Spike-timing-dependent
plasticity) learning rule [24]. During the learning process, each synapse
adjusts its synaptic weight based on the relative timing of spikes of the
corresponding presynaptic and postsynpatic neurons. Fig. 1(b) uses a
conceptual 212×212 crossbar array to illustrate the corresponding
interconnections of this example. Each column in Fig. 1(b) represents
the connections between a particular neuron and all its pre-synapses.
For example, the neuron labeled 197 is connected to all the excitatory
neurons in the input layer. Since the synaptic weights involving the
inhibitory neurons are constants and there are no interconnections
between neurons within the same layer, the only synapses to be
updated are the feed-forward synapses which correspond to the shaded
region in Fig. 1(b).

The neurons in this work are based on the widely adopted Leaky
Integrate & Fire (LIF) neuron model [25]. The dynamics of the LIF
neuron is described by

τ dv t
dt

v t R I t( ) = − ( ) + · ( )m (1)

where v(t) represents the membrane potential at time t, τm is the
membrane time constant and R is the membrane resistance. This
equation describes a simple resistor-capacitor (RC) circuit where the
leakage term is due to the resistor and the integration of I(t) is due to
the capacitor that is parallel to the resistor. For the digital hardware
implementation, the dynamics of the LIF neurons is simplified and
digitized as the follows

∑v t v t I v( ) = ( − 1) + −pre leak (2)

where I∑ pre represents the input stimulation from all its pre-synaptic

Q. Wang et al. Neurocomputing 221 (2017) 146–158

147



neurons, and vleak is a constant leakage value. Algorithm 1 shows the
pseudo code of the SNN learning algorithm based on the STDP learning
rule. Vmem is the membrane potential. W is the synaptic weight. E is
the external input spike to each neuron, and S indicates if a neuron
fires or not. N is the total number of neurons. Lfisrt and Llast are the
indices of the first excitatory neuron and the last excitatory neuron in
the output layer, respectively. Mfisrt and Mlast are the indices of the
first excitatory neuron and the last excitatory neuron in the input layer,
respectively. For any general neural network topologies with N
neurons, the time complexity of the computation in one training
iteration is O(N2). However, for the network topology illustrated in
Fig. 1, the time complexity will be O(nm), where n and m represent the
number of excitatory neurons for the input and output layers,
respectively, since most synapses in such networks are the feed forward
synapses between the two layers.

For each training pattern entering the input layer, the STDP
learning process is performed for a certain number of iterations, which
is the outer most loop of the pseudo code. In one run of this procedure,
the membrane potential Vmem of each ith neuron is updated con-
sidering the spikes from its firing presynaptic neurons (i. e. by
incrementing the membrane potential bya scaled version of W(j,
i)×S(j), where W j i( , ) represents the weight of the synapse from the
jth neuron to the ith neuron and S(j) is the flag indicating if a neuron
fires or not.) and the external input spike (denoted by E(i)). There also
exists a constant leakage for Vmem, which is denoted by VLEAK. It
should be noted that the amplitude of the external input spike KEXT is
a random number, which emulates the random injected currents to a
biological neuron. Once the membrane potential of each neuron has
been updated, it is compared with a threshold value Vthreshold to
check the firing activity. If Vmem is higher than the threshold, the
corresponding neuron fires and its firing flag S is set. Meanwhile, the
corresponding firing time Tfire is stamped with the current biological
time t (iteration index), and Vmem is reset to the resting potential
Vrest. On the other hand, the firing flag S is reset if Vmem is below the
threshold. During the above operation, the update of Vmems can be
parallelized in hardware implementations.

After that, the change of each synaptic weight is calculated
following the STDP learning rule. When a particular neuron fires
during the current iteration, all its pre-synaptic neurons are accessed to
receive their most recent firing times. Then the change of a particular
synaptic weight is calculated from the relative firing time difference
between the post-synaptic and pre-synaptic firing events. According to
the STDP learning rule, a smaller TΔ tends to result in larger change of

the synaptic weight, accordingly, the parameters τ1 and τ2 are chosen to
certain negative values. The synaptic parameters A+ and A− determine
the maximum amounts of synaptic modification. After the synaptic
weights are updated, a new iteration will start.

3. Serial baseline neuromorphic processor architecture

In this section, we describe in detail the proposed neuromorphic
processor architecture for the 2-layer spiking neural network. A
number of critical issues such as memory organization, efficient
parallel processing and the application of approximate arithmetic units
in system, are addressed.

The overall experimental platform of our neuromorphic system is
shown in Fig. 2. The Matlab program on the PC converts the training
patterns to spike sequences and sends them to a Xilinx ML605
evaluation board through a UART (universal asynchronous receiver/
transmitter) cable. Once the training is finished, the results (i.e. output
spikes and synaptic weights) are sent back to the PC through the same
cable. The proposed FPGA-based neuromorphic processor is composed
of three major components: Neuron Unit, LIF (Leaky-Integrate-and-
Fire) Arithmetic Unit, and STDP Unit. The synaptic weights of the
plastic synapses (i.e. the synapses from the input layer to the output
layer) are stored in the block RAMs (BRAMs) on the FPGA chip. The
access to these BRAMs is realized by a synapse Read/Write interface.
The overall operations of the system are managed by a system
controller through a clocking based synchronous control and the
system operates in a synchronous manner as shown in Fig. 3. Each
step corresponds to a biological time unit and consumes many
hardware clock cycles. The control flow of the processor involves three
processing stages, namely, the spike I/O stage, the neuron operation
stage (NOS) and the learning operation stage (LOS). During the spike
I/O stage, the processor communicates with the PC through a spike I/O
buffer and the UART interface. During the NOS, the membrane
potential of each neuron is calculated and the corresponding firing
activity and firing time are recorded. Then the processing moves onto
the LOS, and the synaptic weights are updated based on the STDP
learning rule. The three stages are executed in a pipelined manner. The
spike I/O and the LOS can work simultaneously because there is no
data and control hazards between them.

Fig. 4 demonstrates the baseline architecture of the proposed
neuromorphic processor. The synaptic parameters such as W, A +
and A − are stored in the block RAMs. The synaptic weights are read
out from the BRAM sequentially and the membrane potentials which

Fig. 1. (a) An exemplary spiking neural network for character recognition. There are 212 neurons in this example, and neurons labeled from 206 to 212 are the inhibitory neurons. (b)
conceptual crossbar diagram of the synaptic connections. The synapses involving inhibitory neurons are constant while the feed-forward synapses are plastic.

