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Abstract

New Information Inequalities with Applications to Statistics

by

Kuan-Yun Lee

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Thomas Courtade, Chair

We introduce, under a parametric framework, a family of inequalities between mutual in-
formation and Fisher information. These inequalities are indexed by reference measures
satisfying a log-Sobolev inequality (LSI), and reveal previously unknown connections be-
tween LSIs and statistical inequalities. One such connection is shown for the celebrated van
Trees inequality by recovering under a Gaussian reference measure a stronger entropic in-
equality due to Efroimovich. We further present two new inequalities for log-concave priors
that do not depend on the Fisher information of the prior and are applicable under certain
scenarios where the van Trees inequality and Efroimovich’s inequality cannot be applied.
We illustrate a procedure to establish lower bounds on risk under general loss functions,
and apply it under several statistical settings, including the Generalized Linear Model and
a general pairwise comparison framework.



i

To my family.



ii

Contents

Contents ii

Introduction 1

1 Preliminaries 4
1.1 The basic parametric model . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Shannon information quantities . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Fisher information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Logarithmic Sobolev inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Cramér–Rao-type bounds and log-Sobolev inequalities 13
2.1 A family of Bayesian Cramér–Rao-type bounds . . . . . . . . . . . . . . . . 13
2.2 The Efroimovich and van Trees inequalities . . . . . . . . . . . . . . . . . . . 16
2.3 Remarks on Efroimovich’s inequality . . . . . . . . . . . . . . . . . . . . . . 18

3 Cramér–Rao-type inequalities for log-concave priors 20
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Variation on a theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Information-theoretic bounds on risk 41
4.1 Definition of Bayes and minimax risk . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Rate distortion theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 The Shannon lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Lower bounds on risk under the Generalized Linear Model 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Bayes risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Minimax estimation risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Minimax prediction risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Bibilographical remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.6 Additional proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



iii

6 Lower bounds on risk under a general pairwise comparison framework 75
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Our setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Main results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4 Additional proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Concluding remarks and outlook 92
7.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 95



iv

Acknowledgments

The dissertation could not have been completed without the support of my advisor, Professor
Thomas Courtade. For one, Tom accepted me into his group many years ago when I had little
academic accomplishments nor experience. Tom allowed me to independently explore and
dive deep into uncharted areas, and provided invaluable guidance that led to this dissertation.
For another, Tom has been supportive through all the ups and downs. I am very grateful for
all the support and guidance I have received from Tom throughout the five years at Berkeley.

I would like to thank the rest of the committee members, who have been supportive since
the early months of the pandemic: Professor Adityanand Guntuboyina, Professor Jiantao
Jiao, and Professor Kannan Ramchandran. Their mentorship and insightful comments have
helped shape the dissertation tremendously.

Thanks to my undergraduate advisor Professor I-Hsiang Wang, who taught my first
lessons in information theory and guided me through several projects many years back.
Without his guidance, I would probably never have stepped into this field.

Thanks to co-authors Professor Ashwin Pananjady and Efe Aras for bearing with many
long discussions and “short-loops” that eventually built the foundations of this dissertation.

To the dozens of friends in BLISS, BWRC, ICSI, SWARM and others throughout the
school and across the globe — thank you for the wonderful grad school memories. I will
never forget the afternoon boba runs that we often had and the fun memories of attending
pre-covid social hours. I will miss the many occasions where we chatted about life.

Finally, big thanks to my family for being supportive as always.



1

Introduction

Many important inference tasks in science and engineering can be modeled parametrically.
In such models, there is an underlying parameter θ, and an observation (or, measurement)
modeled by a random variable X, with distribution indexed by the parameter. A Bayesian
setting may also be adopted, where the parameter θ is itself a random variable with known
prior distribution. Based on the observation X, the basic task is to infer θ by designing
an estimator (a Borel measurable function) θ̂ : X 7→ θ̂(X) that minimizes the expected risk

θ̂ 7→ E[L(θ̂, θ)],

where L is a penalty function suitable for the application at hand.
Despite its abstract formulation, this basic parametric model captures the spirit of many

interesting questions encountered in practice. For example, in finance, one may be interested
in estimating the volatility of a stochastic process; in this case, θ is the volatility of the
process, and X may be the observed time series. In signal processing, one may be interested
in recovering a latent signal from noisy measurements; here, θ corresponds to the latent
signal, and X corresponds to the measurements. In communications, θ may be one of a
discrete set of messages sent across a noisy channel, and X is the observation at the receiver.

In the classical setting of ℓ2 loss (i.e., L(θ̂, θ) = (θ̂−θ)2), the classical Cramér–Rao bound
and its Bayesian counterpart — the van Trees inequality — can be applied to lower bound the
expected loss. The Cramér–Rao bound is applicable to unbiased estimators (i.e., Eθ̂ = θ),
and the van Trees inequality applies when the parameter admits a prior distribution with
sufficiently smooth density. The utility of the Cramér–Rao bound and the related van
Trees inequality is, in large part, due to the fact that they depend only on basic Fisher
information quantities associated to the parametric model, and often give good bounds on
ℓ2 loss. Nevertheless, it remains a problem of significant interest and practical importance
to establish lower bounds on expected risk when the loss function is not squared loss, and
in situations where the Cramér–Rao bound and the van Trees inequality do not otherwise
apply. This is one primary motivation for this thesis.

Our first development is a family of upper bounds on mutual information I(π;Pθ), with
θ ∼ π and X ∼ Pθ, to be covered in Chapter 2. Upper bounds on I(π;Pθ) have natural ap-
plications in information theory and statistics. When combined with tools in rate-distortion
theory, upper bounds on I(π;Pθ) can give lower bounds on expected risk, and therefore un-
derstanding bounds within this family can lead to potential advances in techniques to lower
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bound risk. While there is a vast volume of literature related to lower bounds on risk using
Fano’s method and metric entropy, there is comparably less focus from a rate distortion
perspective despite well known results regarding the Shannon lower bound [Shannon, 1959].
One reason is that these results are often expressed in terms of I(π;Pθ), which is difficult to
control outside of certain special cases. On the contrary, our new upper bounds on I(π;Pθ)
can be easily integrated with the Shannon lower bound, yielding interesting applications to
lower bounds on risk as we will demonstrate later.

Our family of upper bounds on I(π;Pθ) are indexed by reference measures satisfying an
LSI. In other words, choices of reference measure affect the corresponding upper bound. Our
next development is an analysis of the special case where the reference measure is Gaussian.
Interestingly, we recover an inequality due to Efroimovich [1979], which we will be referring
to as Efroimovich’s inequality. Efroimovich’s inequality is an entropic generalization of
the van Trees inequality, and therefore, both the van Trees inequality and Efroimovich’s
inequality are inequalities within our family of upper bounds on I(π;Pθ). This unveils a
previously unknown relation between the LSI and the van Trees inequality.

It is worth noting that Efroimovich’s inequality, and consequently the van Trees inequal-
ity, is not applicable when the Fisher information J (π) of the prior π is not well-behaved.
Towards a development of bounds that are applicable under these constraints, we present
in Chapter 3 two new upper bounds on I(π;Pθ) given log-concave π. These new bounds do
not depend on J (π) and, therefore, can be applied in situations where J (π) is undesirable.

A general procedure to apply our upper bounds on I(π;Pθ) to lower bounds on risk using
rate distortion theory will be discussed in Chapter 4. Applications to the Generalized Linear
Model, including an array of Bayes risk and minimax risk lower bounds, will be discussed in
Chapter 5. We also provide an application to a generalized pairwise comparison framework,
for which we derive lower bounds on minimax risk that hold uniformly over the broad class
of models we consider. Details are available in Chapter 6. We conclude with our outlook on
future directions and final remarks in Chapter 7.

A summary of key contributions is presented below.

1. We introduce a family of inequalities indexed by reference measures satisfying an LSI.
We expose interesting relations between LSIs and quantities of statistical interest,
namely mutual information and Fisher information.

2. We show that Efroimovich’s inequality is a special case within our family of inequalities,
indexed by a Gaussian reference measure. This illuminates a previously unknown
connection between the Gaussian LSI and the celebrated van Trees inequality, by nature
of it being a corollary of Efroimovich’s inequality.

3. We present two new upper bounds on I(π;Pθ), provided the prior π on θ ∼ π is log-
concave. These inequalities do not depend on the Fisher information of the prior, and
therefore can be applied to certain scenarios where Efroimovich’s inequality and the
van Trees inequality fail.
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4. We provide a general procedure to transform our upper bounds on I(π;Pθ) into lower
bounds on risk using tools from rate distortion theory.

5. We establish lower bounds on risk for the Generalized Linear Model and a general
pairwise comparison framework. In many cases our bounds have improved topological
dependence compared to previously known results.

Parts of the dissertation are based on [Aras et al., 2019, Lee and Courtade, 2020, Lee
and Courtade, 2020, Lee and Courtade, 2021].
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Chapter 1

Preliminaries

In this chapter, we fix basic notation and assumptions that will be used throughout the
dissertation. In particular, we precisely formulate what is meant by a parametric model,
and introduce the standard regularity assumption that we adopt throughout. We define
both Shannon and Fisher information quantities that will be needed frequently in our devel-
opment. Such quantities include (Shannon) entropy, mutual information, relative entropy,
Fisher information matrices, and relative Fisher information. The quantities of (Shannon)
relative entropy and relative Fisher information are connected through logarithmic Sobolev
inequalities, which are also briefly reviewed in the last section of this chapter.

As a matter of convention, terms that are being defined are written in bold font through-
out this dissertation.

1.1 The basic parametric model
Consistent with the notation introduced in the introduction, we adopt a parametric model
with parameter θ = (θ1, . . . , θd) ∈ Rd and observation X taking values in some set X . The
model is defined by a family of dominated probability measures (Pθ)θ∈Rd on a measurable
space (X ,F), with dominating σ-finite measure λ. For each Pθ, we associate a density f(·; θ)
with respect to λ according to

dPθ(·) = f(·; θ)dλ(·). (1.1)

We shall always make the following regularity assumption of (Pθ)θ∈Rd , and will not explicitly
refer to it in statements of results:

Assumption 1. The function θ 7→ f(x; θ) is differentiable for λ-a.e. x ∈ X , and f is
sufficiently regular to permit the following exchange of integration and differentiation:∫

X
∇θf(x; θ)dλ(x) = 0, ∀θ ∈ Rd. (1.2)

Here, ∇θ denotes the gradient with respect to θ.
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In other words, the orders of differentiation with respect to θ and integration with respect
to x can be exchanged via the Leibniz rule. This assumption is common in the context of
the Cramér–Rao bound, and is implied by continuity of Fisher information with respect to θ;
see, e.g., Cramér [1999], Gill and Levit [1995]. One immediate consequence of the regularity
assumption is that f : (x, θ) 7→ f(x; θ) is a Carathéodory function, and is therefore jointly
measurable in its arguments [Aliprantis and Border, 2006, Lemma 4.51]. In particular, this
ensures θ 7→ Pθ(F ) is (Borel) measurable for every F ∈ F by Tonelli’s theorem.

We let P(Rd) denote the set of probability measures on Rd equipped with the Borel σ-
algebra B, and let π ∈ P(Rd) denote the prior distribution of θ. Given θ, the observation
has distribution X ∼ Pθ. In this way, π and (Pθ)θ∈Rd induce a joint probability distribution
P on (Rd ×X ,B × F), defined by

Pr{θ ∈ B,X ∈ F} ≡ P(B × F ) =
∫
B

Pθ(F )dπ(θ), ∀B ∈ B, ∀F ∈ F . (1.3)

Example 1 (Gaussian location model). Take X = Rd, λ equal to Lebesgue measure, and

f(x; θ) =
1

(2π)d/2 det(Σ)1/2
e−

1
2
(x−θ)TΣ−1(x−θ).

This describes the Gaussian location model X = θ + Z, where Z ∼ N (0,Σ) is independent
of θ ∼ π.

Remark 1. In the example above, and throughout this dissertation, we let Id denote the
d× d identity matrix, and | · | denote the Euclidean metric on Rd.

Example 2 (Poisson model). Take X = {0, 1, . . .}, λ equal to the counting measure, and

f(x; θ) =
θxe−θ

x!
.

This describes the Poisson model X ∼ Poisson(θ).

Example 3 (Exponential model). Take X = R+, λ equal to Lebesgue measure, and

f(x; θ) = θe−θx.

This describes the exponential model with rate θ.

1.2 Shannon information quantities

Mutual information and Shannon entropies

Given that the joint distribution of θ and X is well-defined, we define their mutual infor-
mation

I(π;Pθ) ≡ I(θ;X) :=

∫
Rd

∫
X
f(x; θ) log

f(x; θ)∫
Rd f(x; θ′)dπ(θ′)

dλ(x)dπ(θ). (1.4)
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We shall use the notations I(π;Pθ) and I(θ;X) interchangeably, depending on which is most
convenient in the given context. In particular, the former is typically more convenient when
a given parametric model is described in terms of probability distributions π and (Pθ)θ∈Rd ;
the latter is most convenient when describing the model in terms of the random variables θ
and X. Throughout this dissertation, logarithms are understood to be taken with respect
to the natural base.

When π admits a density dπ = ψdθ with respect to Lebesgue measure, we define its
Shannon entropy

h(π) ≡ h(θ) := −
∫
Rd

ψ(θ) logψ(θ)dθ,

provided the integral exists in the Lebesgue sense. A sufficient condition for the entropy
h(θ) to exist is that θ has finite second moments [Shannon, 1948]. When the entropy h(θ)
exists, we define the (Shannon) conditional entropy

h(θ|X) := h(θ)− I(θ;X), (1.5)

provided the indeterminate form ∞−∞ is avoided.
Let us give some examples of Shannon entropy that will be useful to us in later chapters.

The first is the entropy of a uniform distribution.

Example 4 (Entropy of a uniform distribution). Consider π = Uniform(a, b) with a < b,
the uniform measure on the set (a, b). Then,

h(π) ≡ h(θ) = log(b− a).

More generally, in higher dimensions, it is often of practical interest to consider the
uniform measure over a convex set, a reason being that the uniform measure is the maximum-
entropy density over a constrained convex set. The Shannon entropy for the uniform measure
on a convex set is determined by the volume of the convex set.

Example 5 (Entropy of a uniform distribution in higher dimensions). Consider π to be the
uniform distribution over a convex set Θ ⊂ Rd with volume V > 0. Then,

h(π) ≡ h(θ) = log V.

As another example, let us examine the entropy of the Gaussian distribution, which
has practical use in many settings and is the maximum entropy distribution under fixed
second moments [Shannon, 1948, Cover and Thomas, 2012]. The entropy of a Gaussian is
determined by its covariance.

Example 6 (Entropy of a Gaussian distribution). Consider π = N (0,Σ) with Σ ∈ Rd×d.
Then,

h(π) ≡ h(θ) =
1

2
log det (2πeΣ) .
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From the entropy of the Gaussian one can infer an identity for the mutual information
of a Gaussian channel with Gaussian input.

Example 7 (Mutual information of a Gaussian channel with Gaussian input). Suppose the
observation X = θ + Z ∼ Pθ, where Z ∼ N (0,∆) is Gaussian noise independent from θ.
Suppose θ ∼ π = N (0,Σ). Then,

I(π;Pθ) ≡ I(θ;X) =
1

2
log det(Id + Σ∆−1).

This is also the capacity of the Gaussian channel [Cover and Thomas, 2012] under power
(covariance) constraint Σ.

Relative entropy

Finally, if µ, ν ∈ P(Rd), with ν ≪ µ and dν = hdµ, define the relative entropy as

D(ν∥µ) :=
∫
Rd

h log (h) dµ.

The relative entropy always exists as a number in [0,+∞], and we adopt the convention that
D(ν∥µ) = +∞ if ν ̸≪ µ.

Remark 2. Relative entropy is also commonly known as the Kullback-Leibler (KL) diver-
gence.

Example 8 (Relative entropy between two Gaussians). Suppose µ = N (a,Σ1) and ν =
N (b,Σ2) with a, b ∈ Rd and Σ1,Σ2 ∈ Rd×d. Then,

D(ν∥µ) = 1

2
log det

(
Σ−1

1 Σ2

)
+
d

2
Tr
(
Σ1Σ

−1
2

)
+

1

2
(b− a)TΣ−1

2 (b− a)− d

2
.

In the case with Σ1 = Σ2 = Σ,

D(ν∥µ) = 1

2
(b− a)TΣ−1(b− a).

These definitions of mutual information, Shannon (conditional) entropy, and relative
entropy are standard [Cover and Thomas, 2012].

1.3 Fisher information

Parametric Fisher information

For the parametric family (Pθ)θ∈Rd , we define the Fisher information matrix ĪX as the
matrix-valued function

[ĪX(θ)]ij :=
∫
X

∂
∂θi
f(x; θ) ∂

∂θj
f(x; θ)

f(x; θ)
dλ(x), 1 ≤ i, j ≤ d, θ ∈ Rd. (1.6)
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We define the Fisher information IX as the trace of this matrix, namely

IX(θ) :=
∫
X

|∇θf(x; θ)|2

f(x; θ)
dλ(x) = Tr

(
ĪX(θ)

)
, θ ∈ Rd. (1.7)

Let us examine the Fisher information in several statistical models that we will be refer-
ring to in later chapters.

Example 9 (Fisher information matrix of a Gaussian observation). Suppose X ∼ N (θ,Σ)
with θ ∈ Rd and Σ ∈ Rd×d. Then,

ĪX(θ) =
∫
Rd

∇θf(x; θ)∇θf(x; θ)
T

f(x; θ)
dx

= Σ−1

(∫
Rd

(x− θ)(x− θ)Tf(x; θ)dx
)
Σ−1

= Σ−1.

Example 10 (Fisher information of an exponential observation). Let X ∼ Exponential(θ).
Then, f(x; θ) = θe−θx and

IX(θ) =
∫ ∞

0

(1− xθ)2

θ
e−θx

=

∫ ∞

0

(
x− 1

θ

)2

θe−θxdx

=
1

θ2
.

Note that the observation X need not have a continuous density. The Fisher information
is well-defined for discrete observation models as well, such as the Bernoulli observation.

Example 11 (Fisher information of a Bernoulli observation). Suppose X ∼ Bernoulli(θ).
Then, f(x; θ) = θX(1− θ)1−X and

IX(θ) =
1

1− θ
+

1

θ
=

1

θ(1− θ)
.

While the above examples conveniently have Fisher information matrix ĪX equal to the
inverse of the covariance matrix of X (given θ), this is not universally true. The Cauchy
observation model is one such example.

Example 12 (Fisher information of a Cauchy observation). Suppose X ∼ Cauchy(0, θ).
Then,

f(x; θ) =
1

πθ
(
1 + x2

θ2

) ,
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and the Fisher information is calculated as

IX(θ) =
1

2θ2
.

The variance of X, on the other hand, is undefined.

One of the most important properties of Fisher information is that it is additive on
conditionally independent observations.

Proposition 1 (Additivity of Fisher information). Let X = (X1, X2), where X1 and X2 are
conditionally independent given θ. Then,

ĪX(θ) = ĪX1(θ) + ĪX2(θ).

A convenient application of Proposition 1 is in the calculation of the Fisher information
of n independent samples.

Example 13 (Fisher information of a binomial observation). Suppose X = (X1, . . . , Xn) ∼
Binomial(n, θ). Then, since X1, . . . , Xn are sampled i.i.d. from Bernoulli(θ), it follows that

IX(θ) = nIX1(θ) =
n

θ(1− θ)
.

The reader is likely familiar with the classical Cramér–Rao bound, which we state below
for convenience. The proof boils down to an application of the Cauchy–Schwarz inequalty;
see, for example, the classical results [Cramér, 1946, Rao, 1945, Fréchet, 1943, Darmois, 1945].
When combined with the additivity property above, it gives control on sample complexity
for unbiased estimators given independent observations.

Theorem 1 (Cramér–Rao Bound). Fix a parametric model. If θ̂ : X → Rd is unbiased in
the sense that θ =

∫
X θ̂(x)dPθ(x) for each θ ∈ Rd, then

EPθ
(θ̂ − θ)(θ̂ − θ)T ≥ ĪX(θ)−1, (1.8)

where EPθ
denotes expectation with respect to Pθ.

A canonical example of an unbiased estimator that satisfies the Cramér–Rao bound with
equality is the sample mean estimator under the Gaussian observation model.

Example 14 (Sample mean estimator under Gaussian observations). Suppose X = (X1, . . . ,
Xn) are sampled i.i.d. from Pθ = N (θ,Σ). The Fisher information matrix is

ĪX(θ) = nΣ−1,
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while the sample mean estimator θ̂(X) := 1
n

∑n
i=1Xi satisfies

EP⊗n
θ

(
θ̂ − θ

)(
θ̂ − θ

)T
= EP⊗n

θ

(
1

n

n∑
i=1

Xi − θ

)(
1

n

n∑
i=1

Xi − θ

)T

=
1

n2

n∑
i=1

EPθ
(Xi − θ) (Xi − θ)T

=
1

n
Σ,

satisfying the Cramér–Rao bound with equality.

We remark that the map ĪX is a function of the parametrization θ 7→ Pθ. This is implied
by the subscript X, which is understood to represent the observation model. This notation is
convenient, for instance, in stating the additivity property of Fisher information. Sometimes,
however, it is necessary to make the dependence on the parametrization θ 7→ Pθ explicit, in
which case we write ĪX;θ to denote the Fisher information of the observation X with the
parametrization θ 7→ X ∼ Pθ. This long form notation is important when we reparametrize
the model, as in the following proposition, which amounts to a simple change of variables in
(1.6).

Proposition 2 (Reparametrization of Fisher information). Let V ∈ Rd×d be an invertible
matrix, and define the parameter η(θ) = V θ. In this case, Fisher information enjoys the
matrix congruence

ĪX;η(η(θ)) = V −T ĪX;θ(θ)V
−1.

Remark 3. If Assumption 1 holds for parametrization in terms of θ, then it holds for all
linear (or, more generally, affine) reparametrizations as above.

Frequently, we will consider the expectation of Fisher information under a given prior.
Therefore, for a given parameterization θ 7→ Pθ and prior distribution θ ∼ π ∈ Rd, we write

Eπ[ĪX ] ≡ Eπ[ĪX;θ] :=

∫
Rd

ĪX(θ′)dπ(θ′).

Fisher information associated to a prior

When the prior π admits a density ψ, we associate to it the (information theorists’)
Fisher information matrix, or Fisher information matrix of the prior

[J̄ (π)]ij :=
∫
Rd

∂
∂θi
ψ(θ) ∂

∂θj
ψ(θ)

ψ(θ)
dθ, 1 ≤ i, j ≤ d, θ ∈ Rd. (1.9)
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Similar to before, we define the trace of this matrix to be the (information theorists’)
Fisher information, or Fisher information of the prior

J (π) ≡ J (ψ) := Tr(J̄ (π)) =
∫
Rd

|∇θψ(θ)|2

ψ(θ)
dθ. (1.10)

Note that finiteness of the Fisher information boils down to the function ∇
√
ψ being square-

integrable, which imposes a relatively strong degree of smoothness on ψ. Indeed, by mono-
tone convergence, the following identity can be justified, which explains how (1.10) should
be interpreted whenever ψ does not have full support:

J (π) ≡ J (ψ) =
∫
Rd

|∇θψ(θ)|2

ψ(θ)
dθ = 4

∫
Rd

|∇θ

√
ψ(θ)|2dθ.

When π does not admit a density, or if
√
ψ is not differentiable, we adopt the conven-

tion J (π) = +∞. Not all priors of practical importance have finite Fisher information; a
canonical example is a uniform distribution on a convex set in Rd.

Concerning the two different Fisher informations IX and J (π), we emphasize that IX
depends only on the parametric family (Pθ)θ∈Rd , and J (π) depends only on the prior distri-
bution π. The two definitions coincide when θ is a location parameter.

Example 15 (Fisher information for location parameter). Let X = Rd and λ be Lebesgue
measure. If there is a density g : Rd → R such that

f(x; θ) = g(x− θ), x, θ ∈ Rd,

then
IX(θ) =

∫
X

|∇θf(x; θ)|2

f(x; θ)
dx =

∫
X

|∇g(x)|2

g(x)
dx = J (g), ∀θ ∈ Rd.

Relative Fisher information

Finally, if µ, ν ∈ P(Rd), with ν ≪ µ and dν = hdµ, define the relative Fisher information
as

I(ν∥µ) :=
∫
Rd

|∇h|2

h
dµ,

when the density h is differentiable. When h is not differentiable or if ν ̸≪ µ, we adopt the
convention that I(ν∥µ) = +∞. Thus, like relative entropy, the relative Fisher information is
always well-defined as a number in [0,+∞]. Both play a role in defining logarithmic Sobolev
inequalities, which we come to next.
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1.4 Logarithmic Sobolev inequalities
Logarithmic Sobolev inequalities provide one way to link entropy and Fisher information. A
probability measure µ ∈ P(Rd) is said to satisfy a log-Sobolev inequality with constant
C if

D(ν∥µ) ≤ C

2
I(ν∥µ), ∀ν ∈ P(Rd). (1.11)

We abbreviate this by saying µ satisfies LSI(C). We define the LSI constant for µ to be
the best such constant C; that is, with a slight abuse of notation, we define

LSI(µ) := inf{C ≥ 0 : µ satisfies LSI(C)}.

