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The robot manipulators are used in network-based industrial units, and even homes,

by expending a significant lumped amount of energy. Manipulators are also subject to

large time delays like many engineering systems, which may lead to the lack of high

precision required and could cause not only poor control performance, but also catastrophic

instability. Hence designing control algorithms for such delay systems to compensate for

the time delay and having a robust control law is a necessity. Another important point
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which needs to be noticed in utilizing robots is environmental uncertainties, which may

not be considered in the modeling. To summarize, parametric uncertainty and/or time-

delay through manipulation along with optimal operation are important criteria for the

operation of robotic systems.

One of the main contributions of this dissertation is focusing on the development

of robust techniques for achieving optimal operation and control of the arm to attain

perfect tracking. For the operational optimization, we examine a discrete-time multi-

variable gradient-based Extremum Seeking (ES) scheme enforcing operational time and

torque saturation constraints to minimize the lumped amount of energy consumed for a

path given. Finally, the optimal trajectory is experimentally implemented to be thoroughly

compared with the inefficient one.

Precise control of manipulators in the presence of delay or uncertainty and variation

in their environments is also a prerequisite to feasibly utilize robot manipulators. Nonlin-

ear control theorems for nonlinear systems (e.g. robotic systems) have been developed for

a long period, however, implementing them, in reality, is one of the most challenging prob-

lems in engineering applications. Therefore, formulating novel robust and computationally

efficient control approaches is still a necessity.

Another significant contribution of this work is a practical implementation of vari-

ous control theories, with verifying all the necessary assumptions, for high-DOF manipula-

tors. We formulate different computationally efficient control laws to implement real-time

controllers for a high Degree-of-Freedom manipulator with uncertainties or in the presence

of delay to move toward implementing those control laws in other engineering applications.
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Chapter 1

Introduction

1.1 Motivation

The robot manipulators are used in network-based industrial units, and even homes,

by expending a significant lumped amount of energy, and therefore, optimal trajectories

need to be generated to address efficiency issues. These robots are typically operated

for thousands of cycles resulting in a considerable cost of operation. Therefore, optimal

trajectories need to be generated to address efficiency issues. Operational operation is an

optimization process in which we try to find the best input parameter such that a cost

function, for example, time and/or energy consumed, becomes minimum.

Manipulators are also subject to large time delays like many engineering systems,

which may lead to the lack of high precision required and could cause not only poor control

performance, but also catastrophic instability. Therefore, precise control of manipulators in

the presence of delay or uncertainty and variation in their environments is a prerequisite
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to feasibly utilize robot manipulators. Control theory tries to derive inputs such that

system yields acceptable outputs. However, some interesting questions arise from practical

implementation,

• How can a mechanical system be effectively modeled?

• What are the criteria defined for an acceptable response of the system?

• How can the optimal operation be determined subject to cost function and con-

straints?

• What type of controller can be applied to the system?

• How do the input parameters influence the system?

• Is it practically possible to implement the controller designed?

In this dissertation, we try to properly answer these questions with a focus on robot

manipulators.

1.2 Robotics

Robotics is a branch of engineering that involves the conception, design, manu-

facturing, and operation of robots. This field is an interdisciplinary branch of engineer-

ing and science including mechanics, electronics, computer science, artificial intelligence,

mechatronics, nanotechnology, and bioengineering. In robotics, machines are eventually
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developed to be substituted for humans, with respect to both physical activity and decision

making, and replicate human actions.

Robots are designed to replicate walking, lifting, speech, and anything a human

can do and are usually utilized in dangerous environments (e.g. bomb detection and

deactivation) or where humans cannot survive (e.g. in disasters or space). For instance,

many robots are designed to do tasks being hazardous to people such as finding survivors

in unstable ruins and exploring mines. To have the most efficient robot to be substituted

with the human in dangerous environments, some robots are designed analogous to human,

the so-called humanoid robots.

1.3 Humanoid Robots

A humanoid robot has the overall appearance of a human body, which is helping

to interact properly with human and work with made-for-human tools as effective as

possible. It is worth mentioning that as our concerns are operational optimization and the

development of best control laws for robot manipulators, the history of humanoid robots

is not thoroughly investigated in this dissertation, and it can be found in [76].

Humanoid robots have received much attention as research topics in several scien-

tific fields, and scientists attempt to simulate the human body leading to a better under-

standing of it along with having more efficient robots. To enable robots to interact with

complex environments and in different situations, planning and control processes must

focus on self-collision detection, path planning, and obstacle avoidance. Through plan-
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ning and control, the essential difference between humanoids and other kinds of robots

(like industrial ones) is that the movement of the robot has to be human-like. Robots

usually have redundancy in movements, i.e. more degrees of freedom than needed, and

consequently have wide tasks availability. These characteristics are desirable to humanoid

robots which bring more complexity and new problems to the planning and control.

In general, humanoid robots are made of a torso with a head, two arms, and two

legs, although some humanoid robots may represent a part of the human body, the waist

up (just manipulation) or down (just locomotion). In this dissertation, we focus on a

dual-arm Baxter manipulator, whose each arm has 7 Degrees-oF-Freedom (DOF), to thor-

oughly study the dynamics and control of an arm. To this end, we briefly explain the

kinematics and kinetics of manipulators and then carry out modeling of the Baxter’s arm

along with verifying the model.

Figure 1.1: Baxter research robot
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1.4 Problem Statement and Contributions

As mentioned earlier, the robot manipulators are utilized in different work environ-

ments and consume a significant lumped amount of energy, while they are subject to time

delay and uncertainties. Therefore, one of the important points, which needs to be no-

ticed, is the modeling of manipulator subject to environmental uncertainties and/or time-

delay along with operational optimization. Therefore, a systematic and general approach,

namely, the Denavit-Hartenberg convention for robotic systems, in particular manipula-

tors, is presented through this dissertation. Then, operational optimization and control of

the Baxter manipulator are investigated using various simulations and experiments.

Precise control of manipulators in the presence of delay or uncertainty and variation

in their environments is a prerequisite to feasibly employ robot manipulators. Nonlinear

control theorems for nonlinear systems (e.g robotic systems) have been developed for a

long time, however, implementing them, in reality, is one of the most challenging problems

in engineering applications. First of all, some specific assumptions generally mentioned in

a theorem are not necessarily valid for all engineering systems. Second, verifying those

assumptions are analytically cumbersome to be carried out. Another important contribu-

tion of this work is the practical implementation of various control theories for high-DOF

manipulators.

One of the main contributions of this dissertation is focusing on the development of

robust techniques for achieving optimal operation and control of the arm to attain perfect

tracking. To this end, coupled dynamic equations of the Baxter manipulator are derived
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using the Lagrangian method and then experimentally validated to examine the accuracy

of the model through Chapter 2.

For the operational optimization, we examine a discrete-time multi-variable gradient-

based Extremum Seeking (ES) scheme enforcing operational time and torque saturation

constraints to minimize the lumped amount of energy consumed for a path given. There-

fore, global sensitivity analysis is performed to investigate the effects of changes in op-

timization variables on the cost function leading to select the most effective ones. The

results are compared with those of a global heuristic genetic algorithm (GA) to discuss

the locality/globality of optimal solutions. Finally, the optimal trajectory is experimen-

tally implemented to be thoroughly compared with the inefficient one. We also carry out

time-energy optimization using discrete-time multi-variable Extremum Seeking (ES) and

its results are discussed.

The control of nonlinear systems, i.e. a manipulator, has received much attention

during the last decays, however, there are still some challenges arising from their appli-

cations, which include dealing with uncertainties and time delays. Therefore, formulating

novel robust and time-efficient control approaches is still a necessity and therefore, this re-

search effort is another important contribution of this dissertation. We formulate different

time-efficient control laws to implement real-time controllers for a high Degree-of-Freedom

manipulator with uncertainties or in the presence of delay to move toward implementing

those control laws in other engineering applications.
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1.5 Organization

The rest of this dissertation is structured into three chapters. In Chapter 2, mod-

eling and operational optimization of a 7-DOF Baxter manipulator are carried out. For

this purpose, the coupled dynamic equations of the Baxter manipulator are symbolically

derived using the Euler-Lagrangian method and then experimentally validated to exam-

ine the accuracy of the model. Then, the operational optimization is examined using

discrete-time multi-variable gradient-based Extremum Seeking (ES) scheme to minimize

the lumped amount of energy consumed for a path given. To this end, the global sensi-

tivity analysis is also performed to investigate the optimization variables’ effects on the

cost function defined. The results are compared with those of a global heuristic genetic

algorithm (GA) and then the optimal trajectory is experimentally implemented.

In Chapter 3, a predictor-based control scheme is formulated for the high-DOF

manipulator in the presence of input delays. Our controller is adopted from a predictor-

based control approach for a general nonlinear system subject to a couple of assumptions.

We investigate the effects of time delay on the system, the Baxter manipulator, verify all

the assumptions, and then utilize the control method proposed for our system. Finally,

the controller is implemented on Baxter and results are thoroughly discussed. It is worth

mentioning that our approach is extendable to any Euler-Lagrangian system.

In Chapter 4, a novel adaptive control approach, which is more computationally

applicable/efficient in comparison with the classical one, is formulated for a general robotic

system. The simulation results for a two-link manipulator are presented and the computa-
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tional efficiency of the method, in particular for parameter estimation, is investigated. The

significance of this method is its independence to the persistent excitation in input/output

for the parameter estimation, which is a crucial concern in classical controllers.
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Chapter 2

Modeling and Operational

Optimization

2.1 Dynamic Modeling

The mechanical structure of a robot manipulator consists of a sequence of rigid

bodies (links) dynamically interconnected through joints. A manipulator is characterized

by an arm that ensures mobility and dexterity as well as an end-effector that performs

the task defined for the robot. A prismatic joint creates a relative translational motion

between the two links, whereas a revolute joint creates a relative rotational motion between

the two links. In the Baxter manipulator, we have seven revolute joints, as shown in Fig.

2.1.
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(a) (b)

Figure 2.1: Baxter’s joints and link lengths: (a) Baxter’s joints; (b) Baxter’s link

lengths

2.1.1 Kinematics

In a robot manipulator, the joints’ variables are the angles between the links in

the case of revolute or rotational joints. The forward kinematics equation relates joint

space variables to operational space variables, while the inverse kinematic problem pro-

vides closed-form solutions for typical manipulation structures. Deriving forward/inverse

kinematic equations are thoroughly discussed in [93].

We briefly introduce a systematic and general approach for the kinematics of a

manipulator, which refers to the Denavit-Hartenberg (DH) convention. This convention

provides a systematic procedure for performing kinematics analysis. The problem is calcu-

lating the coordinate transformations between two frames attached to the two links. Note

that carrying out kinematic analysis of an n-link manipulator can be extremely complex

10



without utilizing this convention.

Frame i with respect to Frame i − 1 are completely specified by the following

parameters [93]:

X ai is the distance between Oi and Oi′ ,

X di is the coordinate of Oi′ along zi−1,

X αi is the angle between axes zi−1 and zi about axis xi to be taken positive when

rotation is made counter-clockwise,

X θi is the angle between axes xi−1 and xi about axis zi−1 to be taken positive when

rotation is made counter-clockwise.

Through this convention, each homogeneous transformation is represented in terms

of the four quantities θi, ai, di, and αi, which are the parameters associated with link i

and joint i. The four parameters ai, αi, di, and θi, shown in Fig. 2.2, are calculated based

on the length, twist, offset, and joint angle of a link, respectively, with respect to the

relationship between two coordinate frames, as follows. Note that θi for a revolute joint

and di for a prismatic joint are varying while the others are constant for a link.

We utilize this convention for modeling and subsequently kinematic and kinetic

analyses of Baxter. For finding the robot’s DH parameter, we need the arm’s dimensions

and geometrical parameters, which are provided by the Baxter’s manufacturer.
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Figure 2.2: Denavit-Hartenberg frame assignment [93]

Table 2.1: Baxter’s DH parameters

Link d a α θ

1 0.27035 0.069 −π/2 0

2 0 0 π/2 0

3 0.3644 0.069 −π/2 0

4 0 0 π/2 0

5 0.3743 0.01 −π/2 0

6 0 0 π/2 0

7 0.2295 0 0 0

2.2 Workspace

The shape and volume of the workspace depend on the kinematics and mechanical

joints’ limits of a manipulator. The workspace can be computed using the direct kinematic

equation with a random search within the joint motion ranges, and then finding the end-

effector position in the Cartesian space [6].
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Table 2.2: Joints’ ranges [88]

Joint Range (Degrees) Range (Radians)

S0 from -97.494◦ to +97.494◦: 194.998◦ from -1.7016 to +1.7016: 3.4033

S1 from -123◦ to +60◦: 183◦ from -2.147 to +1.047: 3.194

E0 from -174.987◦ to +174.987◦: 349.979◦ from -3.0541 to +3.0541: 6.1083

E1 from -2.864◦ to +150◦: 153◦ from -0.05 to +2.618: 2.67

W0 from -175.25◦ to +175.25◦: 350.5◦ from -3.059 to +3.059: 6.117

W1 from -90◦ to +120◦: 210◦ from -1.571 to +2.094: 3.6647

W2 from -175.25◦ to +175.25◦: 350.5◦ from -3.059 to +3.059: 6.117

Fig. 2.3 presents the workspace of each arm and the common workspace of dual-

arms. The common workspace is one of the most important manipulation indices in the

dual-arm manipulations such as valve-turning and assembly tasks. Baxter can execute

actions within the area shown, although Baxter performs tasks more efficiently when the

objects are located close to the center of the workspace [88].

2.2.1 Kinetics

Kinetics provides a description of the relationship between the joints’ actuator

torques and the motions of links in a manipulator. In general, the Euler-Lagrange equation

expectedly leads to a set of second-order ordinary differential equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= τi i = 1, · · · , n (2.1)

where L denotes the Lagrangian and is obtained based on kinetic and potential energies

(L = K − P ), and qi is the rotation angle of each link related to the previous one. The
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(a) (b)

Figure 2.3: Baxter’s workspace [88]

kinetic energy of an n-link manipulator, which has n degrees of freedom, is a quadratic

function of q̇ (the vector of joints’ angular velocities) as follows:

K =
1

2
q̇T

n∑
i=1

[
Jvi

(q)TmiJvi
(q) + Jωi

(q)TRi(q)IiRi(q)
TJωi

(q)
]
q̇

=
1

2
q̇TM(q)q̇ =

1

2

n∑
i,j

dij(q)q̇i (2.2)

where, Jvi
and Jωi

are 3× n matrices making the Jacobian of mass center of the i-th link.

Also, mi, ri, and Ii are mass, the center of mass, and the moment of inertia of the i-th

link, respectively, which are shown in Tables 2.3 and 2.4.
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Table 2.3: Links’ mass and center of mass

Link Mass (kg) Center of mass (m)

S0 5.70044 [0.01783, 0.00086, 0.19127]

S0 3.22698 [0.06845, 0.00269, -0.00529]

S0 4.31272 [-0.00276, 0.00132, 0.18086]

S0 2.07206 [0.02611, 0.00159, -0.01117]

W0 2.24665 [-0.00168, 0.0046, 0.13952]

W1 1.60979 [0.06041, 0.00697, 0.006]

W2 0.35093 [0.00198, 0.00125, 0.01855]

The matrix M(q) is consist of two kinds of elements: 1) constant terms including the

mass and moment of inertia around the center of mass, which do not depend on the robot’s

configuration and 2) state/configuration dependent terms. Also, M(q) : Rn → Rn×n is a

symmetric positive definite matrix.

Note that the Baxter’s arm has a set of springs (Fig. 2.1(a)) acting as a damper to

absorb harmful vibration of the jerky motions as discussed earlier. The potential energy

is hence obtained as follows:

P =
n∑
i=1

Pi +
1

2
keqx

2 =
n∑
i=1

gT rcimi +
1

2
keqx

2 (2.3)

where, Pi is the potential energy of the i-th link, g is the gravitational acceleration, rci

indicates the coordinate of mass center of link i, keq stands for the stiffness of preloaded

springs in joint S1, and x is the spring displacement which is calculated as:

x = x0 −
√
a2 + b2 − 2ab cos(θ) (2.4)
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where x0 is the free length of spring and θ = π
2

+ ψ (ψ = −q2).