Q. Wang et al. Neurocomputing 221 (2017) 146–158

148



are recorded by the Neuron Unit are updated one after another. Fig. 5
shows the design details of the Neuron Unit (NU) and the LIF
Arithmetic Unit (LAU). The NU involves three important register files
which store the membrane potentials (Vmem's), the firing times
(Tfire's) and the firing activity flags (S's) of all the neurons. During
the NOS, the LAU first reads out the Vmem's and the S's from the NU,
the synaptic weights from the BRAM and the external input spikes
from the spike I/O buffer, and then writes the updated Vmem back to
the NU. The calculation of W j i S j∑ ( , )· ( ) as in the membrane potential
update section of Table 1 takes many clock cycles to complete. And the

time consumed by the NOS usually dominates the entire processing
runtime. Once all the membrane potentials inside the NU are updated
for the current iteration, the NU compares all the membrane potentials
with Vthreshold to detect firing neurons and update the firing activity
flags and firing times. TGlobal is a signal representing the current
biological time, which is generated by a global timer inside the top-level
control logic. The amplitude of the external input spike is determined
by a random number generator (RNG) based on Linear Feedback Shift

Fig. 2. Top-level schematic of the proposed neuromorphic processor running on Xilinx ML605 evaluation board, with the synaptic weights stored in block RAMs. The communication
between PC and FPGA is realized by a UART cable.

Fig. 3. Flow diagram of the digital neuromorphic processor. NOS represents the neuron
operation stage and LOS represents the learning operation stage. The LOS is necessary
for training, but not required for recognition.

Fig. 4. The block diagram of the serial baseline architecture without parallel computing.
The synaptic weights W's are stored in a single-port block RAM, and the synaptic
parameters A + and A − are stored in another two block RAMs.

Fig. 5. The proposed LIF Arithmetic Unit (LAU) and Neuron Unit (NU). LAU is used to
update the membrane potentials of all the neurons. NU is used to store the membrane
potential, firing time and firing activity flag of each neuron. The synaptic weights are
stored in the BRAM.

Table 1
Comparison of different multipliers in terms of hardware cost and delay. The precision of
each multiplier is 16×16. In the Virtex-6 FPGA chip, each CLB consists of 2 slices and
each slice contains 4 LUTs and 8FFs.

Approximate Standard Xilinx IP Built-in

Slice LUT 273 376 378 97
DSP48E1 0 0 0 1
Delay (ns) 7.537 7.258 8.538 8.314

Q. Wang et al. Neurocomputing 221 (2017) 146–158

149



Registers (LFSRs).
Fig. 6 shows the design details of the proposed STDP unit, which is

used to update the synaptic weights based on the difference of firing
times between the pre-synaptic neuron and the post-synaptic neuron.
Assuming there are Noutput neurons in the output layer and Ninput

neurons in the input layer, the total number of the plastic synapses to
be updated is N N×output input . Each plastic synapse is associated with two
parameters A+ and A− which may depend on the current status of the
synapse. And the change of the synaptic weight W is calculated with
these two parameters during the LOS. The exponential function used to
update A + and A − is realized by a pre-computed lookup table.

The proposed neuromorphic processor has two operating modes,
namely, the training mode and the recognition mode. The recognition
mode is much simpler than the training mode because the synaptic
weights need not to be updated during recognition. The NU, the LAU
and the BRAM for the synaptic weights are reused in the recognition
mode, which leads to noticeable reduction of area overhead since no
additional functional block is added.

4. Parallel architectures

4.1. Motivation for parallel architectures

As illustrated in Fig. 5, the calculation of W j i S j∑ ( , )· ( ) (see the
membrane update section of Table 1)is realized by an accumulator of
W's controlled by S's. Therefore, the proposed architecture in Fig. 4,
which is referred to as the serial baseline, takes Npre cycles to update
one Vmem if this particular neuron has Npre pre-synapses. The Vmem

of each neuron is calculated one after another, during which a LAU
takes many clock cycles to accumulate the pre-synaptic weights. During
the LOS, we only scan the excitatory neurons in the output layer and
the update of the plastic pre-synapses is not performed unless the
excitatory neuron in the output layer fires. If it does not fire, the update
of pre-synaptic weights will be skipped. This approach enjoys a low
hardware cost at the expense of processing speed due to lack of
parallelism.

Storage of synaptic weights is an important issue for both the serial
baseline architecture and several parallel architectures that will be
discussed later. Block RAMs are based upon the embedded memory
blocks of the FPGA chips. We take advantage of the fact that it is
normally more efficient to implement memories on FPGAs using the
embedded block RAMs, each of which can be quite large while
supporting high-speed operations. Take an SNN with 800 output
neurons and 784 input neurons as an example, there are 627,200
(800×784) variable weights associated with the plastic synapses but
only 10 different constant numbers are used as the weights of the
inhibitory synapses. Therefore, since the weights of all the inhibitory
synapses are fixed and have limited number of values, these constant
weights are integrated into the arithmetic logic circuits. So only the
feed-forward synapses require a large storage and we choose to store
them in the block RAMs.

To see why parallel architectures for the targeted spiking neural

networks are desirable, we analyze temporal processing steps involved
in the baseline serial architecture. Fig. 7 uses a detailed timing diagram
to demonstrate the operations of the serial baseline architecture
without parallel processing. The timing diagram is based on the
functional simulation with Verilog HDL, which shall correlate well
with the actual design running on the FPGA. The time utilization of
each functional block in one biological time step is also illustrated in
this figure. Thousands of biological time steps are required for the
training of one input pattern, which corresponds to the outermost loop
of the pseudo code in Table 1. As mentioned earlier, processing of each
biological time step is divided into two stages, namely, the NOS and the
LOS. According to Fig. 7, the LAU and the block RAM which stores the
synaptic weights have the highest utilization, while other blocks
consume a much less portion of the overall processing time. Because
the update of synaptic weights is only performed for the firing post-
synaptic neurons, the workload for LOS can be very small considering
the low firing rate of the output neurons. Obviously, the runtime of the
NOS is much longer than the LOS, and the runtime of updating the
membrane potentials dominates the NOS runtime, so this work only
focuses on the parallel readout of synaptic weights during the NOS. The
updating of the synaptic weights during the LOS is still a sequential
process.

4.2. Proposed parallel architectures and memory organization

We propose several parallel architectures. In Fig. 8, W j i( , )
represents the weight of the synapse from the jth neuron to the ith
neuron. Assume that there are N input layer neurons and M output
layer neurons. The neurons in the input layer are labeled from 1 to N,
and the neurons in the output layer are labeled from N + 1 to N M+ .
Fig. 8(a) shows a parallel architecture which supports K-way parallel
processing during the NOS where K membrane potentials are updated
simultaneously. The processing may take a large number of clock cycles
to complete since for each update many pre-synaptic weights need to
be read out in sequence. In this scheme, the same LAU design of Fig. 5
is used.