The classical example of a measure that satisfies an LSI is the standard Gaussian measure

dγ(x) :=
1

(2π)d/2
e−

1
2
|x|2 , x ∈ Rd,

for which LSI(γ) = 1. LSI constants are well-behaved under various transformations, so
oftentimes one begins with a measure known to satisfy an LSI, such as γ, and then perturbs
it to obtain a new measure in a way that retains control on the LSI constant. We list a few
examples below.

Proposition 3. Let µ ∈ P(Rd) satisfy LSI(C).

(i) (Tensorization) If ν ∈ P(Rd′) satisfies LSI(C ′), then the product measure µ × ν on
Rd × Rd′ satisfies LSI(C ∨ C ′).

(ii) If T : Rd → Rd is L-Lipschitz, then the pushforward T#µ satisfies LSI(L2C).

(iii) ([Holley and Stroock, 1988]) For a function ϑ : Rd → R, define its oscillation as

osc(ϑ) := supϑ− inf ϑ.

If µ̃ ∈ P(Rd) is defined by the perturbation dµ̃ = e−ϑdµ, then µ̃ satisfies LSI(eosc(ϑ)C).

(iv) ([Chen et al., 2021]) If ν ∈ P(Rd) is supported in a Euclidean ball of radius R and
γt = N (0, t), then the convolution ν ∗ γt satisfies LSI(C) for C ≤ 6(4R2 + t)e4R

2/t.

The study of logarithmic Sobolev inequalities has blossomed in recent decades, and was
initiated by Gross [1975], who was the first to state the Gaussian LSI and consider its
applications. However, Stam had actually discovered an equivalent form of the Gaussian LSI
a decade earlier in his proof of the entropy power inequality [Stam, 1959]; the equivalence
was noted by Carlen [1991]. Roughly speaking, LSIs encode a strong form of measure
concentration, which can be equivalently formulated as rapid convergence of an associated
diffusion process to equilibrium, or as hypercontractivity of the associated Markov semigroup.
These interpretations are not of significant importance to us here, since our applications will
be purely at the level of the functional inequality itself.
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Chapter 2

Cramér–Rao-type bounds and
log-Sobolev inequalities

2.1 A family of Bayesian Cramér–Rao-type bounds
Arguably the most common application of LSIs in statistics has been to establish concentra-
tion inequalities; see, e.g., [Raginsky and Sason, 2013, Boucheron et al., 2013, Ledoux, 2001,
McDiarmid, 1998]. Indeed, the LSI constant LSI(µ) encodes strong concentration properties
of a probability measure µ ∈ P(Rd). More precisely, an argument due to Herbst1 gives the
following: if F : Rd → R has Lipschitz constant ∥F∥Lip ≤ L, then

µ

{
F ≥

∫
Fdµ+ t

}
≤ exp

(
− t2

2 LSI(µ)L2

)
, ∀t > 0.

Here, we introduce a new perspective, which reveals a connection between LSIs and
information quantities of significance in parametric statistics, namely, we connect the mutual
information I(π;Pθ) to the Fisher information IX . The following is the main result of this
Chapter.

Theorem 2. Fix a parametric model (Pθ)θ∈Rd and prior π ∈ P(Rd). For any µ ∈ P(Rd),

I(π;Pθ) +D(π∥µ) ≤ LSI(µ)

2
(I(π∥µ) + Eπ[IX ]) . (2.1)

Remark 4. Observe that, for a fixed µ ∈ P(Rd), the LSI (1.11) can be recovered from
Theorem 2 by considering a parametric model where X is independent of θ. In this case,
I(π;Pθ) = Eπ[IX ] = 0.

We emphasize here an important philosophical difference between (2.1) and (1.11). In
(2.1), it is the parametric model that is fixed, and we may optimize over all reference measures

1The original argument of Herbst was given in a personal communication letter written in response to
Gross [1975]; see, e.g., Gross and Rothaus [1998] for a brief mention of the history.
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µ to obtain a suitable upper bound on I(π;Pθ), which can then be used to, for example,
establish lower bounds on Bayes risk of estimating θ. In contrast, typical application of (1.11)
consider µ as a given, fixed probability measure. Following the proof, we shall interpret (2.1)
as a family of Cramér–Rao-type bounds, indexed by measures µ satisfying an LSI.

Proof of Theorem 2. We may assume that the RHS of equation (2.1) is finite; else the claim
is trivially true. In particular, this means that we can restrict attention to µ ∈ P(Rd)
satisfying LSI(C) such that π ≪ µ. With this in mind, suppose dπ = hdµ, and note that
h(θ)f(x; θ) is the joint density of the random vector (θ,X) with respect to µ × λ. Let us
define the marginal density of X as

f(x) :=

∫
Rd

f(x; θ)dπ(θ) x ∈ X ,

and we can write the conditional density of θ given {X = x} by

hx(θ) =
h(θ)f(x; θ)

f(x)
θ ∈ Rd, x ∈ X . (2.2)

The functions f(·) and h·(·) are well-defined (π × λ)-a.e. Now, since µ satisfies LSI(C), we
have for λ-a.e. x, ∫

Rd

hx(θ) log hx(θ)dµ(θ) ≤
C

2

∫
Rd

|∇θhx(θ)|2

hx(θ)
dµ(θ),

which follows by definition of the LSI (1.11). Integrating both sides with respect to fdλ, we
have ∫

X
f(x)

(∫
Rd

hx(θ) log hx(θ)dµ(θ)

)
dλ(x) (2.3)

≤ C

2

∫
X
f(x)

(∫
Rd

|∇θhx(θ)|2

hx(θ)
dµ(θ)

)
dλ(x). (2.4)

Let us start by working on (2.4). Observe that∫
X
f(x)

(∫
Rd

|∇θhx(θ)|2

hx(θ)
dµ(θ)

)
dλ(x)

=

∫
X

∫
Rd

|∇θ(f(x)hx(θ))|2

f(x)hx(θ)
dµ(θ)dλ(x)

=

∫
X

∫
Rd

|∇θ(f(x; θ)h(θ))|2

f(x; θ)h(θ)
dµ(θ)dλ(x)

=

∫
X

∫
Rd

(
f(x; θ)

|∇θh(θ)|2

h(θ)
+ 2∇θh(θ) · ∇θf(x; θ) + h(θ)

|∇θf(x; θ)|2

f(x; θ)

)
dµ(θ)dλ(x)

= I(π∥µ) +
∫
Rd

IX(θ)dπ(θ) + 2

∫
X

∫
Rd

∇θh(θ) · ∇θf(x; θ)dµ(θ)dλ(x),
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where the penultimate identity follows by the product rule for derivatives and expanding the
square. The final cross term is integrable; indeed, Cauchy-Schwarz yields∫

X

∫
Rd

|∇h(θ) · ∇f(x; θ)|dµ(θ)dλ(x)

≤
d∑

i=1

∫
X

∫
Rd

| ∂
∂θi

h(θ)
∂

∂θi
f(x; θ)dµ(θ)|dλ(x)

≤
d∑

i=1

(∫
X

∫
Rd

| ∂
∂θi
h(θ)|2

h(θ)
f(x; θ)dµ(θ)dλ(x)

)1/2(∫
X

∫
Rd

| ∂
∂θi
f(x; θ)|2

f(x; θ)
h(θ)dµ(θ)dλ(x)

)1/2

≤

√
I(π∥µ)

∫
Rd

IX(θ)dπ(θ).

The last term is finite by our assumption that the RHS of (2.1) is finite. The exchange
of integrals to obtain the last line is justified by Tonelli’s theorem. Therefore, by Fubini’s
theorem,∫

X

∫
Rd

∇h(θ) · ∇f(x; θ)dµ(θ)dλ(x) =
∫
Rd

∇h(θ) ·
(∫

X
∇f(x; θ)dλ(x)

)
dµ(θ) = 0,

where the last equality follows by the prevailing Assumption 1. Summarizing, we have∫
X
f(x)

(∫
Rd

|∇hx(θ)|2

hx(θ)
dµ(θ)

)
dλ(x) = I(π∥µ) +

∫
Rd

IX(θ)dπ(θ). (2.5)

Next, let us work on (2.3), for which we write∫
X
f(x)

(∫
Rd

hx(θ) log hx(θ)dµ(θ)

)
dλ(x)

=

∫
X

∫
Rd

f(x)hx(θ) log hx(θ)dµ(θ)dλ(x)

=

∫
X

∫
Rd

f(x; θ)h(θ) log hx(θ)dµ(θ)dλ(x)

=

∫
X

∫
Rd

f(x; θ)h(θ) log
hx(θ)

h(θ)
dµ(θ)dλ(x) +

∫
X

∫
Rd

f(x; θ)h(θ) log h(θ)dµ(θ)dλ(x)

=

∫
X

∫
Rd

f(x; θ)h(θ) log
f(x; θ)

f(x)
dµ(θ)dλ(x) +

∫
Rd

h(θ) log h(θ)dµ(θ)

= I(π;Pθ) +D(π∥µ). (2.6)

Finally, we can combine (2.5) and (2.6) to yield

I(π;Pθ) +D(π∥µ) ≤ C

2

(
I(π∥µ) +

∫
Rd

IX(θ)dπ(θ)
)
.

Letting C approach LSI(µ) from above concludes the proof of Theorem 2.
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2.2 The Efroimovich and van Trees inequalities
As a first application of Theorem 2, we consider the special case where µ is taken to be equal
to the standard Gaussian measure γ in (2.1). By particularizing in this way, we obtain the
following.

Corollary 3 (Efroimovich’s inequality). Fix a parametric model (Pθ)θ∈Rd and prior π ∈
P(Rd) with finite second moments and finite entropy. It holds that

1

2πe
e

2
d
h(θ|X) ≥ 1

det
(
J̄ (π) + Eπ[ĪX ]

)1/d , (2.7)

Proof. Fix an invertible matrix V ∈ Rd×d, and consider the reparametrization η = V θ. If
we let πV = V#π denote the law of η, then taking µ = γ in (2.1) gives

I(θ;X) +D(πV ∥γ) = I(η;X) +D(πV ∥γ) ≤
1

2
(I(πV ∥γ) + EπV

[IX;η]) , (2.8)

where we used the fact that mutual information is invariant to invertible transformations of
its arguments. Since π has finite second moments, so does πV , which justifies the expansions

D(πV ∥γ) = −h(η) +
d

2
log(2π) +

1

2

∫
Rd

|η|2dπV (η)

and
I(πV ∥γ) = J (πV ) +

∫
Rd

|η|2dπV (η)− 2d.

On substitution into (2.8), we obtain

2I(θ;X) + d log(2πe)

≤ 2h(V θ) + J (πV ) +
∫
Rd

IX(η)dπV (η)− d

= 2h(θ) + log det(V TV ) + Tr

(
V −T

(
J̄ (π) +

∫
Rd

ĪX(θ)dπ(θ)
)
V −1

)
− d

= 2h(θ) + log det(V TV ) + Tr

(
(V TV )−1

(
J̄ (π) +

∫
Rd

ĪX(θ)dπ(θ)
))
− d.

Observe that the left-hand side of this inequality does not depend on V , so we may optimize
over our choice of V on the right-hand side. This task is made easy by recalling the Legendre
duality for log det on the cone of positive semidefinite d× d matrices, which can be written
as:

d+ log det(A) = inf
B>0
{Tr(AB−1) + log det(B)}.

Hence, we conclude

2I(θ;X) + d log(2πe) ≤ 2h(θ) + log det

(
J̄ (π) +

∫
Rd

ĪX(θ)dπ(θ)
)

which is a rearrangement of what we aimed to prove.
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Inequality (2.7) was first discovered by Efroimovich [1979] using a different method of
proof. The point to be made here is that Efroimovich’s inequality follows as a special case of
Theorem 2. In turn, a special case of Efroimovich’s inequality is the van Trees inequality,
which asserts that, for any estimator θ̂,

E|θ̂ − θ|2 ≥ d

det
(
J̄ (π) + Eπ[ĪX ]

)1/d . (2.9)

This follows from translation invariance of Shannon entropy, together with the classical fact
that entropy is maximized by a Gaussian distribution subject to a covariance constraint. In
particular, if we let Σ denote the covariance of the error (θ̂ − θ), then

2

d
h(θ|X) ≤ 2

d
h(θ̂ − θ) ≤ log

(
(2πe) det(Σ)1/d

)
≤ log

(
(2πe)

1

d
E|θ̂ − θ|2

)
,

where the final step is the AM-GM inequality. This together with (2.7) immediately gives
(2.9). The van Trees inequality was originally stated in 1968 by van Trees [1968], and it
was subsequently popularized by Gill and Levit [1995], who interpreted it as a Bayesian
Cramér–Rao bound. Since then, the van Trees inequality has enjoyed widespread use in
the statistics literature. Despite the fact that Efroimovich’s inequality is a strengthening
of the van Trees inequality, it seems to be largely overlooked since it was never translated
from its original Russian-language publication [Efroimovich, 1979]. To give one anecdote,
Tsybakov [2008] notes several advantages of the van Trees inequality, such as its relative
simplicity in application and ability to establish sharp bounds, but states a “ limitation is that
the van Trees inequality applies only to the squared loss function”. Efroimovich’s inequality
stands in contradiction to the latter statement, in the sense that the entropic strengthening
it affords over the ℓ2 van Trees inequality can be leveraged to establish lower bounds under
any loss function, via rate distortion theory.

Remark 5. One advantage that the van Trees inequality provides over the classical Cramér–
Rao bound (3.2) is that the van Trees inequality applies to any estimator θ̂, without restriction
to unbiased estimators. Of course, it is well-known that the classical Cramér–Rao bound has
extensions to biased estimators, but these bounds are not universal in the sense that they
depend on fine-grained information about the bias of the estimator (e.g., the bias and its
derivatives with respect to the parameter). See, for instance, [Scharf and Demeure, 1991] for
a discussion.

Asymptotic relation to the Cramér–Rao bound

Let us briefly explain how the van Trees (or, Efroimovich’s) inequality is connected to the
classical Cramér–Rao bound, which is based on a description given by Gill and Levit [1995].
We’ll work in dimension d = 1 for convenience. Suppose X := (X1, X2, . . . , Xn) consists of
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n i.i.d. samples from a density g(·; θ) defined on R. In other words,

f(x; θ) =
n∏

i=1

g(xi; θ) x ∈ Rn.

Again, we consider θ having a prior π. Suppose that the expected Fisher information of g(·; θ)
is finite, and let us write it as Eπ[IX1 ]; recall that X1, . . . , Xn are i.i.d. and they therefore
have the same expected Fisher information. Then, by additivity of Fisher information, we
have

Eπ[IX ] = nEπ[IX1 ]. (2.10)

Here, we used the fact that E log g(xi; θ) = 0. With (2.10), one can write from (2.9)

E(θ̂n − θ)2 ≥
1

J (π) + nEπ[IX1 ]
,

where θ̂n is any estimator depending on the samples X1, . . . , Xn.
Assuming the prior π has finite Fisher information, we may take n → ∞ to obtain the

asymptotic bound

lim inf
n→∞

E
(√

n(θ̂n − θ)
)2
≥ 1

Eπ[IX1 ]
.

The above can be related to the Cramér–Rao bound by choosing the prior π as a density
(satisfying the smoothness assumptions) located in (θ0 − n−1/2t, θ0 + n−1/2t) for some fixed
point θ0; in this case, first taking n→∞ and then taking t→∞ recovers

lim inf
n→∞, t→∞

E
(√

n(θ̂n − θ)
)2
≥ 1

IX1(θ0)
,

which is known as the asymptotic information bound [Gill and Levit, 1995], and recovers
asymptotically a Cramér–Rao-type bound for any sequence of estimators (θ̂n)n≥1. We remark
that, unlike the classical non-asymptotic Cramér–Rao bound, no assumption of unbiasedness
is required.

The van Trees inequality can be applied to establish minimax risk under non-parametric
models, oftentimes via guessing a difficult parametric sub-problem for which the van Trees
inequality can be applied [Gill and Levit, 1995].

2.3 Remarks on Efroimovich’s inequality
In this section, we briefly remark on different forms of Efroimovich’s inequality, which are
shown to be equivalent via a simple rescaling argument. The motivation is to provide a
prototype for similar rescaling arguments to appear later in this dissertation.
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We observe that, as a consequence of the AM-GM inequality applied to the eigenvalues
of the Fisher information matrices J̄ (π) and E[ĪX ], Efroimovich’s inequality implies

1

2πe
e

2
d
h(θ|X) ≥ d

J (π) + Eπ[IX ]
. (2.11)

Although (2.11) is evidently weaker than (2.9), they are formally equivalent. Indeed, by
considering the reparametrization η = V θ for an invertible V ∈ Rd×d, it follows from (2.11)
that

1

2πe
e−

2
d
I(θ;X) =

1

2πe
e−

2
d
I(η;X) ≥ de−

2
d
h(η)

Tr
(
V −T

(
J̄ (π) + Eπ[ĪX ]

)
V −1

)
=

d det(V TV )−1/de−
2
d
h(θ)

Tr
(
(V TV )−1

(
J̄ (π) + Eπ[ĪX ]

)) .
Choosing V such that V TV =

(
J̄ (π) + Eπ[ĪX ]

)
+ ϵId and letting ϵ ↓ 0 recovers (2.9). It is

always possible to choose such a V , since the Fisher information term is a positive semidefi-
nite matrix, and the perturbation ensures strict positive definiteness. Thus, when comparing
Efroimovich’s inequality against later results, it will sometimes be more convenient to com-
pare against (2.11) in the linearized form

I(π;Pθ) ≤
d

2
log

(
1

2πe

)
+ h(θ) +

d

2
log

(
1

d
(J (π) + Eπ[IX ])

)
, (2.12)

which comes without any loss of generality.
The formal equivalence between (2.7) and (2.12) is of the same spirit as the known

equivalence between the Gaussian LSI and the so-called Stam inequality [Carlen, 1991].
Indeed, if X is independent of θ, then we recover from (2.11) the uncertainty principle due
to Stam [1959]

1

2πe
e

2
d
h(π) ≥ d

J (π)
, (2.13)

which coincides with an entropic improvement of the classical Cramér–Rao bound in the
case where θ ∼ π is a location parameter. Using the inequality log(x) ≤ x− 1, it is an easy
exercise to see that Stam’s inequality (2.13) implies the Gaussian log-Sobolev inequality

D(π∥γ) ≤ 1

2
I(π∥γ). (2.14)

However, optimizing over dilations of π in the LSI (2.14) returns us to (2.13).



20

Chapter 3

Cramér–Rao-type inequalities for
log-concave priors

3.1 Motivation
Chapter 2 established a general interpretation of LSIs in the context of parametric models.
In particular, by optimizing over measures µ in (2.1), we obtain an abstract method for
bounding the mutual information I(π;Pθ). This provides an alternative to the traditional
Fano method, which generally dispenses with all information about the prior π when the
capacity of the channel θ 7→ X ∼ Pθ is invoked. As one example of its utility, we took
µ equal to the standard Gaussian distribution in (2.1) to obtain Efroimovich’s inequality,
which is itself a strengthening of the van Trees inequality. The former can be equivalently
rewritten as

e−
2
d
I(θ;X) ≥

exp
(
2
d
Dg(π)

)
det
(
Σ

1/2
π

(
J̄ (π) + Eπ[ĪX ]

)
Σ

1/2
π

)1/d (3.1)

when Σπ is nonsingular; this can be assumed without any essential loss of generality, since
deterministic components of θ ∼ π can be disregarded. Here, Dg(π) denotes the “non-
Gaussianness” of π, defined as the relative entropy between π and the Gaussian distribution
with the same mean and covariance; i.e.,

Dg(π) := D(π∥N (E[θ],Σπ)).

The advantage of Efroimovich’s inequality (3.1) is that it provides a simple upper bound
on the mutual information I(π;Pθ) in terms of standard Fisher information quantities. A
significant drawback is that the bound is degenerate whenever J (π) = +∞, which is the case
for non-smooth priors, such as uniform distributions on compact sets. Hence, it is natural to
ask: to what extent can Efroimovich’s inequality be improved to circumvent this difficulty?

To begin to answer this, let us look at the RHS of (3.1). To this end, considering a
parametric model with observation X independent of the parameter θ ∼ π in (2.7) gives the
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Stam-type uncertainty principle

e
2
d
h(θ) det(J̄ (π))1/d ≥ 2πe ⇒ exp

(
2

d
Dg(π)

)
≤ det(Σπ)

1/d det(J̄ (π))1/d.

Likewise, the classical Cramér–Rao bound for a location parameter (in which the observation
noise has distribution π) gives the related matrix inequality

Σ1/2
π J̄ (π)Σ1/2

π ≥ Id. (3.2)

If we assume the prior is well-behaved in some sense, then we might expect approximate
equality in each of these two bounds (note: neither of these inequalities depend on the
family (Pθ)θ∈Rd). Following this logic, substitution into the RHS of (3.1) would give

e−
2
d
I(θ;X) ≥

exp
(
2
d
Dg(π)

)
det
(
Σ

1/2
π

(
J̄ (π) + Eπ[ĪX ]

)
Σ

1/2
π

)1/d
≈ det(Σπ)

1/d det(J̄ (π))1/d

det
(
Σ

1/2
π

(
J̄ (π) + Eπ[ĪX ]

)
Σ

1/2
π

)1/d
=

det(Σ
1/2
π J̄ (π)Σ1/2

π )1/d

det
(
Σ

1/2
π

(
J̄ (π) + Eπ[ĪX ]

)
Σ

1/2
π

)1/d
≈ 1

det
(
Id + Σ

1/2
π Eπ[ĪX ]Σ1/2

π

)1/d .
This suggests we might hope to eliminate dependence on the Fisher information J (π) in
Efroimovich’s inequality (3.1) by establishing practically relevant and easily verifiable con-
ditions on the prior π under which we can expect

e−
2
d
I(θ;X) ≳

1

det
(
Id + ΣπEπ[ĪX ]

)1/d . (3.3)

Indeed, this coincides with Efroimovich’s inequality in the special case of a Gaussian prior
π, which should be regarded as a prototypical example.

As far as practically relevant and easily verifiable conditions on the prior go, log-concavity
is a first condition that comes to mind. For log-concave distributions π, it is conjectured
that 1

d
Dg(π) ≤ C for some universal constant C. In fact, this is equivalent to the hyperplane

conjecture due to Ball [1988], as shown by Bobkov and Madiman [2010]. Of note, it is well-
known that the hyperplane conjecture is implied by the KLS conjecture, which states that
the isoperimetric constant of any isotropic log-concave distribution is lower bounded by a
universal constant. Recent research supports the validity of the (stronger) KLS conjecture, in
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the sense that Chen [2020] and more recently Klartag and Lehec [2022] established an “almost
constant” lower bound (i.e., a lower bound that decays subpolynomially in dimension). Thus,
assuming the hyperplane (or KLS) conjecture to be true, the sequence of approximations
above can be turned into a sequence of quantitative inequalities for log-concave distributions.
Namely,

exp
(
2
d
Dg(π)

)
det
(
Σ

1/2
π

(
J̄ (π) + Eπ[ĪX ]

)
Σ

1/2
π

)1/d
≤ C

det
(
Σ

1/2
π

(
J̄ (π) + Eπ[ĪX ]

)
Σ

1/2
π

)1/d
≤ C

det
(
Id + ΣπEπ[ĪX ]

)1/d .
Therefore, if the hyperplane (or KLS) conjecture is true, inequality (3.3) would represent a
uniform improvement — up to absolute constants — of Efroimovich’s inequality (3.1) on the
class of log-concave distributions, which are immensely important in practice. We summarize
with a proposition.

Proposition 4. Fix a parametric model (Pθ)θ∈Rd and a log-concave prior π ∈ P(Rd). If the
hyperplane conjecture is true, then an estimate of the form

e−
2
d
I(θ;X) ≳

1

det
(
Id + ΣπEπ[ĪX ]

)1/d (3.4)

represents a uniform improvement of Efroimovich’s inequality, up to absolute constants.

Remark 6. The key point is that, unlike Efroimovich’s inequality, (3.4) does not suffer from
degeneracy when J (π) = +∞.

3.2 Main result
With the context of the previous section in mind, our goal this Chapter is to show that (3.3)
holds for all log-concave priors π. Of note, this includes non-smooth priors, such as uniform
distributions on convex sets, where Efroimovich’s inequality (3.1) would be degenerate.

Before stating our main result, let us make precise the definition of a log-concave distri-
bution. For a positive semidefinite matrix K ∈ Rd×d, we say that µ is K-uniformly log-
concave if there exists a convex function V : Rd → R such that dµ(x) = e−V (x)− 1

2
xTKxdx.

In case K = 0, we simply say that µ is log-concave.
As promised, the main result of this Chapter is the following.
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Theorem 4. Fix a parametric model (Pθ)θ∈Rd and a K-uniformly log-concave prior π ∈
P(Rd). It holds that

e−
2
d
I(π;Pθ) ≥ e−2α(π,Pθ)

det
(
Id + ΣπEπ[ĪX ]

)1/d , (3.5)

where the exponent α is defined as

α(π, Pθ) :=
1

d
Tr
(
(Id +K1/2(Eπ[ĪX ])−1K1/2)−1(Id −K1/2ΣπK

1/2)
)
.