Using the energy terms shown in Eqs. (2.2) and (2.3), the general form of the

Euler-Lagrange equation becomes:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (2.5)

where, q̇ ∈ Rn and q̈ ∈ Rn indicate the vectors of angular velocity and acceleration of the

joints, respectively, τ is the driving torques’ vector. When the system is fully actuated we

have τ ∈ Rn. Finally, G(q) ∈ Rn is the gravitational matrix as follows:

Gk =
∂P

∂qk
(2.6)

Utilizing the “Christoffel symbols” [100] would help us derive the elements of the

Coriolis matrix (C(q, q̇)) as follows:

cijk =
1

2

{
∂dkj
∂qi

+
∂dki
∂qj
− ∂dij
∂qk

}
(2.7)

where the k, j-th element of C(q, q̇) is calculated as the following:

ckj =
n∑
i=1

cijk(q)q̇i =
n∑
i=1

1

2

{
∂dkj
∂qi

+
∂dki
∂qj
− ∂dij
∂qk

}
q̇i (2.8)

2.2.2 Model Verification

The experimental validation of such a coupled nonlinear mathematical model is a

necessity to be carried out in order to examine the accuracy of the formulation and then

possibly refine the model [9,10,13]. We hence recorded the joints’ torques to be compared

with the ones computed through the interconnected equations, and the results are shown

in Fig. 2.4 for all joints.
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Figure 2.4: Comparison between the experimentally measured and nominal analytical

torques used in driving the joints (a) S0, (b) S1, (c) E0, (d) E1, (e) W0, (f) W1, and (g)

W2; the non-zero torques at the initial point (t = 0) stand for holding torques against

gravity
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Figure 2.4: Comparison between the experimentally measured and nominal analytical

torques used in driving the joints (a) S0, (b) S1, (c) E0, (d) E1, (e) W0, (f) W1, and (g)

W2; the non-zero torques at the initial point (t = 0) stand for holding torques against

gravity, continued

Fig. 2.4 presents the experimental and analytically computed torques used in driv-

ing the joints, which reveal an acceptable consistency giving us the confidence to utilize
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the model developed in the optimization process. Note that the negligible differences

potentially root on the unmodeled friction and backlash of the joints.

Note that non-zero torques at the initial point, t = 0, stand for holding torques

against gravity while the links are stationary leading to zero angular velocities/accelerations

at the initial point.

2.3 Optimization Using Multi-Input Extremum Seek-

ing

Through this Section, a novel analytical coupled trajectory optimization of a 7-DOF

Baxter manipulator utilizing Extremum Seeking (ES) approach is presented. The robotic

manipulators are used in network-based industrial units, and even homes, by expending

a significant lumped amount of energy and therefore, optimal trajectories need to be

generated to address efficiency issues. These robots are typically operated for thousands

of cycles resulting in a considerable cost of operation.

The coupled dynamic equations, which were derived and then experimentally val-

idated, along with the global sensitivity analysis, to select the most effective parameters,

help us carry out a time-efficient operational optimization. We examine a discrete-time

multivariable gradient-based extremum seeking scheme enforcing operational time and

torque saturation constraints in order to minimize the lumped amount of energy con-

sumed in a path given. The results are compared with those of a global heuristic genetic

algorithm to discuss the locality/globality of optimal solutions. Finally, the optimal tra-
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jectory is experimentally implemented to be thoroughly compared with the inefficient one.

We also carry out time-energy optimization using discrete-time multi-variable Extremum

Seeking (ES) and its results are discussed.

2.4 Background

Autonomous and non-autonomous operations of any electromechanical systems,

in particular robots, have received considerable attention with respect to both the sta-

bility and, more importantly, the efficiency issues. Both the autonomous and the non-

autonomous methods, which utilize online and offline/blind optimization and control

schemes, respectively, have revealed some advantages and disadvantages. We here focus

on the non-autonomous energy-efficient operation of the Baxter manipulator which would

subsequently be used in nonlinear control schemes. The offline optimization/control of the

robot will be gradually examined with respect to the autonomous practice to yield the

most reliable and optimal configuration.

Robots are not necessarily operating in an energy-efficient way and hence consume

a significant lumped amount of energy. The energy consumption and subsequently cost

of operation considerably increase when thousands of robots are working together, for

example in a factory, to carry out a network-based task for thousands of cycles. Based

on the recent statistics published, industries are among the largest consumers of energy in

which the robots take the biggest share of consumption [80]. It is worth mentioning that

the robots used in the auto industry consume more than half of the total energy required
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to produce a vehicle body.

The importance of the optimal operation can be visualized through a network of

robots operating simultaneously to carry out a specific task defined. The robot manipu-

lator, which is being analyzed in this research work, is operated for thousands of cycles

in industries and even at homes as a reliable servant. A considerable lumped amount of

energy is expectedly consumed in a trajectory given, as a part of the network-based opera-

tion, and it hence needs to be minimized resulting in a significant reduction of operational

cost. Therefore, the issue of energy consumed by robots has become a major challenge for

researchers and robot manufacturers.

The total mechanical energy consumed by the robot is expectedly affected by the

required torque of each joint in addition to the joints’ angular velocities. The high level of

energy consumption is typically caused by jerky motions of robots. Many research efforts

addressed design optimization [6, 85], path planning [50, 51, 54, 75, 86, 87, 90, 109,110], and

minimizing joints’ torques [26, 42,52,55].

Garge and Kumar [42] developed an optimum path requiring the minimum amount

of torque which expectedly leads to a minimal amount of energy consumption. They uti-

lized genetic and simulated annealing algorithms by comparing their performance. Other

efforts reported in [39,77,92] investigated smooth and time-optimal trajectories. Some re-

searchers have focused on path smoothness and/or minimizing the execution time, which

may not necessarily yield a minimal amount of energy consumption [15,36,79].

Extremum Seeking (ES) is a model-free optimization approach [5,64,71] for systems

with unknown dynamics and with a measurable output which has been applied to a wide
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range of technical applications [27, 34, 35, 44, 108]. The first proof of stability for an ex-

tremum seeking feedback scheme was provided by Krstić and Wang [71]. They utilized the

tools of averaging and singular perturbations in revealing that solutions of the closed-loop

system converge to a small neighborhood of the extremum of the equilibrium map. Note

that the ES approach can yield fast convergence, in spite of being simple to implement

by utilizing iterative (batch-to-batch) optimization of the cost function. Frihauf et al. [41]

carried out optimization of a single-input discrete-time linear system using discrete-time

ES.

Discrete-time extremum seeking with stochastic perturbation was studied with-

out measurement noise in [78]. Stanković and Stipanović [104] investigated discrete-time

extremum seeking with sinusoidal perturbation including measurement noise. Liu and

Krstić [73] and Choi et al. [33] employed discrete-time ES for one-variable static system

with an extremum using stochastic and sinusoidal perturbations, respectively.

Rotea [89] and Walsh [107] studied multivariable extremum seeking schemes for

time-invariant plants. Ariyur and Krstić [4] investigated, for the first time, the multivari-

able extremum seeking scheme for general time-varying parameters. Li et al. [72] utilized

the multivariable ES in optimizing the cooling power of a tunable thermoacoustic cooler.

Other multivariable ES applications can be found in [46,111,112].

Through this research effort, the time-invariant discrete-time multivariable opti-

mization [8, 9] of all joints’ trajectories are presented in detail. To the best of our knowl-

edge, the multivariable ES has not yet been utilized for the minimization of the energy

consumed by robotic manipulators. Note that time-energy optimization would not be
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beneficial by yielding, as expected, a lower amount of energy saved; although the oper-

ation time may potentially decrease which is not the immediate concern of this research

work [39,77,92].

The contribution of our work in this Section is in employing the multivariable

gradient-based discrete-time ES scheme as follows:

1. The scheme is being numerically applied for a 7-DOF manipulator and the results

implemented experimentally;

2. The scheme’s computational burden is significantly less than other optimization

methods including Genetic Algorithm (GA) which we examine here.

To carry out the operational optimization, using the verified model, the cost func-

tion is formulated as 1) the lumped amount of mechanical energy consumption enforcing

operational time and torque saturation constraints, and 2) the summation of operational

time and consumed energy without any constraint. The effects of changes of optimization

variables on the cost function are studied using the global sensitivity analysis in order to

select the most effective ones, and a nominal “S-Shaped” trajectory is fitted for every joint

for a collision-free trajectory given. We utilize both Extremum Seeking and Genetic Al-

gorithms to improve the dynamic characteristics of the fitted (nominal) trajectories along

with minimizing energy consumption. The optimal trajectory is experimentally imple-

mented and thoroughly compared with the inefficient one.
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2.4.1 Energy-Wise Trajectory Optimization

The Baxter uses a simple linear PID controller for every joint with respect to the

initial and end points given in the joint space (while its gains are not adjustable), which

yields the jerky motions and subsequently, the inefficient operation of the robot. The un-

desirable responses can be observed through the experimental work which we have carried

out in our Dynamic Systems and Control Laboratory (DSCL). We observed that the robot

collides with other objects close to the end point making the motion unreliable and ineffi-

cient. This is counted as a harmful dynamical behavior for both the industrial and home

applications. As mentioned earlier, the robot operates using the PID controller which

in turn generates energy-inefficient trajectories. Note that Baxter, which is being ana-

lyzed here, has been designed for research purposes and hence has no predefined nominal

trajectory. Therefore, the coupled trajectory optimization of the robot, as a part of the

nonautonomous approach, is a necessity to be carried out in order to considerably reduce

the mechanical energy consumption along with removing the jerky motions to avoid such

a harmful collision discussed earlier.

The optimization needs to be formulated enforcing the operational time and torque

saturation constraints to avoid the expected singularities. The feasible joints’ ranges along

with the initial and end points are listed in Table 2.5. Note that one of the physical

constraints, which needs to be implemented in the optimization formulation, is zero angular

velocity/acceleration at the initial and zero angular velocity at the end points, indicating

that the manipulator would remain stationary at those points. This constraint leads us
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to the well-known “S-Shaped” trajectories which would yield the robot’s smooth dynamical

behavior by mitigating the effects of jerky motions. Such a smooth trajectory obviously

satisfies the initial/end point zero angular velocity condition.

It is worth mentioning that the conventional polynomials, including Spline/Bézier

ones, would yield considerably more variables to be optimized with respect to the joint-

space optimization, which in turn would expectedly impose cumbersome computational

costs. From another aspect, adding points between the initial and end points only imposes

additional constraints with a cumbersome computational cost which would be meaningless

with respect to the collision-free motion (except the collision between the robot’s end-

effector and other objects close to the end point due to the jerky motion).

Note that in experiments, the achievable Baxter joints’ angles are as follows, which

are slightly different from what reported by the manufacturer in Table 2.2.

Table 2.5: The ranges of joints’ angles (degree)

Joints’s
Range

Initial End

Name Point Point

S0 from -97.5◦ to 90◦ -87.0532◦ -25.6510◦

S1 from -80◦ to 60◦ -50.0156◦ 5.0300◦

E0 from -170◦ to 170◦ -10.1733◦ 41.0350◦

E1 from 0◦ to 150◦ 20.1435◦ 65.1590◦

W0 from -170◦ to 170◦ -30.1357◦ -85.2770◦

W1 from -90◦ to 115◦ 9.2920◦ -46.2050◦

W2 from -170◦ to 170◦ -60.0735◦ 12.0360◦
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We fit the following nonlinear functions (nominal trajectories) to the joints’ actual

trajectories which are generated with respect to the initial/end points given in Table 2.5

using the Baxter’s PID controller:

θi(k) = Ai tanh
(
Bi (k∆t)Ci

)
+Di i = 1, · · · , 7 (2.9)

where, k = 0, 1, · · · , N , ∆t indicates constant time step, tf = N∆t (operation time), and

Ai’s, Bi’s, Ci’s, and Di’s are calculated with respect to initial and end points and utilizing

the least square method for the trajectory fitting process listed in Table 2.6. Note that we

discretized the functions due to the discrete-time nature of the problem.

Table 2.6: The nominal trajectories’ coefficients

Joint’s Name A B × 102 C D

S0 61.4022 1.532 2.9430 -87.0532

S1 55.0456 1.489 2.9760 -50.0156

E0 51.2083 1.504 2.9385 -10.1733

E1 45.0155 1.510 2.9712 20.1435

W0 -55.1413 1.490 2.9910 -30.1357

W1 -55.9970 1.513 2.9293 9.2920

W2 72.1095 1.495 2.9382 -60.0735

The Ai’s and Di’s are constant/unique parameters for each joint and are easily

calculated as follows,

Ai = (Initial Points)i (2.10)

Di = (End Points− Initial Points)i (2.11)
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where (.)i means the i-th element of a vector. The Bi’s and Ci’s are the optimization

variables although a crucial issue to address is the number of parameters expectedly leading

to a cumbersome computational cost. Therefore, the sensitivity of the optimization process

to the variables of Bi’s and Ci’s needs to be carefully addressed.

2.4.2 Sensitivity Analysis

A global sensitivity analysis has to be carried out to examine the roles of Bi’s and

Ci’s in the optimization process. Typically, the local and global sensitivity analyses are

used in determining the effects of changes in the optimization variables on the cost function

defined.

The local sensitivity analysis (one-at-a-time (OAT) method) evaluates the effect

of one variable on the cost function at a time while keeping the other variables constant,

although the global sensitivity analysis utilizes a set of random samples to search the design

space concerning the bounds defined. The global analysis would be an efficient approach

as the change of each variable affects the dynamic characteristics of all the joints/links,

through the interconnected dynamic equations, and subsequently the lumped cost function.

To carry out the global sensitivity analysis, we need to numerically calculate the

gradient of the cost function with respect to the optimization variables as follows:

∇E =

[
∂E

∂Bi

,
∂E

∂Ci

]T
i = 1, · · · , 7 (2.12)

where,

E =
7∑
i=1

Ei =
7∑
i=1

N−1∑
k=0

∣∣∣τi(k)θ̇i(k)
∣∣∣∆t (2.13)
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Figure 2.5: The global sensitivity analysis with respect to the Bi’s
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Figure 2.5: The global sensitivity analysis with respect to the Bi’s, continued
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Figure 2.6: The global sensitivity analysis with respect to the Ci’s
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Figure 2.6: The global sensitivity analysis with respect to the Ci’s, continued
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Figs. 2.5 and 2.6 reveal that the roles of Bi’s are more drastic than the Ci’s. In other

words, the effects of Ci’s are negligible in comparison with those of Bi’s on the changes

of energy consumption. Therefore, all the Bi’s are logically chosen to be optimized using

both the ES and GA. The Bi’s are optimized subject to the following lower and upper

bounds determined through the constraints:

B = [B1, B2, B3, B4, B5, B6, B7] (2.14)

Bmin = [68, 69, 68.5, 69, 66.5, 69.3, 69]× 10−4 (2.15)

Bmax = [1385, 1368, 1372, 1368, 1383, 1390, 1386]× 10−4 (2.16)

The lower bound indicates the operational time, which we are willing to keep within

tf = 8s. Note that decreasing the lower bound would yield much slower motion which is

not desirable and logical, in particular for the industrial applications. The upper bound is

determined based on the practical torque saturation issue such that increasing the upper

bound would yield abrupt torques leading to both the motors’ failures and considerably

fast motion.

It is worth mentioning that Eq. (2.9) is the nonlinear function of the Bi leading to:

q(B, k) = [θ1(B1, k), · · · , θ7(B7, k)]T (2.17)

q̇(B, k) =
[
θ̇1(B1, k), · · · , θ̇7(B7, k)

]T
(2.18)

q̈(B, k) =
[
θ̈1(B1, k), · · · , θ̈7(B7, k)

]T
(2.19)
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Therefore, the joints’ torques (Eq. (2.5)) and subsequently the mechanical energy

consumed are the nonlinear functions of the Bi’s,

E(B) =
7∑
i=1

N−1∑
k=0

∣∣∣τi(B, k)θ̇i(B, k)
∣∣∣∆t

=
7∑
i=1

N−1∑
k=0

∣∣∣(Mi(B, k)q̈(B, k) + Ci(B, k)q̇(B, k) + Φi(B, k)
)
θ̇i(B, k)

∣∣∣∆t (2.20)

where Mi(B, k) and Ci(B, k) are the i-th rows of M and C matrices, respectively; and

q(B, k) = [θ1(B1, k), · · · , θ7(B7, k)]T (2.21)

q̇(B, k) = [θ̇1(B1, k), · · · , θ̇7(B7, k)]T (2.22)

q̈(B, k) = [θ̈1(B1, k), · · · , θ̈7(B7, k)]T (2.23)

Therefore, the optimization problem is a constrained one, enforcing the mentioned

lower and upper bounds, with the following cost function defined as the lumped amount

of mechanical energy consumed in the robot:

min
B
E(B)

Subject to : The Interconnected Equations

Bmin ≤ B ≤ Bmax

(2.24)

We hence need to optimize seven interconnected variables using both the ES and

GA. One issue to consider is the small values of the variables resulting in serious numerical

errors. We fixed this problem by conditioning them using a normalization scheme as
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follows:

Bn = B × 104 (2.25)

Two optimization schemes, including both the ES and GA, are utilized to avoid

being trapped in several possible local minima. The genetic method was developed based

on a heuristic search to mimic the process of natural selection [37]. The genetic algorithm

is typically more robust than other conventional schemes. It does not break down easily

in the presence of slight changes of inputs, and noise. For large-scale state-space equa-

tions, the algorithm may potentially exhibit significantly better performance than typical

optimization techniques.