In addition, we explore another parallel scheme as shown in
Fig. 8(b) which allows the calculation of W Sj∑ ·ji for one neuron to be
completed in one clock cycle. And N block RAMs need to be
instantiated to support the parallel synapse readout. According to
Fig. 8(b), to update the Vmem of one particular neuron, the weights
associated with all its pre-synapses are read out simultaneously and
sent to a modified LAU.

In Table 1, the index of the current post-synapse neuron is denoted
by i and the index of its pre-synapses is denoted by j. Therefore, to be
convenient, the parallel scheme in Fig. 8(a) is referred to as the “Loop-I
Parallelism (LIP)”, and the scheme in Fig. 8(b) is referred to as the
“Loop-J Parallelism (LJP)”.

The architecture based on the LIP is illustrated by Fig. 9. The

Fig. 6. The proposed STDP unit which is used to update the synaptic weights. Tfire and S
are obtained from the neuron unit. W, A+ and A− are from the BRAMs. Fig. 7. The detailed timing diagram of the baseline design. A large number of biological

time steps need to be processed for a single input pattern (i.e. a handwriting digit image)
in the training phase. Each iteration is divided into NOS and LOS. The updating of
membrane potentials during NOS is parallelized, which consumes 96.2% of the total
runtime.

Q. Wang et al. Neurocomputing 221 (2017) 146–158

150



weights of the synapses from the input layer to the output layer are
stored in K block RAMs. The weights associated with each output layer
neuron are all in the same block RAM. Ideally, if the workload of the
NOS is well balanced, each LAU performs the Vmem update of M K/
excitatory neurons in the output layer and K LAUs work in parallel. The

Vmem update of other neurons is parallelized in the same way.
Although the total capacity of the register files (Vmem, S and Tfire)
inside the neuron unit (NU) remains the same, multiple data ports are
created for the NU to enable the K LAUs to access the data inside NU in
parallel.

Fig. 10 shows the parallel architecture based on LJP, which
corresponds to Fig 8(b). N synaptic weights are read out simulta-
neously and sent to a modified LAU. The modified LAU is illustrated by
Fig. 10(b), which involves an N-input adder tree. Unlike the original
LAU in Fig. 5, this modified LAU updates each Vmem in only one clock
cycle.

If the size of the SNN is not very large, the architecture in Fig. 10
will significantly accelerate the NOS. However, this parallel scheme
suffers from bad scalability. To support the calculation of W Sj∑ ·ji in
one single clock cycle, a large N-input adder is required. Such adders
can introduce high hardware cost and propagation delay, which limits
the clock rate. Even though the critical path delay may be reduced by
pipelining, both the power and the slice utilization would increase
rapidly with the size of the network in this architecture. Therefore, LIP
is more competitive than LJP for large networks.

Meanwhile, the efficiency of the proposed parallel schemes also
depends on the number of output neurons and the number of input
neurons. Specifically, the size of the adder in a LJP design is based on
the number of pre-synaptic neurons. For an SNN with N excitatory
neurons in the input layer and M excitatory neurons in the output
layer, each excitatory neuron in the input layer has 1 external input and
also a small number of inhibitory pre-synaptic neurons. However, each

Fig. 8. Parallel processing schemes for N excitatory neurons in the input layer and M excitatory neurons in the output layer: (a) simultaneous updates of K membrane potentials with
synaptic weights stored in K parallel block RAMs. (b) update of one Vmem by reading out the synaptic weights stored in N parallel single-port block RAMs during one clock cycle.

Fig. 9. The proposed parallel neuromorphic processor which develops K-way parallel
processing based on LIP. K block RAMs are used to store synaptic weights, and K LAUs
work in parallel to update K membrane potentials at the same time.

Q. Wang et al. Neurocomputing 221 (2017) 146–158

151



excitatory neuron in the output layer has totally M excitatory pre-
synaptic neurons and 1 inhibitory pre-synaptic neuron. Therefore,
when M is much larger than N, but not too large, the LJP can be more
efficient than LIP.

5. Approximate multiplier with error compensation

Booth multipliers are ideal for high speed applications and the
Radix-4 Modified Booth multipliers are most widely applied [26,27].
The main blocks of a Radix-4 Modified Booth multiplier are shown in
Fig. 11. Two main advantages of the Booth multipliers are the speed
and the suitability for the multiplications of two's complements without
any extra conversions. The encoding block applies the Radix-4 Booth
Algorithm to encode the multiplier B, allowing the selection block to
generate only half number of partial products needed for array multi-
pliers with each product being one of the following: 0, A, 2A, −A, −2A
(A is the multiplicand). Then, the compressors in the compression
block compress the number of partial products to two [28,29]. Finally,
a 2n-bit adder is used to generate the final product. Multipliers take up
about 20% of the slices used in the serial baseline architecture and also
consume a large portion of power consumption.

Approximate multiplication circuits consume fewer hardware re-
sources and less power and are usually faster than exact multipliers.

Nevertheless, use of approximate multiplications would incur
unavoidable errors in these low-level arithmetic operations. However,
a more meaningful question to ask is that to what extent such errors
may impact the targeted machine learning applications. We argue that
due to the inherent resilience of our focused neuromorphic computing
architecture, when well controlled, these arithmetic errors may only
lead to negligible performance degradation of the neural network.

While several approximate multipliers have been proposed in the
literature, there has not been any attempt to evaluate the application of
approximate multipliers under the context of spiking neural networks.
To explore the potential energy and area savings offered by approx-
imate multiplication in our neuromorphic architectures, we adapt the