Remark 7. The dependence of (3.5) on K is only through the exponent α(π, Pθ). If π ∈
P(Rd) is K-uniformly log-concave, then it holds by the Brascamp–Lieb variance inequality
[Brascamp and Lieb, 2002] that K1/2ΣπK

1/2 ≤ Id, with equality if and only if π is Gaussian
with covariance K−1. Hence, we always have 0 ≤ α(π, Pθ) ≤ 1, with α(π, Pθ) = 0 if and
only if π is Gaussian. If it is only known that the prior π is log-concave, then we may take
K = 0, giving α(π, Pθ) = 1.

Remark 8. Both α(π, Pθ) and (3.5) more generally are invariant to affine transformations
of the parameter. Moreover, they both enjoy optimal dependence on dimension. Indeed, since
α(π, Pθ) ≤ 1, (3.5) can be written as

e−
2
d
I(π;Pθ) ≳

1

det
(
Id + ΣπEπ[ĪX ]

)1/d .
In view of Remark 7, when the prior π is Gaussian, then we have α(π, Pθ) = 0 and J (π) =

Σ−1
π . In this case, we recover Efroimovich’s inequality (2.7) exactly. More generally, if we

admit the hyperplane conjecture, then Proposition 4 asserts that (3.5) can be considered as a
uniform improvement up to a constant factor of Efroimovich’s inequality, where dependence
on the Fisher information J (π) is completely eliminated, in favor of dependence on the
(inverse) second moments Σ−1

π . The latter is obviously more favorable, as a consequence
of the classical Cramér–Rao bound (3.2), which can be restated as the matrix inequality
Σ−1

π ≤ J (π).
In fact, there are many special cases of practical importance for which the hyperplane

conjecture is already known to hold true. Such cases include, for example, unconditional log-
concave distributions, which are log-concave distributions that are symmetric with respect
to reflection about any coordinate axis [Bobkov and Nazarov, 2003] (i.e., a random vector Y
has unconditional distribution if its density f satisfies f(y1, . . . , yd) = f(s1y1, . . . , sdyd) for
all choices of yi ∈ R and signs si ∈ {−1,+1}). Such distributions include the archetypical
examples of uniform distributions on ℓp balls, p ≥ 1. Efroimovich’s inequality is degenerate
on such priors, but Theorem 4 shows that degeneracy can be avoided by replacing J (π)
with Σ−1

π (the latter is proportional to Id in the unconditional case). More examples of
distributions for which the hyperplane conjecture holds true can be found in the survey
[Brazitikos et al., 2014, Chapter 4].
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For the case of a K-uniformly log-concave non-Gaussian prior, it is possible to use known
results from convex geometry [Ball and Nguyen, 2012, Bakry and Émery, 1985] to crudely
bound

e
2
d
Dg(π) ≤ C/λmin(K

1/2ΣπK
1/2)2,

where C is an absolute constant (recall: the hyperplane conjecture speculates that the RHS
above can be replaced by an absolute constant). Better estimates are possible, but this
crude estimate further helps to illustrate the point that (3.5) should be thought of as an
analogue to Efroimovich’s inequality, where dependence on the Fisher information J (π) can
be upgraded to dependence on second moments.

Proof of Theorem 4

We make a few preparations before starting the proof of Theorem 4 in earnest. First, for a
random variable X having density f with respect to Lebesgue measure on Rd, we define the
Rényi entropy of order ∞ as

h∞(X) := − log(ess sup f).

It is immediate from definitions that h∞(X) ≤ h(X). In case X has a distribution that is
uniformly log-concave, we can do slightly better than this.

Lemma 5. Let µ ∈ P(Rd) be K-uniformly log-concave, with K > 0. If Z ∼ N (0, Id) is
independent of η ∼ µ, then for all nonsingular A ∈ Rn×n,

h∞(η + A−1Z) +
1

2
Tr
(
(AK−1AT + Id)−1(AΣµA

T + Id)
)
≤ h(η + A−1Z).

Proof. Define the matrix ∆ := ATA > 0 for convenience, let Z∆ = A−1Z ∼ N (0,∆−1), and
consider the density of η + Z∆, expressed as

f(·) ≡ e−V (·) :=
det(∆)1/d

(2π)d/2

∫
Rd

e−
1
2
|A(·−x)|2dµ(x).

By preservation of uniform log-concavity under convolution (see, e.g., Saumard and Wellner
[2014, Theorem 3.7]), we know that µ is Kf -uniformly log-concave with

Kf := (K−1 +∆−1)−1.

By log-concavity, the point of maximum-likelihood is well defined as m∆ := argmaxx f(x).
In particular, the potential V is Kf -strongly convex, so that

V (x) ≥ V (m∆) +
1

2
(x−m∆)

TKf (x−m∆), for all x ∈ Rd.
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With this, we can lower-bound the entropy of η + Z∆ by

h(η + Z∆) = −
∫
Rd

f(x) log f(x)dx

=

∫
Rd

f(x)Vf (x)dx

≥ V (m∆) +
1

2

∫
Rd

f(x)(x−m∆)
TKf (x−m∆)dx

≥ V (m∆) +
1

2
Tr

(
Kf inf

m∈Rd

∫
Rd

f(x)(x−m)(x−m)Tdx

)
= h∞(η + Z∆) +

1

2
Tr
(
Kf (Σµ +∆−1)

)
.

Simplification yields the desired conclusion.

Next, we recall a well-known connection between uniform log-concavity and LSI constants
due to Bakry and Émery [1985].

Lemma 6 (The Bakry–Émery Theorem on Rd). If µ ∈ P(Rd) is K-uniformly log-concave,
then µ satisfies LSI(1/λmin(K)).

Now we can prove Theorem 4.

Proof of Theorem 4. We first prove the assertion under the assumption that K > 0. Con-
sider a K0-uniformly log-concave prior π0 ∈ P(Rd), and parameter η ∼ π0. Let Z ∼ N (0, Id)
be independent of η. Fix any positive definite ∆ ∈ Rd×d satisfying

λmax(∆) ≤ λmin(∆ +K0), (3.6)

and choose a symmetric A = AT ∈ Rd such that ∆ = ATA (e.g., A = ∆1/2). The density of
η + A−1Z is therefore given by the convolution

f(x) :=
det(∆)1/2

(2π)d/2

∫
Rd

e−
1
2
|A(η−x)|2dπ0(η).

Now, define the point of maximum-likelihood

m∆ := argmax
x

f(x),

which is well-defined by log-concavity. Define a new probability measure µ∆ ∈ P(Rd) by its
density

dµ∆(η) := C−1
∆ e−

1
2
|A(η−m∆)|2dπ0(η), η ∈ Rd,

where

C∆ :=

∫
Rd

e−
1
2
|A(η−m∆)|2dπ0(η) (3.7)
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is a normalizing constant. We observe that µ∆ is (∆ + K0)-uniformly log-concave by con-
struction, so it satisfies LSI(1/λmin(∆ +K0)). Note that π0 has density C∆e

1
2
|A(·−m∆)|2 with

respect to µ∆. Therefore, we may readily compute

D(π0∥µ∆) =
1

2

∫
Rd

|A(η −m∆)|2dπ0(η) + logC∆

=
1

2

∫
Rd

(η −m∆)
T∆(η −m∆)dπ0(η) + logC∆

and

I(π0∥µ∆) =

∫
Rd

(η −m∆)
T∆2(η −m∆)

Tdπ0(η).

Now, for η ∼ π0 and X ∼ Pη given η, it follows from Theorem 2 with reference measure
µ = µ∆, that

I(η;X) ≤ −D(π0∥µ∆) +
1

2λmin(∆ +K0)
I(π0∥µ∆) +

1

2λmin(∆ +K0)
Eπ0 [IX;η]. (3.8)

To bound the above, observe that

logC∆ −D(π0∥µ∆) +
1

2λmin(∆ +K0)
I(π0∥µ∆)

= −1

2

∫
Rd

(η −m∆)
T∆(η −m∆)dπ0(η) +

1

2λmin(∆ +K0)

∫
Rd

(η −m∆)
T∆2(η −m∆)

Tdπ0(η)

= −1

2

∫
Rd

(η −m∆)
TAT (Id −

1

λmin(∆ +K0)
∆)A(η −m∆)dπ0(η)

≤ −1

2
Tr

(
AT

(
Id −

1

λmin(∆ +K0)
∆

)
AΣπ0

)
= −1

2
Tr

((
Id −

1

λmin(∆ +K0)
∆

)
AΣπ0A

T

)
,

where the inequality follows since (i) we chose ∆ to satisfy (3.6), so that

Id ≥
1

λmin(∆ +K0)
∆

and, (ii) we always have the matrix inequality∫
Rd

(η −m∆)(η −m∆)
Tdπ0(η) ≥ Σπ0 .
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Next, with the help of Lemma 5, write

− logC∆

= log

(
det(∆)1/2

(2π)d/2

)
− log

(
det(∆)1/2

(2π)d/2

∫
Rd

e−
1
2
|A(η−m∆)|2dπ0(η)

)
= log

(
det(∆)1/2

(2π)d/2

)
+ h∞(η + A−1Z)

≤ log

(
det(∆)1/2

(2π)d/2

)
− 1

2
Tr
(
(AK−1

0 AT + Id)−1(AΣπ0A
T + Id)

)
+ h(η + A−1Z)

≤ 1

2
log det(∆) +

d

2
− 1

2
Tr
(
(AK−1

0 AT + Id)−1(AΣπ0A
T + Id)

)
+

1

2
log det(Σπ0 +∆−1)

=
d

2
− 1

2
Tr
(
(AK−1

0 AT + Id)−1(AΣπ0A
T + Id)

)
+

1

2
log det(AΣπ0A

T + Id).

Combining with (3.8), we have

I(η;X) ≤ d

2
− 1

2
Tr
(
AΣπ0A

T
)
+

1

2λmin(∆ +K0)
Tr
(
∆Σπ0∆+ Eπ0 [ĪX;η]

)
− 1

2
Tr
(
(AK−1

0 AT + Id)−1(AΣπ0A
T + Id)

)
+

1

2
log det(AΣπ0A

T + Id)

= −Tr
(
AΣπ0A

T
)
+

1

2λmin(∆ +K0)
Tr
(
∆Σπ0∆+ Eπ0 [ĪX;η]

)
+

1

2
Tr
(
(A−TK0A

−1 + Id)−1(AΣπ0A
T + Id)

)
+

1

2
log det(AΣπ0A

T + Id),

where we made use of the Woodbury identity (AK−1
0 AT + Id)−1 = Id − (Id + A−TK0A

−1)−1

[Woodbury, 1950] to get to the last line.
Now, we consider the reparametrization η = A−1V θ for some invertible matrix V . This

introduces the change of variables

Σπ0 ← A−1V ΣπV
TA−T

Eπ0 [ĪX;η]← ATV −TEπ[ĪX;θ]V
−1A

K0 ← ATV −TKV −1A.

Making these substitutions, we have

I(π;Pθ) ≤ −Tr
(
V ΣπV

T
)

+
1

2λmin(AT (Id + V −TKV −1)A)
Tr
(
ATV ΣπV

TA+ ATV −TEπ[ĪX;θ]V
−1A

)
+

1

2
Tr
(
(V −TKV −1 + Id)−1(V ΣπV

T + Id)
)
+

1

2
log det(V ΣπV

T + Id),
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for any symmetric matrix A satisfying

λmax(A
TA) ≤ λmin(A

T (Id + V −TKV −1)A).

Choosing A = (Id + V −TKV −1)−1/2 is a valid choice, forcing the maximum eigenvalue to be
no greater than unity, which is the precise value of the minimum eigenvalue on the right.
This leaves us with the unconditional inequality, for any invertible matrix V :

I(π;Pθ) ≤ −Tr
(
V ΣπV

T
)

+
1

2
Tr
(
(V −TKV −1 + Id)−1(V ΣπV

T + V −TEπ[ĪX;θ]V
−1)
)

+
1

2
Tr
(
(V −TKV −1 + Id)−1(V ΣπV

T + Id)
)
+

1

2
log det(V ΣπV

T + Id)

=
1

2
Tr
(
(V TV +K)−1(Eπ[ĪX;θ])

)
+

1

2
Tr
(
(V TV +K)−1(−2KΣπ + Id)V TV

)
+

1

2
log det

(
ΣπV

TV + Id
)
.

Now, assume Eπ[ĪX;θ] is nonsingular for convenience1. We may then further specialize by
choosing V = (Eπ[ĪX;θ])

1/2 to find, after simplification, that

I(π;Pθ) ≤
1

2
log det

(
ΣπEπ[ĪX;θ] + Id

)
+ Tr

(
(Id +K1/2(E[ĪX;θ])

−1K1/2)−1(Id −K1/2ΣπK
1/2)
)
.

The above is the desired result under the assumption K is positive definite. In case it is
not, it suffices to consider the perturbed measure πϵ defined by

dπϵ(x) ∝ eϵ|x|
2/2dπ(x),

which is (K+ ϵId)-uniformly log-concave. It is straightforward to see that letting ϵ ↓ 0 yields
the desired result in the general case of K ≥ 0.

3.3 Examples
We present several examples to illustrate tightness of Theorem 4.

Gaussian priors and Gaussian observations

Given a Gaussian prior π ∼ N (0d,Σπ), the corresponding K satisfies

KΣπ = Id,

1If this is not the case, we can consider V := Eπ[ĪX;θ] + ϵId, and let ϵ ↓ 0 to reach the conclusion.
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and therefore Theorem 4 gives

e−
2
d
I(π;Pθ) ≥ 1

det
(
Id + ΣπE[ĪX ]

) 1
d

. (3.9)

Consider the Gaussian observation X = θ + Z with Z ∼ N (0,ΣZ) independent from θ.
Then, note that E[ĪX ] = Σ−1

Z and

I(π;Pθ) =
1

2
log det

(
Id + ΣπΣ

−1
Z

)
.

It follows that (3.9) is satisfied with equality.

Uniformly log-concave priors with vanishing IX
Given any uniformly log-concave prior with K > 0, Theorem 4 implies

lim
λmax(E[ĪX ])→0

e−
2
d
I(π;Pθ) ≥ 1.

Note that I(π;Pθ)→ 0 as λmax(E[ĪX ])→ 0, and therefore the above is satisfied with equality.

Applications to situations where Jeffrey’s prior is log-concave

Consider i.i.d. observationsX = (X1, . . . , Xn) generated according to (Pθ)θ∈B. Jeffrey’s prior,
which has density ψ(·) ∝

√
IX1 , is asymptotically least favorable under KL-divergence as

n → ∞ [Clarke and Barron, 1994]. Theorem 4 provides a non-asymptotic upper bound on
I(πJ ;Pθ) given πJ is a log-concave Jeffrey’s prior.

Example 16 (Jeffrey’s prior of a Gaussian observation model over a convex set). Suppose
Θ ⊂ Rd is any convex set with finite volume. Consider the Gaussian observation model
Pθ = N (θ,Σ). Then, since IX(θ) = Σ−1 for all θ ∈ Θ (see Example 9), it follows that the
Jeffrey’s prior is the uniform measure over Θ.

Example 17 (Jeffrey’s prior of a Poisson observation model). Consider the poisson distri-
bution with parameter e−θ. A straightforward calculation yields IX(θ) = e−θ. Therefore, the
Jeffrey’s prior is Exponential(1/2).

While the Jeffrey’s priors in the above two examples are log-concave, Efroimovich’s in-
equality cannot be applied to give a meaningful bound to I(π;Pθ) since J (π) = +∞ in both
scenarios. It should be noted that Jeffrey’s prior is not necessarily log-concave. An example
is the Jeffrey’s prior under a binomial observation model.

Example 18 (Jeffrey’s prior of a binomial observation model). Suppose X = (X1, . . . , Xn) ∼
binomial(n, θ) with Θ = [0, 1]. Recall from Example 13 that the Fisher information is
IX(θ) = nθ−1(1− θ)−1. It follows that the Jeffrey’s prior having density ψ satisfies ψ(θ) ∝
θ−1/2(1 − θ)−1/2, which corresponds to a Beta(1/2, 1/2) distribution. Calculations yield
(logψ(θ))′′ ∝ θ−2 + (1− θ)−2 ≥ 0, showing that πJ is not log-concave.
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3.4 Variation on a theme
Suppose a given prior π ∈ P(Rd) is only known to be log-concave. In this case, Theorem 4
yields the upper bound

I(π;Pθ) ≤ d+
1

2
log det(Id + ΣπEπ[ĪX ]).

This is somewhat unsatisfactory in the regime where λmax(Eπ[ĪX ])→ 0, since in the extreme
case of Eπ[ĪX ] = 0, we have I(π;Pθ) = 0.

The proof of Theorem 4 hints at points of possible improvements. It’s possible one could
find a better choice of the matrices A and V , but this seems incapable of addressing the
issue noted above. The greater point of potential improvement seems to be sharpening the
bound on the normalizing constant C∆ in (3.7) by alternate means. The goal of this section
is to explore this possibility. Ultimately, we obtain a result similar in spirit, but not directly
comparable, to Theorem 4. It satisfies the desideratum that the upper bound on I(π;Pθ)
vanishes as λmax(Eπ[ĪX ])→ 0, and is stated as follows.

Theorem 7. Fix a parametric model (Pθ)θ∈Rd and prior π ∈ P(Rd). Define P := 1
d
Tr (Σπ)

and J := 1
d
Eπ[IX ]. If π is K-uniformly log-concave, then

I(π;Pθ) ≤ ϕ(λmin(K)P, JP ) (3.10)

where

ϕ(a, b) :=

{
d
(√

a2 + b− a
)

if a2 + b < 1

d (1− a) + d
2
log(a2 + b) if a2 + b ≥ 1.

Let’s briefly compare Theorems 4 and 7. The two are similar, in that they each provide
a concise upper bound on the mutual information I(π;Pθ) when the prior is log-concave.
Moreover, the upper bounds depend primarily on the covariance Σπ and the Fisher infor-
mation matrix ĪX , averaged over the prior. However, the bound in Theorem 4 depends on
the determinants of these matrices, whereas (3.10) involves traces. It is unclear whether the
latter can be upgraded to involve only determinants like the former. The difficulty lies in
the observation that this objective competes with our technique for improving the bound on
the normalizing constant C∆.

It is straightforward to see that neither result subsumes the other. Under the assumption
that the prior is simply log-concave and 1

d
Tr (Σπ)

1
d
Eπ[IX ] ≫ 1, Theorem 4 will generally

be favorable compared to Theorem 7, since the former essentially depends on the geometric
mean of the eigenvalues of the matrix Σ

1/2
π Eπ[IX ]Σ1/2

π , whereas the latter depends on the
arithmetic mean. Hence, if the eigenvalues of the matrix Σ

1/2
π Eπ[IX ]Σ1/2

π are not highly
concentrated, the determinantal inequality will generally be superior to the trace inequality.

However, in dimension d = 1, there is no distinction between the trace and determinant,
and the following example shows how Theorem 7 can provide uniform improvement upon
Theorem 4.
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Figure 3.1: The landscape of 1
d
ϕ(a, b) defined in Theorem 7. The values of a are taken

between [0, 1] by virtue of the Brascamp–Lieb inequality [Brascamp and Lieb, 2002]. Note
that the slope of 1

d
ϕ(0, b) at b→ 0 approaches +∞, which is not completely captured here.

Example 19. Let π ∈ P(R) be log-concave. For θ ∼ π, Theorem 7 gives the estimate

I(π;Pθ) ≤

{√
Var(θ)Eπ[IX ] if Var(θ)Eπ[IX ] < 1

1 + 1
2
log(Var(θ)Eπ[IX ]) if Var(θ)Eπ[IX ] ≥ 1,

while Theorem 4 gives the uniformly inferior bound

I(π;Pθ) ≤ 1 +
1

2
log(1 + Var(θ)Eπ[IX ]).

All this is to say that the story here may not yet be complete, and future work could
consider whether Theorems 4 and 7 can be reconciled into a single result.

Proof of Theorem 7

The proof of Theorem 7 proceeds roughly along the same lines as that of Theorem 4, with
steps taken to address the questions posed at the beginning of this section. The proof hinges
on the following technical proposition, which relates closely to our selection of the maximum
likelihood point m∆ in the proof of Theorem 4. It can be explained intuitively as follows:
if we convolve a log-concave probability measure µ with a Gaussian of covariance δ−1Id,
then the point of maximum likelihood of the resulting density (call it mδ) is unique, and
changes smoothly as we adjust δ > 0. The last part of the proposition gives a lower bound
on the likelihood at mδ, as we require. The only real surprise is the fact that mδ is also the
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barycenter of the density proportional to e−δ|x−mδ|2/2dµ(x), which is part (i) of the claim,
and is also helpful in the proof.

Proposition 5. Let µ ∈ P(Rd) be K-uniformly log-concave , with k := λmin(K).

(i) For each δ ≥ 0, there exists a unique mδ ∈ Rd such that∫
Rd

xe−δ|x−mδ|2/2dµ(x) = mδ

∫
Rd

e−δ|x−mδ|2/2dµ(x).

(ii) For each δ > 0, the map

m 7−→
∫
Rd

e−δ|x−m|2/2dµ(x)

has a unique global maximum at mδ.

(iii) The map δ 7−→ mδ is continuous on δ ∈ (0,∞). In particular, for each δ > 0, there is
a neighborhood Uδ of δ and Lδ <∞ such that |mδ′ −mδ| ≤ Lδ|δ′ − δ| for all δ′ ∈ Uδ.

(iv) Let σ2 = 1
d

∫
Rd |x−m0|2dµ(x). For mδ as in part (i), and each δ ≥ 0,

− log

(∫
Rd

e−δ|x−mδ|2/2dµ(x)

)
≤

{
d
2
δσ2 if 0 ≤ δ < 1

σ2 − k,
d
2

(
1− kσ2 + log ((δ + k)σ2)

)
if δ ≥ 1

σ2 − k.

Remark 9. The inequality in Proposition 5 translates to an upper bound on the Rényi
entropy h∞(Y + Zδ), where Y ∼ µ and Zδ ∼ N (0, δ−1Id) are independent. In general, tools
like the entropy power inequality in conjunction with estimates in [Bobkov and Madiman,
2011] can be used to obtain lower bounds on h∞(Y + Zδ) in terms of the marginal entropies
of Y and Zδ. However, obtaining nontrivial upper bounds is a difficult problem, as the entropy
power inequality cannot be reversed in general. Nevertheless, for log-concave random vectors
(as is the case here), reversal is possible under a suitable affine transformation of Y to put it
in so-called “M-position” introduced by Milman [1986.]; see, e.g., [Pisier, 1999, Bobkov and
Madiman, 2012]. Unfortunately, this transformation is not explicit, and so the result is not
obviously applicable to our setting.

Before the proof of Proposition 5, we collect a few preparatory lemmas. The first is the
well-known Banach fixed-point theorem [Banach, 1922].

Lemma 8 (Banach fixed-point theorem). Let (X , ρ) be a complete metric space, and let
T : X → X satisfy ρ(T (x), T (y)) ≤ λρ(x, y) for all x, y ∈ X , where λ < 1. Then T has a
unique fixed point x∗ ∈ X . Moreover, if x0 ∈ X and xn+1 := T (xn), n ≥ 0, then

ρ(xn, x
∗) ≤ λn

1− λ
ρ(T (x0), x0), n ≥ 0. (3.11)
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The next is effectively a stability result for the Poincáre constant for k-uniformly log-
concave distributions [Courtade and Fathi, 2020].

Lemma 9. Let ν ∈ P(Rd) be K-uniformly log-concave with K ≥ kId, k > 0. If Y ∼ ν and
u ∈ Sd−1, then

Var(⟨u, Y ⟩) ≤ 1

k
,

with equality only if ⟨u, Y ⟩ is Gaussian with variance 1/k, independent of Y − ⟨u, Y ⟩u.

Proof. By rescaling, we can assume without loss of generality that k = 1. Thus, by the
Bakry–Émery theorem, it follows that ν satisfies LSI(1). It is well-known that an LSI implies
a Poincaré inequality with the same constant by Rothaus’s linearization argument [Rothaus,
1981], and therefore we conclude that

Var(⟨u, Y ⟩) ≤ E[|u|2] = 1.

By stability results for the Poincaré inequality [Courtade and Fathi, 2020], we know that
equality is attained if and only if ⟨u, Y ⟩ is Gaussian with variance 1/k, independent of
Y − ⟨u, Y ⟩u.

Lemma 10 (Herbst’s argument [Bakry et al., 2014, Prop. 5.4.1.]). Let ν ∈ P(Rd) satisfy
LSI(C). For every 1-Lipschitz F : Rd → R and t2 ≤ 1/C, it holds that∫

Rd

et
2F 2/2dν <∞.

Proof of Proposition 5. Proof of (i): We start by showing that the map Tδ : Rd −→ Rd

defined by

Tδ : m 7−→
∫
Rd xe

−δ|x−m|2/2dµ(x)∫
Rd e−δ|x−m|2/2dµ(x)

is a contraction with respect to the usual Euclidean metric. Then, the claims follow from
the Banach fixed-point theorem.