Note that for the GA method we have utilized 1) “PopulationSize” of 200 for

the size of population, 2) “Generations” of 400 which indicates the maximum number of

iterations before the algorithm halts, 3) “MigrationFraction” of 0.2 specifying the frac-

tion of individuals in each subpopulation that migrates to a different subpopulation, and

4) “MigrationInterval” of 20 standing for the number of generations that take place be-

tween migrations of individuals between subpopulations, and 5) Function (TolFun) and

constraints (TolCon) tolerances of 10−6.
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2.5 Multivariable Optimization Using Gradient-Based

Extremum Seeking

Our objective is to develop a iterative feedback mechanism minimizing the energy

consumed (E), where its nonlinear static map is known to have an extremum. We utilize

the multivariable extremum seeking scheme [3,43,45,47], developed from Krstić and Wang

efforts [71], in obtaining optimal values B∗ = [B∗1 , · · · , B∗7 ]T .

The extremum seeking scheme estimates the gradient of the cost function defined

in addition to driving it to zero. The gradient is estimated using a zero-mean external

periodic perturbation (or dither signal) and a series of filtering and modulation operations.

The convergence of the gradient algorithm is dictated by the second derivative (Hessian)

of the cost function. The minimizer is the optimal parameters B∗ obtained by driving

the system with a B(l) = [B1(l), · · · , B7(l)]T to determine the cost value E(l) and then

iterating the discrete-time extremum seeking to produce the B(l+ 1); where l denotes the

l-th iteration of the algorithm [41].

Shown in Fig. 2.7 is a schematic of the discrete-time ES algorithm. It is worth men-

tioning that the measured output passing through a washout (high-pass) filter
(
W (z) = z−1

z+h

)
,

by having zero DC gain, expectedly helps better performance [33,41].
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×−εK
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ζB̂

E

M(l)S(l)

Figure 2.7: Discrete-time multivariable gradient-based extremum seeking using washout

filter

Note that there is a map from the Bi’s to the energy consumed (E) through Eq.

2.20. The extremum seeking-based optimization shown in Fig. 2.7 is governed by the

following equations:

B̂(l) =
−εK
z − 1

[ζ(l)] (2.26)

ζ(l) = M(l)
z − 1

z + h
[E(l)] (2.27)

B(l) = B̂(l) + S(l) (2.28)

where, B̂(l) =
[
B̂1(l), · · · , B̂7(l)

]T
, ε is a small positive parameter, K is a positive diagonal

matrix, and 0 < h < 1. The notation P (z)[q(l)] is used to denote the signal in the iteration

domain that is the output of the transfer function P (z) driven by q(l), where P (z) operates

with respect to the iteration domain. Note that q(l) is a signal in iteration domain, where

l denotes the l-th iteration.
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The perturbation signals M(l) and S(l) are given by

S(l) =

[
a1 cos(ω1l), · · · , a7 cos(ω7l)

]T
(2.29)

M(l) =

[
2
a1

cos(ω1l − φ1), · · · , 2
a7

cos(ω7l − φ7)

]T
(2.30)

with ak > 0 and the modulation frequencies are given by ωk = bkπ, where |bk| ∈ (0, 1) is a

rational number and the probing frequencies are selected such that ωi 6= ωj for all distinct

i, j, k ∈ {1, · · · , 7}. Also, phase values φk are selected such that Re
{
ejφkW (ejωk)

}
> 0 for

all k ∈ {1, · · · , 7} [41].

Using the Taylor series expansion of the cost function around the local minimum

B∗ (∇E(B∗) = 0), the cost function can be written as

E (B) = E (B∗) +
1

2
(B −B∗)T H (B −B∗) (2.31)

where H is a positive definite Hessian matrix
(
H := ∂2E

∂B2

)
. Note that cubic and higher

order terms are eliminated since they are negligible for local stability analysis via averaging

[33]. We then define

B̃(l) = B̂(l)−B∗ = B(l)− S(l)−B∗ (2.32)

Substituting Eq. (2.32) into Eq. (2.31) yields

E
(
B̃(l)

)
= E (B∗) +

1

2

(
B̃(l) + S(l)

)T
H
(
B̃(l) + S(l)

)
(2.33)

= E (B∗) +
1

2
B̃THB̃ + STHB̃ +

1

2
STHS (2.34)

Eq. (2.26) can be therefore rewritten as

B̃(l) =
−εK
z − 1

[ζ(l)]−B∗ (2.35)

37



which leads to the following difference equation by utilizing Eq. (2.34) and
(
W (z) = z−1

z+h

)
:

B̃(l + 1) =B̃(l)− εKM(l)W (z) [E(l)]

=B̃(l)− εKM(l)W (z) [E (B∗)]

− 1

2
εKM(l)W (z)

[
B̃(l)THB̃(l) + S(l)THS(l)

]
− εKM(l)W (z)

[
S(l)THB̃(l)

]
(2.36)

We utilize the following lemmas [41] to carry out the convergence analysis.

Lemma 1. The transfer function G(z) for any real φ can be written as:

G(z) [cos (ωl − φ) ν(l)] = Re
{
ej(ωl−φ)G

(
ejωz

)
[ν(l)]

}
(2.37)

Lemma 2. The following is true for any two rational functions P (·) and Q(·, ·):

Re
{
ej(ω1l−φ1)P

(
ejω1

)}
Re
{
ej(ω2l−φ2)Q

(
z, ejω2

)
[ν(l)]

}
=

1

2
Re
{
ej((ω2−ω1)l+φ1−φ2)P

(
e−jω1

)
Q
(
z, ejω2

)
[ν(l)]

}
+

1

2
Re
{
ej((ω2+ω1)l−φ1−φ2)P

(
ejω1

)
Q
(
z, ejω2

)
[ν(l)]

}
(2.38)

Lemma 3. The following is true for any rational functions Q(·, ·):

Re
{
ej(ωl−φ)Q

(
z, ejω

)
[ν(l)]

}
= cos(ωl − φ)Re

{
Q
(
z, ejω

)
[ν(l)]

}
− sin(ωl − φ)Im

{
Q
(
z, ejω

)
[ν(l)]

}
(2.39)
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Utilizing Lemma 1 to the last term of Eq. (2.36) results in

W (z)
[
STHB̃

]
= a Re

{
ejωQ

(
z, ejω

) [
HB̃

]}
(2.40)

where

a = diag [a1, · · · , a7] (2.41)

Ω
(
z, ejω

)
= diag

[
W
(
ejω1z

)
, · · · ,W

(
ejω7z

)]
(2.42)

Due to the fact that 2
a′

cos(ω′l− φ) = 2
a′

Re
{
ej(ω

′l−φ)
}

, and utilizing Lemmas 1 and

2, following holds,

2

a′
cos(ω′l − φ)W (z)

[
a cos(ω)HB̃

]
=2

a

a′
Re
{
ej(ω

′−φ)
}

Re
{
ejωW

(
ejωz

) [
HB̃

]}
=
a

a′

(
Re
{
ej((ω−ω

′)l+φ)W
(
ejωz

) [
HB̃

]}

+ Re
{
ej((ω+ω′)l−φ)W

(
ejωz

) [
HB̃

]})
(2.43)
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Then, using Lemma 2 and Eq. (2.43) follows,

M(l)W (z)
[
STHB̃

]
=


1 · · · a1

a7

...
. . .

...

a7
a1
· · · 1



×

 Re




eφ1 · · · ej(ω1−ω7)+φ1

...
. . .

...

ej(ω7−ω1)+φ7 · · · eφ7

Q
(
z, ejω

) [
HB̃

]


+ Re




e2jω1−φ1 · · · ej(ω1+ω7)−φ1

...
. . .

...

ej(ω7+ω1)−φ7 · · · e2jω7−φ7

Q
(
z, ejω

) [
HB̃

]


 (2.44)

Finally, we apply Lemma 3 for each Re {.} terms in Eq. (2.44) and we have,

M(l)W (z)
[
S(l)THB̃(l)

]
=C−(l)Re

{
Ω
(
z, ejω

) [
HB̃

]}
− S−(l)Im

{
Ω
(
z, ejω

) [
HB̃

]}
+ C+(l)Re

{
Ω
(
z, ejω

) [
HB̃

]}
− S+(l)Im

{
Ω
(
z, ejω

) [
HB̃

]}
(2.45)

where, C−,S−,C+, and S+ are 7× 7 matrices whose k-th rows are given by
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C−k (l) =

[
a1

ak
cos ((ω1 − ωk) l + φk) , · · · ,

a7

ak
cos ((ω7 − ωk) l + φk)

]
(2.46)

S−k (l) =

[
a1

ak
sin ((ω1 − ωk) l + φk) , · · · ,

a7

ak
sin ((ω7 − ωk) l + φk)

]
(2.47)

C+
k (l) =

[
a1

ak
cos ((ω1 + ωk) l − φk) , · · · ,

a7

ak
cos ((ω7 + ωk) l − φk)

]
(2.48)

S+
k (l) =

[
a1

ak
sin ((ω1 + ωk) l − φk) , · · · ,

a7

ak
sin ((ω7 + ωk) l − φk)

]
(2.49)

The diagonal elements of C− and S− are time-invariant. We define diagonal matri-

ces C−D and S−D containing the diagonal elements of C− and S−, respectively, to highlight

these time-invariant terms. Then, Eq. (2.45) can be rewritten as,

M(l)W (z)
[
STHB̃

]
=Re

{
Ω̄
(
ejφ
)

Ω
(
z, ejω

) [
HB̃

]}
+ (C−(l)− C−D)Re

{
Ω
(
z, ejω

) [
HB̃

]}
− (S−(l)− S−D)Im

{
Ω
(
z, ejω

) [
HB̃

]}
+ C+(l)Re

{
Ω
(
z, ejω

) [
HB̃

]}
− S+(l)Im

{
Ω
(
z, ejω

) [
HB̃

]}
(2.50)

where Ω̄
(
ejφ
)

= diag
[
ejφ1 , · · · , ejφ7

]
.

Substituting Eq. (2.50) into Eq. (2.36) yields the following error dynamics:

B̃(l + 1)− B̃(l) = ε
(
L(z)

[
HB̃

]
+ Ψ−1 (l) + Ψ+

1 (l) + Ψ2(l)
)

+ δ(l) (2.51)
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where,

L(z) =− K

2

(
Ω̄
(
ejφ
)

Ω
(
z, ejω

)
+ Ω̄

(
e−jφ

)
Ω
(
z, e−jω

))
(2.52)

Ψ−1 (l) =K
(
S−(l)− S−D

)
Im
{

Ω
(
z, ejω

) [
HB̃

]}
−K

(
C−(l)− C−D

)
Re
{

Ω
(
z, ejω

) [
HB̃

]}
(2.53)

Ψ+
1 (l) =KS+(l)Im

{
Ω
(
z, ejω

) [
HB̃

]}
−KC+(l)Re

{
Ω
(
z, ejω

) [
HB̃

]}
(2.54)

Ψ2(l) =− 1

2
KM(l)W (z)

[
B̃(l)THB̃(l)

]
(2.55)

δ(l) =− εKM(l)W (z) [E (B∗)]− 1

2
εKM(l)W (z)

[
S(l)THS(l)

]
(2.56)

It is straightforward to observe that the error dynamics evolve according to a sum of a

linear time-invariant term, L(z)
[
HB̃

]
, linear time-varying functions, Ψ−1 (l) and Ψ+

1 (l), a

nonlinear time-varying function, Ψ2(l), and a time-varying function, δ(l), which is inde-

pendent of the error of the optimization variable B̃.

We extend the results reported in [33] to establish the convergence of the multi-

variable discrete-time extremum seeking scheme. We present the local exponential con-

vergence of the homogeneous error system and then consider the full system (Eq. (2.51)),

including the δ(l) term, to establish its convergence.

2.5.1 Convergence of Homogeneous Error System

The following theorem states a sufficient condition for local exponential convergence

of the error system (Eq. (2.51)) regardless the δ(l) term. We deal with the homogeneous
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error system which is periodic in time l

B̃(l + 1)− B̃(l) = ε
(
L(z)

[
HB̃

]
+ Ψ−1 (l) + Ψ+

1 (l) + Ψ2(l)
)

(2.57)

Theorem 1. Consider the homogeneous error system (2.57) with modulation frequencies

that satisfy ωi 6= ωk for all distinct i, k ∈ {1, 2, · · · , 7} and phase values φk selected such

that Re
{
ejφkW (ejωk)

}
> 0 for all k ∈ {1, 2, · · · , 7}. There exists a positive constant

ε∗ such that the state-space realization is locally exponentially stable at the origin for all

0 < ε < ε∗. This theorem is proved as in [41].

Note that the eigenvalues of H, denoted by λ(H), play important roles in the

convergence rate of the extremum seeking [41].

2.5.2 Convergence of Full Error System

The established exponential stability of the averaged homogeneous error system

helps us investigate the full system (2.51). We state the convergence properties of δ(l)

through the following lemma; proved as in [41].

Lemma 4. The time-varying function δ(l) exponentially converges to an O (ε|a|) of zero,

|δ(l)| ≤ ε−1 + c1ε|a|, (2.58)

where c1 is a constant and a = [a1, · · · , a7].

Utilizing the perturbed averaged system [41],

B̃ave(l + 1) =
(
I − εK̄H

)
B̃ave(l) + δ(l) (2.59)
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and Lemma 4, we notice that B̃ave(l) converges exponentially to an O (|a|)-neighborhood

of the origin since |δ(l)| ≤ ε−1 + c1ε|a|. From [14], the exponential convergence rate of B̃

in Eq. (2.51) tends to the rate of B̃ave in the average system as ε tends to zero. We can

hence state the convergence of the overall B̃-system.

Theorem 2. Consider the full system (2.51) with the conditions of Theorem 1 satisfied.

For sufficiently small ak, k ∈ {1, 2, · · · , 7} there exists 0 < ε∗1 ≤ ε∗, such that the error

variable B̃ locally exponentially converges to an O (|a|)-neighborhood of the origin for all

0 < ε ≤ ε∗1.

Corollary 1. With the conditions of Theorem 2 satisfied, the cost value E locally expo-

nentially converges to an O (|a|2)-neighborhood of the optimal cost E(B∗).

Proof. By defining

Ẽ(B) = E(B)− E (B∗) =
1

2
B̃THB̃ + STHB̃ +

1

2
STHS (2.60)

From Theorem 2, B̃ locally exponentially converges to an O (|a|)-neighborhood of the

origin. Thus, Ẽ(B) locally exponentially converges to an O (|a|2)-neighborhood of the

origin.

2.5.3 Experimental Results

We used both the analytical (ES) and numerical (GA) approaches to obtain the

optimal values of Bi’s shown in Figs. 2.8 and 2.9, respectively. The optimal values of Bi’s

are listed in Table 2.7 indicating negligible differences between the methods.
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Table 2.7: Optimal trajectories’ coefficients

Joint Name Optimized B using ES Optimized B using GA

S0 0.0078 0.00703

S1 0.0071 0.00700

E0 0.1354 0.1400

E1 0.00703 0.00700

W0 0.1306 0.1398

W1 0.0703 0.0650

W2 0.1222 0.1212

It is straightforward to observe that the optimal values of B1, B2, and B4 shown in

Figs. 2.8(a), 2.8(b), and 2.8(d), respectively, are lower than the nominal ones indicating

that their corresponding links move slower than those of the nominal trajectories. This

subsequently leads to a significant reduction in the energy consumed. Note that the joint

S1, as expected, takes the biggest share of energy consumption and therefore, its lower

angular velocities would lead to a lower amount of the cost function defined.

Although, the optimal values of B3, B5, B6, and B7 presented in Figs. 2.8(c),

2.8(e), 2.8(f), and 2.8(a), respectively, are higher than those of the nominal ones resulting

in higher angular velocities of the optimal trajectories than the nominal ones.
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Figure 2.8: The optimal values of B’s using the ES
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Figure 2.8: The optimal values of B’s using the ES, continued
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Figure 2.9: The optimal values of B’s using the GA
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Figure 2.9: The optimal values of B’s using the GA, continued
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Shown in Figs. 2.10 and 2.11 are the energy consumptions minimized using both

the ES and GA, respectively. Fig. 2.10(a) presents the energy optimization process versus

time while the energy consumed sharply decreases to almost 37 J and then gradually

converges to the optimal value of 36.627 J (at t = 84.75s). Shown in Fig. 2.10(a) reveals

that the optimization of energy consumption fluctuates stochastically, as all the seven

parameters (Bi’s) are oscillating with seven different frequencies satisfying the mentioned

conditions. Therefore, the value of optimal energy is not transparent to be compared with

that of the GA one. We hence calculated its mean value over a running average window of

one cycle of the specified fundamental low frequency (Fig. 2.10(b)) to obtain the amount

of energy saved:

∆EES =

45.34(J)︷ ︸︸ ︷
Enominal−

36.527(J)︷ ︸︸ ︷
Eoptimal

Enominal

× 100 = 19.44% (2.61)
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Figure 2.10: The (a) actual and (b) mean value of energy optimized using the ES
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Shown in Fig. 2.11(a) is the energy consumption minimized using the GA, and its

best value is 36.631 (J) shown in Fig. 2.11(b).

∆EGA =

45.34(J)︷ ︸︸ ︷
Enominal−

36.631(J)︷ ︸︸ ︷
Eoptimal

Enominal

× 100 = 19.21% (2.62)
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Figure 2.11: (a) The energy optimized using the GA and (b) the convergence history of

the GA

From another aspect, Fig. 2.11 presents considerable computational cost (itera-

tions) of 46400 for the GA which looks logical concerning the scale of the coupled dynamic

equations resulting in a significant computational time of 2876s in comparison with 137s

of the ES method. Although Figs. 2.10 and 2.11 reveal a negligible difference (less than

1%) for the energy savings of both the schemes, the ES yields the better performance.