ideas presented in [21,22] to develop approximate multipliers for the
FPGA platform. Fig. 12 shows the full 8-partial product array for a
standard 16×16 Booth multiplier where each dot row (PP0 to PP7) is a
partial product. The fixed-point operands in the multiplication are 2's
complements with 8 integer bits and 8 fraction bits. The 16 dots (bits)
in each PPi are denoted by pp pp pp…i i i,15 ,14 ,0 from left to right. ci is the
correction constant required to generate the negative partial product,
and si is the sign of the ith partial product. In addition, an extra 1 is
added to the 15th column to exactly round the carry-out to the 16th
column, and finally output the exact 16-bit integer part of the final
product. The partial products are then added to obtain the final result.
In contrast, the adopted approximate Booth multiplier only generates
the signals of the partial products from the 15th column to the 31st
column, which corresponds to the low-precision computing unit
(LPCU) in Fig. 13. An error compensation which is for the signals
associated with column 0 to column 14 is finally combined with the
product obtained by the LPCU. To generate the appropriate error
compensation, all the input patterns are classified into a number (in
this case three) of groups, each of which is associated with a
predetermined optimal error compensation [21]. Instead of providing
a fixed error compensation for all input patterns, the key idea in
achieving good accuracy is to have a fine tuned error compensation for
each subset (group) of input patterns such that a given error metric
(e.g. average or mean squared error) is minimized. As shown in Fig. 13,
in the case of 16×16 approximate multipliers we use for our spiking
neural networks, the optimal error compensation is 2, 1 and 0,
respectively for three different groups of input patterns. The inputs
are classified by a compact signature generator block (Fig. 13) that is
based on Boolean operations of certain existing internal Booth encod-
ing signals so as to minimize the area and energy overhead of the
approximate multiplier design.

Table 1 compares the approximate multiplier with the standard
booth multiplier and the multipliers provided by Xilinx. Because we
need to convert the operands and product of the multiplier into our
desired format, additional hardware overhead will be added to the
Xilinx multipliers. The first Xilinx multiplier is based on LogiCORE
Multiplier v11.2, a soft IP core provided by Xilinx [31]. This multiplier
core can be configured to realize an operand precision ranging from 2
to 64 bits and is implemented with generic FPGA resources like CLBs
(Configurable Logic Blocks). The other Xilinx multiplier is based on the

Fig. 10. The proposed parallel neuromorphic processor based on LJP, which uses N block RAMs to store synaptic weights and one modified LAU to update one Vmem in one clock
cycle. (a) the parallel architecture based on LJP; (b) the modified LAU with a large adder tree.

Fig. 11. Error-Free Booth multiplier blocks.

Q. Wang et al. Neurocomputing 221 (2017) 146–158

152



dedicated and full-custom DSP slice DSP48E1 [32]. DSP48E1 involves
a 25×18 hardwired ASIC multiplier, which is highly optimized by
Xilinx. One DSP48E1 slice is flexible enough to realize any arithmetic
precision below 25×18. Cascading multiple DSP48E1 slices allows for
multiplications with higher precisions. According to Table 1, the booth
multipliers used in this work enjoy smaller delays than the Xilinx
multipliers. This is in part due to the fact that the desired operand
format has been integrated into the proposed multipliers such that no
additional logic is needed for format conversion. Although DSP48E1
itself is a highly optimized built-in resource provided by Xilinx,
connecting the DSP48E1 slices with CLBs may incur a very large
routing delay. In contrast, LUT-based multipliers may enjoy much
reduced routing delays within a local area of reconfigurable FPGA
resources. In this sense, the LUT-based booth multipliers are more
suitable for this work.

To minimize the extra delay, the signature generator and multi-
plexer for generating an error compensation are designed to run in
parallel with the selection block and compression block, which
compose the LPCU (as shown in Fig. 13). Finally, a 16-bit Carry-
Propagation Adder (CPA) [26] is designed as the Combine Unit (CU) to
combine the error compensation with the result outputted by the
LPCU, generating the final product. To further reduce delay of the
multiplier, a 16-bit Carry-Lookahead Adder (CLA) [26] might be

designed as the CU, which, however, may consume more power and
hence present a different tradeoff between delay and power.

6. Experimental results

6.1. Design platform

The proposed neuromorphic processors are designed in Verilog
HDL and synthesized using a Xilinx Synthesis tools. A Xilinx ML605
Evaluation Board [30], making use of an FPGA Virtex 6 core, has been
employed in order to develop and test our designs. We follow the
typical FPGA design flow to perform functional simulation, logic
synthesis, placement & routing, and generate the configuration bit-
stream. According to the timing analysis conducted as part of the
synthesis flow, the proposed neuromorphic processors are able to run
at 133.288 MHz. We employ an MMCM (Mixed Mode Clock Manager)
block to generate the actual clock rate which is 120 MHz. The proposed
designs are synthesized in a hierarchical/bottom-up manner, to allow
straightforward reuse of baseline building blocks such as the Neuron
Unit, LIF Arithmetic Unit and STDP Unit among targeted architectural
variants. In order for the proposed architectures to communicate with
the Matlab program running on PC, we also implement an
UART(Universal Asynchronous Receiver/Transmitter) to support the
serial communication. The power consumption of each architecture is
obtained by using XPower Analyzer, which offers detailed power
analysis of the designs on Xilinx FPGA [33]. The same with our
hardware architectures, our C++ software SNN simulator is also
developed according to the algorithm described in Section 2.

6.2. Performances for handwritten digit recognition

To demonstrate the performance of different neuromorphic pro-
cessor architectures, we use the proposed architectures to solve a
handwritten digit recognition problem with images from MNIST, a
popular public domain dataset of handwritten digits with the 28×28
resolution [23]. MNIST involves 60,000 images for training and 10,000
images for recognition. Each 28×28 image is converted into a pattern
with 28×28 pixels, which are used to generate the external input spikes
to the input layer of the spiking neural network. In order to obtain an
acceptable performance for this particular test bench, we instantiate a
spiking neural network with 784 excitatory neurons in the input layer
and 800 excitatory neurons in the output layer, as illustrated by
Fig. 14(a). There are also 6 inhibitory neurons in the input layer and
1 inhibitory neuron in the output layer. This setup provides a good
experimental study for examining the performance of the proposed
architectures especially when approximate arithmetic computing is
incorporated.

Fig. 14 (b) demonstrates how each 28×28 image is converted to 784
parallel spike trains which are the inputs to the input layer of the neural

Fig. 12. Partial product diagram for fixed-width 16×16 Booth multipliers. Although all the partial products of the standard multiplication are shown in this diagram, only the signals on
the left hand side are implemented. The signals on the right hand side are not generated.

Fig. 13. The architecture of the 16×16 approximate multiplier with optimal error
compensation for each input group.

Q. Wang et al. Neurocomputing 221 (2017) 146–158

153



network. The occupation rate of each spike train depends on the grey
level of the corresponding pixel. As illustrated in Fig. 14, a “black” pixel
is converted to a spike train with the highest occupation rate, while
there is not any spike generated for the“white” pixel. These spike trains
are considered as the external input spikes of the neuromorphic
processor.