So, begin by fixing δ > 0, and let µm,δ denote the probability measure with density
proportional to the density e−δ|x−m|2/2dµ(x). That is,

dµm,δ(x) = Z−1e−δ|x−m|2/2dµ(x),

where Z is a normalizing constant. Observe that µm,δ is δ-uniformly log-concave.
Now, we claim that µm,δ cannot split off an independent Gaussian factor with variance

1/δ. Indeed, if this were the case, then after suitable change of coordinates, we could assume
µm,δ splits off an independent Gaussian factor of variance 1/δ in the first coordinate, so that

dµm,δ(x) = e−W (x2,...,xd)−δ|x1−c|2/2dx = Z−1e−δ|x−m|2/2dµ(x),
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for some c ∈ R. Rearranging, this yields

dµ

dx
(x) = Zeδ|x−m|2/2−W (x2,...,xd)−δ|x1−c|2/2,

which is not integrable in coordinate x1, a contradiction. Hence, it follows from Lemma 9
that

λmax(Σm,δ) <
1

δ
(3.12)

where Σm,δ denotes the covariance matrix associated to µm,δ.
By differentiating the ith coordinate of Tδ at m, we see that

∇[Tδ]i(m)

= δ

∫
Rd xi(x−m)e−δ|x−m|2/2dµ(x)∫

Rd e−δ|x−m|2/2dµ(x)
− δ

(∫
Rd xie

−δ|x−m|2/2dµ(x)
)(∫

Rd(x−m)e−δ|x−m|2/2dµ(x)
)

(∫
Rd e−δ|x−m|2/2dµ(x)

)2
= δ

∫
Rd xixe

−δ|x−m|2/2dµ(x)∫
Rd e−δ|x−m|2/2dµ(x)

− δ

(∫
Rd xie

−δ|x−m|2/2dµ(x)
)(∫

Rd xe
−δ|x−m|2/2dµ(x)

)
(∫

Rd e−δ|x−m|2/2dµ(x)
)2

= δ

∫
Rd

xixdµm,δ(x)− δ
(∫

Rd

xidµm,δ(x)

)(∫
Rd

xdµm,δ(x)

)
.

Hence, the Jacobian DTδ of Tδ has entries [DTδ(m)]ij = δ[Σm,δ]i,j. Recalling (3.12), we
find

∥Tδ∥Lip = λmax(DTδ(m)) = δλmax(Σm,δ) < 1,

so that Tδ is a contraction as claimed. Hence, the desired existence and uniqueness of mδ

follows from the Banach fixed-point theorem.

Proof of (ii): To prove the second claim, note that for any m ̸= mδ and t ∈ [0, 1),

d

dt

∫
Rd

e−δ|x−((1−t)m+tmδ)|2/2dµ(x)

= δ

∫
Rd

⟨x− ((1− t)m+ tmδ),mδ −m⟩e−δ|x−tmδ|2/2dµ(x)

∝ ⟨Tδ ((1− t)m+ tmδ)− ((1− t)m+ tmδ),mδ −m⟩
= ⟨Tδ ((1− t)m+ tmδ)− Tδ(mδ),mδ −m⟩+ (1− t)|mδ −m|2

≥ −|Tδ ((1− t)m+ tmδ)− Tδ(mδ)||mδ −m|+ (1− t)|mδ −m|2

> −|(1− t)m− (1− t)mδ||mδ −m|+ (1− t)|mδ −m|2

= 0.

The strict inequality holds since Tδ is a contraction and (1− t)m+ tmδ ̸= mδ for t ∈ [0, 1).
Thus, for any m ∈ Rd not equal to mδ, the map t 7→

∫
Rd e

−δ|x−((1−t)m+tmδ)|2/2dµ(x) is strictly



CHAPTER 3. INEQUALITIES FOR LOG-CONCAVE PRIORS 35

increasing on [0, 1), so that m 7→
∫
Rd e

−δ|x−m|2/2dµ(x) achieves a unique global maximum at
mδ as claimed.

Proof of (iii): We first note that (ii) proved above yields a uniform bound on |mδ| for all
δ > 0. In particular,∫

Rd

|x|dµ(x) ≥
∫
Rd

|x|e−δ|x−mδ|2/2dµ(x) ≥
∣∣∣∣∫

Rd

xe−δ|x−mδ|2/2dµ(x)

∣∣∣∣
= |mδ|

∫
Rd

e−δ|x−mδ|2/2dµ(x)

≥ |mδ|
∫
Rd

e−δ|x|2/2dµ(x)

≥ |mδ| exp
(
−δ
2

∫
Rd

|x|2dµ(x)
)
.

Since µ is log-concave, it has finite moments of all orders, and we conclude

|mδ| ≤ exp

(
δ

2

∫
Rd

|x|2dµ(x)
)∫

Rd

|x|dµ(x) <∞. (3.13)

For each δ > 0, we introduce the more convenient notation µδ := µmδ,δ, where mδ is
defined as in part (i). By Taylor’s theorem

|eϵf − (1 + ϵf)| ≤ ϵ2f 2

2
e|ϵf |,

so it follows that∫
Rd xe

−δ|x−mδ+ϵ|2/2dµ(x)∫
Rd e−(δ+ϵ)|x−mδ+ϵ|2/2dµ(x)

=

∫
Rd

xeϵ|x−mδ+ϵ|2/2dµδ+ϵ(x)

=

∫
Rd

x
(
1 +

ϵ

2
|x−mδ+ϵ|2 +O(ϵ2|x−mδ+ϵ|4e|ϵ||x−mδ+ϵ|2/2)

)
dµδ+ϵ(x),

where the big-O term hides only numerical constants. To show that the error term remains
small after integration, note that∣∣∣∣∫

Rd

(
xϵ2|x−mδ+ϵ|4e|ϵ||x−mδ+ϵ|2/2

)
dµδ+ϵ(x)

∣∣∣∣
≤ ϵ2

∫
Rd

(
|x||x−mδ+ϵ|4e|ϵ||x−mδ+ϵ|2/2

)
dµδ+ϵ(x)

≤ ϵ2
(∫

Rd

|x|2|x−mδ+ϵ|8dµδ+ϵ(x)

)1/2(∫
Rd

e|ϵ||x−mδ+ϵ|2dµδ+ϵ(x)

)1/2

. (3.14)
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Since µδ+ϵ is log-concave, a well-known inequality of Borell (e.g., Borell [1974], Latała and
Wojtaszczyk [2008]) ensures that(∫

Rd

|x−m|pdµδ+ϵ(x)

)1/p

≤ C
p

q

(∫
Rd

|x−m|qdµδ+ϵ(x)

)1/q

for all 1 ≤ q ≤ p < ∞ and m ∈ Rd, where C is an absolute constant. Thus, since∫
Rd |x − mδ+ϵ|2dµδ+ϵ(x) ≤ d

δ+ϵ
by (i) and Lemma 9, and δ 7→ |mδ| is bounded via (3.13),

the first term in (3.14) involving polynomial moments is finite and uniformly bounded (in
terms of δ) for all ϵ sufficiently small. Additionally, since µδ+ϵ is uniformly log-concave by
construction, it satisfies LSI(δ/2) for all |ϵ| < δ/2 by the Bakry–Émery theorem. Hence,∫
Rd e

|ϵ||x−mδ+ϵ|2dµδ+ϵ(x) is finite by Lemma 10, and uniformly bounded in terms of d, δ, for
all ϵ sufficiently small.

Summarizing, we have∫
Rd xe

−δ|x−mδ+ϵ|2/2dµ(x)∫
Rd e−(δ+ϵ)|x−mδ+ϵ|2/2dµ(x)

=

∫
Rd

x
(
1 +

ϵ

2
|x−mδ+ϵ|2

)
dµδ+ϵ(x) +O(ϵ2)

= mδ+ϵ +
ϵ

2

∫
x|x−mδ+ϵ|2dµδ+ϵ(x) +O(ϵ2)

and, by similar arguments,∫
Rd e

−δ|x−mδ+ϵ|2/2dµ(x)∫
Rd e−(δ+ϵ)|x−mδ+ϵ|2/2dµ(x)

=

∫
Rd

(
1 +

ϵ

2
|x−mδ+ϵ|2

)
dµδ+ϵ(x) +O(ϵ2)

= 1 +
ϵ

2

∫
|x−mδ+ϵ|2dµδ+ϵ(x) +O(ϵ2),

where the big-O terms hide finite constants that depend on δ, but not on ϵ. In particular,
since

Tδ(mδ+ϵ)−mδ+ϵ =

∫
Rd xe

−δ|x−mδ+ϵ|2/2dµ(x)∫
Rd e−δ|x−mδ+ϵ|2/2dµ(x)

−mδ+ϵ,

we can conclude using the above estimates and uniform boundedness of δ 7→ |mδ| that, for
ϵ sufficiently small,

|Tδ(mδ+ϵ)−mδ+ϵ| ≤ |ϵ|Cδ,

where Cδ <∞ depends on δ, but not ϵ.
Now, applying the second part of the Banach fixed-point theorem, we find for all ϵ

sufficiently small

|mδ+ϵ −mδ| ≤
1

1− ∥Tδ∥Lip
|Tδ(mδ+ϵ)−mδ+ϵ| ≤

|ϵ|Cδ

1− ∥Tδ∥Lip
,

where we used the fact that mδ is the fixed point of Tδ. Since ∥Tδ∥Lip < 1 from the proof of
(i), the proof of (iii) is complete.
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Proof of (iv): For convenience, define for δ ≥ 0

g(δ) := − log

(∫
Rd

e−δ|x−mδ|2/2dµ(x)

)
.

Since µ is a probability measure, we have g(0) = 0, so we focus henceforth on δ > 0. For
δ′, δ > 0 the bound |x−mδ′ |2 ≤ |x−mδ|2 + 2⟨x−mδ′ ,mδ −mδ′⟩ applies to give

g(δ′)− g(δ) = − log

(∫
Rd e

−δ′|x−mδ′ |2/2dµ(x)∫
Rd e−δ|x−mδ|2/2dµ(x)

)

≤ − log

(∫
Rd

e−(δ′−δ)|x−mδ|2/2−δ′⟨x−mδ′ ,mδ−mδ′ ⟩dµδ(x)

)
≤
∫
Rd

(
(δ′ − δ)|x−mδ|2/2 + δ′⟨x−mδ′ ,mδ −mδ′⟩

)
dµδ(x)

= (δ′ − δ)
(
1

2

∫
Rd

|x−mδ|2dµδ(x) +
δ′

δ′ − δ
|mδ −mδ′|2

)
,

where we used convexity of t 7→ − log(t) in the second inequality, and the final equality used∫
Rd xdµδ = mδ. Switching the roles of δ, δ′, we have the reverse inequality

g(δ′)− g(δ) ≥ (δ′ − δ)
(
1

2

∫
Rd

|x−mδ′ |2dµδ′(x)−
δ

δ′ − δ
|mδ −mδ′ |2

)
.

By (iii), it holds that |mδ − mδ′|2 ≤ L2
δ|δ − δ′|2 for δ′ sufficiently close to δ. Additionally,∫

Rd |x − mδ|2dµδ ≤ d
k+δ

for each δ > 0 by Lemma 9. Thus, for δ′, δ > 0, with |δ − δ′|
sufficiently small,

|g(δ′)− g(δ)| ≤ |δ′ − δ|
(

d

2(k + δ)
+ δ′L2

δ|δ − δ′|
)
.

In particular, g is continuous on (0,∞) with upper Dini derivative bounded by

g′+(δ) := lim sup
ϵ→0+

g(δ + ϵ)− g(δ)
ϵ

≤ d

2(k + δ)
.

Hence, we have for δ ≥ δ0 > 0

g(δ) ≤ g(δ0) +

∫ δ

δ0

g′+(s)ds ≤ g(δ0) +
d

2

∫ δ

δ0

1

k + s
ds = g(δ0) +

d

2
log

k + δ

k + δ0
. (3.15)

By (ii) and convexity of t 7→ − log t, we have

g(δ) = − log

(∫
Rd

e−δ|x−mδ|2/2dµ(x)

)
≤ − log

(∫
Rd

e−δ|x−m0|2/2dµ(x)

)
≤ δ

2

∫
Rd

|x−m0|2dµ(x) =
d

2
δσ2.
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Thus, we conclude from this and (3.15) that

− log

(∫
Rd

e−δ|x−mδ|2/2dµ(x)

)
≤ d

2
inf

δ0∈(0,δ)

{
δ0 + log

k + δ

k + δ0

}
.

Optimizing over δ0 > 0, we conclude the desired upper bound.

With Proposition 5 in hand, we can finally turn our attention to the proof of Theorem 7.

Proof of Theorem 7. For δ > 0, let µδ denote the probability measure with density

dµδ(x) = C−1
δ e−δ|x−mδ|2/2dπ(x),

where Cδ =
∫
e−δ|x−mδ|2/2dπ(x) is a normalizing constant and mδ ∈ Rd is as described in

Proposition 5(i), for the choice of µ = π. Note that π has density Cδe
δ|x−mδ|2/2 with respect

to µδ. Therefore, we may compute

D(π∥µδ) =
δ

2

∫
Rd

|x−mδ|2dπ(x) + logCδ =
1

2δ
I(π∥µδ) + logCδ.

By the Bakry–Émery theorem and the assumed k-uniform log-concavity of π, µδ satisfies
LSI(1/(k + δ)), so it follows from Theorem 2 that

I(π;Pθ) ≤ −D(π∥µδ) +
1

2(k + δ)
I(π∥µδ) +

1

2(k + δ)

∫
Rd

IX(θ)dπ(θ)

= − k

2δ(k + δ)
I(π∥µδ) +

1

2(k + δ)

∫
Rd

IX(θ)dπ(θ)− logCδ

= − kδ

2(k + δ)

∫
Rd

|x−mδ|2dπ(x) +
1

2(k + δ)

∫
Rd

IX(θ)dπ(θ)− logCδ

≤ − kδ

2(k + δ)
Tr(Σπ) +

1

2(k + δ)

∫
Rd

IX(θ)dπ(θ)− logCδ.

Multiplying through by 2/d and invoking Proposition 5(iv), we conclude

2

d
I(π;Pθ) ≤ −

kδ

(k + δ)
P +

1

(k + δ)
J +

{
δP if 0 ≤ δ < 1

P
− k,

1− kP + log ((δ + k)P ) if δ ≥ 1
P
− k,

where J, P are as defined in the statement of the theorem. Now, define a := kP and b := JP
for convenience, and we note that a ≤ 1 due to Lemma 9. Reparametrizing the above in
terms of t := δP , we may state the inequality as

2

d
I(π;Pθ) ≤

b− at
(a+ t)

+

{
t if 0 ≤ t < 1− a,
1− a+ log (a+ t) if t ≥ 1− a,

(3.16)
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Now, we optimize over the choice of t ≥ 0. In particular, elementary calculus reveals that
the best choice of t is given by

t =

{√
a2 + b− a if a2 + b < 1

b+ a2 − a if a2 + b ≥ 1,

which gives

2

d
I(π;Pθ) ≤

{
2(
√
a2 + b− a) if a2 + b < 1,

2(1− a) + log (a2 + b) if a2 + b ≥ 1.

Rearranging yields (3.10).

On self-improvement of Theorem 7

We recall here that the linearized Efroimovich inequality (2.12) can be self-improved to the
nonlinear form (2.7) by a rescaling argument. Unlike Theorem 4, we note that the RHS of
the inequality stated in Theorem 7 is not invariant to linear transformations, while the LHS
is. Hence, it can be self-improved similar to our remarks on Efroimovich’s inequality. In
particular, we have the following.

Theorem 11. Fix a parametric model (Pθ)θ∈Rd and prior π ∈ P(Rd). If π is K-uniformly
log-concave, then

I(π;Pθ) ≤ ϕ
(
λmin(B

−1(Σ1/2
π KΣ1/2

π ))1
d
Tr(B), 1

d2
Tr(B)2

)
, (3.17)

where B :=
(
Σ

1/2
π Eπ[ĪX ]Σ1/2

π

)1/2
and ϕ is as defined in Theorem 7.

Proof. Consider a nonsingular matrix V , let η = V θ, and let π0 denote the law of η. Note that
η is V −TKV −1-uniformly log-concave and Σπ0 = V ΣπV

T . Recalling the reparametrization
identity

Eπ0 [ĪX;η] = V −TEπ[ĪX;θ]V
−1,

an application of Theorem 7 gives, for M := V TV ,

I(π;Pθ)

= I(π0;Pη)

≤ ϕ
(
λmin(V

−TKV −1)1
d
Tr(V ΣπV

T ), 1
d
Tr(V ΣπV

T )d−1Tr(V −TEπ[ĪX;θ]V
−1)
)

= ϕ
(
λmin(M

−1K)1
d
Tr(MΣπ),

1
d
Tr(MΣπ)

1
d
Tr(M−1Eπ[ĪX;θ])

)
,

where we used the cyclic properties of trace and λmin (the latter for square matrices). Now,

choose M = Σ
−1/2
π

(
Σ

1/2
π Eπ[ĪX;θ]Σ

1/2
π

)1/2
Σ

−1/2
π which gives the desired result.
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With B as defined in (3.17), it is relatively straightforward to show that

Tr(B)2 ≤ Tr(Σπ) Tr(Eπ[ĪX ]).

Moreover, in the case where K = kId (which is typical in applications), we have

λmin(B
−1(Σ1/2

π KΣ1/2
π )) Tr(B) ≤ Tr(Σ1/2

π KΣ1/2
π ) = λmin(K) Tr(Σπ).

Hence, we may generally regard Theorem 11 as a self-improvement over Theorem 7.
We remark that the matrix B is invariant to affine transformations of the parameter

θ. Indeed, if θ0 is normalized so that Cov(θ0) = Id and we let π0 denote its law, then for
θ = Σ

1/2
π θ0, we have

Eπ0 [ĪX;θ0 ] = Σ1/2
π Eπ[ĪX;θ]Σ

1/2
π

Hence, if η ∼ ν is an affine transformation of θ, then we conclude

Σ1/2
η Eν [ĪX;η]Σ

1/2
η = Σ1/2

π Eπ[ĪX;θ]Σ
1/2
π .

Likewise, the matrix Σ
1/2
π KΣ

1/2
π is invariant to affine transformations of the parameter in

the following sense: π0 is K0-uniformly log-concave with K0 := Σ
1/2
π KΣ

1/2
π if and only if π is

K-uniformly log-concave.
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Chapter 4

Information-theoretic bounds on risk

In the previous chapters, we developed upper bounds on the mutual information between
a parameter and an observation in terms of Fisher information terms and second moments.
Chapter 2 presented an abstract framework that indexes such inequalities by measures that
satisfy an LSI; the Efroimovich and van Trees inequalities are special cases when the reference
measure is taken to be standard Gaussian. In Chapter 3, we showed how the abstract
machinery can be applied to settings involving log-concave priors, resulting in upper bounds
that maintain the spirit of the Efroimovich inequality, but have the advantage of avoiding
degeneracy by eliminating dependence on the Fisher information of the prior.

We now turn our attention to statistical applications; namely, bounding Bayes and min-
imax risk. This chapter briefly introduces important definitions and concepts, and reviews
standard methods for how bounds on mutual information can be employed to provide bounds
on risk. For further background, readers are referred to the references [Wainwright, 2019,
Cover and Thomas, 2012, Berger, 2003].

4.1 Definition of Bayes and minimax risk
As remarked in Chapter 2, the ultimate goal of parameter estimation is to recover the latent
parameter θ given the observation X. We can write any implementable function, algorithm
or procedure that takes in X and gives an estimate as the estimator θ̂ : X → Rd. The
central question to quantitatively address is: how well does θ̂ estimate θ? A standard way
of answering this question is by introducing the risk function R, defined in terms of a loss
function L : Rd × Rd → R, the estimator θ̂, and a given parameter θ via

R(θ̂, θ) := EPθ
[L(θ̂(X), θ)]. (4.1)

If we have prior knowledge θ ∼ π, then we have the corresponding Bayes risk for the
estimator θ̂ given by

Rπ(θ̂) := Eπ[R(θ̂, θ)] = E[L(θ̂(X), θ)]. (4.2)
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Most commonly, the loss function is defined to satisfy L(θ′, θ) ≥ 0, with equality when
θ′ = θ; i.e., the loss is minimized when the estimator θ̂ recovers θ correctly. It is easy to see
why the risk defined in (4.1) is suitable for a wide variety of situations. For one, it models
our intent precisely; the loss function L(·, ·) can be thought of as a penalty function, and
the risk R(θ̂, θ) measures the expected penalty incurred using θ̂ to estimate θ based on the
specified loss L(·, ·). Given that the loss function is left unspecified, it allows the statistician
or the engineer to choose a suitable one for their purpose.

Given that the risk measures the average penalty incurred, a second question that follows
immediately is: how do we know if the estimator θ̂ is good relative to other possible choices?
This is where lower bounds on risk comes into play. From a philosophical standpoint, if we
can show that any estimator θ̂ satisfies

Rπ(θ̂) ≥ A for all θ̂ : X → Rd, (4.3)

for some number A ≥ 0, then given a particular estimator θ̂, upon calculating the corre-
sponding risk Rπ(θ̂), we can compare it with the value A to get an understanding of how
well θ̂ might be. If the risk is precisely equal to A, then we know that the estimator θ̂ is the
best possible, and there is little we can hope do to improve it (at least, in terms of the risk
associated with L). On the contrary, if the risk is much larger than A, then it is either one
of two reasons: (i) a better estimator is possible; or, (ii) the lower bound is too loose.

Now, let us define the Bayes risk of estimating θ ∼ π from X ∼ Pθ, as the smallest risk
achievable over all estimators

R∗
π := inf

θ̂
Rπ(θ̂).

Naturally, when the risk of an estimator matches a given lower bound on the Bayes risk
lower bound (say, a lower bound of A as in (4.3)) with equality, it immediately follows that
the Bayes risk corresponding to the prior π is exactly equal to A.

By definition, Bayes risk only measures the penalty incurred on average. A related
concept is the minimax risk, which is defined as

R∗ := inf
θ̂
sup
θ∈Θ

R(θ̂, θ) = inf
θ̂
sup
θ∈Θ

EPθ
[L(θ̂(X), θ)],

where Θ ⊆ Rd is a given set of admissible parameters. By definition, the minimax risk
quantifies the performance of the estimator that minimizes the worst-case penalty incurred
under L. Bayes risk and minimax risk are well-known to be related as follows.

Theorem 12. If π ∈ P(Rd) is a prior with support contained in Θ ⊆ Rd, then

R∗ ≥ R∗
π. (4.4)

Thus, any lower bound on Bayes risk implies the same lower bound on minimax risk.



CHAPTER 4. INFORMATION-THEORETIC BOUNDS ON RISK 43

Proof. The proof is immediate from definitions:

R∗
π = inf

θ̂
Eπ[R(θ̂, θ)] ≤ inf

θ̂
sup
θ∈Θ

R(θ̂, θ) = R∗,

where the inequality follows since π is supported on Θ.

In other words, the above simply states that lower bounds on minimax risk bounds can be
derived from lower bounds on Bayes risk bounds by optimizing over choices of the prior π.

In the non-asymptotic regime, i.e., where d and the dimension of X are not necessarily
taken to infinity, it is of significant interest to understand Bayes risk and minimax risk in
terms of the model parameters. In these cases, the primary focus is on characterizing the de-
pendence of risk on model parameters, and universal pre-constants are generally disregarded.
We remark that in the asymptotic regime, it is possible to derive sharp bounds on minimax
risk using the theory of asymptotic minimax, see, e.g., [Hájek, 1972, Van der Vaart, 2000].

In our applications, we will focus on applying bounds given in Chapter 3 to give lower
bounds on Bayes and minimax risk lower bounds in the non-asymptotic regime. This Chapter
and the next two are organized in the following fashion:

1. In this Chapter, we will present general procedures of deriving lower bounds on Bayes
risk given upper bounds on mutual information I(π;Pθ). Tools from rate distortion
theory will be extensively utilized. We will examine applications to the Gaussian
location model and the spiked covariance model.

2. In Chapter 5 we will present applications to Generalized Linear Models (GLMs). An
array of lower bounds on Bayes and minimax risk under different settings will be
discussed.

3. Applications to pairwise comparison models are found in Chapter 6. There, we will
introduce a general pairwise comparison framework called the General Pairwise Model
(GPM), which includes as special cases popular models such as the Thurstone (Case V)
Model, Bradley–Terry–Luce (BTL) model and the Ordinal model. We will show how
our techniques can be applied to yield uniform minimax lower bounds under the GPM
that hold uniformly over the broad class of pairwise comparison models we consider.

4.2 Rate distortion theory

For a random variable θ ∼ π ∈ P(Rd) and a loss function L : Θ̂ × Rd → [0,+∞), the
rate-distortion function from the theory of lossy compression is defined as

R(D; π,L) := inf
Qθ̂|θ:E[L(θ̂,θ)]≤D

I(θ̂; θ).

In the optimization problem above, the infimum is over all random variables θ̂ ∈ Θ̂ jointly
distributed with θ ∼ π such that E[L(θ̂, θ)] ≤ D, where expectation is with respect to the
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joint law. It is well known that the functionD 7→ R(D; π,L) is convex and decreasing. More-
over, the optimization problem defining R(D; π,L) is a convex program, and can therefore
be solved in principle; see, e.g., [Blahut, 1972, Arimoto, 1972, Chiang and Boyd, 2004] for
more background and discussions. Closed-form results are known in a few special cases.

Example 20 (Gaussian source and squared loss). When d = 1, π = N(0, σ2), Θ̂ = R and
L(θ̂, θ) = (θ̂ − θ)2, then

R(D; π,L) = 1

2
log

(
σ2

D
∨ 1

)
, D ≥ 0.

Example 21 (Exponential source and one-sided loss). When d = 1, π = Exponential(λ),
Θ̂ = R and

L(θ̂, θ) =

{
θ̂ − θ if θ̂ ≥ θ

∞ otherwise,

then
R(D; π,L) = log

(
1

λD
∨ 1

)
, D ≥ 0.