Such a superior performance of the ES can be justified as follows. The ES carries out

optimization by continuously sliding on the cost function in gradient direction rather than
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finding optimal points discretely with a certain step size of the GA.

We have also carried out experimental validation of the nonlinear analytical ap-

proach examining both the actual (inefficient) and optimal trajectories. The actual (inef-

ficient), nominal fitted to the actual, and optimal trajectories are presented in Fig. 2.12

revealing the differences expected.
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Figure 2.12: The actual (inefficient), nominal fitted to the actual, and optimal

trajectories using the ES and GA: (a) S0; (b) S1; (c) E0; (d) E1; (e) W0; (f) W1; (g) W2
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Figure 2.12: The actual (inefficient), nominal fitted to the actual, and optimal

trajectories using the ES and GA: (a) S0; (b) S1; (c) E0; (d) E1; (e) W0; (f) W1; (g) W2,

continued

Shown in Figs. 2.12(a), 2.12(b), and 2.12(d) indicate that the optimal angular

velocities of joints S0, S1, and E1 are lower than those of the nominal ones. As mentioned

earlier, the joint S0 takes the biggest share (Fig. 2.4(a)) among the other ones to consume
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the lumped amount of energy and therefore, its lower angular velocity would lead to a

lower amount of the cost function defined. From another aspect, the effects of such higher

values of the Bi’s (i = 3, 5, 6, 7) can be visualized in Figs. 2.12(c), 2.12(a), 2.12(b), and

2.12(c), respectively. Logically, the smooth optimal trajectories shown in Figs. 2.12(a)-

2.12(c), in comparison with the actual jerky ones, would expectedly demand lower driving

torques to be used in the robot operation.
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(a) (b)

(c) (d)

Figure 2.13: The experimental nominal and optimal trajectories using the ES in sample

times of (a) t = 1s, (b) t = 3s, (c) t = 5s, and (d) t = 6s; at t = 6s the robot’s

end-effector through the nominal trajectory collides with another object due to the jerky

motion while the optimal one avoids such a collision throughout the whole operational

time. The shadow frames present the nominal trajectory.

Fig. 2.13 presents the experimental work, for sample operation times of t = 1s,

t = 3s, t = 5s, and t = 6s, revealing smoother motions of the joints/links for the optimal

path than the actual (inefficient) one. The jerky motion of the actual trajectory caused an

undesirable collision between the robot’s end-effector and another object at t = 6s, while

the optimal one avoids such a collision throughout the whole operational time. Note that
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the shadow motions/frames stand for the actual (inefficient) operation.

In summary, the nominal operation shown in Fig. 2.13 is considerably faster than

the optimal one, expectedly consumes more energy, and causes the collision at t = 6s. For

the optimal case, the manipulator is fast enough, moves toward the end-point safely, and

no jerky motion can be observed.

2.6 Time-Energy Optimization

Within this Section, we define the following time-energy cost function without any

upper and lower bounds.

TE =
7∑
i=1

TEi =
7∑
i=1

N−1∑
k=0

∣∣∣τi(k)θ̇i(k)
∣∣∣∆t+ γtf (2.63)

where tf is the operation time as mentioned earlier, and γ > 0 is a weighting coefficient

indicating the importance of operational time tf versus consumed energy E. It is worth

mentioning that tf depends on the Bi’s and we still try to find the optimal values for Bi’s.

From the following equality, tf can be found based on the Bi’s.

tf = 2.3572

(
min

i∈{1,··· ,7}
(Bi)

)−0.3043

× exp

(
−3.3883

(
min

i∈{1,··· ,7}
(Bi)

)0.6957
)

(2.64)

The optimal values of Bi’s with γ = 5 are listed in the following table and compared

with the optimal values of the energy optimization case.
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Table 2.8: Optimal trajectories’ coefficients using ES

Joint Name Energy Optimization Time-Energy Optimization

S0 0.0078 0.0741

S1 0.0071 0.0685

E0 0.1354 0.1124

E1 0.00703 0.0323

W0 0.1306 0.1180

W1 0.0703 0.0643

W2 0.1222 0.1059

The optimal operation time in accordance with these Bi’s is tf = 4.9087s and, as

expected, the consumed energy is E = 41.4273J . The optimization process for the Bi’s

and cost function defined in (2.63) are shown in Fig. 2.14 and Fig. 2.16, respectively.

0 5 10 15 20

Time(Sec)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

B
1

(a)

0 5 10 15 20

Time(Sec)

0.058

0.06

0.062

0.064

0.066

0.068

0.07

B
2

(b)

Figure 2.14: The optimal values of Bi’s using the ES for (a) S0; (b) S1; (c) E0; (d) E1;

(e) W0; (f) W1; (g) W2
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Figure 2.14: The optimal values of Bi’s using the ES for (a) S0; (b) S1; (c) E0; (d) E1;

(e) W0; (f) W1; (g) W2, continued
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Figure 2.15: The actual (inefficient), energy-wise optimal, and time-energy optimal

trajectories using the ES and GA: (a) S0; (b) S1; (c) E0; (d) E1; (e) W0; (f) W1; (g) W2
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Figure 2.15: The actual (inefficient), energy-wise optimal, and time-energy optimal

trajectories using the ES and GA: (a) S0; (b) S1; (c) E0; (d) E1; (e) W0; (f) W1; (g) W2,

continued

Fig. 2.15 reveals that all time-energy optimal trajectories reach to the end-point

in less than 5s, since the operational time is tf = 4.9087s as mentioned earlier. Shown in

Fig. 2.16 is the cost function defined in (2.63) versus time and also minimization process
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using the ES.
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Figure 2.16: The cost function optimization process using the ES

According to Eq. (2.64), the operation time tf decreases for the minimum value of

Bi’s, although it dramatically increases for when one of the Bi’s gets close to zero at the

beginning of optimization process. Fig. 2.16 presents that, after a notable surge, the cost

function sharply decreases and then gradually converges to the optimal value of 65.9708

(at t = 18.9500s). Note that shown in Fig. 2.10(a) reveals that the optimization process

is subject to stochastic fluctuations, as all the seven parameters (Bi’s) are oscillating with

seven different frequencies satisfying the mentioned conditions.

∆TEES =

76.8108︷ ︸︸ ︷
TEnominal−

65.9708︷ ︸︸ ︷
TEoptimal

TEnominal

× 100 = 14.11% (2.65)

To summarize, through the time-energy optimization process, the cost function

decreases from 76.8108 to 65.9708 (14.11%) and consequently, the consumed energy in-

creases from 36.8108J to 41.4273J (11.14%) while the operational time decreases from 8s
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to 4.9087s (38.64%). Finally, the results of time-energy optimization process are compared

with the energy-wise optimization process:

Table 2.9: Comparing energy and time-energy optimization using ES

Nominal Opr. Energy Opt. Time-Energy Opt.

Opr. Time (s) 8.0 8.0 4.9087

Consumed Energy (J) 45.34 36.631 41.4273

Saving Consumed Energy – 19.44% 8.63%

Saving Opr. Time – 0 38.64%

Based on Eq. (2.63), γ is an indicator to reveal the significant role of operation

time for the minimization process; the higher values of γ would expectedly yield the higher

amount of energy saved.

2.7 Conclusions

Through this chapter, we presented the interconnected trajectory optimization of a

7-DOF Baxter manipulator using both the extremum seeking and heuristic-based methods

to avoid being trapped in several possible local minima. The coupled dynamic equations

of the robot were derived utilizing the Lagrangian method and then validated through the

experimental work. We then optimized the joints’ trajectories to generate smooth paths

to avoid being exposed to the jerky motions of the nominal ones in addition to minimizing

energy consumption.

The global sensitivity analysis was then carried out to evaluate the effects of changes

in the optimization variables on the cost function defined leading to select the most effective
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ones. Based on the sensitivity analysis, the Bi’s were optimized to considerably decrease

the operation’s energy consumed and also to address the crucial issue of jerky motion.

Finally, the optimal trajectory was experimentally implemented and compared with

the actual (inefficient) one. The results revealed that the proposed scheme yields the min-

imum energy consumption in addition to overcoming the robot’s jerky motion observed

in an inefficient path, and also demonstrated that the manipulator safely follows the op-

timized trajectory and, as expected, tends to the end-point. The principal results of this

chapter can be summarized as follows:

X Using the multivariable discrete-time Extremum Seeking results in a significant de-

crease in computational cost, an almost twenty-fold reduction relative to Genetic

Algorithm.

X A considerable amount of energy is saved (upward of 19%).

X The jerky motion and the subsequent collision between the robot’s end-effector and

another object close to the end-point are removed using the optimal trajectory, which

is noted in experimental results.

X The time-energy optimization results in the energy saving of 8.63% along with 38.64%

reduction in the operation time.
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2.8 Notes and References

In this chapter, the model of 7-DOF Baxter robot was presented and then ex-

perimentally verified. Based on the model, the operational optimization using both the

multi-variable discrete-time Extremum Seeking (ES) and Genetic Algorithm (GA) was

carried out.

One possible future work would be the modeling of friction in the joints to derive

a high fidelity model and also defining various cost functions based on the applications of

the manipulator. It is also of great interest to study real-time optimization.

Chapter 2 contains reprints or adaptions of the following papers: 1) M. Bagheri, M.

Krstić, and P. Naseradinmousavi, “Multivariable Extremum Seeking for Joint-Space Tra-

jectory Optimization of a High-Degrees-of-Freedom Robot,” ASME Journal of Dynamic

Systems, Measurement, and Control, Vol. 140, Issue 11, pp. 111017-111017-13, 2018;

2) M. Bagheri, M. Krstić, and P. Naseradinmousavi, “Joint-Space Trajectory Optimiza-

tion of a 7-DOF Baxter Using Multivariable Extremum Seeking,” IEEE American Control

Conference (ACC 2018), pp. 2176-2181, June 27-29, Milwaukee, WI, USA, 2018; 3) M.

Bagheri, P. Naseradinmousavi, “Novel Analytical and Experimental Trajectory Optimiza-

tion of a 7-DOF Baxter Robot: Global Design Sensitivity and Step Size Analyses,” The

International Journal of Advanced Manufacturing Technology, Vol. 27, Issue 9, pp. 1-15,

2017. The dissertation author is the primary investigator and author of these papers, and

would like to thank Miroslav Krstić and Peiman Naseradinmousavi for their contributions.
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Chapter 3

Nonlinear Predictor Feedback for

Multi-Input Nonlinear Systems With

Input Delay

Through this Chapter, we formulate a robust predictor-based controller for a high-

DOF manipulator to compensate a time-invariant input delay during a pick-and-place task.

Robot manipulators are widely used in telemanipulation systems on the account of their

reliable, fast, and precise motions while they are subject to large delays. Using common

control algorithms on such delay systems can cause not only poor control performance,

but also catastrophic instability in engineering applications.

Therefore, delays need to be compensated for designing robust control laws. As

a case study, we focus on a 7-DOF Baxter manipulator subject to three different input

delays. Using the verified model in Chapter 2, we formulate a predictor-based controller,
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in the presence of input delay, to track desired trajectories. Finally, the effects of input

delays in the absence of a robust predictor are investigated, and then the performance of

the predictor-based controller is experimentally evaluated to reveal the robustness of the

algorithm formulated.

3.1 Background

Robot manipulators are widely used in various applications to track desired tra-

jectories, particularly in telemanipulation systems such as moving debris and turning

valves [6]. Remote manipulators provide the capability of executing tasks safely at an

unreachable/dangerous location while they are subject to large input delays as with many

engineering systems. Interest in delay, as a common dynamic phenomenon, is driven by

applications in modeling and control of traffic systems [99], teleoperators [38,48,74], vehi-

cles [1], chemical process control, and robot manipulators [31, 40]. Moon et. al presented

a characteristic motion profile acquired by the recorded human hesitation motions in [81],

and investigated its efficacy in a fast-paced human-robot interaction experiment. It is also

interesting that Kazuaki et. al focused on “delays in initiating actions” and investigated

its effect in learning efficiency [105].

The detrimental impact of time delay is well-established, which plays the most

significant role in degrading remote perception and manipulation. Large input delays

often arise from communication delay between sensor and actuator, or from the time-

consuming computational burden of multi-agent networks. For instance, the foremost
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concern of vision-based control is tackling the delay introduced by image acquisition and

image processing. One of the earliest challenges in engineering has been the control of

systems subject to delays. Note that a common approach to tackle this problem is the

use of predictive algorithms. In 1959, Smith presented the delay compensator known as

the Smith predictor [98]. However, in some cases, the Smith predictor – a modification of

a nominal controller designed to stabilize the delay-free system – may fail to achieve the

closed-loop stability when the plant is unstable [67].

Many studies in recent years were carried out for linear systems subject to the input

delays [16–19, 28, 58, 69, 113, 114]. Tsubakino et al. [106] proposed a predictor-based state

feedback controller for multi-input linear time-invariant (LTI) systems with different time

delays in each individual input channel using the modified backstepping transformation

due to the differences among delays. In addition to many researches on linear systems,

the further recent developments of predictor-based control laws for nonlinear systems with

input delays can be found in [20–22, 29, 32, 59, 61, 65, 66, 68]. Motivated by the harmful

consequences of input delays on the stability and performance of such control systems, we

formulate and implement a predictor-feedback controller [23] for the compensation of large

input delays in a multi-input highly nonlinear system – the 7-DOF Baxter manipulator as

a case study. We reasonably assume that all input channels induce the same delay due to

the fact that it is practically impossible to have different delays for the robot with highly

coupled dynamics.

This chapter is organized as follows. We formulate the predictor-feedback con-

trol law and present the global asymptotic stability of the closed-loop system using the
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predictor-feedback control law and necessary assumptions [7, 11, 12]. Finally, a section

is devoted to the results of experiments (pick-and-place task) in order to reveal the sig-

nificance of predictor for the system stabilization in the presence of three different input

delays.

3.2 Designing the Predictor-Based Controller

Using the verified model in Chapter 2, and noting that the inertia matrix M(q) is

symmetric, positive definite, and consequently invertible, the multi-input nonlinear system

(2.5) can be written as 14th-order ODEs with the following general state-space form,

Ẋ = f0(X,U) (3.1)

where X = [q1, · · · , q7, q̇1, · · · , q̇7]T ∈ R14 is the vector of states and U = τ7×1 ∈ R7 is the

input of nonlinear system (3.1).

Since we intend to design a predictor-based controller leading to perfect tracking,

we derive error dynamics and then design the controller to stabilize the error dynamics

making the origin asymptotically stable.

Ė = f(E,U) (3.2)

where E = [eT
1 , e

T
2 ]T ∈ R14 is the vector of error states and e1(q, t), e2(q, q̇, t) ∈ R7 are

defined as

e1 = qdes − q (3.3)

e2 = ė1 + α e1 (3.4)
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where α ∈ R7 is a constant positive definite matrix, and the following assumption is held

for the desired joint trajectories.

Assumption 1. The desired joint trajectories are assumed to be designed such that qdes(t),

q̇des(t), and q̈des(t) ∈ R7 exist and are bounded for all t ≥ 0.

Note that dealing with highly nonlinear and coupled dynamic equations could cause

a complicated problem of designing a computationally efficient control scheme to avoid the

large delay. Therefore, we derive a predictor-based controller for a multi-input nonlinear

system, in the presence of input delay, to stabilize the closed-loop system.

In order to demonstrate the generality of our approach, consider the following

general multi-input nonlinear system with m inputs, n states, and constant input delay

D,

Ẋ(t) = f (X(t), U1(t−D), · · · , Um(t−D)) (3.5)

where, X ∈ Rn is the vector of states, U1, · · · , Um ∈ R are the control inputs, D > 0 is

an input delay, and f : Rn × Rm → Rn is a locally Lipschitz vector field. We assume

that a feedback law Ui(t) = κi(X(t)) is known such that the functions κi : Rn → R

globally asymptotically stabilize the delay-free system – the closed-loop system Ẋ(t) =

f(X(t), κ(X(t))) is globally asymptotically stable in the absence of delay. Therefore, in

the delay system, the control law needs to be as follows:

Ui(t−D) = κi(X(t)) (3.6)

which can be expressed as

Ui(t) = κi(X(t+D)) = κi(P (t)) (3.7)
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where P (t) is the D-time units ahead predictor of X(t). The predictor law for the system

(3.5) is given by,

P (t) = X(t) +

∫ t

t−D
f
(
P (θ), U1(θ), U2(θ), · · · , Um(θ)

)
dθ (3.8)

with the following initial conditions for the integral (3.8),

P (θ) = X(0) +

∫ θ

−D
f
(
P (s), U1(s), U2(s), · · · , Um(s)

)
ds (3.9)

where θ ∈ [−D, 0]. Note that using the following equality,∫ t

t−D
f(x)dx =

∫ 0

0−D
f(x+ t)d(x+ t) =

∫ 0

−D
f(x+ t)d(x)

= −
∫ −D

0

f(x+ t)d(x) = −
∫ D

0

f(−x+ t)d(−x)

=

∫ D

0

f(t− x)d(x) (3.10)

The predictor P (t) can be written as follows,

P (t) = X(t) +

∫ D

0

f(P (t− θ), U1(t− θ), U2(t− θ), · · · , Um(t− θ)) dθ (3.11)

It is worth mentioning that P (t) is defined in terms of its past values, however a

solution P (t) to Eq. (3.8) does not always exist since the control applied after t = D

has no effect on the plant over the time interval [0, D]; consequently the system (3.5) can

exhibit finite escape before t = D.