The receptive fields of the output layer neurons after the training
are illustrated in Fig. 15. As can be seen, the receptive fields are well
shaped by the training. The proposed neuromorphic processors with
the standard Booth multipliers achieve a 89.1% recognition rate over

the complete MNIST dataset. If the standard booth multipliers in the
proposed architectures are replaced by the approximate multipliers,
the recognition rate over the same data set becomes 87.7%, demon-
strating that the use of approximate multiplications has no significant
impact on recognition performance for this application.

Table 2 compares our work with a recent publication [34], which
proposes software-based spiking neural networks with unsupervised
learning, in terms of the classification accuracy for the MNIST dataset.
In [34], a neural network with 400 excitatory neurons in the output
layer, 1584 neurons and 473,600 synapses in total achieves a recogni-

Fig. 14. (a) The neurons labeled 1–784 are the excitatory neurons in the input layer, while the neurons labeled 785–1584 are the excitatory neurons in the output layer. The other
neurons are the inhibitory neurons. (b) Each pixel of the input image is sent to the corresponding input layer neuron in the form of a spike train.

Q. Wang et al. Neurocomputing 221 (2017) 146–158

154



tion accuracy of 87.0%. However, when 1600 excitatory neurons are
used in the output layer, 3984 neurons and 3814,400 synapses are used
for the entire network, an accuracy of 91.9% is obtained from their
network. The recognition accuracy vs. network size plot provided in
[34] shows that an accuracy level of 88.6% can be achieved by a
network with 800 excitatory neurons in the output layer, 2384 neurons
and 1,267,200 synapses in total. As shown in Table 2, compared with
this reference network simulated using floating points in software, our
proposed work achieves highly competitive recognition performances
with a much smaller overall network complexity, i.e. 1591 neurons and
638,208 synapses. This is the case even for our hardware-based
implementations operating on the fixed-point arithmetic.

6.3. Tradeoffs between power, energy and hardware overheads of the
parallel architectures

In Section 4, we have presented two parallel architectures. Among
these, the architecture in Fig. 8(b) involves LJP-based parallelization.
To provide a good recognition performance for the digit recognition
task, the number of input layer neurons has to be large enough to
provide a sufficient resolution for input patterns. This gives rise to a
large network size. As discussed in Section 4, this disqualifies LJP-
based architectures as a competitive solution. Therefore, we only
experimentally focus on the LIP architecture.

Table 3 lists the power consumption and slice utilization of each
building blocks in the baseline serial neuromorphic processor design.
The membrane potentials of all neurons are updated one after another.
The summation of the synaptic weights for each neuron is realized by a
single accumulator, which is consistent with Fig. 5. The slice utilization
of each building block is obtained after place and route. The powers of
the building blocks are obtained from XPower Analyzer (XPA) and
Xilinx Power Estimator (XPE), two commercial tools for power
analysis. Although the clock frequency is 120 MHz for the neuro-

morphic processor, the actual switching frequency of each building
block can be much lower than the main system clock. Therefore, the
Neuron Unit has a low power consumption although the number of
used flip-flops is large. The design information of the baseline design
without and with the approximate multipliers are shown in Table 3(a)
and (b), respectively. When comparing these two variants of the
baseline serial design, we can easily see adoption of the approximate
multipliers helps reduce both power consumption and slice utilization.

Table 4 reports the power consumption and slice utilization of each
building block in a parallel design based on the LIP architecture
illustrated in Fig. 9. This design has 2 single-port BRAMs to store the
weights of the plastic synapses, and 2 LAUs are instantiated to support
the 2-way parallel processing. The original neuron unit is modified to
support two parallel accesses to Vmem and S. Table 5 reports the
power consumption and slice utilization of the building blocks of the
LIP architecture in Fig. 9 with a higher degree of parallelism (K=32).
This architecture involves 32 parallel LAUs and 32 block RAMs to store
the weights of the plastic synapses.

Table 6 compares five LIP designs with different degrees of
parallelism and different multipliers in terms of the runtime, energy
consumption and hardware resource cost. The runtime is the proces-
sing time of one image during training. These designs follow the LIP
architecture of Fig. 8(a). The energy consumption of each design is
calculated from the actual runtime, the power consumption and
utilization of all its building blocks. For the serial baseline architecture,

Fig. 15. The 800 receptive fields obtained after the training over 60,000 MNIST images of handwritten digits.

Table 2
Classification accuracy of various spiking neural networks on MNIST test set. The
software (sw) simulation in this work is based on floating point arithmetic, while the
hardware implementations with standard booth multipliers (std hw) and approximate
multipliers (apx hw) are based on fixed point arithmetic.

Size of output
layer

# of neurons
(synapses)

Accuracy

Ref. [22] 800 2384 (1,267,200) 88.6%
Peter et al.,

2015
This work sw 800 90.0%

std hw 1591(638,208) 89.1%
apx hw 87.7%

Table 3
Power and resource utilization of the building block components of the baseline
architecture, which accumulates the pre-synaptic weights serially for each output layer
neuron. All the neurons are processed one by one in a serial manner.

Slice LUTs Slice FFs Power (mW)

(a) The baseline design with standard booth multipliers
LIF Arithmetic 626 96 2.98
Neuron Unit 69,265 50,688 1.07
STDP Unit 2352 199 10.44
Glue Logic 68 16 0.55
Block RAM 2508,800 bits for W 0.39
Block RAM 5,017,600 bits for A + 0.48
Block RAM 5,017,600 bits for A − 0.48

(b) The baseline design with approximate multipliers
LIF Arithmetic 516 83 2.21
Neuron Unit 69,265 50,688 1.07
STDP Unit 1817 134 7.71
Glue Logic 68 16 0.55
Block RAM 2,508,800 bits for W 0.39
Block RAM 5,017,600 bits for A + 0.48
Block RAM 5,017,600 bits for A − 0.48

Q. Wang et al. Neurocomputing 221 (2017) 146–158

155



we use the detailed timing diagram shown in Fig. 7 to determine the
execution times for various building blocks for the purpose of energy
estimation. Similar functional analysis is performed for the architec-
tures with K=2–32. Obviously, the parallel design with K=32 achieves a
speedup of 13.5×over the baseline design with K=1.

Fig. 16 compares these designs with respect to runtime and energy
consumption. As the degree of parallelism increases, the runtime gets
shorter and shorter but the energy consumption goes up. This is
because additional resource and power overheads are introduced to
support parallel processing. The energy improvement introduced by

the approximate multipliers can reach up to 20.1% for the serial design.
This improvement gets somewhat smaller when the degree of paralle-
lism is increased. It is due to the fact that the runtime of the
parallelized part takes up a smaller portion of the total runtime. In
this case, while a larger number of approximate multipliers are used to
increase the number of LAUs so as to increase parallelism, the relative
benefit in energy saving is getting smaller. Therefore, to further
parallelize the serial part of the design (i.e. STDP Unit) can be a
solution, which prevents the energy improvement due to approximate
computing from decreasing. However, we expect a higher energy
consumption from such a design, and the corresponding improvement
of runtime is not obvious because the LOS consumes much shorter
runtime than the NOS.