There are many other loss functions one can consider. For example, Adler et al. [2021]
considers L(θ̂, θ) = θ log(θ/θ̂) and presents lower bounds on the rate distortion function with
applications to quantization of random distributions. Tan and Yao [1975] provides explicit
evaluations of the rate distortion function under L(θ̂, θ) = |θ̂− θ| for a large class of sources.
Courtade and Wesel [2011] consider a entropy-based distortion measure and Courtade and
Weissman [2013] consider a log-loss.

Example 22 (Entropy loss). For a density p on Rd, we can define the entropy loss as
L(p, θ) = − log p(θ). Given a prior π admitting a density with respect to Lebesgue measure,
we have

R(D; π,L) = h(θ)− (D ∧ h(θ)) , D ∈ R.

Since the rate distortion function is always a decreasing function of the argument D, and
for any estimator θ̂ we have the Markov relation

θ → X → θ̂(X),

definitions and the data processing inequality for mutual information directly imply

R(R∗
π; π,L) ≤ R(Rπ(θ̂);π,L) ≤ I(θ; θ̂(X)) ≤ I(θ;X)

for any parametric model with parameter θ ∼ π and observation X ∼ Pθ. Since R(·; π,L)
is decreasing in its argument, we can combine the above with any upper bound on the
mutual information to obtain a lower bound on the Bayes risk R∗

π. For example, we have
the following immediate corollary of Theorem 4.
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Proposition 6. Fix a parametric model (Pθ)θ∈Rd and a K-uniformly log-concave prior π ∈
P(Rd). For a given loss function L : Θ̂× Rd → [0,∞], we have

R(R∗
π; π,L) ≤

1

2
log det

(
Id + ΣπEπ[ĪX ]

)
+ Tr

(
(Id +K1/2(Eπ[ĪX ])−1K1/2)−1(Id −K1/2ΣπK

1/2)
)
.

Making use of the rate distortion function for a Gaussian source under squared loss, a
simple illustration of the above is the following:

Example 23. Let d = 1, π = N(0, σ2) and L(θ̂, θ) = (θ̂ − θ)2. For an observation model
(Pθ)θ∈R, we have

R∗
π ≥

1

σ−2 + Eπ[IX ]
.

The above is an immediate consequence of the van Trees inequality. However, with
Proposition 6, we can easily go beyond where the van Trees inequality can take us, provided
we assume a log-concave prior. Indeed, the exponential distribution has infinite Fisher
information. Nevertheless, we can immediately deduce the following.

Example 24. Let d = 1, π = Exponential(λ), Θ̂ = R and

L(θ̂, θ) =

{
θ̂ − θ if θ̂ ≥ θ

∞ otherwise.

For an observation model (Pθ)θ∈Rd, we have

R∗
π ≥

e−1

(λ2 + Eπ[IX ])1/2
.

Remark 10. The bound in the above example can be improved slightly by invoking Theorem
7 instead of Theorem 4, which was used in stating Proposition 6. Indeed, in this case we
would find

R∗
π ≥

λ−1 exp
(
−λ−1

√
Eπ[IX ]

)
if Eπ[IX ] < λ2

e−1

(Eπ [IX ])1/2
if Eπ[IX ] ≥ λ2.

Additional remarks on entropy risk and universal source coding

The relative entropy
∫
Rd D(Pθ∥q)dπ(θ) associated with a density q ∈ P(X ) is called the

entropy risk [Clarke and Barron, 1994], and is minimized by

q∗ =

∫
Rd

Pθdπ(θ), (4.5)
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which is known as the Bayes strategy [Aitchison, 1975, Clarke and Barron, 1994]. Interest-
ingly, the entropy risk of the Bayes strategy is equal to the mutual information I(π;Pθ),
i.e.,

I(π;Pθ) =

∫
Rd

D(Pθ∥q∗)dπ(θ).

This therefore relates entropy risk to the entropy loss L defined in Example 22 by noting
that

lim
D→∞

inf
Qθ̂|X :E[L(θ̂,θ)]≤D

I(θ̂; θ) = I(π;Pθ).

Entropy risk determines the Bayes redundancy of universal noiseless source codes. In
particular, given a code {Φ} with codelengths ℓ(Φ(X)), the Bayes redundancy of the code
is
∫
Rd (Eℓ(Φ(X))− h(Pθ)) dπ(θ) =

∫
Rd D(Pθ∥q)dπ(θ), where q is the density with q(X) =

2−ℓ(Φ(X)) [Clarke and Barron, 1994]. Therefore, the choice q∗ in (4.5) characterizes the code
with minimal Bayes redundancy, which is precisely I(π;Pθ), for which Theorems 4 and 7
present useful upper bounds. See also [Davisson, 1973, Willems et al., 1995, Welch, 1984, Ziv
and Lempel, 1978] for more discussions of universal noiseless source coding and algorithms.

4.3 The Shannon lower bound
As mentioned earlier, rate distortion functions typically do not have a closed form solution
except in some special cases. Luckily, for our purpose of deriving lower bounds on risk, the
Shannon lower bound [Shannon, 1959] provides a lower bound on the rate distortion function
that can be translated into a lower bound on risk. The following formulation of the Shannon
lower bound can be found in Wu [2017, Theorem 13.1]. The proof is elementary, following
from basic information theory identities and a maximum entropy result due to Yamada et al.
[1980].

Theorem 13 (Shannon lower bound). Suppose θ ∈ Rd has a prior π ∈ P(Rd), and suppose
X ∼ Pθ. Suppose ∥ · ∥ is any norm defined on Rd and r > 0 is a given fixed parameter.
Then, for any D ≥ 0, the following holds under the loss L(θ̂, θ) = ∥θ̂ − θ∥r.

R(D; π,L) ≥ h(θ)− log

(
V

(
Dre

d

) d
r

Γ

(
1 +

d

r

))
,

where V is the volume of the unit ball with respect to the norm ∥ · ∥.

Here, Γ(·) : R −→ R is the Gamma function defined by Legendre (see [Davis, 1959] for
an interesting description of the history of the Gamma function), defined as

Γ(u) =

∫ ∞

0

xu−1e−xdx u ∈ R+.

When u is an integer, Γ(u) = (u− 1)! corresponds to the factorial function of u− 1.
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Proof of Theorem 13. The proof begins with the elementary operations (see [Wu, 2017])

R(D; π,L) = inf
Qθ̂|θ:E∥θ̂−θ∥r≤D

I(θ̂; θ)

= h(θ)− sup
Qθ̂|θ:E∥θ̂−θ∥r≤D

h(θ|θ̂)

≥ h(θ)− sup
Qθ̂|θ:E∥θ̂−θ∥r≤D

h(θ̂ − θ), (4.6)

where the final inequality follows from conditioning reduces entropy. The last quantity is
precisely about the maximum entropy distribution under a difference distortion measure, for
which Yamada et al. [1980] gives the following explicit formula.

Lemma 14 (Shannon lower bound under a difference distortion measure [Yamada et al.,
1980]). Consider ∥ · ∥ as any norm. Then,

h(θ)− sup
Qθ̂|θ:E∥θ̂−θ∥r≤D

h(θ̂ − θ) = h(θ)− d

r
log

D

d
− log V − d

r
log

(
erΓ

(
1 +

d

r

) r
d

)

where V is the volume of the unit ball under the norm ∥ · ∥.

Combining (4.6) with Lemma 14 and rearranging yields our desired result.

The Shannon lower bound is asymptotically tight as D → 0 under certain conditions
[Koch, 2016, Linder and Zamir, 1994, Binia et al., 1974, Gerrish and Schultheiss, 1964].
Finite-blocklength refinements for the Shannon lower bound are available in [Kostina, 2017,
2016]. The Shannon lower bound is also useful as a benchmark for quantization; see, e.g.,
[Gray et al., 2002, Gish and Pierce, 1968, Zador, 1964]

From Theorem 13 we derive the following theorem, which provides a systematic way of
lower bounding Bayes risk under any norm.

Theorem 15. Suppose θ ∈ Rd has a prior π ∈ P(Rd), and suppose X ∼ Pθ. Suppose ∥ · ∥
is any norm defined on Rd and r > 0 is a given fixed parameter. Then, the following holds
for any estimator θ̂ : X → Rd,

E∥θ̂ − θ∥r ≥ d

re

(
V Γ

(
1 +

d

r

))− r
d

exp
(r
d
(h(θ)− I(π;Pθ))

)
, (4.7)

where V is the volume of the unit ball with respect to the norm ∥ · ∥.

Proof. Given a particular estimator θ̂, Theorem 13 gives under the setting D = E∥θ̂ − θ∥r,

I(θ; θ̂) ≥ h(θ)− log

V (E∥θ̂ − θ∥rre
d

) d
r

Γ

(
1 +

d

r

) . (4.8)
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We can apply the data processing inequality on the Markov chain θ → X → θ̂ and use the
property I(π;Pθ) = h(θ)− h(θ|X) within (4.8) to write

h(θ)− I(π;Pθ) ≤ log

V (E∥θ̂ − θ∥rre
d

) d
r

Γ

(
1 +

d

r

) .

Then, a rearrangement recovers (4.7) as desired.

The lower bound on Bayes risk given in Theorem 15 is particularly useful when ℓp norms
are considered, since the volume Vp of unit ℓp balls in Rd are well known (see, for example,
the work of Wang [2005] for an interesting derivation of the volume of generalized unit balls),
given by

Vp :=

(
Γ
(

1
p
+ 1
))d

Γ
(

d
p
+ 1
) 2d. (4.9)

This allows us to write the following corollary, which will be useful for later developments.

Corollary 16 (Lower bound on Bayes risk for the ℓp norm). Suppose θ ∈ Rd has a prior
π ∈ P(Rd), and suppose X ∼ Pθ. Fix p ≥ 1 and any r > 0. Then, for any estimator θ̂, the
following holds for the ℓp norm.

E∥θ̂ − θ∥rp ≥
d

re

(
2Γ

(
1

p
+ 1

))−r

exp
(r
d
(h(θ)− I(π;Pθ))

)
. (4.10)

Next, we provide two examples: estimation under a Gaussian observation model and
under a spiked covariance model, both with a uniform prior π.

Gaussian observation model under a uniform prior

Suppose π is a uniform prior over the ℓ2 ball with a fixed radius R ≥ 0, and observation
X is generated according to the Gaussian N (θ, σ2Id). We will establish the following lower
bound on Bayes risk.

Proposition 7. Suppose X ∼ N (θ, σ2Id) and π is a uniform prior over the ℓ2 ball in Rd

with a fixed radius R ≥ 0. Then, the following holds for any estimator θ̂ : Rd → Rd,

E|θ̂ − θ|2 ≳ min
(
R2, σ2d

)
, (4.11)

The Bayes risk derived in (4.11) is tight up to constants, and can also be derived with
a Bayes variation of Fano’s inequality, see, e.g., [Chen et al., 2016], but is quite involved
compared to our proof based on information measures (see, e.g., Examples 1 and 2 of [Chen
et al., 2016]).
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Proof of Proposition 7. We begin with a reminder that the entropy of a uniform distribution
over a convex set having volume V is log(V ) (e.g., Example 5). For ease of expressing our
results, let us define V2(r) as the volume of the ℓ2 ball with radius r ≥ 0 and write

h(θ) = log(V2(R)) = log

(
π

d
2Rd

Γ
(
d
2
+ 1
)) , (4.12)

where the formula (4.9) for the volume of the ℓ2 ball is invoked.
We may derive the covariance matrix Σπ with the following identities

Eθ2i =
1

d
E|θ|2

=
1

d

∫ R

0

r2

(
d
dr
V2(r)∫ R

0
d
dt
V2(t)dt

)
dr

=
1

d

∫ R

0

r2
(
drd−1

Rd

)
dr

=
1

Rd

∫ R

0

rd+1dr

=
R2

d+ 2
i = 1, 2, . . . , d,

where the second equality follows by a spherical integration, and

Eθiθj = 0 i ̸= j,

since the density of θ is symmetric with respect to the origin. It therefore follows that

Σπ =
R2

d+ 2
Id. (4.13)

We are now in position to derive a lower bound for ℓ2 Bayes risk by invoking Corollary
16 and Theorem 7. For any estimator θ̂ : X −→ Rd,

E|θ̂ − θ|2 ≥ 1

2πe
e

2
d
(h(θ)−I(π;Pθ))

≥ d

2πe
e

2
d
h(θ)− 2

d
ϕ(0, 1

d2
Tr(Σπ)Eπ [IX ])

=
d

2e

(
Γ

(
d

2
+ 1

))− 2
d

R2e
− 2

d
ϕ
(
0, R2

(d+2)σ2

)
. (4.14)

Here we used (4.12) and (4.13) in the final equality. The expected Fisher information
Eπ[IX ] = d/σ2 is a straightforward calculation (see, e.g., Example 9).
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Moving forward, it remains to lower bound the quantity in the right hand side of (4.14).
Here, note that the function g(·) : Z+ → R defined over non-negative integers as

g(d) := dΓ

(
d

2
+ 1

)− 2
d

is increasing in d and satisfies g(1) = 4
π
, limd→∞ g(d) = 2e. Therefore, it follows that

E|θ̂ − θ|2 ≳ R2e
− 2

d
ϕ
(
0, R2

(d+2)σ2

)
≳ min

(
R2, σ2d

)
.

The last inequality follows directly from the definition of ϕ(·).

It should be noted that Efroimovich’s inequality (and the classic van Trees inequality)
cannot be applied directly to yield a Bayes risk bound in this scenario, since J (π) is infinite
for a uniform prior.

Remark 11. A Bayes risk lower bound for the setting where X = (X1, . . . , Xn) are n i.i.d.
samples of N (θ, σ2Id) can be attained with the same approach by noting Eπ[IX ] = nd/σ2,
which immediately gives

E|θ̂ − θ|2 ≳ min

(
R2,

dσ2

n

)
.

Spiked covariance model under a uniform prior

Suppose π is a uniform prior over the unit ℓ2 ball and X = (X1, X2, . . . , Xn) are generated
i.i.d. with Xi ∼ N

(
0, Id + θθT

)
, i = 1, . . . , n. We establish the following lower bound on

Bayes risk.

Proposition 8. Suppose π is a uniform prior over the unit ℓ2 ball in Rd. Suppose X =
(X1, . . . , Xn) are generated i.i.d. with Xi ∼ N

(
0, Id + θθT

)
, i = 1, . . . , n. Then, for any

estimator θ̂ : Rd → Rd,

E∥θ̂ − θ∥rp ≥ C(r)min

(
1,
d

n

) r
2

,

where C(r) is a constant determined by r only.

A proof using a Bayes variation of Fano’s method is available in Section C.2. of Chen
et al. [2016].
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Proof of Proposition 8. We begin our proof by noting that for any estimator θ̂ : Rd −→ Rd

and any fixed r > 0, (4.10) gives

E∥θ̂ − θ∥rp ≥
d

re

(
V2Γ

(
1 +

d

r

))− r
d

exp
(r
d
(h(θ)− I(π;Pθ))

)
=

d

re

(
Γ

(
1 +

d

r

))− r
d

exp
(
−r
d
I(π;Pθ)

)
= C1(r) exp

(
−r
d
I(π;Pθ)

)
. (4.15)

where we recall that the entropy of θ satisfies h(θ) = log V2. C1(r) is a constant determined
by r only. The following lemma provides an upper bound on I(π;Pθ); the proof is deferred
to a later section.

Lemma 17. Under the same setting as Proposition 8,

I(π;Pθ) ≤ ϕ

(
0,

24n

d

)
.

We can then combine this with (4.15) and Theorem 7 to get

E∥θ̂ − θ∥rp ≥ C1(r) exp

(
−r
d
ϕ

(
0,

24n

d

))
≥ C2(r)min

(
1,
d

n

) r
2

.

where C2(r) is a constant determined by r only. Therefore, we recover a simple, straightfor-
ward proof of a lower bound on Bayes risk of the spiked covariance model under a uniform
prior on the ℓ2 ball. We again remark that a similar bound cannot be derived using either
Efroimovich’s inequality or the van Trees inequality since the Fisher information of the prior
is infinity (or, undefined) in this case.

Proof of Lemma 17

We bound I(π;Pθ) by making use of Theorem 7, for which we need two ingredients: the
covariance matrix Σπ and the expected Fisher information Eπ[IX ]. Recall that the covariance
matrix Σπ of a uniform prior π over the unit ℓ2 ball is given in (4.13) by

Σπ =
1

d+ 2
Id.

The expected Fisher information Eπ[IX ] is a bit trickier. To begin, let us first assume that
n = 1; then, since Eπ[IX ] = nEπ[IX1 ], we can directly infer the Fisher information for a
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general n > 1. Let us start with the following calculations.

∇θ log f(x; θ) = −
1

2
∇θ log det(Id + θθT )− 1

2
∇θx

T (Id + θθT )−1x

= −1

2
∇θ log(1 + |θ|2)−

1

2
∇θx

T

(
Id −

θθT

1 + |θ|2

)
x

= − θ

1 + |θ|2
+

xxT θ

1 + |θ|2
− (xT θθTx)θ

(1 + |θ|2)2
.

Here, the middle equality follows from the Sherman-Morrison formula (see, e.g., [Sherman
and Morrison, 1950]), which states that

(Id + θθT )−1 = Id −
θθT

1 + |θ|2
.

It is a short exercise to show that this is indeed true by multiplying both sides by (Id+ θθT ).
Moving onwards, we can then compute the expected Fisher information as

Eπ[IX ]
= E|∇θ log f(X; θ)|2

= E
∣∣∣∣− 2θ

1 + |θ|2
+
XXT θ

1 + |θ|2
+

(XT θθTX)θ

(1 + |θ|2)2

∣∣∣∣2
≤ 3

(
E

[∣∣∣∣− 2θ

1 + |θ|2

∣∣∣∣2
]
+ E

∣∣∣∣ XXT θ

1 + |θ|2

∣∣∣∣2 + E
∣∣∣∣(XT θθTX)θ

(1 + |θ|2)2

∣∣∣∣2
)
. (4.16)

We can bound the terms one by one. The first term, since |θ|2 ≤ 1 by recalling that θ is
sampled within the unit ℓ2 ball, satisfies

E

[∣∣∣∣− 2θ

1 + |θ|2

∣∣∣∣2
]
≤ 4. (4.17)

The second term can be bounded by

E
∣∣∣∣ XXT θ

1 + |θ|2

∣∣∣∣2 ≤ E
[
E
[∣∣XXT θ

∣∣2∣∣∣ θ]] . (4.18)

Given a fixed θ, we can write X = Z1 + θZ2, with Z1 ∈ N (0, Id) and Z2 ∈ N (0, 1), both
independent Gaussians. Then, it follows that

E[|XXT θ|2|θ] = E[
∣∣(Z1 + θZ2)(Z

T
1 θ + Z2θ

T θ)
∣∣2 |θ]

= E[θTZ1Z
T
1 Z1Z

T
1 θ|θ] + E[|Z1|2Z2

2 |θ|4|θ] + E[Z2
2 |ZT

1 θ|2|θ|2|θ]
+ E[Z4

2 |θ|6|θ] + 4E[(ZT
1 θ)

2|θ|2Z2
2 |θ].
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Note that in the last equation we only considered terms with even powers in Z1 and Z2, since
Z1 and Z2 are independent with mean 0d and 0 respectively. Next, since EZ2

2 = 1, EZ4
2 = 1

6
,

E|Z1|2 = d, and |θ|2 ≤ 1, we can bound

E[|XXT θ|2|θ] ≤ E[θTZ1Z
T
1 Z1Z

T
1 θ|θ] + 7d|θ|2

= E[
(
|Z1|2(ZT

1 θ)
2
)
|θ] + 7d|θ|2

= E

( d∑
i=1

Z2
1i

)(
d∑

j=1

Z1jθj

)2
∣∣∣∣∣∣ θ
+ 7d|θ|2

= E

[(
d∑

i=1

Z2
1i

)(
d∑

j=1

Z2
1jθ

2
j

)∣∣∣∣∣ θ
]
+ 7d|θ|2

=
d∑

j=1

(
θ2j

d∑
i=1

EZ2
1iZ

2
1j

)
+ 7d|θ|2

=
d∑

j=1

θ2j (EZ4
1j + (d− 1)(EZ2

1j)
2) + 7d|θ|2

=
d∑

j=1

θ2j

(
1

6
+ (d− 1)

)
+ 7d|θ|2

≤ 8d|θ|2.

Note that the constants here, although not in the tightest form possible, are sufficient for
our purposes. Moving onwards, we can then combine this with (4.18) to get

E
∣∣∣∣ XXT θ

1 + |θ|2

∣∣∣∣2 ≤ 8dE|θ|2 ≤ 8d. (4.19)

Finally, it remains to bound the third term on the right hand side of (4.16),

E
∣∣∣∣(XT θθTX)θ

(1 + |θ|2)2

∣∣∣∣2 ≤ E(θTX)2|θ|2

≤ E
[
E[(θTX)2|θ]

]
≤ E

[
ETr

(
θT (I + θθT )θ

)]
= E|θ|2 + E|θ|4

≤ 2. (4.20)

Combining (4.16), (4.17), (4.19) and (4.20), we yield

Eπ[IX ] ≤ 3n(8d+ 6). (4.21)
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We can then combine this with Theorem 7 to get

I(π;Pθ) ≤ ϕ

(
0,

Tr(Σπ)Eπ[IX ]
d2

)
≤ ϕ

(
0,

3n(8d+ 6)

d(d+ 2)

)
≤ ϕ

(
0,

24n

d

)
,

where the last inequality holds for all n, d ≥ 1.

Additional numerical simulations

Consider a k-uniformly logconcave prior π and observations X ∼ Pθ. The following lower
bound on Bayes ℓ2 risk is obtained by an application of the Shannon lower bound (Theorem
13) associated with ℓ2 loss in conjunction with Theorem 7,

E|θ̂ − θ|2 ≥ d

2πe
e2h(θ)e−2(1−kP )− 2

d
ϕ(kP,JP ), (4.22)

with P := 1
d
Tr(Σπ), J := 1

d
E[IX ], and ϕ(·, ·) defined as in Theorem 7.

It is of practical interest to understand whether the lower bound of (4.22) is within a
constant multiple of certain estimators. Towards this end, we investigate the average error
of the maximum a-posteriori (MAP) estimator under several toy examples. We remark that
the inequality (4.22) holds for any estimator θ̂ ∈ Rd, so if the MAP estimator has expected
error within a constant multiple of the lower bound, so does the “best” estimator.

All simulations are implemented with PyMC3 [Salvatier et al., 2016].

Gaussian observation model

In our first numerical example, we compare the error of the MAP estimator and the lower
bound (4.22) under a Gaussian observation model.

Suppose X = (X1, . . . , Xn) are sampled i.i.d. with Xi ∼ N (θ, σ2Id), i = 1, . . . , n. We con-
sider four priors with independent components following Uniform(0, 2

√
3), Exponential(1),

Gaussian(1) and a truncated normal that is Gaussian(1) truncated to [−1, 1], respectively.
In Figure 4.1, we plot the ratio between errors of 100 random samples under n = d = 1

with varying values of σ2 and our lower bound given in (4.22). Across the board, we see that
the ratio is within a constant multiple.

In Figure 4.2, we fix σ2 = 1 and d = 10 and vary the values of n. In Figure 4.3, we fix
σ2 = 1 and n = 10 and vary the values of d. In both figures, we plot the ratio between the
error and the lower bound of (4.22) over 100 random samples, and observe that the errors
are also within constant multiples as desired.
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Figure 4.1: Ratio between average error of MAP estimator and lower bound of (4.22), plotted
with varied σ2 under n = d = 1. X = (X1, . . . , Xn) is sampled i.i.d. with Xi ∼ N (θ, σ2Id),
i = 1, . . . , n and different π.

Figure 4.2: Ratio between average error of MAP estimator and lower bound of (4.22),
plotted with varied n under d = 10 and σ2 = 1. X = (X1, . . . , Xn) is sampled i.i.d. with
Xi ∼ N (θ, σ2Id), i = 1, . . . , n and different π.

Bernoulli observation model

A similar theme can be found in a Bernoulli observation model, where X = (X1, . . . , Xn)
are sampled with i.i.d. components from Ber

(
eθ/(1 + eθ)

)
. We consider three priors with

independent components following Uniform(−
√
3,
√
3), Gaussian(1) and a truncated normal

that is Gaussian(1) truncated to [−1, 1], respectively. The average error over 100 random
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Figure 4.3: Ratio between average error of MAP estimator and lower bound of (4.22),
plotted with varied d under n = 10 and σ2 = 1. X = (X1, . . . , Xn) is sampled i.i.d. with
Xi ∼ N (θ, σ2Id), i = 1, . . . , n and different π.

Figure 4.4: Ratio between average error of MAP and the lower bound of (4.22) under varying
n. X = (X1, . . . , Xn) are generated i.i.d. according to Bernoulli(eθ/(1+ eθ)) and different π.

experiments with varying n and three priors (uniform, truncated normal and normal) are
presented in Fig. 4.4. We find that the average error of the MAP estimator are within
constant multiples of the lower bound given by Theorem 7, consistent with our statements.
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Chapter 5

Lower bounds on risk under the
Generalized Linear Model

In the previous chapter, we presented procedures to acquire lower bounds on risk using our
new upper bounds on mutual information, Theorems 4 and 7. In this chapter, we discuss
applications to the Generalized Linear Model.