Therefore, in order to ensure the global existence of the predictor state, we need to

be sure that, for all initial conditions and all locally bounded input signals, the system’s

solutions exist for all time. This property is the so-called “forward completeness”. For

designing the predictor-based controller, we utilize the results of [23].
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3.2.1 Equivalent Representation of the Plant Using Transport

PDEs for the Actuator’s States

Delay, as a common dynamic phenomenon, can be represented by a partial differ-

ential equation (PDE) of transport type, which evolves in one spatial dimension, with one

derivative in space and one derivative in time. To prepare for our subsequent stability

analysis, we introduce the representations of the plant using transport PDEs.

ODEs with delays are interconnected systems of ODEs and transport PDEs. A

control system with ODE plant in the presence of input delay has a cascade PDE-ODE

structure, where the control signal enters through a boundary condition of the PDE [67].

Since a system with input delay is a PDE-ODE cascade with the control signal U(t)

entering through a boundary condition of the PDE, a system with an input delay is a

boundary control system.

The system (3.5) can be written equivalently as the following PDE system,

Ẋ(t) = f(X(t), u1(0, t), · · · , um(0, t)) (3.12)

∂tui(x, t) = ∂xui(x, t), x ∈ (0, D), i = 1, · · · ,m (3.13)

ui(D, t) = Ui(t) i = 1, · · · ,m (3.14)

Note that the solutions to (3.13) and (3.14) are given by

ui(x, t) = Ui(t+ x−D), x ∈ [0, D] i = 1, · · · ,m (3.15)
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3.2.2 Transport PDE Representation of the Predictor States

The predictor states P (θ) can be written as

p(x, t) = X(t) +

∫ x

0

f (p(y, t), u1(y, t), · · · , um(y, t)) dy (3.16)

where x ∈ [0, D]. Based on Eq. (3.16), the functions p(x, t) satisfy the following ODE in

x:

∂xp(x, t) = f (p(x, t), u1(x, t), · · · , um(x, t)) x ∈ [0, D] (3.17)

with initial solution,

p(0, t) = X(t) (3.18)

We intend to reveal that the solution to (3.17) and (3.18) is

p(x, t) = X(t+ x), x ∈ [0, D] (3.19)

Note that the function X(t+ x) satisfies the ODE in x (3.17) due to the (3.5):

Ẋ(t+ x) = f (X(t+ x), U1(t+ x−D), · · · , Um(t+ x−D)) , (3.20)

for all t ≥ 0 and 0 ≤ x ≤ D. This is resulted from the uniqueness of solutions to the ODE

(3.5). Therefore, by defining

p(D, t) = P (t) (3.21)

and using the fact that p is a function of one variable, namely x+ t, one can conclude that

P (t+ x−D) = p(x, t), x ∈ [0, D] (3.22)
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Through the change of variables x = θ + D − t in Eq. (3.16), and utilizing Eqs.

(3.15), (3.18), and (3.22) result in

P (θ) = X(t) +

∫ θ

t−D
f (P (s), U1(s), · · · , Um(s)) ds (3.23)

where t−D ≤ θ ≤ t. Finally, with this representation, the following holds

Ui(t) = ui(D, t) = κi(p(D, t)), i = 1, · · · ,m (3.24)

We define the backstepping transformation of ui and its inverse backstepping based

on the following lemmas:

Lemma 5. The direct backstepping transformations of ui, i = 1, · · · ,m, are defined by

wi(x, t) = ui(x, t)− κi(p(x, t)) (3.25)

with x ∈ [0, D], p(x, t) is defined in (3.16) and transforms system (3.12)-(3.14) to the

following “target system”:

Ẋ(t) = f
(
X(t), w1(0, t) + κ1(X(t)), wm(0, t) + κm(X(t))

)
(3.26)

∂twi(x, t) = ∂xwi(x, t), x ∈ (0, D) (3.27)

wi(D, t) = 0 (3.28)

Lemma 6. The inverse backstepping transformations of (3.25) are defined by

ui(x, t) = wi(x, t) + κi(π(x, t)), i = 1, · · · ,m (3.29)

with x ∈ [0, D] and π(x, t) is defined as follows

π(x, t) = X(t) +

∫ x

0

f
(
π(y, t), w1 + κ1(π(y, t)), · · · , wm + κm(π(y, t))

)
dy (3.30)

72



Therefore,

∂xπ(x, t) = f (π(x, t), κ1(x, t) + w1(x, t), · · · , κm(x, t) + wm(x, t)) (3.31)

where x ∈ [0, D], with the following initial solution,

π(0, t) = X(t) (3.32)

It is worth mentioning that the ultimate purpose of the p-system and the π-system

is to generate the plant predictor and the target predictor, respectively, in the following

forms

P (t) = p(D, t) (3.33)

Π(t) = π(D, t) (3.34)

Lemma 7. The functions (X(t), u(x, t)) satisfy Eqs. (3.12), (3.13) if and only if the

functions (X(t), w(x, t)) satisfy Eqs. (3.26), (3.27), where the three functions X(t), u(x, t),

and w(x, t) are related as mentioned above.

Proof. This result is immediate by noting that u(x, t) and w(x, t) are functions of only

one variable, x + t, and therefore so are p(x, t) and π(x, t) based on the ODEs (3.17),

(3.18), (3.31), and (3.32). This implies that

pt(x, t) = px(x, t) (3.35)

πt(x, t) = πx(x, t) (3.36)
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From this observation it follows that

wt(x, t)− wx(x, t) =ut(x, t)−
∂κ(p(x, t))

∂p
pt(x, t)

−
(
ux(x, t)−

∂κ(p(x, t))

∂p
px(x, t)

)
= 0 (3.37)

ut(x, t)− ux(x, t) =wt(x, t)−
∂κ(π(x, t))

∂π
πt(x, t)

−
(
ux(x, t)−

∂κ(π(x, t))

∂π
πx(x, t)

)
= 0 (3.38)

which completes the proof.

Also, based on the necessary ISS assumption for the system, we can mention the

following lemma,

Lemma 8. There exists a class KL function β1 such that the following holds

Ξ̄(t) ≤ β1

(
Ξ̄(0), t

)
, for all t ≥ 0 (3.39)

where

Ξ̄(t) = |X(t)|+
m∑
i=1

‖wi(., t)‖∞ (3.40)

The following lemmas help the proof of closed-loop system stability [23],

Lemma 9. There exist class K∞ functions ρ such that

‖p(., t)‖∞ ≤ ρ(Ξ(t)) (3.41)

where

Ξ(t) = |X(t)|+
m∑
i=1

‖ui(., t)‖∞ (3.42)
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Lemma 10. There exist class K∞ functions ρ̄ such that

‖π(., t)‖∞ ≤ ρ̄(Ξ̄(t)) (3.43)

where Ξ̄ is defined in (3.40).

Lemma 11. There exist class K∞ functions ρ and ρ̄ such that

Ξ̄(t) ≤ ρ(Ξ(t)) (3.44)

Ξ(t) ≤ ρ̄(Ξ̄(t)) (3.45)

Finally, based on the mentioned lemmas, the following theory can be utilized, which

is proved in [23].

Theorem 3. Consider the closed-loop system consisting of the plant (3.12) – (3.14) and the

control laws (3.24). Under Assumptions of forward completeness for open-loop system and

the Input-to-State Stability (ISS) for closed-loop one, there exists a β function which belongs

to class KL such that for all initial conditions X0 ∈ Rn and ui0 ∈ C[0, D], i = 1, · · · ,m,

which are compatible with the feedback laws, that is, they satisfy ui0(D) = κi(p(D, 0)), i =

1, · · · ,m, the closed-loop system has a unique solution X(t) ∈ C1[0,∞) and ui(x, t) ∈

C ([0, D]× [0,∞)) , i = 1, · · · ,m, and the following holds for all t ≥ 0,

Ξ(t) ≤ β (Ξ(0), t) , for all t ≥ 0 (3.46)

where Ξ(t) defined in (3.42).

Proof of Theorem 3: By combining Eq. (3.45) with Eq. (3.39), we get that Ξ(t) ≤

ρ̄
(
β1(Ξ̄(0), t)

)
, for all t ≥ 0, and hence, with Eq. (3.45) we arrive at Eq. (3.46) with
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β(s, t) = ρ̄ (β1(ρ(s), t)). The proof of existence and uniqueness of a solution X(t) ∈

C1[0,∞) and ui(x, t) ∈ C([0, D] × [0,∞)), i = 1, · · · ,m, is shown as follows. Using

relation (3.17) for t = 0, the compatibility of the initial conditions ui0 , i = 1, · · · ,m, with

the feedback laws (3.24) guarantee that p(x, 0) ∈ C1[0, D]. Hence, using relations (3.16)

and (3.18), and the fact that ui0 ∈ C[0, D], i = 1, · · · ,m, it also follows from (3.25)

that wi0 ∈ C[0, D], i = 1, · · · ,m. The solutions to (3.27) and (3.28) are given for all

i = 1, · · · ,m by

wi(x, t) =


wi0(t+ x), 0 ≤ x+ t ≤ D

0, x+ t ≥ D

(3.47)

There is a unique solution for (3.47) due to the uniqueness of the solution to

(3.27) and (3.28). Hence, the compatibility of the initial conditions ui0 , i = 1, ...,m,

with the feedback laws (3.24) guarantee the existence of a unique solution wi(x, t) ∈

C ([0, D]× [0,∞)) , i = 1, · · · ,m. Also, it follows that X(t) ∈ C1[0,∞) from the tar-

get system (3.26). The fact that π(x, t) = X(t + x), for all t ≥ 0 and x ∈ [0, D],

along with the inverse backstepping transformations (3.29) guarantee that ui(x, t) ∈

C ([0, D]× [0,∞)) , i = 1, · · · ,m. The proof is completed.

Notation: We denote by K the set of strictly increasing continuous functions α : [0,∞)→

[0,∞) with α(0) = 0. α belongs to K∞ if α ∈ K and limr→∞ α(r) =∞. We denote by KL

the set of functions β : [0,∞)× [0,∞)→ [0,∞) such that, for each s ∈ [0,∞), r → β(r, s)

is nondecreasing and continuous and β(0, s) = 0 and, for each r ∈ [0,∞), s → β(r, s) is

monotonically decreasing with β(r, s)→ 0 as s→∞.

Finally, in the form of standard delay notation, the backstepping transformation
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that we associate with this control law and its inverse transformation are given by

Wi(t) = Ui(t)− κi(P (t)) (3.48)

Ui(t) = Wi(t) + κi(Π(t)) (3.49)

where P (t) is defined above and Π(t) is defined via the integral equation

Π(t) = X(t) +

∫ t

t−D
f(Π(θ), κ1(Π(σ)) +W1(σ), · · · , κm(Π(σ)) +Wm(σ)) dθ (3.50)

with initial condition

Π(θ) =

∫ θ

−D
f(Π(σ), κ1(Π(σ)) +W1(σ), · · · , κm(Π(σ)) +Wm(σ)) dσ +X(0), θ ∈ [−D, 0]

(3.51)

The purpose of this backstepping transformation is that it results in a closed-loop

system (target system) of the form

Ẋ(t) = f(X(t), κ1(X) +W1(t−D), · · · , κm(X) +Wm(t−D)) (3.52)

W (t) ≡ 0 , for t ≥ 0 (3.53)

where W (t) for t ∈ [−D, 0] is defined by Eqs. (3.48) and (3.9). Clearly, the nonzero values

of W (t), which occur only over the interval [−D, 0], depend only on the initial condition

X(0) and the initial actuator state, U(σ), σ ∈ [−D, 0].

Note that P = Π, however, they play different roles because they are driven by

different inputs (U versus W ). The mapping (3.48) represents the direct backstepping

transformation U → W , whereas Eq. (3.49) represents the inverse backstepping transfor-

mation W → U . Both transformations are nonlinear and infinite-dimensional.
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For global stabilization via predictor feedback, we require all of the following three

ingredients [66]:

X The target system is globally asymptotically stable;

X The direct backstepping transformation is globally well defined;

X The inverse backstepping transformation is globally well defined.

As the system is forward-complete and is globally stabilizable in the absence of

input delay, both the plant-predictor and target-predictor systems, as well as both the

direct and inverse backstepping transformations (Eqs. (3.48) and (3.49)), will be globally

well defined. Consequently, the predictor feedback will be globally stabilizing within this

class.

By using (3.15) and Theorem 4 as a result of [23], we have the following theorem

in the form of standard delay notation,

Theorem 4. Consider the closed-loop system consisting of the plant (3.5) with input

delay. If there exist control laws (3.7)–(3.8) such that Ẋ(t) = f(X(t), κ(X(t))) becomes

asymptotically stable, subject to the assumptions of open-loop system forward completeness

and the Input-to-State Stability (ISS) of closed-loop system Ẋ(t) = f(X(t), κ(X(t)) + ω)

with respect to ω, the following holds for all t ≥ 0,

Ω(t) ≤ β (Ω(0), t) (3.54)

where

Ω(t) = |X(t)|+
n∑
i=1

sup
t−D≤θ≤t

|Ui(θ)| (3.55)
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3.2.3 Error System Development

The control objective includes converging joint position and velocity errors to

zero implying the generalized coordinates track the desired time-varying joint trajecto-

ries, qdes(t) ∈ R7. A state-space model for the tracking error (Eq. (3.2)) is developed

based on Eqs. (3.3) and (3.4). Then a controller is formulated to improve tracking perfor-

mance indices, converging errors to zero, subject to the assumption of knowing the system

dynamics, as mentioned earlier.

A state-space model, based on the tracking error, is formulated using Eq. (3.4) and

its time derivative,

ė1 = q̇des − q̇ (3.56)

ė2 = q̈des − q̈ + α ė1 (3.57)

Premultiplying the inertia matrix by the time derivative of Eq. (3.57), while Eqs.

(2.5) and (3.4) are substituted,

−M(q)ė2 + (M(q)α− C(q, q̇))e2 +
(
−M(q)α2 + C(q, q̇)α

)
e1

+M(q)q̈des + C(q, q̇)q̇des +G(q) = τ (3.58)

which yields,

ė2 = αe2 + h−M−1τ (3.59)

where h ∈ R7 is a nonlinear function defined as

h = q̈des − α2e1 +M−1C (q̇des + αe1 − e2) +M−1G (3.60)
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and the state-space model of error dynamics becomes,

Ė = f(E, τ) =

 e2 − αe1

αe2 + h−M−1τ

 (3.61)

As we mentioned through Theorem 4, the forward completeness and ISS properties

for the nonlinear system should be established. The forward-complete systems include all

linear systems both stable and unstable, as well as various nonlinear systems with bounded

nonlinearities. The mathematical model of robot manipulators contains trigonometric

nonlinearities as a result of rotational motions, which implies that q(t) and consequently

e1(t) do not escape to infinity within a finite time. Therefore, robot manipulators are the

forward-complete nonlinear systems [66]. We can also utilize the following theorem [2] to

establish that the system is forward complete,

Theorem 5. System ẋ = f(x, d) is forward complete if and only if there exists a proper

and smooth function V : Rn → R≥0 such that the following exponential growth condition

is verified:

DV (x)f(x, d) ≤ V (x), ∀x ∈ Rn,∀d ∈ D (3.62)

So, this theorem by [2] ensures that the assumption of Theorem 3 holds if we can

establish (3.62). We now establish (3.62) by first considering the following Lyapunov

function,

V (E) =
1

2
eT1 e1 +

1

2
eT2 e2 (3.63)
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We have,

V̇ = eT1 (e2 − αe1) + eT2 (αe2 + h−M−1τ)

= eT1 e2 − eT1 αe1 + eT2 αe2 + eT2 h− eT2M−1τ (3.64)

Since M , M−1, and C include trigonometric functions, we get

eT1 e2−eT1 αe1 + eT2 αe2 ≤
1

2

(
eT1 e1 + eT2 e2

)
− λmeT1 e1 + λMe

T
2 e2 (3.65)

eT2 h ≤eT2
(
q̈des − α2e1 +M−1Cq̇des +M−1G+M−1Cαe1 −M−1Ce2

)
≤1

2

(
eT2 e2 + q̈Tdesq̈des

)
+
γ1

2

(
eT2 e2 + eT1 e1

)
+
γ2

2

(
eT2 e2 + q̇Tdesq̇des

)
+
γ3

2

(
eT2 e2 + Γ2

)
+
γ4

2

(
eT2 e2 + eT1 e1

)
− γ5

(
eT2 e2

)
(3.66)

−eT2M−1τ ≤ γ6

2

(
eT2 e2 + τT τ

)
(3.67)

where λM and λm denotes the maximum and minimum eigenvalues of matrix α, respec-

tively. Also, γ′is > 0 (i = 1, 2, 3, 4, 5, 6) and Γ is the L2-norm of gravitational vector.