The C++ program which corresponds to the serial baseline hard-
ware design is evaluated on the AMD Opteron 6174 processor, which is
a general purpose CPU clocked at 2.2 GHz. This single-thread program
takes 989.7 s to process an image during training, which is 4.4×longer
than the runtime of the proposed serial hardware design with K=1. Our
32-way parallel hardware design is 59.4×faster than the single-thread
C++ program for processing one image.

The LJP-based design which realizes the parallel processing
schemes in Fig. 8(b) is also evaluated for the same benchmark. In this
case, the large adder tree in the LAU involves 1568 inputs, namely, 784
parallel synaptic weights and 784 parallel spike events. This introduces
noticeable propagation delay, so the maximum operating frequency
becomes only 57 MHz. For such an LJP design, the training runtime
for processing one image is 18.8 s, which is slightly longer than the 32-
way LIP design. Meanwhile, in spite of the lower clock frequency, the
corresponding energy consumption is 1358.5 mJ, which is higher than
that of the 32-way LIP design.

When the neuromorphic processors are in the recognition mode,

Table 4
Power and resource utilization of the building block components of the 2-way LIP
parallel architecture, in which synaptic weights of each neuron are accumulated in serial
while two neurons are processed simultaneously.

Slice LUTs Slice FFs Power (mW)

(a) The 2-way parallel LIP architecture with standard booth multipliers
LIF Units (2) 1252 192 5.92
Neuron Units 71,107 51,858 1.78
STDP Unit 2352 199 10.44
Glue Logic 96 33 1.01
Block RAM (2) 2,508,800 bits for W 0.79
Block RAM 5,017,600 bits for A + 0.48
Block RAM 5,017,600 bits for A − 0.48

(b) The 2-way parallel LIP architecture with approximate multipliers
LIF Units (2) 1032 166 4.42
Neuron Unit 71,107 51,858 1.78
STDP Unit 1817 134 7.71
Glue Logic 96 33 1.01
Block RAM (2) 2,508,800 bits for W 0.79
Block RAM 5,017,600 bits for A + 0.48
Block RAM 5,017,600 bits for A − 0.48

Table 5
Power and resource utilization of the building block components of the 32-way LIP
parallel architecture, in which 32 neurons are processed simultaneously.

Slice LUTs Slice FFs Power (mW)

(a) The 32-way parallel LIP architecture with standard booth multipliers
LIF Units (32) 20,032 3072 94.72
Neuron Units 74,674 55,388 14.33
STDP Unit 2352 199 10.44
Glue Logic 229 167 13.82
Block RAM (32) 2,508,800 bits for W 12.86
Block RAM 5,017,600 bits for A + 0.48
Block RAM 5,017,600 bits for A − 0.48

(b) The 32-way parallel LIP architecture with approximate multipliers
LIF Units (32) 16,512 2656 70.72
Neuron Unit 74,674 55,388 14.33
STDP Unit 1817 134 7.71
Glue Logic 229 167 13.82
Block RAM (32) 2,508,800 bits for W 12.86
Block RAM 5,017,600 bits for A + 0.48
Block RAM 5,017,600 bits for A − 0.48

Table 6
The comparison of the serial design and 5 LIP designs in terms of the runtime, energy and hardware cost. All the designs here are based on the parallel LIP architecture in Fig. 8(a). K is
the degree of parallelism. Std means the design is based on the standard booth multipliers, and Apx means the design is based on the approximate multipliers.

K=1 K=2 K=4 K=8 K=32

Std Apx Std Apx Std Apx Std Apx Std Apx

Runtime (s) 226.95 121.86 66.53 38.8 16.8
Energy (mJ) 953.56 761.82 990.60 794.69 1021.56 824.38 1071.06 869.8 1339.83 1115.02
Slice LUTs 72,311 71,666 74,717 73,962 77,043 76,068 79,956 78,541 97,287 93,232
Slice FFs 50,999 50,921 52,282 52,191 53,800 53,683 55,348 55,179 58,826 58,345
Block RAMs 3 4 6 10 34

Fig. 16. Comparison of different designs in terms of runtime and energy consumption.
The solid curve represents the designs using standard booth multipliers. The dashed
curve represents the designs using the approximate multipliers.

Q. Wang et al. Neurocomputing 221 (2017) 146–158

156



the STDP unit and the BRAMs for A+ and A− remain inactive.
Therefore, the runtime for processing one image can be shorter than
that of the training mode, because there is no LOS in the recognition
phase. Table 7 compares the five proposed LIP designs in terms of
runtime and energy consumption in the recognition mode.

Obviously, since LOS which is not parallelized does not exist in the
recognition mode, the speedup increases almost linearly with the
degree of parallelism in NOS. For example, when K=32, the speedup
over the baseline design (K=1) for the recognition mode is 25.8x. In
addition, as the degree of parallelism goes up, the recognition mode
shows a more linear runtime reduction than the training mode.
Therefore, its energy dissipation increases slower than that of the
training mode, that latter of which is shown in Table 6. The comparison
of parallel designs in the recognition mode is illustrated in Fig. 17.

7. Conclusions

In this paper, we present an FPGA-based digital neuromorphic
processor and several parallel architectures. The proposed architec-
tures successfully address several critical issues pertaining to efficient
parallelization in membrane potential computation, on-chip storage of
synaptic weights, and integration of approximate arithmetic units. The
trade-offs between throughput, hardware cost and power overheads for
different configurations have been thoroughly investigated. A promis-
ing training speedup of 13.5x and a recognition speedup of 25.8x are
achieved by a parallel design whose degree of parallelism is 32. The
total training speedup provided by the 32-way parallel design running
at 120 MHz over the serial software simulation running on a 2.2 GHz
CPU is 59.4x. Up to 20% reduction in energy consumption is achieved
when using the approximate multipliers in our baseline processor
design, while maintaining pretty much the same level of recognition
performance for handwritten digit recognition.

References

[1] J.V. Arthur, P.A. Merolla, et al., Building Block of a Programmable Neuromorphic
Substrate: A Digital Neurosynaptic Core, IJCNN, pp. 1–8.

[2] Zhang Yong, et al., Linking brain behavior to underlying cellular mechanisms via
large-scale brain modeling and simulation, Neurocomputing 97 (2012) 317–331.