5.1 Introduction
Generalized Linear Models (GLMs) are a flexible class of parametric statistical models
that extend the class of linear models relating a random observation X ∈ Rn to a parameter
θ ∈ Rd via the linear relation

X =Mθ + Z, (5.1)

where M ∈ Rn×d is a known fixed design matrix, also called the measurement matrix,
and Z ∈ Rn is a random noise vector. Given a univariate GLM in canonical form with
natural parameter η ∈ R, the density of observation X ∈ R given η is expressed as the
exponential family

f(x; η) = h(x) exp

(
ηx− Φ(η)

s(σ)

)
x ∈ X , (5.2)

for known functions h : X ⊆ R → [0,∞) (the base measure), Φ : R → R (the cumulant
function) and a scale parameter s(σ) > 0. This class of models captures a wide variety of
parametric models such as binomial, Gaussian, Poisson, etc. As a specific example, we can
take X = {0, 1, 2, . . .} equipped with the counting measure λ. Under h(x) = 1/x!, Φ(t) = et

and s(σ) = 1, the density f(·; η) is Poisson(eη).
In this chapter, we restrict our attention to multivariate GLMs of the form

f(x; θ) =
n∏

i=1

{
h(xi) exp

(
xi⟨mi, θ⟩ − Φ(⟨mi, θ⟩)

s(σ)

)}
xi ∈ X ⊆ Rd, (5.3)



CHAPTER 5. LOWER BOUNDS ON RISK UNDER THE GLM 58

for a real parameter θ ∈ Rd and a fixed design matrix M ∈ Rn×d, with rows given by
the vectors {mi}ni=1 ⊂ Rd. In words, the above model assumes each Xi is drawn from the
same exponential family, with respective natural parameters ⟨mi, θ⟩, i = 1, . . . , n. This
captures the linear model (5.1) in the usual case where the noise vector Z is assumed to
be standard normal on Rn, but is also flexible enough to capture many other models of
interest. We refer the interested reader to [McCullagh, 2019, Dobson and Barnett, 2018,
Nelder and Wedderburn, 1972] for more context on the history and theory of the generalized
linear model.

Before we state our main results, we make the following assumption throughout:

Assumption 2. We assume the cumulant function Φ : R→ R in (5.3) is twice-differentiable,
with second derivative uniformly bounded as Φ′′ ≤ L, for some L > 0.

Remark 12. This assumption is standard in the literature on minimax estimation for
GLMs, and is equivalent to the map θ 7−→ EX∼f(·;θ)[X] being L-Lipschitz. See, for exam-
ple, [Abramovich and Grinshtein, 2016, Loh and Wainwright, 2015, Negahban et al., 2012,
Müller and Stadtmüller, 2005].

5.2 Bayes risk
Let us start with the Bayes risk of the GLM under two different priors: a Gaussian prior
and a uniform prior.

Bayes risk under a Gaussian prior

Suppose that observations X = (X1, . . . , Xn) are generated i.i.d. according to (5.3). When
the prior π is N (0, τ 2Id), the following lower bound on Bayes risk is given by Chen et al.
[2016],

E|θ̂ − θ|r ≥ C1(r)

[
dmin

(
s(σ)

Lλmax(MTM)
, τ 2
)] r

2

, (5.4)

which holds for any estimator θ̂ : Rn → Rd with a universal constant C1(r) only depending
on r.

A better dependence on the eigenvalues of MTM can in fact be achieved, as shown in
the following theorem.

Theorem 18 (Lower bound on Bayes risk of the GLM under a Gaussian prior). Suppose
observations X = (X1, . . . , Xn) are generated i.i.d. from a GLM defined in (5.3), and suppose
Assumption 2 holds. Under the prior π = N (0, τ 2Id), the following holds for any estimator
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θ̂ : Rn → Rd,

E|θ̂ − θ|r ≥ C2(r)

(
dmin

(
ds(σ)

L
∑d

i=1 λi(M
TM)

, τ 2

)) r
2

. (5.5)

Therefore, we improve the dependence on MTM from the maximum eigenvalue to an
average of eigenvalues, which can be significant when extreme eigenvalues exist. This is
illustrated by the relation

d∑d
i=1 λi(M

TM)
≥ 1

λmax(MTM)
,

from which it is clear that (5.5) has a sharper topological dependence on M than (5.4).
Before we move on to the proof of Theorem 18, we require the following lemma, which

relates diagonal terms of the Fisher information matrix ĪX with columns in the measurement
matrix M .

Lemma 19. Suppose observations X = (X1, . . . , Xn) are generated i.i.d. from a GLM defined
in (5.3), and suppose Assumption 2 holds. Then,

Eπ[ĪX ]ii ≤
L

s(σ)

n∑
j=1

M2
ji

holds for all i = 1, . . . , d.

Proof of Lemma 19. Our proof relies on the following well-known identities associated with
exponential families of the form we consider.

Lemma 20 ([McCullagh, 2019, Page 29]). Fix m and θ, and consider a density f(x; θ) =
h(x) exp

(
x⟨m,θ⟩−Φ(⟨m,θ⟩)

s(σ)

)
with respect to λ. A random observation X ∼ f(·; θ) has mean

Φ′(⟨m, θ⟩) and variance s(σ) · Φ′′(⟨m, θ⟩).

It follows that, with our assumption Φ′′ ≤ L, we have for any θ ∈ Rd,

[ĪX(θ)]ii = EX∼f(·;θ)

(
∂

∂θi
log f(X; θ)

)2

=
1

s2(σ)
EX∼f(·;θ)

(
n∑

j=1

Mji (Xj − Φ′(⟨mj, θ⟩))

)2

=
1

s2(σ)

n∑
j=1

(
M2

jiVar(Xj)
)

≤ 1

s(σ)

n∑
j=1

(
M2

ji L
)

=
L

s(σ)
[MTM ]ii. (5.6)
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Taking expectation on both sides completes the proof.

Now we are ready to give the proof of Theorem 18.

Proof of Theorem 18. The proof begins by noting that Lemma 19 immediately gives

Eπ[IX ] = Tr
(
Eπ[ĪX ]

)
=

d∑
i=1

Eπ[ĪX ]ii

≤ L

s(σ)

d∑
i=1

λi(M
TM). (5.7)

Under the Gaussian prior π = N (0, τ 2Id), we may invoke Theorem 4 to get

I(π;Pθ) ≤
d

2
log

(
1 +

Tr(Σπ)Eπ[IX ]
d2

)
≤ d

2
log

(
1 +

τ 2L

s(σ)d

n∑
i=1

λi(M
TM)

)
,

which combined with (4.10), and recalling the entropy of a Gaussian prior in Example 6,
yields the following lower bound for any estimator θ̂,

E|θ̂ − θ|r ≥ d

re
π− r

2

(
Γ(d/r + 1)

Γ(d/2 + 1)

)− r
d

exp
(r
d
(h(θ)− I(π;Pθ))

)
≥ c(r)τ rd

r
2

(
1 +

Lτ 2
∑d

i=1 λi(M
TM)

ds(σ)

)− r
2

≥ C2(r)

(
dmin

(
ds(σ)

L
∑d

i=1 λi(M
TM)

, τ 2

)) r
2

.

Here, c(r) and C2(r) are constants that only depend on r, and the second equation makes
use of Γ (d/2 + 1)−1/d ≍ d−1/2, a consequence of Stirling’s approximation originally due to
de Moivre; see, e.g., [Dutka, 1991], for a history of Stirling’s approximation.

Remark 13. A tighter dependence on eigenvalues can be achieved by a component-wise
treatment we will introduce for establishing minimax risk of the GLM later in the chapter
(see Section 5.3). Here, our technique yields a more straightforward improvement over (5.4),
which is the main point.

In the case of a Gaussian prior, one can alternatively use Efroimovich’s inequality (see,
e.g., (2.7)) to yield the same bound. This is not the case, however, in our next example
where π is taken to be a uniform prior over the unit ℓ2 ball.
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Bayes risk under a uniform prior

Suppose that observations X = (X1, . . . , Xn) are generated i.i.d. according to (5.3). When
the prior π is a uniform distribution on the ℓ2 ball, we obtain the following lower bound on
Bayes risk.

Proposition 9 (Lower bound on Bayes risk of the GLM under a uniform prior). Suppose
observations X = (X1, . . . , Xn) are generated i.i.d. from a GLM defined in (5.3), and suppose
Assumption 2 holds. When the prior π is the uniform measure over a unit ℓ2 ball, the
following holds for any estimator θ̂ : Rn → Rd,

E|θ̂ − θ|r ≥ C3(r)

(
dmin

(
ds(σ)

L
∑d

i=1 λi(M
TM)

, 1

))r/2

.

Therefore, we find that the lower bound exhibits a similar topological dependence on
MTM as in the case where the prior π is Gaussian.

Proof of Proposition 9. Under the uniform prior π, we may invoke Theorem 7 and (5.7) to
get

I(π;Pθ) ≤ dϕ

(
0,

Tr(Σπ)Eπ[IX ]
d2

)
≤ dϕ

(
0,

Eπ[IX ]
d(d+ 2)

)
≤ d

2
ϕ

(
0,

L

s(σ)d

n∑
i=1

λi(M
TM)

)
, (5.8)

where we remind ourselves that the covariance matrix of the uniform distribution over the
unit ℓ2 ball is

Σπ =
1

d+ 2
Id

as given in (4.13).
Moving onwards, we can then combine (5.8) with (4.10) to yield the following lower

bound for any estimator θ̂,

E|θ̂ − θ|r ≥ d

re
π− r

2

(
Γ(d/r + 1)

Γ(d/2 + 1)

)− r
d

exp
(r
d
(h(θ)− I(π;Pθ))

)
≥ C(r)d

r
2 exp

(
− r

2d
ϕ

(
0,

L

s(σ)d

n∑
i=1

λi(M
TM)

))

≥ C3(r)

(
dmin

(
ds(σ)

L
∑d

i=1 λi(M
TM)

, 1

))r/2

.
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Here, C(r), C3(r) are constants that only depend on r.

Finally, we remark that the procedure we used to obtain lower bounds on Bayes risk
under Gaussian and uniform priors can be easily modified to suit other log-concave priors
by an application of Theorem 4 or Theorem 7.

5.3 Minimax estimation risk
In terms of parameter estimation, a common figure of merit is the constrained ℓ2 minimax
risk, which corresponds to the worst-case ℓ2 estimation error, with θ allowed to range over a
constrained set Θ. For our purposes, let us consider in this section Θ equal to the Euclidean
ball in Rd, denoted Bd

2(1) := {v : v ∈ Rd, |v|2 ≤ 1}, which is a common choice in applications.
A similar result for Θ taken as a Euclidean ball with radius R can be naturally extended
from our results under R = 1. More precisely, we make the following definition for the
constrained minimax risk.

Definition 1. For the GLM (5.3), we define the associated minimax risk with Θ = Bd
2(1)

via

R∗(h,Φ,M, s(σ)) := inf
θ̂

sup
θ∈Bd

2(1)

E|θ̂ − θ|2,

where the infimum is over all Rd-valued estimators θ̂ (i.e., measurable functions of the ob-
servation X ∼ Pθ).

We establish the following general lower bound on the minimax risk for the class of GLMs
introduced above.

Theorem 21. The ℓ2 minimax risk for the class of models (5.3) is lower bounded according
to

R∗(h,Φ,M, s(σ)) ≳ min

(
s(σ)

L
Tr
(
(MTM)−1

)
, 1

)
, (5.9)

where ≳ denotes inequality, up to a universal constant.

In the case where MTM is not invertible, we adopt the convention that Tr
(
(MTM)−1

)
=

+∞. This situation occurs when M is not full rank, in which case θ is not identifiable in the
null space of M and constant error is unavoidable.

Remark 14. In fact, with minor modification, Theorem 21 holds for the more general class
of GLMs with observations drawn from densities of the form

f(x; θ) =
n∏

i=1

{
hi(xi) exp

(
xi⟨mi, θ⟩ − Φi(⟨mi, θ⟩)

si(σ)

)}
.
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Remark 15. Since minimax risk is generally characterized modulo universal constants, the
statement (5.9) in terms of ≳ is sufficient for our purposes. However, a careful analysis of
our arguments reveals that ≳ can be replaced with ≥ at the expense of including a modest
constant in the RHS of (5.9) (e.g., 1/(πe3)).

Most interestingly, the minimax bound (5.9) holds uniformly over the class of GLMs
given by (5.3), and is of the correct order for the canonical linear model (5.1). Indeed, under
the linear model X = LMθ + Z, where Z is standard Gaussian with covariance σ2L · I,
the design matrix M is full rank and L > 0, it is well known that the maximum likelihood
estimator (MLE) minimizes the ℓ2 estimation error. The MLE estimator θ̂MLE is given by

θ̂MLE = L−1(MTM)−1MTX,

and one can explicitly calculate the ℓ2 error as

E|θ̂MLE − θ|2 = E|θ − L−1(MTM)−1MTX|2

=
1

L2
E|(MTM)−1MTZ|2

=
σ2

L
Tr((MTM)−1). (5.10)

The linear model in this case corresponds to h(x) = e−x2/(2Lσ2), s(σ) = σ2, and Φ(t) = Lt2/2
in (5.3).

Comparing (5.10) to Theorem 21, we find that our minimax lower bound is achieved (up
to a universal constant) for linear models of the above form. To summarize, we have the
following:

Corollary 22. Fix a design matrix M , scale parameter s(σ) and L > 0. Among those
generalized linear models in (5.3) with Φ′′ ≤ L, linear models are most favorable in terms of
minimax risk. More precisely, among this class of models,

R∗(h,Φ,M, s(σ)) ≳ R∗(e−(·)2/(2Ls(σ)), (·)2L/2,M, s(σ)).

Roughly speaking, the above shows that linear models are most favorable among a broad
class of GLMs.

Remarks

A few remarks are in order. First, we note that the argument yields the stronger entropic
inequality,

inf
θ̂
sup
θ∼π

d∑
i=1

e2h(θi|θ̂i) ≳ min

(
s(σ)

L
Tr
(
(MTM)−1

)
, 1

)
which improves Theorem 21 (seen by the max-entropy property of gaussians). Here, the
supremum is taken over all distributions π supported on the ℓ2 ball Bd

2(1). The expression
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on the left hand side can be thought of as a Bayes minimax problem on an entropic loss,
which is connected to logarithmic loss in the statistical learning and information literature,
see, e.g., Jiao et al. [2015], Courtade and Weissman [2013], Courtade and Wesel [2011],
Cesa-Bianchi and Lugosi [2006].

Second, we remark that our analysis is flexible enough for generalizations to other forms
of the GLM. For example, consider observation X drawn from the density

f(x; θ) =
n∏

i=1

{
hi(xi) exp

(
xi⟨mi, θ⟩ − Φi(⟨mi, θ⟩)

si(σ)

)}
.

Suppose Assumption 2 holds for each cumulant function Φi (i.e., Φ′′
i ≤ L for each i =

1, . . . , n). Then, a slight modification in (5.6) yields

[ĪX(θ)]ii ≤
L

s∗(σ)
[MTM ]ii

where s∗(σ) = mini=1,...,n si(σ). Following (5.22) and the same choice of (ϵi)i=1,...,d in Section
5.6 with the argument s(σ) replaced by s∗(σ), we obtain minimax lower bound

inf
θ̂

sup
θ∈Bd

2(1)

E|θ̂ − θ|2 ≳ min

(
s∗(σ)

L
Tr
(
(MTM)−1

)
, 1

)
.

5.4 Minimax prediction risk
In this section, we investigate another figure of merit, the minimax prediction risk, defined
as

R∗
p(h,Φ,M, s(σ)) := inf

θ̂
sup
θ∈Rd

1

n
E|Mθ̂ −Mθ|2. (5.11)

We establish the following lower bound on the minimax prediction risk.

Theorem 23. Suppose observations X ∈ Rn are generated via the GLM (5.3) satisfying
Φ′′ ≤ L for some constant L > 0. With a fixed design matrix M ∈ Rn×d, the following lower
bound on minimax prediction risk holds.

R∗
p(h,Φ,M, s(σ)) ≥ s(σ)

Ln
rank(M). (5.12)

We remark that (5.12) holds uniformly across all generalized linear models, provided they
satisfy Φ′′(·) ≤ L for some L > 0. The bound is tight for the Gaussian linear model (see, e.g.,
[Wainwright, 2019]). Indeed, under the linear model X = LMθ + Z, where Z is Gaussian
with covariance σ2LIn, the maximum likelihood estimator (MLE) θ̂MLE is given by

θ̂MLE = L−1(MTM)†MTX.
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One can explicitly calculate the ℓ2 prediction error of the MLE as

1

n
E|Mθ̂MLE −Mθ|2 = 1

n
E|ML−1(MTM)†MTX −Mθ|2

=
1

L2n
E|M(MTM)†MTZ|2

=
σ2

Ln
rank(M). (5.13)

The linear model in this case corresponds to h(x) = e−x2/(2Lσ2), s(σ) = σ2, and Φ(t) = Lt2/2
in (5.3). Comparing (5.13) to (5.12), we find that our minimax lower bound is achieved with
an exact constant for linear models of the above form.

5.5 Bibilographical remarks
A closely related work is that of Abramovich and Grinshtein [2016], who consider the gen-
eralized linear model albeit with a slightly different setup. Their paper provides minimax
lower bounds for the Kullback-Leibler divergence between the vector Mθ and any estimator
M̂θ under a k-sparse setting ∥θ∥0 ≤ k, with the parameter θ constrained to have at most k
non-zero entries. When the cumulant function Φ is strongly convex with 0 < R ≤ Φ′′ ≤ L
for some fixed constants R,L, the arguments of Abramovich and Grinshtein [2016] can be
adapted to obtain the following minimax lower bound

inf
M̂θ

sup
θ∈Rd

E|M̂θ −Mθ|2 ≳ ds(σ)R

L2
· λmin(M

TM)

λmax(MTM)
, (5.14)

where M is assumed to be full rank and λmin and λmax denote smallest and largest eigenval-
ues, respectively. The bound is weaker than our bound given in (5.12) in both topological
dependence on M and assumptions (e.g., we do not require a lower bound Φ′′ ≥ R).

Although (5.14) is on minimax prediction error, it can be translated into a bound on
minimax estimation error using the operator norm inequality |M(θ− θ̂)|2 ≤ λmax(M

TM)|θ−
θ̂|2, giving

inf
θ̂

sup
θ∈Rd

E|θ̂ − θ|2 ≳ ds(σ)R

L2
· λmin(M

TM)

λ2max(M
TM)

.

A direct computation shows that (5.9) is sharper than the ℓ2 minimax lower bound given
above, as evidenced by the relation

d λmin(M
TM)

λ2max(M
TM)

≤ d

λmax(MTM)
≤ Tr

((
MTM

)−1
)
.

As for a general theory, apart from the gaussian linear model, the minimax estimator
for the GLM typically does not have a closed form, but the Maximum Likelihood Estimator
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(MLE) can be approximated by iterative weighted linear regression [Nelder and Wedderburn,
1972]. A variety of estimators such as aggregate estimators [Rigollet, 2012], robust estimators
[Cantoni and Ronchetti, 2001] and GLM with Lasso [Van de Geer, 2008] have been proposed
to solve different settings of the GLM. We refer interested readers to [McCullagh, 2019] for
the theory of GLMs.

Another line of related work explores models with stochastic design matrix M . Duchi
et al. [2018] consider inference of a parameter θ under privacy constraints. Negahban et al.
[2012] and Loh and Wainwright [2015] provide consistency and convergence rates for M-
estimators in GLMs with low-dimensional structure under high-dimensional scaling.

Separate from the minimax problems considered here, model selection is another line
of popular work. Model selection in linear regression dates back to the seventies and has
regained popularity over the past decade, due to the increase in need of data exploration for
high dimensional data; see [Verzelen, 2012, Birgé and Massart, 2007, Akaike, 1998] and many
other works for the history. More recently, tools in model selection for linear regression have
been adapted for the GLM; see [Abramovich and Grinshtein, 2016] for a brief discussion.

There is a large body of work that establish minimax lower bounds on prediction error for
specific models of the generalized linear model. Typically, these analyses depend on methods
involving metric entropy (see, for example, [Wainwright, 2019, Abramovich and Grinshtein,
2016, Cai et al., 2016, Raskutti et al., 2011, Candes and Plan, 2011, Cai et al., 2010]). A
popular minimax result is due to Raskutti et al. [2011], who consider the sparse Gaussian
linear model, where for a fixed design matrix M with an additional sparsity constraint
∥θ∥0 ≤ k,

σ2Φ2k,−(M)

Φ2k,+(M)

k

n
log

(
ed

k

)
≲ inf

θ̂
sup

∥θ∥0≤k

1

n
E|Mθ̂ −Mθ|2 ≲ σ2min

(
k

n
log

(
ed

k

)
, 1

)
. (5.15)

Here the terms Φr,−(M) and Φr,+(M) correspond to the constrained eigenvalues,

Φr,−(M) := inf
0̸=∥θ∥0≤r

|Mθ|2

|θ|2
, Φr,+(M) := sup

0̸=∥θ∥0≤r

|Mθ|2

|θ|2
. (5.16)

The upper bound of (5.15) is achieved by classical methods such as aggregation [Verzelen,
2012, Bunea et al., 2007, Birgé and Massart, 2007, 2001].

There are also lines of work on specific settings of the generalized linear model. For
example, Candes and Plan [2011] discusses low-rank matrix recovery, and Cai et al. [2016]
considers phase retrieval. In a sparse setting, Abramovich and Grinshtein [2016] also provides
similar bounds for sparse estimation under the generalized linear model that depend on the
ratio between restricted eigenvalues. We remark that our minimax lower bound of (5.12)
can naturally be extended to the sparse setting of generalized linear models, yielding

1

n
inf
θ̂

sup
∥θ∥0≤k

E|Mθ̂ −Mθ|2 ≥ s(σ)

L
min(k, rank(M)).

Therefore, in cases where the ratio of restricted eigenvalues are large, our bound is tighter
despite lacking a logarithmic factor.
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5.6 Additional proofs

Proof of Theorem 21

Recall that the design matrix M has as its rows {mi}ni=1 ⊂ Rd. Writing the matrix M in
terms of its SVD M = UΣV T and defining ui as the i-th column of the matrix UT , we have

⟨mi, θ⟩ = ⟨Σui︸︷︷︸
m̄i

, V T θ︸︷︷︸
θ̄

⟩ = ⟨m̄i, θ̄⟩, (5.17)

where we defined the variables m̄i := Σui and θ̄ := V T θ. Since V is an orthogonal matrix by
definition, it follows by rotation invariance of the ℓ2 ball Bd

2(1) that the estimation problem
can be equivalently formulated under the reparametrization (θ,M) −→ (θ̄, M̄), where M̄ :=
MV = UΣ. More specifically, the minimax risk for θ over the set of estimators for estimating
θ ∈ Bd

2(1) is equal to the minimax risk for estimating θ̄ ∈ Bd
2(1),

inf
θ̂

sup
θ∈Bd

2(1)

E|θ̂ − θ|2 = inf
ˆ̄θ

sup
θ̄∈Bd

2(1)

E| ˆ̄θ − θ̄|2.

As a result, we may assume without loss of generality that MTM is a diagonal matrix.
By Theorem 12, minimax risk is lower bounded by the Bayes risk when θ is assumed

to be distributed according to a prior π defined on the ℓ2 ball Bd
2(1). Hence, our task is

to judiciously select a prior π that yields the desired lower bound. Toward this end, we
will let π be the uniform measure on the rectangle

∏d
i=1[−ϵi/2, ϵi/2] for values (ϵi)

d
i=1 to be

determined below satisfying

d∑
i=1

ϵ2i ≤ 4. (5.18)

In other words, our construction implies θ has independent components, with the i-th co-
ordinate θi uniform on the interval [−ϵi/2, ϵi/2]. The interval lengths will, in general, be
chosen to exploit the structure of the design matrix M .

We now describe our construction of the sequence (ϵi)
d
i=1. We start with the simple

case, in which the matrix M does not have full (column) rank. In this case, there exists an
eigenvalue λk(MTM) = 0. For this index k, we set ϵi = 2δik, i = 1, . . . , d, where δij is the
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Kronecker delta function. Now, we may bound

E|θ̂ − θ|2 ≥ Var(θ̂k − θk)
(a)

≥ 1

2πe
e2h(θ̂k−θk)

(b)

≥ 1

2πe
e2h(θk|θ̂k)

=
1

2πe
e2h(θk)−2I(θk;θ̂k)

(c)

≥ 1

2πe
e2h(θk)−2I(θk;X)

(d)
=

2

πe
,

where (a) follows from the max-entropy property of gaussians; (b) follows since conditioning
reduces entropy: h(θ̂k − θk) ≥ h(θ̂k − θk|θ̂k) = h(θk|θ̂k); (c) follows from the data processing
inequality since θk → X → θ̂k forms a Markov chain; and (d) follows since θk ∼ Unif(−1, 1)
and I(θk;X) = 0, since π is supported in the kernel of M by construction.

Having shown the minimax risk is lower bounded by a constant when M does not have
full (column) rank, we assume henceforth that M has full rank.