Substituting Eqs. (3.65), (3.66), and (3.67) into Eq. (3.64) yields,

V̇ ≤ (1− 2λm + γ1 + γ4)

(
1

2
eT1 e1

)

+ (2 + 2λM + γ1 + γ2 + γ3 + γ4 − 2γ5 + γ6)

(
1

2
eT2 e2

)

+
1

2

(
q̈Tdesq̈des

)
+
γ2

2

(
q̇Tdesq̇des

)
+
γ3

2
Γ2 +

γ6

2
|τ |2

≤γ6

(
1

2
eT1 e1 +

1

2
eT2 e2

)
+ γ7 (3.68)
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where,

γ6 = max
{(

1− 2λm + γ1 + γ4

)
,
(
2 + 2λM + γ1 + γ2 + γ3 + γ4 − 2γ5 + γ6

)}
(3.69)

1

2

(
q̈Tdesq̈des

)
+
γ2

2

(
q̇Tdesq̇des

)
+
γ3

2
Γ2 +

γ6

2
|τ |2 ≤ γ7 (3.70)

since τ , q̈des and q̇des are bounded, we get,

V̇ ≤ γ6V (E) + γ7 (3.71)

Consequently, (V (E)+ γ7
γ6

)
1
γ6 is a smooth Lyapunov function satisfying (3.62). With

this function, which differs from classical Lyapunov functions because it is not positive

definite because it is not zero at zero (note that this property is not required anyway in

Theorem 5), we have established that the following assumption of Theorem 3 is verified.

Assumption 2. The system Ė = f (E, τ1, · · · , τ7) is forward complete.

Forward-completeness ensures that, for every initial condition and locally bounded

input signal, the corresponding solution is defined for all t ≥ 0.

Then, we design a predictor feedback law for (3.61), which achieves global asymp-

totic stability for the delay-free system, as mentioned in Theorem 4 – the closed-loop

system Ė(t) = f(E(t), κ(E(t))) should be asymptotically stable. Since the dynamics of

system (2.5) is known, the controller is formulated, based on Eq. (3.59), as

τ = κ(E) = M(h+ (β + α)e2) (3.72)

where β ∈ R7 is a constant positive definite matrix. Substituting Eq. (3.72) into Eq.

(3.59) and using the invertible property of inertia matrix result in the closed-loop error
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signal for e2(t) as

ė2 = −βe2 (3.73)

Finally, the state-space model of closed-loop system, with respect to Eqs. (3.4) and

(3.73), is derived as follows,

Ė = f(E, κ(E)) = AE(t) (3.74)

where A ∈ R14×14 is defined as

A =

−α I7×7

07×7 −β

 (3.75)

Note that I7×7 and 07×7 are identity and zero matrices, respectively. Since A is

an upper triangular block matrix and is also Hurwitz for any positive definite α and β

matrices, closed-loop system (3.74) is hence exponentially stable.

Note that the control law is formulated such that the error dynamics becomes

exponentially and subsequently asymptotically stable. Now the only property we need

to establish, before using Theorem 4, is the input-to-state (ISS) stability of the following

closed-loop system with respect to ω = [ω1, · · · , ωm]T .

Ė = f(E, κ(E) + ω) =

 e2 − αe1

αe2 + h−M−1(κ(E) + ω)

 = AE(t)−

 07×7

M−1ω

 (3.76)

The ISS property, as a required assumption for Theorem 4, means that no matter

what is the initial state, if the inputs are small, then the system’s states must eventually

be small.
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Definition 1. A system is Input-to-State Stable (ISS) if there exist γ ∈ K, β ∈ KL such

that for all x0, u, and t ≥ 0

|x(t)| ≤ β(|x0|, t− t0) + γ

(
sup
t0≥τ≥t

|u(τ)|
)

(3.77)

for all t0 and t such that t ≥ t0 ≥ 0

The ISS property for system (3.76) can be shown using the following theorem in [66].

Theorem 6 (Lyapunov characterization of ISS). For the system ẋ = f(x, u) the following

properties are equivalent:

1. the system is ISS;

2. there exists a smooth ISS-Lyapunov function;

3. there exists a smooth, positive definite, and radially unbounded function V and class

K∞ functions ρ1 and ρ2 such that the following passivity inequity is satisfied:

∂V

∂x
f(x, u) ≤ −ρ1(|x|) + ρ2(|u|). (3.78)

Consider the following smooth, positive definite, and radially unbounded function

V as follows,

V (E) =
1

2
eT1 e1 +

1

2
eT2 e2 (3.79)
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Therefore, using the closed-loop state-space model (3.75) and (3.76), we have,

V̇ (E) = −eT1 αe1 − eT2 βe2 + eT1 e2 − eT2M−1ω

≤ ET

−α 07×7

07×7 −β

E +
1

2

(
|e1|2 + |e2|2

)
+
γ1

2

(
|e2|2 + ωTω

)

≤ −
(
γ2 −

1

2
− γ1

2

)
|E|2 +

γ1

2
|ω|2 (3.80)

where γ1 > 0 and γ2 is the minimum of eigenvalues of α and β. Note that α and β should

be chosen such that
(
γ2 − 1

2
− γ1

2

)
is positive.

Equivalently, ISS property can be also shown using the following Lemma in [62].

Lemma 12. Suppose ẋ = f(t, x, u) is continuously differentiable and globally Lipschitz in

(x, u), uniformly in t. If the unforced system ẋ = f(t, x, 0) has a globally exponentially

stable equilibrium point at the origin, then the system is input-to-state (ISS) stable.

The exponential stability of the unforced close-loop system (3.74) can be investi-

gated using the fact that matrix A defined in (3.75) is Hurwitz. Finally, due to the fact

that Ė = f(E, κ(E) + ω) is continuously differentiable and globally Lipschitz in (E,ω),

therefore, the closed-loop system (3.76) is ISS with respect to ω by using Lemma 12.

Hence, the following assumption for our system is verified,

Assumption 3. The system Ė = f(E, κ1(E) + ω1, · · · , κ7(E) + ω7) is Input-to-State

Stable (ISS) with respect to ω = [ω1, · · · , ω7]T .

Finally, as Assumptions 2 and 3 are held for our system, we can employ Theorem

4 to design a predictor-based controller for our system in order to compensate any large
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input delay, asymptotically stabilize the error, and make the robot to follow the desired

joint trajectories.

3.3 Experimental Results

We experimentally implement the predictor-based controller for the 7-DOF Bax-

ter manipulator as a case study, through a pick-and-place task, while input delays are

reasonably similar in all input channels.

We reveal the destabilizing effect of input delay on the control of the manipulator,

as shown in Fig. 3.1, and also discuss the effect of incremental delay on the stability of the

robot. We intentionally apply the following input delays and then operate the manipulator

without any predictor:

X D = 0.01s: indicates minimum feasible input delay with respect to the sampling rate

(ts = 0.01s) of Baxter.

X D = 0.02s: the increased delay to determine a crucial value causing the robot

operational failure.

X D = 0.04s: the increased delay to study the significant effect of a relatively large

input delay.
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Figure 3.1: The robot fails to track the desired trajectory without a predictor in the

presence of input delay

Figure 3.2: A stable obstacle-avoidance pick-and-place task with input delay using the

predictor-based controller

The joint trajectories and torques, for the three cases mentioned above, are pre-

sented in Figs. 3.3 and 3.4, respectively, and also compared with the experimental results

of delay-free system.

Note that we did not plot the joint trajectories of delay-free system since the manip-
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ulator almost perfectly tracks the desired trajectories. As shown in Fig. 3.3, for D = 0.01s,

the manipulator can still follow the desired trajectories while the joint torques are more

than those of the delay-free system (Fig. 3.4). The results also reveal that the joint torques,

in particular for the joint 5 (Fig. 3.4(a)), oscillate since the manipulator approaches its

singular configuration while passing over the obstacle (2.5s ≤ t ≤ 3.5s).
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Figure 3.3: The experimental (a) S0, (b) S1, (c) E0, (d) E1, (e) W0, (f) W1, and (g) W2

joint trajectories in the presence of D = 0.01s (blue line), D = 0.02s (orange line), and

D = 0.04s (green line) input delays without a predictor
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Figure 3.4: The experimental joint torques of (a) S0, (b) S1, (c) E0, (d) E1, (e) W0, (f)

W1, and (g) W2 in the presence of D = 0.01s (blue line), D = 0.02s (orange line), and

D = 0.04s (green line) input delays without a predictor
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Figure 3.4: The experimental joint torques of (a) S0, (b) S1, (c) E0, (d) E1, (e) W0, (f)

W1, and (g) W2 in the presence of D = 0.01s (blue line), D = 0.02s (orange line), and

D = 0.04s (green line) input delays without a predictor, continued

By increasing the delay from 0.01s to 0.02s, the manipulator becomes unstable and

expectedly cannot follow the desired trajectories (Fig. 3.3). Note that the joint 2 (S1)

does not oscillate like the other ones because of the supporting spring mounted at this
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joint (Fig. 2.1). We also examine the robot’s performance in the presence of 0.04s input

delay. The results illustrate that the manipulator harmfully oscillates and then fails to

properly operate. Therefore, the robot, as expected, becomes unstable within a shorter

time interval through increasing the amount of delay. It is clear that the instability of

one link results in the robot failure due to the highly dynamic interconnections among the

links.

It is worth mentioning that we operate the manipulator using joint torque control

mode, as an advanced control scheme, which grants the access to the lowest control levels

and puts much responsibility on the control algorithm. Consequently, for both 0.02s and

0.04s input delays, we could not capture more data since Baxter moves stochastically

leading to the catastrophic malfunction. The AVI files of the experiments are accessible

through our Dynamic Systems and Control Laboratory (DSCL) website.

In summary, as shown in Fig. 3.3, the closed-loop system becomes unstable for

small input delays. Therefore, implementing the predictor-based controller is a necessity

to be carried out. We hence take the advantage of the predictor-based controller, using

Theorem 4, in order to globally asymptotically stabilize the manipulator due to the fact

that all the assumptions are valid for the robot’s arm.

Therefore, we formulate the predictor along with the controller, and then thor-

oughly investigate their performances in compensating the destabilizing input delays. In

order to examine the effects of delay’s magnitude, experiments are carried out in the pres-

ence of three different large input delays: 0.8s, 0.9s, and 1.0s. Note that exposing the

robot to the input delays more than 1.0s is not logical since the whole operational time is
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6.0s.

Shown in Figs. 3.5 and 3.6 are the joint angles and torques, respectively.
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Figure 3.5: The experimental (a) S0, (b) S1, (c) E0, (d) E1, (e) W0, (f) W1, and (g) W2

joint trajectories in the presence of D = 0.8s (blue line), D = 0.9s (orange line), and

D = 1.0s (green line) input delays using the predictor-based controller
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Figure 3.5: The experimental (a) S0, (b) S1, (c) E0, (d) E1, (e) W0, (f) W1, and (g) W2

joint trajectories in the presence of D = 0.8s (blue line), D = 0.9s (orange line), and

D = 1.0s (green line) input delays using the predictor-based controller, continued
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Figure 3.6: The experimental joints’ torques of (a) S0, (b) S1, (c) E0, (d) E1, (e) W0,

(f) W1, and (g) W2 joints in the presence of D = 0.8s (blue line), D = 0.9s (orange line),

and D = 1.0s (green line) input delays using the predictor-based controller

95



0 1 2 3 4 5 6

Time (sec)

-4

-2

0

2

4

6

τ
5
(N

.m
)

With Predictor (D = 0.8s)
With Predictor (D = 0.9s)
With Predictor (D = 1.0s)

0 1 2 3 4 5 6

Time (sec)

-5

-4

-3

-2

-1

0

1

2

τ
6
(N

.m
)

With Predictor (D = 0.8s)
With Predictor (D = 0.9s)
With Predictor (D = 1.0s)

(e) (f)

0 1 2 3 4 5 6

Time (sec)

-3

-2

-1

0

1

2

3

4

τ
7
(N

.m
)

With Predictor (D = 0.8s)
With Predictor (D = 0.9s)
With Predictor (D = 1.0s)

(g)

Figure 3.6: The experimental joints’ torques of (a) S0, (b) S1, (c) E0, (d) E1, (e) W0,

(f) W1, and (g) W2 joints in the presence of D = 0.8s (blue line), D = 0.9s (orange line),

and D = 1.0s (green line) input delays using the predictor-based controller, continued

As shown in Fig. 3.6, there is no control torque before t = D and consequently,

the robot remains stationary (Fig. 3.5). Therefore, the errors expectedly emerge within

t ∈ [0, D), in particular for the joints 2 (S1), 4 (E1), and 7 (W2) (Fig. 3.5). At t = D, the

manipulator begins following the desired trajectories using the predictor-based controller
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by applying high amounts of torques. Figs. 3.2 and 3.5 present an acceptable performance

of the predictor-based controller since the tracking errors converge to zero after 4.0s.

From another aspect, Figs. 3.5(a) and 3.5(a) reveal that the tracking errors of the

joints 1 (S0) and 6 (W1) are not considerably high, for 0 ≤ t ≤ D, despite the other

ones. It is obvious that the less tracking error typically demands the less control torque

to be applied with respect to the ranges of joint rotation angles. Increasing the input

delay expectedly imposes higher tracking errors at the onset of the robot operation and

consequently, much more control torques are needed to be applied (Fig. 3.6).

After t = D, the manipulator begins to perfectly track the desired trajectories

using the considerable initial control torques. The control torques peak at t = D and

then decline by the decremental tracking errors (Fig. 3.6). As mentioned earlier, the

manipulator approaches its singular configuration around t = 3.0s, which subsequently

results in the incremental oscillation-like joint torques, in particular for the joint 5 (W0),

as shown in Fig. 3.6(a).

As shown in Fig. 3.6, comparing the control torques at t = D reveals that τ2, τ3,

and τ4 take higher values than the other ones since the joints 2 (S1), 3 (E0), and 4 (E1)

are subject to more tracking errors and loads (based on the manipulator structure) with

respect to the other joints.

Finally, comparing Figs. 3.4 and 3.6 implies that even an uncompensated small

delay results in harmful torques and therefore, the manipulator expectedly fails to track the

desired trajectories. As can be observed in Fig. 3.5, the tracking errors begin to decrease

after t = D, due to the fact that Theorem 4 guarantees the asymptotic convergence of
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the tracking errors to zero subject to any large delay. Fig. 3.7 presents the experimental

tracking errors for D = 0.8s.
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Figure 3.7: The experimental tracking errors subject to the predictor-based controller

in the presence of 0.8s input delay
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Figure 3.8: The experimental tracking errors subject to the predictor-based controller

in the presence of 0.9s input delay
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Figure 3.9: The experimental tracking errors subject to the predictor-based controller

in the presence of 1.0s input delay

The negligible experimental tracking errors mainly root on the inaccuracy of sensors

and actuators. We experimentally verified the model in a back-and-forth procedure [7,9,10]

and there is an acceptable correlation between our model and Baxter’s dynamics.

Moreover, unmodeled dynamics, such as friction in joints or external disturbances,

may result in the prediction offset from the actual path, which we carefully considered

through designing the controller. The algorithm measures the robot’s joint angles at each

iteration and hence making predictions begins from that measurement – the state E(t)

in Eq. (3.8) is measured in each iteration. Providing this measurement to the predictor

endows robustness against small uncertainties and avoids any cumulative error caused by

uncertainties or unmodeled dynamics.

Additionally, we established that the closed-loop system is ISS, which in turn pro-

vides the control robustness against any bounded disturbance. Based on the data provided
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by Baxter’s manufacturer, the series elastic actuators act as filters helping to reduce both

the friction and backlash through low-cost gearbox. Therefore, as can be seen in Fig. 3.7,

the tracking errors asymptomatically converge to zero. Also, Fig. 3.10 presents the sim-

ulation results for D = 0.8s revealing that the tracking errors asymptomatically converge

to zero, as expected.
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Figure 3.10: The simulated tracking errors subject to the predictor-based controller in

the presence of 0.8s input delay

3.4 Conclusions

Throughout this chapter, we designed a predictor-based controller for a general

highly interconnected nonlinear system subject to the time-invariant input delay. We

investigated the destabilizing effects of three different input delays shown in Figs. 3.3

and 3.4, and then the controller was implemented for the 7-DOF Baxter manipulator as

a case study. Simulation and experimental results demonstrate that the predictor-based
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controller effectively compensates input delays and achieves closed-loop stability.

Toward designing the controller, we established the forward completeness of the

open-loop system and Input-to-State Stability (ISS) properties of the closed-loop system.

We then formulated the predictor-based controller to asymptotically stabilize the system

employing Theorem 4, and then investigated the effects of large input delays on the control

of the Baxter robot.