[3] Q. Wang, Y. Li, P. Li, Liquid state machine based pattern recognition on FPGA with
firing-activity dependent power gating and approximate computing, in:
Proceedings of IEEE International Symposium of Circuits and Systems, May 2016.

[4] Q. Wang, Y. Jin, P. Li, General-purpose LSM learning processor architecture and
theoretically guided design space exploration, in: Proceedings of IEEE Biomedical
Circuits and Systems, Oct. 2015, pp. 1–4.

[5] J. Jin, P. Li, AP-STDP: a novel self-organizing mechanism for efficient reservoir
computing, The International Joint Conference on Neural Networks, July 2016.

[6] Q. Wang, Y. Kim, P. Li, Neuromorphic processors with memristive synapses:
synaptic interface and architectural exploration, in: ACM Journal on Emerging
Technologies in Computing Systems, 2016.

[7] Koickal Thomas Jacob, Luiz C. Gouveia, Alister Hamilton, A programmable spike-
timing based circuit block for reconfigurable neuromorphic computing,
Neurocomputing 72 (16) (2009) 3609–3616.

[8] Diaz Carlos, et al., An efficient hardware implementation of a novel unary Spiking
Neural Network multiplier with variable dendritic delays, Neurocomputing (2016).

[9] O. Abu Arqub, M. AL-Smadi, S. Momani, T. Hayat, Numerical solutions of fuzzy
differential equations using reproducing kernel Hilbert space method, Soft Comput.
(2015). http://dx.doi.org/10.1007/s00500-015-1707-4.

[10] O.Abu Arqub, Adaptation of reproducing kernel algorithm for solving fuzzy
Fredholm-Volterra integrodifferential equations, Neural Comput. Appl. (2015).
http://dx.doi.org/10.1007/00521-015-2110-x.

[11] S. Mitra, et al., Real-time classification of complex patterns using spike-based
learning in neuromorphic VLSI, IEEE Trans. Biomed. Circuits Syst. 3 (1) (2009)
32–42.

[12] A. van Schaik, et al., Building blocks for electronic spiking neural networks, Neural
Netw. 14 (2001) 617–628.

[13] Lanny L. Lewyn, et al., Analog circuit design in nanoscale CMOS technologies, Proc.
IEEE 97 (10) (2009) 1687–1714.

[14] Harpe Pieter, Andrea Baschirotto, Kofi AA Makinwa, (eds.), High-performance AD
and DA converters, IC Design in Scaled Technologies, and Time-domain Signal
Processing: Advances in Analog Circuit Design 2014, Springer, 2014.

[15] G. Indiveri, et al., A VLSI array of low-power spiking neurons and bistable synapses
with spiking-timing dependent plasticity, IEEE Trans. Neural Netw. 17 (1) (2006)
211–221.

[16] Bashaireh Ahmad, Peng Li, Design robustness analysis of digital spiking neural
circuits, circuits and systems (MWSCAS), in: Proceedings of the IEEE 57th
International Midwest Symposium, 2014.

[17] Andres Upegui, Andrés Peña-Reyes Carlos, Eduardo Sanchez, et al., An FPGA
platform for on-line topology exploration of spiking neural networks, Microprocess.
Microsyst. 29 (5) (2005) 211–223.

[18] Martin J. Pearson, et al., Implementing spiking neural networks for real-time
signal-processing and control applications: a model-validated FPGA approach,
IEEE Trans. Neural Netw. 18 (5) (2007) 1472–1487.

[19] Kenneth L. Rice, et al., FPGA implementation of Izhikevich spiking neural networks
for character recognition, in: Proceedings of the IEEE International Conference on
Reconfigurable Computing and FPGAs, 2009, ReConFig'09, 2009.

[20] David B. Thomas, Wayne Luk, FPGA accelerated simulation of biologically
plausible spiking neural networks, in: Proceedings of the 17th IEEE Symposium on
Field Programmable Custom Computing Machines, 2009, FCCM'09, 2009.

[21] Botang Shao, Peng Li, A model for array-based approximate arithmetic computing
with application to multiplier and squarer design, in: Proceedings of IEEE/ACM
International Symposium on Low Power Electronics and Design, 2014.

[22] Botang Shao, Peng Li, Array-based approximate arithmetic computing: a general
model and applications to multiplier and squarer design, IEEE Trans. Circuits Syst.
I (2014).

[23] The MNIST database of handwritten digits by Yann Lecun, Corinna Cortes.
[24] Song Sen, Kenneth D. Miller, Larry F. Abbott, Competitive Hebbian learning

through spike-timing-dependent synaptic plasticity, Nat. Neurosci. 3 (9) (2000)
919–926.

[25] Anthony N. Burkitt, A review of the integrate-and-fire neuron model: i.
Homogeneous synaptic input, Biol. Cybern. 95 (1) (2006) 1–19.

[26] Neil HE Weste, David Money Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, Addison-Wesley Publishing Company, 2010.

[27] E. de Angel, E.E. Swartzlander, Jr., Low Power Parallel Multipliers, Workshop VLSI
Signal Process., IX, 1996.

Table 7
The comparison of 5 LIP designs in terms of the runtime and energy in the recognition mode. K is the degree of parallelism. Std means the design is based on the standard booth
multipliers, and Apx means the design is based on the approximate multipliers.

K=1 K=2 K=4 K=8 K=32

Std Apx Std Apx Std Apx Std Apx Std Apx

Runtime (s) 218.33 112.95 57.60 29.10 8.40
Energy (mJ) 847.36 674.66 872.90 706.12 898.34 725.58 923.16 768.52 1127.25 925.65

Fig. 17. Comparison of different designs in terms of runtime and energy consumption
during recognition. The solid curve represents the designs using standard booth
multipliers. The dashed curve represents the designs using the approximate multipliers.