Note that under our assumptions, the pair (X, θ) has a joint distribution, and therefore
so does the pair (X, θi). Consistent with the previously introduced notation, we write IX(θi)
to denote the Fisher information of X drawn according to the conditional law of X given θi.
With this notation in hand, the next lemma provides a comparison between the expected
Fisher information conditioned on a single component θi of the parameter θ and the i-th
diagonal entry of the expected Fisher information matrix conditioned for parameter θ.

Lemma 24. When the components of parameter θ ∼ π ∈ P(Rd) are independent and X is
generated by the GLM (5.3), we have

Eπ[ĪX ]ii ≥ Eπi
[IX(θi)] i = 1, . . . , d.

Here, πi denotes the marginal law of θi.

Proof. Begin by noting that x 7−→ E [f(X; θ)| θi, X = x] is the density of X given θi with
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respect to λ. Now, the proof is by straightforward computation:

Eπ[ĪX ]ii = E


(

∂
∂θi
f(X; θ)

)2
f 2(X; θ)


= E

E

(

∂
∂θi
f(X; θ)

)2
f 2(X; θ)

∣∣∣∣∣∣∣ θi, X



(a)

≥ E


(
E
[

∂
∂θi
f(X; θ)

∣∣∣ θi, X])2
(E [f(X; θ)| θi, X])2


(b)
= E


(

∂
∂θi

E [f(X; θ)| θi, X]
)2

(E [f(X; θ)| θi, X])2


= Eπi

[IX(θi)].

In the above, (a) follows from Cauchy-Schwarz. Indeed, let πi and π(i) denote the marginal
laws of θi and θ(i) := (θ1, . . . , θi−1, θi+1, . . . , θd) (i.e., the leave-one-out vector), respectively.
Using independence of θi and θ(i), note that

E


(

∂
∂θi
f(X; θ)

)2
f(X; θ)2

 =

∫
R

∫
X

∫
Rd−1

(
∂
∂θi
f(x; θ)

)2
f(x; θ)

dπ(i)(θ(i))dλ(x)dπi(θi)

≥
∫
R

∫
X

(∫
Rd−1

∂
∂θi
f(x; θ)dπ(i)(θ(i))

)2∫
Rd−1 f(x; θ)dπ(i)(θ(i))

dλ(x)dπi(θi)

= E


(
E
[

∂
∂θi
f(X; θ)

∣∣∣ θi, X])2
(E [f(X; θ)| θi, X])2

 ,
where the last line follows since

x 7−→ E [f(X; θ)| θi, X = x] =

∫
Rd−1

f(x; θ)dπ(i)(θ(i))

is the density (w.r.t. λ) of X given θi.
Moving onwards, (b) follows from independence between θi and θ(i) and the Leibniz

integral rule. Application of the latter can be justified by the assumed regularity of Φ and
compactness of Bd

2(1).
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Next, fix ϵi > 0. Since θi ∼ Unif(−ϵi/2, ϵi/2) has a log-concave distribution, we can
apply Lemma 24 to conclude

e2h(θi|θ̂i) ≥ e2h(θi)−2I(θi;X)

≥ e2h(θi)−2ϕ(Var(θi)Eπi [IX ])

≥ ϵ2i e
−2ϕ

(
ϵ2i
12

Eπ [IX ]ii

)
i = 1, . . . , d. (5.19)

Here, we define the function ϕ(·) as:

ϕ(t) :=

{√
t if t < 1

1 + 1
2
log(t) if t ≥ 1.

(5.20)

Remark 16. This definition coincides with the single dimensional version of ϕ(0, t) defined
in Theorem 7. We remark that the definition of ϕ(·, ·) there depends on the dimension d,
whereas in our application here we invoke the single dimensional Theorem 7 on the mu-
tual information I(θi;X), and hence the notation ϕ(·) is adopted to prevent confusion with
dimensions.

Note that the last inequality used the identities Var(θi) =
ϵ2i
12

and h(θi) = log(ϵi), holding
by construction.

Putting (5.19) and Lemma 19 together, we conclude for any choice of ϵi > 0,

e2h(θi|θ̂i) ≥ ϵ2i exp

[
−2ϕ

(
ϵ2i
12

L

s(σ)
[MTM ]ii

)]
. (5.21)

In case ϵi = 0, we have the trivial equality e2h(θi|θ̂i) = 0, which is consistent with the RHS of
(5.21) evaluated at ϵi = 0. Hence, the estimate (5.21) holds for all ϵi ≥ 0.

Summing (5.21) from i = 1, . . . , d, for parameter θ ∼ π =
∏d

i=1Unif(−ϵi/2, ϵi/2), we
have the following lower bound on the Bayes risk,

E|θ̂ − θ|2 ≥
d∑

i=1

Var(θ̂i − θi)

≥ 1

2πe

d∑
i=1

e2h(θi|θ̂i)

≥ 1

2πe

d∑
i=1

ϵ2i exp

[
−2ϕ

(
ϵ2i
12

L

s(σ)
[MTM ]ii

)]
. (5.22)

It remains to choose an appropriate sequence (ϵi)i=1,...,d to obtain the desired lower bound.
Toward this end, we consider two cases:
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Case 1: Tr((MTM)−1) ≤ 1
3

L
s(σ)

In this case, we choose ϵ2i = 12 s(σ)
L

(
[MTM ]ii

)−1 for i = 1, . . . , d. Note that by our
assumption that MTM is diagonal,

d∑
i=1

ϵ2i = 12
s(σ)

L
Tr((MTM)−1) ≤ 4,

so that (5.18) is satisfied. By an application of (5.22), we have

E|θ̂ − θ|2 ≳
d∑

i=1

ϵ2i exp

[
−2ϕ

(
ϵ2i
12

L

s(σ)
[MTM ]ii

)]

=
12

e2
s(σ)

L

d∑
i=1

1

[MTM ]ii

≳
s(σ)

L
Tr((MTM)−1).

Case 2: Tr((MTM)−1) > 1
3

L
s(σ)

This case is the more difficult of the two. We shall make use of the following technical
lemma.

Lemma 25. Let (ai)i=1,...,d be any positive sequence satisfying
∑d

i=1 a
−1
i > 4. Then, there

exists a non-negative sequence (ϵi)i=1,2,...,d such that
∑d

i=1 ϵ
2
i ≤ 4 and

∑d
i=1 ϵ

2
i e

−2ϕ(ϵ2i ai) ≥ 2e−2.

Proof. Without loss of generality, assume that a1 ≥ a2 ≥ · · · ≥ ad > 0. If a1 ≤ 1/4, then
taking (ϵ1, ϵ2, . . . , ϵd) = (2, 0, 0, . . . , 0), and noticing that ϕ(·) is an increasing function, we
conclude

d∑
i=1

ϵ2i e
−2ϕ(ϵ2i a1) = 4e−2ϕ(4a1) ≥ 4e−2ϕ(1) > 2e−2.

Now, in the following we assume that a1 > 1/4. Let t denote the largest integer k ∈ {1, . . . , d}
satisfying

∑k
i=1 a

−1
i ≤ 4. By the assumption that

∑d
i=1 a

−1
i > 4, we know that there always

exists such a t, and t will satisfy t < d. We set

ϵi =

{
a
−1/2
i if 1 ≤ i ≤ t

0 otherwise
i = 1, . . . , d. (5.23)

By definition,
∑d

i=1 ϵ
2
2 =

∑t
i=1 a

−1
i ≤ 4 satisfies (5.18). This procedure results in

d∑
i=1

ϵ2i e
−2ϕ(ϵ2i ai) = e−2

t∑
i=1

1

ai
.
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If
∑t

i=1 a
−1
i ≥ 2, we can immediately see from the above and (5.23) that

∑d
i=1 ϵ

2
i e

−2ϕ(ϵ2i ai) ≥
2e−2.

On the other hand, if
∑t

i=1 a
−1
i < 2, this implies that a−1

t+1 ≥ 2. In this case, we simply
take ϵt+1 = 2, and take ϵi = 0 for i ̸= t+ 1. With this choice, we have

d∑
i=1

ϵ2i e
−2ϕ(ϵ2i ai) = 4e−2ϕ(4at+1) ≥ 4e−2ϕ(2) = 2e−2.

The above discussion concludes the proof of Lemma 25.

By considering the values ai = L
12s(σ)

[MTM ]ii, Lemma 25 ensures the existence of choices
of (ϵi)i=1,...,d satisfying (5.18) and, together with (5.22), gives

E|θ̂ − θ|2 ≳ 1.

This completes the proof of Theorem 21.

Proof of Theorem 23

Our proof follows as an extension of the proof of Theorem 21. We begin by stating the
following lower bound.

Lemma 26. Suppose observations X ∈ Rn are generated via the GLM (5.3) satisfying
Φ′′ ≤ L for some constant L > 0. Let π = N (0, β2Id). Then, the following lower bound
on entropic error of the i-th component holds for any estimator θ̂i : R → R and any fixed
constant t ≥ 0,

exp
(
2h(
√
tθi|θ̂i)

)
≥ 2πe

tβ2

1 + β2 L
s(σ)

[MTM ]ii

→ 2πe
s(σ)

L

t

[MTM ]ii
as β2 →∞ i = 1, . . . , d

Proof. The inequality is trivially true when t = 0, and henceforth we will assume t > 0. For
any i = 1, . . . , d, recall from Lemma 24 and (5.6) that

IX(θi) ≤ [ĪX(θ)]ii =
1

s2(σ)

n∑
j=1

(
M2

jiVar(Xj)
)
.

By applying the transformation θ ←
√
tθi, we get

IX(
√
tθi) =

1

t
IX(θi)

≤ 1

ts2(σ)

n∑
j=1

(
M2

jiVar(Xj)
)

≤ L

ts(σ)
[MTM ]ii,
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where we recall that the variance of Xi is given as in Lemma 20. It therefore follows that
the following holds for any θ̂i : R→ R with an application of Theorem 4

exp
(
2h(
√
tθi|θ̂i)

)
= exp

(
2h(
√
tθi)− 2I(

√
tθi; θ̂i)

)
= 2πeVar(

√
tθi) exp

(
−2I(

√
tθi;X)

)
≥ 2πe

tβ2

1 + β2 L
s(σ)

[MTM ]ii

→ 2πe
s(σ)

L

t

[MTM ]ii
as β2 →∞,

which concludes the proof of Lemma 26.

Moving onwards, we will write M = USV T as the SVD of M and define λi := λi(M
TM).

Let us first examine what happens by taking θ ∼ π = N (0, β2Id). Given a fixed i ∈
{1, . . . , d}, it follows from Lemma 26 that for any estimator θ̂i : Rn → R,

λiE(θ̂i − θi)2 ≥
1

2πe
exp

(
2h(
√
λiθi|θ̂i)

)
≥ λiβ

2

1 + β2 L
s(σ)

[MTM ]ii
if λi > 0 and i = 1, . . . , d. (5.24)

In the case λi = 0, (5.24) holds trivially, and we can say that (5.24) holds for all λi ≥ 0.
This allows us to write

E|USθ̂ − USθ|2 =
n∑

i=1

λiE(θ̂i − θi)2 ≥
n∑

i=1

λiβ
2

1 + β2 L
s(σ)

[MTM ]ii
. (5.25)

In other words, given a measurement matrix M with M = USV T ,

inf
θ̂

sup
θ∈Rd

E|USθ̂′ − USθ′|2 ≥
n∑

i=1

λiβ
2

1 + β2 L
s(σ)

[MTM ]ii
.

By simply noting that the minimax risk under the GLM with a measurement matrix M =
USV T is equivalent to the the minimax risk under the GLM with a measurement matrix
M ′ = US, it therefore follows that

inf
θ̂

sup
θ∈Rd

E|USθ̂ − USθ|2 ≥
n∑

i=1

λiβ
2

1 + β2 L
s(σ)

λi
.

Consequently,

inf
θ̂

sup
θ∈Rd

E|Mθ̂ −Mθ|2 = inf
θ̂

sup
θ∈Rd

E|USθ̂ − USθ|2 ≥
n∑

i=1

λiβ
2

1 + β2 L
s(σ)

λi
. (5.26)
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Finally, take β →∞ and we yield

1

n
inf
θ̂

sup
θ∈Rd

E
∣∣∣Mθ̂ −Mθ

∣∣∣2 ≥ s(σ)

Ln
rank(M),

completing the proof.

Remark 17. Bayes risk under prediction error for other log-concave priors with independent
components can be derived with a similar procedure.

Remarks on a weaker form of Theorem 23

As a historical remark, we note that in an earlier paper [Lee and Courtade, 2020] the following
weaker result was established.

Theorem 27. Suppose observations X ∈ Rn are generated via the GLM (5.3) satisfying
Φ′′ ≤ L for some constant L > 0. With a fixed design matrix M ∈ Rn×d, the following holds
for any estimator θ̂ : Rn → Rd,

1

n
inf
θ̂

sup
θ∈Rd

E|Mθ̂ −Mθ|2 ≳ s(σ)

nL

n∑
i=1

|mi|4

|Mmi|2
. (5.27)

The original proof of Theorem 27 is somewhat complicated and is omitted from this
dissertation. We refer the interested reader to [Lee and Courtade, 2020] for more details.
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Chapter 6

Lower bounds on risk under a general
pairwise comparison framework

In the previous Chapter, we saw how our techniques can lead to tight Bayes and minimax
risk lower bounds for the GLM. In this Chapter, we focus our attention to problems modeled
in terms of pairwise comparisons, and discuss applications of our main results to a general
pairwise comparison framework.

6.1 Introduction
Pairwise comparisons arise naturally: they may occur when a consumer is asked for their
preference between two products, or when drivers on the road are asked to answer questions
such as “are you in a traffic jam? ”, in which case answers are aggregated to improve navi-
gation. Pairwise comparisons also are a key component in competitive sports; the wins and
losses of all 30 NBA teams throughout a season can be thought of as a set of observations
based on pairwise comparisons, for example.

Pairwise comparison scenarios in practice do not necessarily produce binary outcomes.
For instance, comparisons among students in a classroom may consist of test scores that
are in the set of non-negative half-integers, say, {0, 0.5, . . . , 99.5, 100}. Another example is
measuring the athletic abilities of two players in a game of badminton where they play to 21
points (ignoring deuces): a win with a difference of 15 points suggests more confidently that
the first player is stronger than does a win with a difference of 3 points. In both examples,
non-binary models are more informative than a simple binary “win-or-lose” model.

In a typical parametric framework for pairwise comparisons, items are assigned weights,
and the difference wa −wb between weights associated to two items a and b plays a key role
in determining an observation; the larger the weight difference, the easier it should be to
differentiate item a from item b. With this in mind, we develop our results on a general
framework which we call the General Pairwise Model (GPM) where an observation
between items a and b are generated according to a density in the exponential family. We
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remark that the terminology General Pairwise Model is adopted to evoke an analogy to
the well-known class of generalized linear models, describing the connection between linear
models and exponential families; it is not meant to suggest that it is the most general
parametric model one could possibly describe.

Definition 2 (General Pairwise Model). Consider two items a and b. We say that an
observation X ∈ X ⊆ R based on a comparison between items a and b is generated according
to the General Pairwise Model if the density f(·;w) can be expressed as

f(x;w) = h(x) exp

[
G

(
wa − wb

σ

)
x

σ
− Φ

(
G

(
wa − wb

σ

))]
x ∈ X . (6.1)

In other words, comparisons between items a and b are generalized linear models with
natural parameter G ((wa − wb)/σ) for some function G(·) : R → R and noise parameter
σ ∈ R. The parameter σ is assumed to be fixed and the functions Φ and G may include
dependence on σ, as we will see in the ordinal model later. The function h : X → [0,∞) is
a base measure.

Note that the above definition is invariant to translations of weights by a constant factor.
Hence, we make the standard assumption that the weights are centered; i.e.,

∑
awa = 0,

where the sum ranges over all items a for comparison.
Next, let us go through a list of popular pairwise comparison models that the General

Pairwise Model includes.

Gaussian pairwise cardinal model

The observation X for a comparison between items a and b is generated by

X = wa − wb + Z, (6.2)

where Z ∼ N (0, σ2) is independent Gaussian noise. The Gaussian pairwise cardinal model
corresponds to the GPM with Φ(t) = t2/2 and G(u) = u.

Remark 18. The above Gaussian pairwise cardinal model (and many other models within
the GPM) has continuous outputs. This is a benefit of the GPM stated using the exponential
family.

At the other end of the spectrum, pairwise comparisons with binary outputs have a long
history, initiated by Thurstone [1927] in the 1920’s. The Thurstone (Case V) model has
led to fruitful applications (see, for example, [Krabbe, 2008, Herbrich et al., 2007, Nosofsky,
1985, Swets, 1973]), and can be written in the following form.

Thurstone (case V) model

The observation X for a comparison between items a and b is generated by

X = 1 (wa − wb + Z) ,
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where Z ∼ N (0, σ2) corresponds to observation noise. Here, 1(·) : R → R refers to an
indicator function with 1(t) = 1 if t > 0 and 1(t) = −1 otherwise.

Another example is the Bradley-Terry-Luce (BTL) model due to Bradley and Terry [1952]
and Luce [1959], which also has broad applications [Loewen et al., 2012, Heldsinger and
Humphry, 2010, Nosofsky, 1985].

Bradley-Terry-Luce (BTL) model

The observation X for a comparison between items a and b is generated with

Pr(X = 1) =
1

1 + exp
(
−wa−wb

σ

)
and Pr(X = −1) = 1− Pr(X = 1).

Both the Thurstone and BTL models are special cases of the ordinal model, proposed by
Shah et al. [2016].

Ordinal model

The observation X for a comparison between items a and b is generated with

Pr (X = 1) = Ford

(
wa − wb

σ

)
(6.3)

and Pr (X = −1) = 1 − Pr (X = 1) for some function Ford : R → [0, 1]. The ordinal model
is a special case of the GPM, corresponding to the choice Φ(t) = − t

σ
+ log(1 + e

2t
σ ), t ∈ R

and G(·) = σ
2
log (Ford(·)/(1− Ford(·))). Consequently, the Thurstone and the BTL model

are special cases of the GPM.

6.2 Our setup
Suppose there are a total of d items and we are given n independent observations generated
from the GPM (6.1) based on n pairs of items. It is helpful to envision which pairs are
compared with the assistance of a measurement matrix M ∈ Rn×d. To be precise, for the i-
th observation, suppose items a and b are compared. Then, we can represent this comparison
by a measurement vector mi ∈ Rd with the a-th entry equal to +1 and the b-th entry equal
to −1 with all other entries equal to 0. Together, the collection of vectors x1, . . . , xn can be
concatenated to form the measurement matrix M , with the i-th row corresponding to the
measurement vector mi.

The measurement matrix M can be viewed as a graph where nodes a and b connected if
items a and b are compared. Our results are closely connected with the Laplacian L of M ,
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defined to be

L :=
1

n
MTM. (6.4)

We let L† denote the pseudoinverse of L.

Remark 19. Our results depend only on the eigenvalues of L. Flipping the signs of any row
of M will not change MTM and therefore will preserve the eigenvalues of L. Hence, for an
observed pair (a, b), it is not important if item a is labeled as +1 or −1.

We assume that observations are independent, i.e., we observe independent observations
x1, x2, . . . , xn generated from the GPM based on pairs chosen via the measurement vectors
m1,m2, . . . ,mn respectively.

The question to answer is the following: To what extent can we estimate w1, . . . , wd given
observations x1, . . . , xn?

One way to answer this question is to establish minimax lower and upper bounds for
the estimation of the true vector of weights w∗. In other words, we would like to provide
quantitative analysis of the minimax ℓ2 error defined as

inf
ŵ

sup
w∗∈W

E|ŵ − w∗|2,

where W is the support of w∗ to be considered. Here, recall that the minimax error char-
acterizes the performance (in terms of ℓ2 error) of the “best” estimator for the “worst-case”
scenario. For ease of expressing our results, we define

WB := {w : w ∈ Bd
2(B),

∑
a

wa = 0}

as the intersection of the subspace {w :
∑

awa = 0} and the ℓ2 ball with radius B, defined
as

Bd
2(B) := {w ∈ Rd : |w| ≤ B}. (6.5)

Related work

There is a vast amount of work for parametric pairwise comparisons. Minimax bounds for
the ordinal model were developed by Shah et al. [2016], who provided deep insights into the
connection of minimax rates with the topology of the ordinal model, expressed in terms of
the eigenvalues of the Laplacian L. Apart from Shah et al. [2016], Negahban et al. [2017,
2012] focused on a particular setting for the BTL model where comparisons are evenly
distributed. A work by Hajek et al. [2014] considered the Plackett-Luce model [Plackett,
1975, Luce, 1959], which is an extension of the BTL model to comparing two or more items
at a time: They were able to derive lower bounds in terms of the degree of vertices in the
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comparison graph, which is suboptimal. Lower bounds for unbiased estimators that have
the scaling of Tr(L†) were derived for the Plackett-Luce model by Hajek et al. [2014] via
the Cramér-Rao bound, but they were unable to prove it for biased estimators. A recent
work by Hendrickx et al. [2020] proves a lower bound for the BTL model with the same
scaling but in a considerably restrictive setting where all pairs are compared k times (with
k large enough). In our work, we present a lower bound that holds for all estimators, any
configuration of the measurement matrix M , and has the scaling Tr(L†) for the entire class
of GPMs with minor assumptions and almost no restrictions.

Another related line of work relates the estimation of bivariate isotronic matrices, where
the goal is to model observations based on probabilities referenced by a d×d matrix and find
good estimates of this matrix [Pananjady et al., 2020, Shah et al., 2019, Mao et al., 2018,
Heckel et al., 2018]. There are also works regarding ranking, i.e., finding the ordering of
items from highest weight to lowest weight; for example, Heckel et al. [2019] discusses active
ranking with adaptive measurements. These settings are different from the parametric setup
we consider.

6.3 Main results and discussion
Prior to introducing our main results, we state the notation that will be used throughout
the section.

Notation

Consistent with notation used throughout the dissertation, we will use the symbol ≳ (resp. ≲
,≍) to express≥ (resp.≤,=) up to absolute constants that do not depend on any parameters.
Given a vector v ∈ Rd, we will write v := (v1, v2, . . . , vd) where vi is the i-th coordinate of
the vector v. We will also write vk := (v1, v2, . . . , vk) as the vector corresponding to the first
k ≤ d components of v. The log(·) function is understood to be the natural logarithm.

Given two vectors u, v of the same length, we write ⟨u, v⟩ := uTv as the inner product
between u and v. We write 1d (and 0d) as the all-ones (and all-zero) vector of length
d. Given a square matrix M ∈ Rd×d, we write the eigenvalues of M in increasing order:
λ1(M) ≤ λ2(M) ≤ . . . ≤ λd(M).

Minimax lower bounds

Our results are stated in terms of the following quantity U .

Assumption 3. The natural parameter G(·) and cumulant function Φ(·) of the GPM (6.1)
satisfies

(G′(u))
2
Φ′′(G(u)) ≤ U for all u ∈ Bd

2(2B/σ)

for some positive constant U > 0.
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This assumption is mild, and U can typically be viewed as a constant. To see some
examples, the Gaussian pairwise cardinal model corresponds to G(u) = u and Φ(t) = t2/2,
and hence U = 1. For the ordinal model, it can be shown that a bound on the log-concavity
of Ford(·) and 1 − Ford(·) of the form − d2

dt2
logFord(t) ≤ U and − d2

dt2
log(1 − Ford(t)) ≤ U

implies Assumption 3 holds with the same constant U . For instance, the BTL model has
FBTL(t) = 1/(1 + e−t) with

max
{
(− logFBTL(t))

′′ , (− log(1− FBTL(t)))
′′} =

e−t

(1 + e−t)2
≤ 1

4
,

and hence for the BTL model, Assumption 3 is satisfied with U = 1/4. We remark that an
assumption on an upper bound of Φ′′ is typical for exponential family analysis; see [Loh and
Wainwright, 2015, Negahban et al., 2012, Müller and Stadtmüller, 2005] for examples.

Our main result is a tight minimax lower bound for GPMs.

Theorem 28. Given measurement matrix M ∈ Rn×d and weight vector w ∈ WB, suppose
we have n independent observations generated via the GPM (6.1) satisfying Assumption 3
for a constant U > 0. The minimax ℓ2 risk is lower bounded by

inf
ŵ

sup
w∈WB

E|ŵ − w|2 ≳ min

(
B2,

σ2

Un

d∑
i=2

1

λi(L)

)

≳ min

(
B2,

σ2

Un
Tr(L†)

)
.

Here, L is the Laplacian of M defined in (6.4).

We adopt the convention that 1/λ2(L) = +∞ if λ2(L) = 0, which occurs when M is not
connected. It should also be noted that M satisfies L1d = 0d, and hence λ1(L) = 0. We
remark that random guessing or simply guessing ŵ = 0d achieves the minimax rate when
σ2

Un
Tr(L†) > B2.

A special case of Theorem 28: the ordinal model

The topological dependence of Theorem 28 leads to interesting results for the ordinal model.
Before proceeding, we first state known minimax bounds due to Shah et al. [2016].