The experimental results revealed that the predictor-based controller, in the pres-

ence of large input delays, makes the robot asymptomatically stable, and the robot tracks

the desired joint trajectories, as expected. We also established that the tracking errors,

subject to the predictor-based controller, asymptotically converge to zero. The negligible

amounts of the tracking errors, shown in Fig. 3.7, mainly root on the inaccuracy of sen-

sors and actuators. The simulation results also presented the asymptotic convergence of

the tracking errors to zero guaranteed through Theorem 4, as shown in Fig. 3.10. The

principal results of this research work can be summarized as follows:

X The minimum input delay destabilizes the robot.

X Using Theorem 4, the stability of the system for any large input delay is guaranteed.

X The predictor-based controller analytically and experimentally compensates the in-

put delay and achieves the closed-loop asymptotic stability.

It is worth mentioning that although our controller is robust against a time-invariant

delay and small uncertainties, time-varying input delays and enormous uncertainties may

affect the control performance; this problem has not yet been addressed. Therefore, we,
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for future steps, will focus on designing a nonlinear adaptive time-delay control scheme

with application to high-DOF robotic manipulators.

3.5 Notes and References

In this chapter, a predictor-based controller was formulated for a high-DOF robot

manipulator in the presence of input delay. The effects of delay and also the robustness of

the proposed controller were theoretically and experimentally investigated. One possible

future work would be analyzing output delay along with input delay. Output delay can

be caused by delay in sensors and can play a significant role in the control of the system.

Chapter 3 contains reprints or adaptions of the following papers: 1) M. Bagheri,

P. Naseradinmousavi, and M. Krstić, “Feedback Linearization Based Predictor for Time

Delay Control of a High-DOF Robot Manipulator,” Automatica, Vol. 108, Oct. 2019; 2)

M. Bagheri, P. Naseradinmousavi, and M. Krstić, “Time Delay Control of a High-DOF

Robot Manipulator Through Feedback Linearization Based Predictor,” ASME Dynamic

Systems and Control Conference (DSCC 2019), Paper No. DSCC2019-8915, Oct. 8 -

11, Park City, UT, USA, 2019; 3) M. Bagheri, M. Krstić, and P. Naseradinmousavi,

“Analytical and Experimental Predictor-Based Time Delay Control of Baxter Robot,”

ASME Dynamic Systems and Control Conference (DSCC 2018), Paper No. DSCC2018-

9101, Sept. 30 - Oct. 3, Atlanta, GA, USA, 2018. The dissertation author is the primary

investigator and author of these papers, and would like to thank Miroslav Krstic and

Peiman Naseradinmousavi for their contributions.
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Chapter 4

Adaptive Control Using Batch

Least-Squares Identifier

In this chapter, we design a trigger-based adaptive controller for robot manipula-

tors to efficiently estimate unknown parameters and to achieve asymptotic stability in the

presence of coupled uncertainties. Robot manipulators are widely used in telemanipulation

systems where they are subject to model and environmental uncertainties. Using conven-

tional control algorithms on such systems can cause not only poor control performance,

but also expensive computational costs and catastrophic instabilities.

Therefore, system uncertainties need to be estimated through designing a computa-

tionally efficient adaptive control law. We focus on robot manipulators as an example of a

highly nonlinear system. As a case study, a 2-DOF manipulator subject to four parametric

uncertainties is investigated. First, the dynamic equations of the manipulator are derived

and the corresponding regressor matrix is constructed for the unknown parameters. For
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a general nonlinear system, a theorem is presented to guarantee the asymptotic stability

of the system and the convergence of parameters’ estimations. Finally, simulation results

are discussed for a two-link manipulator and the performance of the proposed scheme is

thoroughly evaluated.

4.1 Background

Remote manipulators are widely used in various applications to track desired tra-

jectories on the account of their reliable, fast, and precise motions in executing tasks such

as moving debris and turning valves [6, 25], while, as expected, consuming a significant

amount of lumped energy [8]. Remote manipulators provide the capability of executing

tasks safely and autonomously at dangerous or unreachable locations. However, they in-

evitably operate within different environments subject to numerous uncertainties or large

time delays [7, 11, 12]. These uncertainties include the length, mass, and inertia of the

links, as well as the manipulator payloads, are some of the mentioned uncertainties. The

detrimental impact of uncertainties is well-established, which plays the most significant

role in degrading remote perception, manipulation, and destabilizing systems. Adaptive

control is an effective approach to control these highly nonlinear systems under parametric

uncertainties.

Considerable research efforts have been devoted to the adaptive control of linear

and nonlinear finite-dimensional systems, see [63,70,97]. Adaptive controllers are designed

to compensate for the detrimental effects of system uncertainties in addition to enabling
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the system to follow the desired trajectory [56,82,83]. Developing adaptive control schemes

for robots has received much attention in the last three decades [24,30,94,102]. Using the

algorithm formulated by Slotine and Li [95], Spong [101] presented the adaptive control

results for flexible joint robot manipulators under the assumption of weak joint elasticity,

while adaptive motion control for rigid robots was studied by Ortega and Spong in [84].

The adaptive control scheme derived in [103] requires the joints’ accelerations for its

implementation, through estimating the acceleration from the measured velocity, which in-

evitably needs sufficient encoder resolution and fast sampling. Slotine and Li [96] presented

a combinatorial adaptive controller for robot manipulators, whose parameter adaptation

is driven by both tracking and prediction errors. These very sophisticated schemes need

the calculation of many complicated analytical expressions at each iteration leading to a

considerable computational time.

The event-triggered approach has been utilized to deal with various control prob-

lems [49, 60]. Note that the closed-loop system subject to an event-triggered controller is

a hybrid dynamical system. The most important advantage of the event-triggered direct

adaptive control scheme [60], unlike other approaches (gradient, Lyapunov, etc.), is that

it does not depend on the persistence of excitation condition to guarantee the convergence

of parameter estimation. Through the proposed scheme, a novel regulation-triggered iden-

tifier is formulated allowing us to use certainty-equivalence controllers without slowing

adaptation. The following main ideas are implemented into the proposed control design:

1) Utilizing piecewise-constant parameter estimates between the event-based triggers. This

idea omits the crucial issue of disturbing effect of rapidly changing estimates [53, 91] and
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2) The parameter estimation is regulated by error, but there is no error-based estimation

leading to the parameter updating rate.

The rest of the chapter is organized as follows. We derive the model of a Euler-

Lagrangian system (e.g a robot manipulator) to employ the adaptive certainty-equivalence

control law using the Batch Least-Square Identifier (BaLSI). Then, we reveal that the

closed-loop system is globally asymptotically stable subject to all necessary assumptions.

Finally, as a benchmark, we utilize the proposed method for a two-link robot in the presence

of four uncertainties, to reveal the performance and significance of the proposed scheme.

4.2 Designing BaLSI Adaptive Control Law

In this section, we formulate the adaptive control law to efficiently estimate un-

known parameters along with guaranteeing perfect tracking. We design a certainty-

equivalence controller combined with Batch Least-Squares Identifier to have a certainty-

equivalence adaptive controller along with the event-triggered identifier.

Therefore, we need to derive the dynamic equations of the system including some

parametric uncertainties, and then design the controller to stabilize the error dynamics

making the origin asymptotically stable. The system (2.5) can be rewritten as follows,

ẋ = F (t, x, u) (4.1)

where, x = [q1, · · · , qn, q̇1, · · · , q̇n]T ∈ R2n is the vector of states, qi and q̇i are angle and

angular velocity of the joints, respectively, and u = τ ∈ Rn.

Consider the general from of (4.1) where x ∈ Rn and u ∈ Rm. In the case of having
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parametric uncertainties in the system, (4.1) can be written in the general form of

ẋ = f(t, x, u) + g(t, x, u)θ (4.2)

where, both the f : R≥0×R2n×Rn → R2n and the regressor matrix g : R≥0×R2n×Rn →

R2n × Rp are smooth mappings with f(t, 0, 0) = 0, g(t, 0, 0) = 0 hold for all t ≥ 0 and

θ ∈ Θ ⊂ Rp is a vector of unknown constant parameters: p is the number of unknown

parameters taking values in a closed convex set Θ.

4.2.1 Designing Certainty-Equivalence Controller

We assume that there exists a smooth mapping κ : R≥0 × Θ × Rn → Rm with

κ(t, θ, 0) = 0 holds for all t ≥ 0 and θ ∈ Θ for which the following stabilizability and

“uniform” coercivity property assumptions hold for V (θ, .) ∈ C1 (Rn;R≥0), a class of

positive definite, radially unbounded, and continuously differentiable functions on compact

sets of Θ.

Assumption 4. For each θ ∈ Θ, the origin is uniformly globally asymptotically stable for

the closed-loop system,

ẋ = f(t, x, κ(t, θ, x)) + g(t, x, κ(t, θ, x)) θ (4.3)

More specifically, the following inequality holds for all θ ∈ Θ, x ∈ Rn, and t ≥ 0,

∇V (x)
(
f(t, x, κ(t, θ, x))+g(t, x, κ(t, θ, x))θ

)
≤ −2σV (θ, x) (4.4)

where σ > 0 is a constant.
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Assumption 4 is a common stabilizability assumption, which is necessary for all

possible adaptive control design approaches. Note that knowing the functions κ : R≥0 ×

Θ× Rn → Rm and V : Θ× Rn → R is not a demanding requirement, since for the design

of a globally stabilizing controller, a control Lyapunov function is typically utilized.

Assumption 5. For every non-empty and compact set Θ̄ ⊂ Θ, the following property

holds: “for every M ≥ 0 there exists R > 0 such that the implication V (θ, x) ≤ M, θ ∈

Θ̄→ |x| < R holds”.

Assumption 5 reveals the “uniform” coercivity property for V (θ, .) on compact sets

Θ ⊂ Rp, which holds for functions in the following form,

V (θ, x) =a1(θ, x)x2
1

+
n∑
i=2

ai(θ, x) (xi − φi−1 (θ, x1, · · · , xi−1))2 (4.5)

where ai (i = 1, · · · , n) are positive continuous functions and φi : Θ × Ri → R are

continuous functions with φi(θ, 0) = 0 for all θ ∈ Θ and i = 1, · · · , n.

Let t0 ≥ 0 be the initial time and x(t0) = x0 be the given initial condition. Note

that the parameter estimation θ̂ ∈ Rp is kept constant within the interval between two con-

secutive events. Consequently, we have the following feedback control law and regulation-

triggered parameter update law for i ∈ Z≥0,

u(t) = κ(t, θ̂(τi), x(t)) t ∈ [τi, τi+1) (4.6)

θ̂(t) = θ̂(τi) t ∈ [τi, τi+1) (4.7)
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where τi ≥ 0 is the time of ith event, when the following equations satisfy for T > 0 and

ri > τi,

τi+1 = min(τi + T, ri) for i ∈ Z≥0 (4.8)

τ0 = t0 (4.9)

It is worth mentioning that ri > τi is a time instant determined by the event-trigger,

as the smallest value of time t > τi, for which

V
(
θ̂(τi), x(t)

)
= V

(
θ̂(τi), x(τi)

)
+ a (x(τi)) (4.10)

where a : Rn → R≥0 is a continuous positive-definite function (another tunable param-

eter in the proposed scheme) and x(t) denotes the solution of (4.2) with the certainty-

equivalence controller u(t) = κ
(
t, θ̂(τi), x(t)

)
. Note that defining ri prevents states and

consequently V (θ, .) from becoming too large. Therefore, the distance of time τi−τi+1 will

be less than T if the state increases too fast.

4.2.2 Batch Least-Squares Identifier (BaLSI)

Along with designing the controller, in order to estimate the unknown vector θ ∈ Θ,

we formulate the Batch Least-Squares Identifier (BaLSI). Based on Eq. (4.2), we notice

that, for every s, t ≥ t0, the following equation holds:

x(t)− x(s) =

∫ t

s

f(r, x(r), u(r)) dr

+

(∫ t

s

g(r, x(r), u(r)) dr

)
θ (4.11)
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Considering,

p(t, s) = x(t)− x(s)−
∫ t

s

f(r, x(r), u(r)) dr (4.12)

q(t, s) =

∫ t

s

g(r, x(r), u(r)) dr (4.13)

leads to p(t, s) = q(t, s)θ for every s, t ≥ t0. We define hi : Rp → R+ as follows,

hi(ϑ) =

∫ τi+1

t0

∫ τi+1

t0

|p(t, s)− q(t, s)ϑ|2 ds dt (4.14)

The function hi(ϑ) has a global minimum at ϑ = θ with hi(θ) = 0. Consequently,

we get, from the Fermat’s theorem for extrema, that the following equation holds:

Z(τi+1) = G(τi+1)θ (4.15)

where

Z(τi) =

∫ τi

t0

∫ τi

t0

qT(t, s)p(t, s) ds dt (4.16)

G(τi) =

∫ τi

t0

∫ τi

t0

qT(t, s)q(t, s) ds dt (4.17)

Note that G(τi) ∈ Rp×p is a symmetric and positive semidefinite matrix, and it is

invertible providing det(G(τi+1)) 6= 0. Therefore, in the case of a positive definite G(τi+1)

(det(G(τi+1) > 0), the vector of unknown parameters can be calculated as

θ = (G(τi+1))−1 Z(τi+1) (4.18)

However, G(τi+1) is not necessarily positive definite and Eq. (4.18) is not always

held. Therefore, the following convex optimization problem with linear equality constraints
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has a unique solution,

min
ϑ∈Θ

∣∣∣ϑ− θ̂(τi)∣∣∣2

Subject to : Z(τi+1) = G(τi+1)ϑ

(4.19)

Finally, the following parameter update law, the batch least-increment least-squares

parameter update law, can be defined as:

θ̂(τi+1) = argmin
ϑ

{∣∣∣ϑ− θ̂(τi)∣∣∣2 : ϑ ∈ Θ,

Z(τi+1) = G(τi+1)ϑ

}
(4.20)

The parameter update law (4.20) is the key difference of the proposed adaptive

control scheme, however, in practice, it is better to avoid the implementation of (4.20)

because of potential modeling and measurement errors. Therefore, there is no guarantee

that the following set is non-empty.

{
ϑ ∈ Θ : Z(τi+1) = G(τi+1)ϑ

}
(4.21)

Consequently, we may need to relax the minimization problem (4.20) as follows,

θ̂(τi+1) = argmin
ϑ

{∣∣∣ϑ− θ̂(τi)∣∣∣2

+ γ |Z(τi+1)−G(τi+1)ϑ|2 : ϑ ∈ Θ

}
(4.22)

We consider the plant (4.2) with the controller (4.6) - (4.9) and the parameter

estimator (4.22). The main result guarantees global convergence of all states of error

system to zero.
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The following theorem is a direct extension of Theorem 4.1 in [57] and its proof is

omitted

Theorem 7. Consider the following control system under Assumptions 4 and 5,

ẋ = f(t, x, κ(t, θ, x)) + g(t, x, κ(t, θ, x))θ (4.23)

Let T ≥ 0 be a positive constant and a : Rn → R≥0 be a continuous positive definite

function. Then there exists a mapping ωθ,θ̂ ∈ KL parameterized by θ, θ̂ ∈ Θ such that for

every t0 ≥ 0, θ, θ̂ ∈ Θ, and x(t0) = x0 ∈ Rn, the solution of the closed-loop system is

defined for all t ≥ t0 and satisfies,

|x(t)| ≤ ωθ,θ̂0(|x0|, t− t0) (4.24)

Moreover, there exist τ ≥ 0 and θs ∈ Θ (both depending on θ, θ̂0, t0, and x0) such

that θ̂(t) = θs for all t ≥ t0 + τ and the following equation holds for all t ≥ t0

g(t, x(t), u(t))(θ − θs) = 0 (4.25)

Note that Theorem 7 guarantees that there is a finite settling time τ ≥ 0 for the

parameter estimate. Also the proof of Theorem 4.1 in [57] shows that at most p switchings

of the value of the parameter estimate θ̂(t) can occur. It is important to notice that no

assumption for persistency of excitation is made in Theorem 7.

4.2.3 Error System Development

The control objective includes converging joint position and velocity errors to zero

implying the generalized coordinates track the desired time-varying joint trajectories,
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qdes(t) ∈ Rn. A state-space model for the tracking error is formulated based on the

following equations,

e1 = q − qdes (4.26)

e2 = q̇ − q̇des (4.27)

where the following assumption is held for the desired joint trajectories.

Assumption 6. The desired joint trajectories qdes(t) ∈ R7 and their derivatives q̇des(t),

q̈des(t) ∈ R7 exist and are bounded for all t ≥ t0.

Then a controller is formulated to improve tracking performance indices, converging

errors to zero, subject to the assumption of knowing the system’s dynamics, as mentioned

earlier.

A state-space model, based on the tracking error, is formulated through premulti-

plying the inertia matrix by the time derivative of Eq. (4.27) while Eq. (2.5) is substituted,

M(q)ė2 + C(q, q̇)e2 +M(q)q̈des

+ C(q, q̇)q̇des +G(q) = τ (4.28)

which yields,

ė1 = e2 (4.29)

ė2 = −q̈des −M−1(Cq̇des +G+ Ce2) +M−1τ (4.30)
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Therefore, the state-space model of error dynamics becomes,

Ė =


e2

−q̈des −M−1(Cq̇des +G+ Ce2) +M(q)−1τ

 (4.31)

where E = [eT
1 eT

2 ]T ∈ R14 is the vector of error states.