Q. Wang et al. Neurocomputing 221 (2017) 146–158

157

http://refhub.elsevier.com/S0925-16)31121-sbref1
http://refhub.elsevier.com/S0925-16)31121-sbref1
http://refhub.elsevier.com/S0925-16)31121-sbref2
http://refhub.elsevier.com/S0925-16)31121-sbref2
http://refhub.elsevier.com/S0925-16)31121-sbref2
http://refhub.elsevier.com/S0925-16)31121-sbref3
http://refhub.elsevier.com/S0925-16)31121-sbref3
http://dx.doi.org/10.1007/s00500-1707-,0,0,2
http://dx.doi.org/10.1007/00521-2110
http://refhub.elsevier.com/S0925-16)31121-sbref6
http://refhub.elsevier.com/S0925-16)31121-sbref6
http://refhub.elsevier.com/S0925-16)31121-sbref6
http://refhub.elsevier.com/S0925-16)31121-sbref7
http://refhub.elsevier.com/S0925-16)31121-sbref7
http://refhub.elsevier.com/S0925-16)31121-sbref8
http://refhub.elsevier.com/S0925-16)31121-sbref8
http://refhub.elsevier.com/S0925-16)31121-sbref9
http://refhub.elsevier.com/S0925-16)31121-sbref9
http://refhub.elsevier.com/S0925-16)31121-sbref9
http://refhub.elsevier.com/S0925-16)31121-sbref10
http://refhub.elsevier.com/S0925-16)31121-sbref10
http://refhub.elsevier.com/S0925-16)31121-sbref10
http://refhub.elsevier.com/S0925-16)31121-sbref11
http://refhub.elsevier.com/S0925-16)31121-sbref11
http://refhub.elsevier.com/S0925-16)31121-sbref11
http://refhub.elsevier.com/S0925-16)31121-sbref12
http://refhub.elsevier.com/S0925-16)31121-sbref12
http://refhub.elsevier.com/S0925-16)31121-sbref12
http://refhub.elsevier.com/S0925-16)31121-sbref13
http://refhub.elsevier.com/S0925-16)31121-sbref13
http://refhub.elsevier.com/S0925-16)31121-sbref13
http://refhub.elsevier.com/S0925-16)31121-sbref14
http://refhub.elsevier.com/S0925-16)31121-sbref14


[28] Christopher S. Wallace, A suggestion for a fast multiplier, IEEE Trans. On
Electronic Computers, vol. EC-13, 1964.

[29] Vojin G. Oklobdzija, David Villeger, Simon S. Liu, A method for speed optimized
partial product reduction and generation of fast parallel multipliers using an
algorithmic approach, IEEE Trans. Computers, 1996.

[30] XILINX, Virtex-6 FPGA ML605 Evaluation Kit. 〈http://www.xilinx.com/products/
boards-and-kits/EK-V6-ML605-G.htm〉.

[31] XILINX, Xilinx DS255 Multiplier v11.2, Data Sheet.〈http://www.xilinx.com/
support/documentation/ip-documentation/mult-gen-ds255.pdf〉

[32] XILINX, Virtex-6 FPGA DSP48E1 Slice User Guide. 〈http://www.xilinx.com/
support/documentation/user-guides/ug369.pdf〉.

[33] Xilinx ISE Xpower Analyser〈http://www.xilinx.com/products/logic-design/
verification/xpoweran.htm〉.

[34] P.U. Diehl, M. Cook, Unsupervised learning of digit recognition using spike-timing-
dependent plasticity, Front. Comput. Neurosci. 9 (2015).

Qian Wang received the B.Eng. degree in electronics
information science and technology from the Harbin
Institute of Technology, Harbin, China, in 2009, and the
M.S. degree in electrical engineering from the University of
Kansas, Lawrence, KS, USA, in 2012. He received the Ph.D.
degree in computer engineering with Texas A&M
University, College Station, TX, USA, in 2016. He is
involved in research on VLSI implementation of machine
learning algorithms, such as support vector machine and
spiking neural networks.

Youjie Li received the M.S. degree in Department of
Electrical and Computer Engineering, Texas A &M
University, College Station, TX, USA, in 2016. His research
interests are in the areas of neuromorphic computing and
approximate computing. He received an ISCAS best paper
award in 2016.

Botang Shao received the M.S. degree in Department of
Electrical and Computer Engineering, Texas A &M
University, College Station, TX, in 2014. He is currently a
design engineer at NXP Semiconductors, Austin, TX. His
research interests are in the areas of low-power arithmetic
circuits and VLSI design.

Siddhartha Dey received the B.Tech. degree in
Electronics and Communication Engineering from
Heritage Institute of Technology, Kolkata, India, in 2013.
He is currently working towards the M.Eng. degree in
Computer Engineering at Texas A&M University, College
Station, TX, USA. He joined Synopsys, Inc., Austin, TX,
USA in May 2016 where he works as a Verification
Engineer specializing in emulation platform. His research
interests are in the areas of neuromorphic systems, and
VLSI design and verification.

Peng Li received the Ph.D. degree in electrical and
computer engineering from Carnegie Mellon University.
He is a professor with the Department of Electrical and
Computer Engineering, Texas A &M University, and a
faculty member of Texas A &M Institute for Neuroscience
and Texas A &M Health Science Center. His research
interests are in integrated circuits and systems, electronic
design automation, and computational neuroscience. He
has authored and co-authored over 180 publications and
edited two books.

His work has been recognized by various distinctions
including an IEEE/ACM William J. McCalla ICCAD Best
Paper Award, three IEEE/ACM Design Automation

Conference Best Paper Awards, two SRC Inventor Recognition Awards, two MARCO
Inventor Recognition Awards, the National Science Foundation CAREER Award. At
Texas A &M University, he received the ECE Outstanding Professor Award, and was
named a TEES Fellow and a William O. and Montine P. Head Faculty Fellow. He
currently serves the IEEE Council of Electronic Design Automation as its Vice President
for Technical Activities. He is a Fellow of the IEEE.

Q. Wang et al. Neurocomputing 221 (2017) 146–158

158

http://www.xilinx.com/products/boardsndits/EK-6-L605-.htm
http://www.xilinx.com/products/boardsndits/EK-6-L605-.htm
http://www.xilinx.com/support/documentation/ipocumentation/multens255.pdf
http://www.xilinx.com/support/documentation/ipocumentation/multens255.pdf
http://www.xilinx.com/support/documentation/useruides/ug369.pdf
http://www.xilinx.com/support/documentation/useruides/ug369.pdf
http://www.xilinx.com/products/logicesign/verification/xpoweran.htm
http://www.xilinx.com/products/logicesign/verification/xpoweran.htm
http://refhub.elsevier.com/S0925-16)31121-sbref15
http://refhub.elsevier.com/S0925-16)31121-sbref15

	Energy efficient parallel neuromorphic architectures with approximate arithmetic on FPGA
	Introduction
	Spiking neural networks
	Serial baseline neuromorphic processor architecture
	Parallel architectures
	Motivation for parallel architectures
	Proposed parallel architectures and memory organization

	Approximate multiplier with error compensation
	Experimental results
	Design platform
	Performances for handwritten digit recognition
	Tradeoffs between power, energy and hardware overheads of the parallel architectures

	Conclusions
	References