As mentioned in Theorem 7, the nominal controller κ(t, E) should asymptotically

stabilize the closed-loop system, and the uniform coercivity property for Control Lyapunov

Function (CLF) should be established. Since the dynamics of system (2.5) is known, the

controller is formulated based on Eq. (4.30). In order to design a nominal controller (κ)

to asymptotically stabilize the systems around the origin, we employ the backstepping

approach. We implement e2 = φ(e1) = −αe1 which is asymptotically stabilizing (4.29)

since

V1(e1) =
1

2
eT

1 e1 → V̇1(e1) = −eT
1 αe1 (4.32)

where α ∈ Rn×n is a constant positive definite matrix. Now, we define a new variable

z = e2 − φ = e2 + α e1. Therefore, the error dynamics is rewritten based on e1 and z as

follows,

ė1 = −αe1 + z (4.33)

ż = α(z − αe1)− h+M(q)−1τ (4.34)
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where

h(q, q̇) = q̈des +M(q)−1
(
C(q, q̇)q̇des +G(q)

+ C(q, q̇)(z − αe1)
)

(4.35)

The Lyapunov function candidate for new system is

V (e1, z) =
1

2
eT

1 e1 +
1

2
zTz (4.36)

and the derivative of new CLF is

V̇ =eT
1 (−αe1 + z) + zT

(
α(z − αe1)− h+M(q)−1τ

)
=− eT

1 αe1 + eT
1 z

+ zT
(
α(z − αe1)− h(q, q̇) +M(q)−1τ

)
(4.37)

The derivative of Lyapunov function would be negative definite for E ∈ Rn − {0}

with the following input for the system,

τ = M(q)(h(q, q̇)− e1 − βz − α(z − αe1)) (4.38)

→ V̇ = −eT
1 αe1 − zTβz (4.39)

where β ∈ Rn×n is a constant positive definite matrix. Therefore, the following feedback

law asymptotically stabilizes the system,

τ = M(q)
(
h(q, q̇)− (In×n + αβ) e1 − (α + β)e2

)
(4.40)
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Hence, the certainty-equivalence controller u is

u(t) = M(q, θ̂)
(
h(q, q̇, θ̂)− (In×n + αβ) e1 − (α + β)e2

)
(4.41)

It is worth mentioning that finding regressor matrix g(t, x, u) in Eq. (4.2) is analyt-

ically and computationally cumbersome. Therefore, we implement the proposed approach

for the adaptive control of a two-link robot.

4.3 Simulation Results

We study a two-link manipulator with the following mass, Coriolis, and gravita-

tional matrices,

M(q) =


M11(q) M12(q)

M12(q) M22

 (4.42)

C(q, q̇) =


−q̇2Ch(q) −(q̇1 + q̇2)Ch(q)

q̇1Ch(q) 0

 (4.43)

G(q) =


−(m1lc1 +mel1)g cos(q1)−meglce cos(q1 + q2)

−meglce cos(q1 + q2)

 (4.44)
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where,

M11(q) = a1 + 2a3 cos(q2) + 2a4 sin(q2)

M12(q) = a2 + a3 cos(q2) + a4 sin(q2)

M22 = a2

Ch(q) = a3 sin(q2)− a4 cos(q2)

a1 = I1 +m1l
2
c1 + Ie +mel

2
ce +mel

2
1,

a2 = Ie +mel
2
ce

a3 = mel1lce cos(δe), a4 = mel1lce sin(δe)

Figure 4.1: A two-link manipulator
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Therefore,

M(q)−1 =
1

den


−a2 a5 + a2

a5 + a2 −2a5 − a1


where,

den = a2
5 − a1a2 + a2

2

a5 = a3 cos(q2) + a4 sin(q2)

and

M(q)−1C(q, q̇) =
1

den


−a6(a5q̇1 + a2 (q̇1 + q̇2)) −a2a6 (q̇1 + q̇2)

a6 (a5(2q̇1 + q̇2) + (a1q̇1 + a2q̇2)) a6(a5 + a2)(q̇1 + q̇2)

 (4.45)

where

a6 = a4 cos(q2)− a3 sin(q2) (4.46)

Finally, by having four unknown parameters (a1, a2, a2
3 − a2

4, and a3a4), Eq. (4.2)

can be rewritten as follows,

ẋ = f(t, x, u) + g(t, x, u) θ, x = [e1, e2, ė1, ė2]T ∈ R4, u = τ ∈ R2, θ ∈ R4 (4.47)

f(t, x, u) =



e2
τ2a5
den

(τ1−2τ2)a5
den

− q̈des(t)


(4.48)
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g(t, x, u) =



02×4

0 τ2−τ1+a6(q̇1+q̇2)2

den

−q̇21 sin(2q2)

2den

q̇21 cos(2q2)

den

− τ2+a6q̇21
den

τ1−a6q̇2(q̇2+2q̇1)
den

sin(2q2)((q̇1+q̇2)2+q̇21)
2den

− cos(2q2)((q̇1+q̇2)2+q̇21)
den


(4.49)

θ =



a1

a2

a2
3 − a2

4

a3a4


(4.50)

For a general Euler-Lagrangian system we formulated the control law (4.40), which

asymptotically stabilizes the system. Note that since M(q, θ̂) is a function of the estimated

parameters, h(q, q̇, θ̂) is subsequently a function of θ̂.

For the two-link manipulator shown in Fig. 4.1, we investigate the performance of

designed controller stabilizing the system at the fully extended unstable equilibrium point

including four unknown parameters (a1, a2, a2
3 − a2

4, and a3a4). First of all, we simulate

the control law (4.40) without any estimation update, θ̂ = θ̂0. The following values are

chosen for the simulation,

m1 = 1, l1 = 1, lc1 = 0.5, I1 = 0.12

me = 2, lce = 0.6, Ie = 0.25, δe = 0
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Therefore, the actual values of parameters are as follows,

θ =

[
3.34 0.97 1.44 0

]T

while, by underestimating the mass, length, and moment of inertia of the links, the fol-

lowing initial guesses for the parameters are taken,

θ̂0 =

[
2.338 0.291 0.72 0.2

]T

with the following initial conditions,

q01 = 0,

q̇02 = −0.4 rad/s,

q02 =
π

6
,

q̇02 = −0.1 rad/s

4.3.1 Control Without Any Identifier

We intent to stabilize the manipulator at the fully extended unstable equilibrium

point without using any identifier.
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Figure 4.2: The (a) tracking errors and (b) tracking errors’ time derivatives without

any parameter estimation update
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Figure 4.3: The control torques of the joints in the case of no parameter estimation

update
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Fig. 4.2 presents the tracking errors and their time derivatives for stabilizing the

two-link robot using the proposed control scheme without any parameter estimation. The

control torques of the joints are also illustrated in Fig. 4.3 revealing the instability of the

robot.

As shown in Figs. 4.2 and 4.3, the system becomes completely unstable, although,

by having the actual values of parameters, the control law was designed to asymptotically

stabilize the system. However, in the case of updating parameter estimation using the

proposed approach, the results reveal the stability of the closed-loop system.

4.3.2 Adaptive Control Using Identifier

Here we investigate the identifier (4.22) with the following parameters, along with

the controller, to stabilize the manipulator at the fully extended unstable equilibrium

point,

T = 5.0s

V (x) =
1

2

(
|e1|2 + 2.5|e2|2

)
a(x) = 0.8

(
|e1|2 + |e2|2

)
As can be seen in Fig. 4.4, the first event-triggered parameter adaptation happens

at t = 1.44s < T due to the dramatic growing of the Lyapunov function, although the

second one happens 5s after the first one (since T = 5s). After two estimations, the

parameters converge to their actual ones and the controller properly stabilizes the system.
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Figure 4.4: The parameter estimation process
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Figure 4.5: The joints’ angles in the case of having parameter estimation update

Figs. 4.5 and 4.6 present the performance of the proposed adaptive scheme and

also stability of the two-link robot at the fully extended unstable equilibrium point.
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Figure 4.6: The (a) tracking errors and (b) tracking errors’ time derivatives with

parameter estimation update

Fig. 4.6 illustrates that the tracking errors and their time derivatives asymptotically

converge to zero.
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Figure 4.7: The control torques of the joints in the case of having parameter estimation

update
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The control torques of the joints are also illustrated in Fig. 4.7, indicating that the

system becomes stable at the equilibrium point and the control torques converge to zero.

To demonstrate the importance of parameter estimation, both the phase portrait

and value of Lyapunov function for both the cases (with and without parameter estimation)

are shown.
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Figure 4.8: The projection on the e1 vs. ė1 plane solution of the closed-loop system

with the proposed controller

Fig. 4.8 presents the phase portrait of tracking error and its time derivative for the

link 1 when there is an identifier along with the controller (blue line) and there is not any

identifier (red dashed line). As can be seen, the trajectory with batch parameter estimation

converges to zero (blue) while the trajectory without batch parameter estimation does not

(red). Fig. 4.9 presents the phase portrait of tracking error and its time derivative for link

2, again for both the cases.

125



−250 −150 −50 50 150
e2 (deg.)

−350

−250

−150

−50

50

150
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Figure 4.9: The projection on the e2 vs. ė2 plane solution of the closed-loop system

with the proposed controller
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Figure 4.10: The values of Lyapunov function for the closed-loop system with the

proposed controller
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The phase portraits shown in Figs. 4.8 and 4.9 demonstrate the importance of

parameter estimation in the stability of closed-loop system. As expected, the phase por-

traits of nominal closed-loop system asymptotically converge to the origin, although in the

presence of uncertainty and without any parameter estimation, the phase portraits never

converge to the origin.

Figs. 4.8 and 4.9 reveal that, in the case of having parameter estimation, the phase

portraits converge to the nominal closed-loop ones, after the first parameter adaptation,

and then asymptotically converge to the origin.

Also, the values of the Lyapunov function can be seen in Fig. 4.10, indicating that

the inequality (4.10) is satisfied at around t = 1.5s while the first parameter adaptation,

as expected, happens at that time.

It is worth mentioning that, in the control law (4.41), selecting small α and β

matrices would yield a more effective role for the model relevant part of the control scheme.

4.4 Trajectory Tracking

We now study the case that the manipulator needs to follow a time-varying desired

trajectory, rather than reaching the desired position. One of the applications for trajectory

tracking is executing the pick-and-place task from its initial position to a final desired

position in the presence of an obstacle, typically located at the middle of the path. Then,

the manipulator is supposed to follow an obstacle-avoidance trajectory while reaching the

final point.
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Consider the following desired trajectories, q1des and q2des , satisfying Assumption 6,

q1des = −π
8

atan(0.004t3.5) +
π

2.5
(4.51)

q̇1des = − 875πt2.5

8 (t7 + 62500)
(4.52)

q̈1des =
875πt1.5 (9t7 − 312500)

16 (t7 + 62500)2 (4.53)

q2des = − π

36
cos
( π

20
t
)
− π

18
(4.54)

q̇2des =
π2

720
sin
( π

20
t
)

(4.55)

q̈2des =
π3

14400
cos
( π

20
t
)

(4.56)

4.4.1 Control Without Any Identifier

We intend to control the manipulator to track the desired trajectories without using

any identifier. First, the tracking errors and control torques are presented for the case of

without any parameter estimation.
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Figure 4.11: The angles of joints without any parameter estimation update
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Figure 4.12: The angular velocities of joints without any parameter estimation update

Figs. 4.11 and 4.12 present the angles and angular velocities of the joints, respec-

tively, revealing the tracking performance. As can be seen, the two-link robot cannot

follow the desired trajectory.
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Figure 4.13: The (a) tracking errors and (b) tracking errors’ time derivatives without

any parameter estimation update
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Figure 4.14: The control torques of the joints in the case of no parameter estimation

update

As can be seen in Figs. 4.13 and 4.14, the system becomes completely unstable and
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cannot follow the desired trajectories. By activating the parameter update law, the joints

track the desired trajectories.

4.4.2 Adaptive Control Using Identifier

We here implement the identifier (4.22) with the following parameters, along with

the controller, to track the desired trajectories,

T = 5.0s

V (x) =
1

2

(
|e1|2 + 0.5|e2|2

)
a(x) = 0.5

(
|e1|2 + |e2|2

)
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Figure 4.15: The parameter estimation process

As can be observed through Fig. 4.15, the first event-triggered parameter adapta-

131



tion happens at t = 4.12s < T due to the dramatic growing of the Lyapunov function,

although the rest of them happen every 5s after each other (since T = 5s).
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Figure 4.16: The angles of joints without any parameter estimation update
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Figure 4.17: The angular velocities of joints with parameter estimation update
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Figure 4.18: The (a) tracking errors and (b) tracking errors’ time derivatives with

parameter estimation update

Figs. 4.16 – 4.18 present the acceptable performance of proposed adaptive scheme

and also reveal that the two-link robot follows the desired trajectory after occurrence of the

first parameter estimation. Fig. 4.18 illustrates that the errors and their time derivatives

asymptotically converge to zero.

The control torques of the joints are also shown in Fig. 4.19,
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Figure 4.19: The control torques of the joints in the case of having parameter

estimation update

The results reveal that the tracking errors asymptotically converge to zero and the

unknown parameters are estimated as shown in Fig. 4.15. Note that the parameters’

estimations do not necessarily converge to the actual values.

Fig. 4.20 presents the phase portrait of tracking errors and their time derivatives

for link 1 when there is an identifier along with the controller (blue line) and there is not

any identifier (red dashed line). As can be seen, the blue trajectory converges to zero, but

the other one never converges. Fig. 4.21 presents the phase portrait of tracking errors and

their time derivatives for link 2, again for both the cases.
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Figure 4.20: The projection on the e1 vs. ė1 plane solution of the closed-loop system

with the proposed controller
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Figure 4.22: The values of Lyapunov function for the closed-loop system with the

proposed controller

To investigate the performance of control law with parameter estimation, the phase

portraits (illustrated through Fig. 4.20 and 4.21) and the values of Lyapunov function for

both the cases (with and without parameter estimation) are presented. As can be seen

in Fig. 4.22, by the incremental Lyapunov function, the unknown parameters estimation

process begins through the event-triggered identifier.

It is worth mentioning that the time-varying desired trajectories do not meet the

criteria of the persistence of excitation although the proposed method works well, despite

the fact that the classical ones require the criteria to yield acceptable performance.
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4.5 Conclusions

Throughout this chapter, we designed a triggered-based adaptive controller for

robot manipulators to estimate the unknown parameters and also to achieve asymptotic

stability in the presence of uncertainties. We studied a 2-DOF manipulator (Fig. 4.1)

with four unknown parameters and stabilized the system at the fully extended unstable

equilibrium point along with efficiently estimating the unknown parameters.

To this end, we rewrote the manipulator equations in the general form of Eq. (4.2)

and extracted the unknown parameters in addition to designing the proper nominal con-

troller. Toward designing the controller, we formulated the proper Lyapunov candidate

function using the backstepping approach and then designed the nominal controller to

asymptotically stabilize the system without any uncertainties. The simulation results re-

vealed that the controller, in the presence of parametric uncertainties, makes the robot

manipulator asymptomatically stable and also efficiently estimates the unknown parame-

ters. Fig. 4.6 illustrates the convergence of tracking errors and their time derivatives to

zero. Also, the parameter estimation process using the proposed scheme was shown in Fig.

4.4.

Furthermore, we investigated the performance of the proposed method for a tra-

jectory tracking problem and the results shown in Fig. 4.18 revealed the perfect tracking

and the system stabilization.
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4.6 Notes and References

In this chapter, a time/event triggered-based adaptive control scheme was formu-

lated for a robot manipulator and the performance of the proposed controller was inves-

tigated. For a two-link robot, as a case study, four unknown lumped parameters were

estimated using the adaptive controller while the manipulator became stable and could

track the desired trajectory.

Because of the cumbersome analytical burden of finding a regressor matrix corre-

sponding to physical parameters of a two-link robot, we considered four lumped parame-

ters. Therefore, one possible future work would be developing a general linear parametriza-

tion procedure for high-DOF robots, since the method is computationally efficient and can

be used for highly coupled and nonlinear systems. It is also of great interest to utilize this

approach along with optimal controllers to formulate a computationally efficient adaptive

optimal controller.

Chapter 4 contains reprints or adaptions of the following papers: 1) M. Bagheri, I.

Karafyllis, P. Naseradinmousavi, and M. Krstić, “Adaptive Control of a Two-Link Robot

Using Batch Least-Square Identifier,” In preparation, 2019. The dissertation author is the

primary investigator and author of this paper, and would like to thank Iasson Karafyllis,

Miroslav Krstić, and Peiman Naseradinmousavi for their contributions.
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[4] Kartik B Ariyur and Miroslav Krstić. Multivariable extremum seeking feedback:
Analysis and design. In Proc. of the Mathematical Theory of Networks and Systems,
2002.
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