Suppose ∥w∥∞ ≤ r and further define the auxiliary variable ζ for the function Ford(·)
corresponding to the ordinal model (see (6.3)) as

ζ :=
maxx∈[0,2r/σ] F

′
ord(x)

Ford(2r/σ)(1− Ford(2r/σ))
. (6.6)

The following lower bound for the ordinal model is established by Shah et al. [2016].
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Lemma 29. [Shah et al., 2016, Theorem 2] Fix a constant r > 0. For a sample size
n ≥ c2σ2 Tr(L†)

ζr2
, any estimator ŵ based on n samples from the ordinal model satisfies

sup
∥w∥∞≤r

E|ŵ − w|2 ≳ σ2

n
max

d2, max
d′∈{2,...,d}

d′∑
i=⌈0.99d′⌉

1

λi(L)

 . (6.7)

As discussed by Shah et al. [2016] and Negahban et al. [2012], in situations of practical
interest the parameters B, r, σ, ζ,U are independent of n and d, and henceforth we will view
them as constants.

Despite Lemma 29 being stated in terms of the ℓ∞ norm, our Theorem 28 (stated in
terms of the ℓ2 norm) is strong enough to establish the following uniform improvement.

Corollary 30. Any estimator ŵ based on n samples from the ordinal model satisfies

sup
∥w∥∞≤r

E|ŵ − w|2 ≳ σ2

n
max

{
d2,

d∑
i=2

1

λi(L)

}
. (6.8)

Proof. To see this, take B = r, and we find that Theorem 28 leads to

sup
∥w∗∥∞≤r

E|ŵ − w∗|2 ≳ min

{
r2,

σ2

Un

d∑
i=2

1

λi(L)

}
. (6.9)

Now, notice there is a sample size constraint present in Lemma 29. By using the fact that
Tr(L†) ≥ d2

4
(see, for example, Lemma 14 of Shah et al. [2016]), we see whenever Lemma 29

holds, we would consequently have

r2 ≳
σ2

ζn
Tr(L†) ≳

σ2d2

n

1

ζ
. (6.10)

Combining (6.10) with (6.9) we conclude the corollary.

Note that Corollary 30 implies a uniform improvement over the result of Shah et al.
[2016]. It is not hard to find situations where (6.8) is order-wise tighter than (6.7). For
example, if λk = Ck with C = 2(

∑d
i=2 i)

−1 ≈ 4/d2, then (6.8) is of the order σ2d2 log d/n
while (6.7) is of the order σ2d2/n. It should be noted that our result does not require a
limitation on sample size n as required in Lemma 29. We also note that Shah et al. [2016]
conjectured that the lower and upper bounds for the ordinal model should scale as Tr(L†);
Theorem 28 confirms the lower bound part of this conjecture.

Further discussion of tightness

In this section, we will discuss performance guarantees of estimators for several settings of
the GPM, and use them to support the tightness of our lower bounds. We will be assuming
that the comparison graph induced by observation matrix M is connected; otherwise, there
is at least one weight that cannot be estimated well.
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Gaussian pairwise cardinal model

Suppose we observe n independent pairwise comparisons generated according to (6.2) with
a weight vector w ∈ WB and a measurement matrix M . The following error guarantee for
the unconditional least-squares estimator is classical; we refer the interested reader to Shah
et al. [2016] for a proof.

Lemma 31. Suppose we have n observations based on the observation matrix M and a
weight vector w satisfying ⟨1, w⟩ = 0 under the Gaussian pairwise cardinal model of (6.2).
Then the unconditional least-squares estimator ŵ := 1

n
L†MTX satisfies

E|ŵ − w|2 ≤ σ2

n
Tr(L†).

When σ2

n
Tr(LT ) ≥ B2 we can use the estimator ŵ′ := 0d to achieve an error upper bound

of E|ŵ′ − w|2 ≤ B2. Combined with Lemma 31, we immediately see that our lower bound
of Theorem 32 is matched.

A direct consequence can be stated in terms of the optimal model selection problem,
where we let (G,P) be the set of all possible functions (G(·),Φ(·)) satisfying Assumption 3,
and observations are generated under the GPM of (6.1) with a measurement matrix M . The
risk associated with selections of (G(·),Φ(·)) is therefore established to be

inf
(G,Φ)∈G,P

inf
ŵ

sup
w∈WB

E|ŵ − w|2 ≍ min

(
B2,

σ2

Un
Tr(L†)

)
,

with equality holding for the Gaussian pairwise cardinal model (which satisfies Assumption
3 with U = 1). This suggests that Theorem 28 cannot be improved in general, unless finer-
grained information about the model (e.g., further properties of G,Φ) is incorporated into
the lower bound.

Subgaussian GPMs

Under additional constraints on subgaussianity and strong-convexity of the negative log-
likelihood of the observations X (detailed in the next section), it can be shown that in many
natural settings the Maximum Likelihood Estimator (MLE) has ℓ2 error matching our lower
bound of Theorem 28 up to constants, providing further evidence of tightness.

Theorem 32. Suppose we have n observations based on the connected observation matrix
M and a weight vector w ∈ WB for some B > 0 under the General Pairwise model of (6.1)
satisfying Assumption 3 and the two assumptions given in (6.12) and (6.13) for constants
U ,L, R > 0. Then, the MLE has guaranteed error performance

sup
w∈WB

E|ŵ − w|2 ≲ σ2 U
L2

d

nλ2(L)
. (6.11)



CHAPTER 6. LOWER BOUNDS ON RISK UNDER THE GPM 83

Theorem 32 recovers the performance guarantee for the ordinal model established by
[Shah et al., 2016, Theorem 2] as a special case.

It is worthwhile to discuss when the lower bound of Theorem 28 and the upper bound
of (6.11) matches. By observation, Tr(L†) has to be of the same order as d/(nλ2(L)). In
other words, the smallest Θ(d) positive eigenvalues of L will need to be of the same order.
Examples of common measurement matrices that satisfy this are given below.

Random Matrices. When each measurement is sampled uniformly at random over all pos-
sible

(
d
2

)
choices, all positive eigenvalues of the Laplacian matrix L will be of the same order

with high probability when n is large enough compared to d; see, for example, [Wainwright,
2019].

Specific Graph Models. As discussed by Shah et al. [2016], examples of the measurement
matrix M where the smallest Θ(d) positive eigenvalues of L are of the same order include
the following: complete graph (every pair is compared once), constant-degree expander (see,
e.g., constructions by Alon et al. [2008]), star (one item is compared to every other item
once), or complete bipartite (all items are split into two sets; there is an edge between every
pair of items in different sets and none between pairs in the same set). When M is designed
as any of these models, our upper and lower bounds are tight.

Summary of contributions

We make the following two main contributions.

1. We discuss pairwise comparisons under the General Pairwise Model, a general para-
metric framework for the pairwise comparison paradigm. The GPM unifies pairwise
comparison with continuous and discrete observations under the exponential family.
As special cases, our framework covers classic models such as the Thurstone (Case V)
model, BTL model, ordinal model and Gaussian pairwise cardinal model.

2. We establish an ℓ2 minimax lower bound scaling as Tr(L†) for the GPM. We have
matching lower and upper bounds for the Gaussian pairwise cardinal model, suggesting
our lower bound cannot in general be improved. When applied to the ordinal model
as a special case, our minimax lower bound achieves uniform improvement over the
lower bound of Shah et al. [2016] and is the first proof of one direction of a conjecture
set in their paper. We establish performance guarantees for the maximum likelihood
estimator under the GPM with subgaussian constraints, which serves as evidence that
our minimax lower bound is tight.

Finally, we remark that Theorem 28 is a uniform bound over the General Pairwise Model
cleanly stated in terms of Tr(L†). Our lower bound technique can be extended without too
much extra effort to general m-ary comparison frameworks, which is intended as future work.
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6.4 Additional proofs

Additional assumptions for Theorem 32

In this section we discuss the additional assumptions required in the statement of Theorem
32:

1. Strong-convexity of negative log-likelihood. For any u ∈ R with |u| ≤ 2B/σ,
and for all x ∈ X ,

− ∂2

∂u2

(x
σ
G(u)− Φ (G(u))

)
≥ L. (6.12)

In other words, the negative log-likelihood of any observation generated by the General
Pairwise Model of (6.1) is strongly-convex.

2. Subgaussianity. Consider observation X generated according to measurement matrix
M and weight vector w from the General Pairwise Model of (6.1). Then, for all
1 ≤ i ≤ n, the centered random variable Xi − E[Xi] is subgaussian with parameter s.
We will be focusing on subgaussian X that satisfies

s2R2

Uσ2
≤ C, (6.13)

for some constant C > 0, and R := sup|u|≤2B/σ |G′(u)|.

Here, we say that a random variable Z ∈ R is r-subgaussian if E[Z] = 0 and E exp(tZ) ≤
exp (r2t2/2) for all t ∈ R.

The first assumption is standard for analysis of MLEs. We note that (6.12) holds for a
broad class of models; for example, if G(u) = u,∀u ∈ R (satisfied by the Gaussian pairwise
cardinal model), then (6.12) corresponds to a constraint of Φ′′(·) ≥ L. This complements
Assumption 3, which in this case can be written as an upper bound Φ′′(·) ≤ U . For the ordinal
model, (6.12) is implied by strong log-concavity of Ford(·), i.e., − d2

dt2
logFord(t) ≥ L,∀t ∈ R,

which is assumed by Shah et al. [2016].
On the other hand, we remark that not all models within the exponential family are

subgaussian (for example, the exponential density is not subgaussian), and in this section we
will be focusing our attention to subgaussian models. Examples include models with bounded
outputs (such as the ordinal model), which are subgaussian by nature. We further remark
that the subgaussian constraint of (6.13) is not restrictive: recall that s, U , σ and R are all
parameters of the General Pairwise Model, and are typically considered to be constants. As
an example, under the ordinal model where G(u) = σ log (Ford(·)/(1− Ford(·))) and s ≤ 1,
the value of R2/σ2 is precisely ζ2 (see (6.6)), and can be typically considered an O(1) value
that does not depend on d and n.
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Proof of Theorem 28

Recall that the observations X are generated according to n independent observations
X1, X2, . . . , Xn from the GPM (6.1) with measurement matrix M and weight w ∈ WB

based on the density function

f(x;w) :=
n∏

i=1

f(xi;w) x ∈ Rn,

where f(xi;w) can be written as

f(xi;w) = exp

(
G

(
⟨mi, w⟩
σ

)
xi
σ
− Φ

(
⟨mi, w⟩
σ

))
xi ∈ R, i = 1, 2, . . . , n,

with mi ∈ Rd corresponding to the i-th row of the measurement matrix.
The first step of the proof is to bound the minimax entropic risk in terms of the Bayes

entropic risk, where

inf
ŵ

sup
w∈WB

E|ŵ − w|2 ≥ inf
ŵ

sup
W∼π

E|ŵ −W |2

given a prior π defined on WB. In order to specify the prior we choose, let us first write the
SVD of M as M = USV T

0 . Define V0 :=
[
V vd

]
where V =

[
v1 . . . vd−1

]
∈ Rd×(d−1) and

vd ∈ Rd. We will design prior π such that W is sampled according to

W = V0

[
θ
z

]
= V θ + zvd (6.14)

for a random vector θ on Rd−1, with each component θi sampled according to an independent
uniform distribution with support [−ti, ti] (the specific values of ti will be specified later). The
term z is a deterministic value depending on θ, and is such that ⟨1d,W ⟩ = 0; a straightforward
calculation yields z = −1Td V θ

1Td vd
, which can be shown to be equal to 0.

Lemma 33. If λ2(L) > 0, we have V T1d = 0d−1 and consequently, the term z = −1Td V θ

1Td vd

satisfies z = 0.

Proof. Recall that the vector 1d satisfies M1d = 0Td , and hence we can write

USV T
0 1d = 0.

This implies that

1Td V0S
TSV T

0 1d = 0,
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or equivalently,

d∑
i=1

(1Td vi)
2λd−i+1(L)

2 = 0.

Now, since λi(L) > 0 for all i > 1 and λ1(L) = 0, it follows that

1Td vj = 0 for all 1 ≤ j ≤ d− 1.

This is equivalent to

V T1d =
[
1Td v1 1Td v2 . . . 1Td vd−1

]T
= 0d−1

as desired. It therefore follows that z = −1Td V θ

1Td vd
= 0.

Given our choice of a log-concave prior π, we may write the following sequence of in-
equalities for any estimator ŵ

E|ŵ −W |2

= E|V T
0 ŵ − V T

0 W |2

(a)

≥ E|V T ŵ − θd−1|2

(b)

≳
d−1∑
i=1

exp
(
2h(θi|(V T ŵ)i)

)
(c)

≥
d−1∑
i=1

exp (2h(θi)− 2I(θi;X))

(d)

≥
d−1∑
i=1

exp (2h(θi)− 2ϕ (Var(θi)EθiIX(θi)))

(e)

≥
d−1∑
i=1

exp (2h(θi)− 2ϕ (Var(θi)Eπ[IX ]ii)) , (6.15)

with ϕ(·) defined in (5.20). Here, (a) follows since

E|V T
0 ŵ − V T

0 W |2 = E|V T ŵ − θd−1|2 + E(vTd ŵ − z)2

≥ E|V T ŵ − θd−1|2.

The inequality (b) should be familiar to us, but we remark it again for completness: it follows
since Gaussians maximize entropy and conditioning reduces entropy, so that

E(α− β)2 ≳ exp(2h(α− β)) ≳ exp(2h(α|β))
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for two real-valued random variables α, β. In (c), we used the data processing Inequality on
the Markov chain θi → X → (V T ŵ)i, which implies

I(θi;X) ≥ I(θi; (V
T ŵ)i)

= h(θi)− h(θi|(V T ŵ)i).

In (d), for each i = 1, 2, . . . , d − 1 we bound I(θi;X) by using Theorem 7 and writing the
density of X in terms of θi. Note that our choice of the prior of θi as the uniform distribution
is log-concave by default. Finally, (e) is due to Lemma 24, which can be adapted to the GPM
with the regularity of Φ(·) and G(·).

Moving on, define the variable uj as

uj : =
⟨xj, V θ + zvd⟩

σ
=
⟨xj, V θ⟩

σ
.

From direct calculation, we arrive at

Eπ

[
ĪX
]
ii
≤ E

[
E

[
n∑

j=1

(Ψj)
2

∣∣∣∣∣ θ
]]

≤
n∑

j=1

Φ′′ (G (uj))

(
∂

∂θi
G (uj)

)2

, (6.16)

where Ψj :=
∂
∂θi

(xj

σ
G (uj)− Φ (G (uj))

)
. In the above, we used the fact that the exponential

family of (6.1) has mean σΦ′(η) and variance σ2Φ′′(η) and hence

E
[
(xi − σΦ′ (G(uj)))

2
∣∣∣ θ] = σ2Φ′′ (G (uj)) .

Now, note that we have by chain rule

∂

∂θi
G (uj) = G′ (uj)

⟨mj, vi⟩
σ

.

Combining this with (6.16) and Assumption (3) gives us

Eπ[ĪX ]ii ≤
U
σ2
|Mvi|2 =

U
σ2
S2
ii =
Un
σ2
λd−i+1(L),

for all i = 1, 2, . . . , d − 1. Therefore, we have successfully extracted out the eigenvalues
of the Laplacian L. Combining this with (6.15) and a calculation of h(θi) and Var(θi) for
θi ∼ Unif[−ti, ti], we see that

E|ŵ − w|2 ≳
d−1∑
i=1

t2i exp

[
−2ϕ

(
t2i
3

Un
σ2
λd−i+1(L)

)]
. (6.17)
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Now, it remains to find a good choice of the supports of the uniform distributions to yield
the final result of Theorem 28. We start our discussion with the number of zero eigenvalues
of L. As discussed in Section 6.3, since 1d spans the null-space of L, we have λ1(L) = 0. If
λ2(L) = 0, we can take td−i−1 = B and tj = 0 for all j ̸= d− i− 1, and (6.17) recovers

E|ŵ − w|2 ≳ B2 = min

(
B2,

σ2

Un

d∑
i=2

1

λi(L)

)
,

where recall that we let 1/λ2(L) = +∞ by convention if λ2(L) = 0. Hence, we will continue
our discussion for the remaining case where λ2(L) > 0. In other words, the only zero
eigenvalue is λ1(L) and L is connected.

It remains to judiciously choose the values of ti. Lemma 33 allows us to rewrite our
constraint of |W |2 ≤ B2 as |θ|2 ≤ B2, since z = 0 implies

|W |2 =
∣∣∣∣V0 [θz

]∣∣∣∣2 = |θ|2 + z2 = |θ|2.

Hence, we would require our choices of ti, i = 1, . . . , d− 1 satisfy

d−1∑
i=1

t2i ≤ B2. (6.18)

We will continue our discussion in terms of the relation between Tr(L†) and Un
σ2B

.

If σ2

Un
Tr(L†) ≤ 1

4
B2: We can choose

t2i =
4σ2

Un
1

λd−i+1(L)
for all i = 1, . . . , d− 1.

This satisfies (6.18), and continuing on from (6.17) we have

E|ŵ − w|2 ≳ σ2

Un

d−1∑
i=1

1

λd−i+1(L)
=

σ2

Un
Tr(L†).

If σ2

Un
Tr(L†) > 1

4
B2: Let’s define the auxiliary variables a1, . . . , ad−1 with

ai :=
Un
4σ2

λd−i+1(L
†) for all i = 1, . . . , d− 1.

Then, a1, . . . , ad−1 is a positive sequence satisfying
∑d−1

i=1 a
−1
i > B2. We can directly use the

following lemma which is a restatement of Lemma 25.
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Lemma 34 (Restatement of Lemma 25). Fix B > 0. Let (ai)i=1,...,q be any positive se-
quence with

∑q
i=1 a

−1
i > B2. Then, there exists a non-negative sequence (ϵi)i=1,...,d such that∑d

i=1 ϵ
2
i ≤ B2 and

∑q
i=1 ϵ

2
i exp(−2ϕ(ϵ2i ai)) ≥ B2e−2/2.

Then, we can choose q = d − 1 and ti = ϵi based on Lemma 34. Hence, in this setting
we conclude that

E|ŵ − w|2 ≳
q∑

i=1

t2i exp(−2ϕ(t2i ai)) ≳ B2

as desired. Combining the two discussions for different regimes of σ2

Un
Tr(L†) concludes the

proof.

Proof of Theorem 32

The Maximum Likelihood Estimator for the General Pairwise Model solves the optimization
problem ŵ := argminw∈WB

ℓ(w), where the objective function ℓ(w) is defined as

ℓ(w) = − 1

n

n∑
i=1

(
G

(
⟨mi, w⟩
σ

)
xi
σ
− Φ

(
G

(
⟨mi, w⟩
σ

)))
.

The analysis of the MLE here follows a standard treatment of M -estimators tailored to the
General Pairwise Model, and is essentially a modification of the proof of the guarantee for
the ordinal model due to [Shah et al., 2016, Theorem 2].

The semi-norm of a vector v ∈ Rd with respect to a PSD matrix Q ∈ Rd×d is written as

∥v∥Q :=
√
vTQv.

For ease of notation, let us write the true weight vector as w∗. The following lemma given by
Shah et al. [2016] allows one to bound the error in terms of L semi-norm by the L† semi-norm
of gradients.

Lemma 35. [Shah et al., 2016, Lemma 9] Consider the estimator ŵ = argminw∈WB
ℓ(w).

Then, if ℓ(·) satisfies the following κ-strong convexity condition

ℓ(w∗ +∆)− ℓ(w∗)− ⟨∇ℓ(w∗),∆⟩ ≥ κ∥∆∥2L (6.19)

for all ∆ ∈ Rd with w∗ +∆ ∈ WB, then ∥ŵ − w∗∥L ≤ 1
κ
∥∇ℓ(w∗)∥L†.

Hence, the proof consists of two parts. We will first show that ℓ(w) satisfies the L
σ2 -strong

convexity condition. Then, we will bound the gradient in the L† semi-norm.
A straightforward calculation for the function ℓ(w) yields

∇2ℓ(w) = − 1

nσ2

n∑
i=1

∂2

∂u2i

(x
σ
G(ui)− Φ (G(ui))

)
mim

T
i ,
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where ui is defined to be ui = ⟨mi,w⟩
σ

. By our assumption of (6.12), it follows that ℓ(w)
satisfies

vT∇2ℓ(w)v ≥ L
nσ2
|Mv|2

=
L
σ2
∥v∥2L for all v, w ∈ WB.

This implies that ∇2ℓ(w) is strongly convex in the L semi-norm with parameter L
σ2 , and we

may use the following property of strong convexity:

ℓ(w∗ +∆)− ℓ(w∗)− ⟨∇ℓ(w∗),∆⟩ ≥ L
σ2
∥∆∥2L.

Combining this with Lemma 35, we have

∥∆∥2L ≤
σ4

L2
∥∇ℓ(w∗)∥2L† .

Moving on, we will try to bound ∥∇ℓ(w∗)∥2
L† . First, we can write

∇ℓ(w∗) = − 1

nσ

n∑
i=1

(xi
σ
− Φ′ (G(ui))

)
G′(ui)mi.

The key here is to notice that σΦ′(·) is the mean of the exponential family of (5.2) with
cumulant function Φ(·). Hence, we can define a random vector V ∈ Rn such that Vi are
independent sampled as a mean-shifted version of X/σ, i.e., Vi = (X ′ − E[X ′])/σ for a i.i.d.
copy of X ′ based on the General Pairwise Model with conditions same as in Theorem 32.
Define G as the diagonal matrix with diagonal entries G′(u1), . . . , G

′(un). We can write
∇ℓ(w∗) = − 1

nσ
MTGV , and upon defining Q := σ2

L2n2ML†MT , we have ∥∆∥2L ≤ V TGTQGV .
We can use the fact that Vi has variance Φ′′(ui) and readily calculate

EV TGTQGV =
n∑

i=1

QiiΦ
′′ (ui)G

′(ui)
2 ≤ Uσ

2d

L2n
.

Here, we used the fact that Tr(Q) = σ2(d−1)
L2n

and Assumption 3. The remaining is an
application of the Hanson-Wright inequality (see, e.g., [Shah et al., 2016, Lemma 13]), with
the identities

∣∣∣∣∣∣GTQG
∣∣∣∣∣∣2

fro ≤ (d− 1) σ4

L4n2R
4 and

∣∣∣∣∣∣GTQG
∣∣∣∣∣∣

op ≤
σ2

L2n
R2. Here, the notations

|||·|||fro and |||·|||op correspond to the Frobenius norm and operator norm respectively. Let K
be the subgaussian constant of Yi/σ, and note that we have Kσ = s. Then, we have

Pr

(
V TGTQGV − Uσ

2d

L2n
> t

)
≤ exp

(
−cmin

{
t2L4n2

K4(d− 1)σ4R4
,
tL2n

K2σ2R2

})
= exp

(
−cmin

{
t2L4n2

s4(d− 1)R4
,
tL2n

s2R2

})
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which implies there exists a universal constant c′ > 0 such that

Pr

(
∥∆∥2L > t

Uσ2

L2

d

n

)
≤ exp

(
−c′ min

(
t2
U2σ4d

s4R4
, t
Uσ2d

s2R2

))
for all t ≥ 1. It remains to integrate the above to bound E∥∆∥2L, which is a matter of algebra.
Recalling our assumption that s2R2

Uσ2 ≤ C for some constant C > 1, we can write

E∥∆∥2L ≤ C
Uσ2

L2

d

n
+

∫ ∞

C Uσ2

L2
d
n

Pr
(
∥∆∥2L > t

)
dt

= C
Uσ2

L2

d

n
+ C
Uσ2

L2

d

n

∫ ∞

1

Pr

(
∥∆∥2L > tC

Uσ2

L2

d

n

)
dt

≲ C
Uσ2

L2

d

n
+ C
Uσ2

L2

d

n

∫ ∞

1

exp

(
−c′CUσ

2d

s2R2
t

)
dt

≲
Uσ2

L2

d

n
. (6.20)

Finally, we can use the fact that the nullspace of L is spanned by 1d and ⟨1d,∆⟩ = 0 to
conclude ∥∆∥2L ≥ λ2(L)|∆|2 = 1

n
λ2(X

TX)|∆|2. Combining this with (6.20) completes the
proof.
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Chapter 7

Concluding remarks and outlook

While we have covered a variety of new results within the dissertation, there remains many
interesting questions to be answered.

7.1 Outlook
We mark several avenues for possible future work.

1. Improved bounds with further optimization of reference measure

Given specific pairs (π, Pθ), it may be possible to optimize over all index measures µ (satis-
fying LSI) to get the tightest possible bound on I(π;Pθ).

2. Unification of Theorems 4 and 7

As discussed in Chapter 2, Theorems 4 and 7 stem from a similar choice of reference measure
but with different analytical methodologies. These differences lead to pros and cons of either
results. Theorem 4 preserves a log-determinant behavior that is consistent with well-known
channel capacity expressions such as that of the Gaussian observation model, but does not
capture the case where IX → 0 well. On the other hand, Theorem 7 successfully captures
the behavior in the IX → 0 regime and is uniformly tighter than Theorem 4 when Σπ and
IX are multiples of the identity matrix. However, Theorem 7 is of a log-trace form and does
not capture well cases where Σπ or IX has extreme eigenvalues. It is therefore of interest
whether there is a unified inequality that preserves the pros of both theorems.

3. Combination with advancements in the hyperplane conjecture

As discussed in Chapters 3 and 4, our new inequalities for log-concave priors have good
synergy with the hyperplane conjecture, due to its entropic formulation by Bobkov and
Madiman [2010]. Concurrent developments in the hyperplane conjecture have been rapid,
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and while we cannot foresee the future, new developments on the hyperplane conjecture
should lead to interesting applications with our results.

4. Extensions to other applications

We first note that any application of the van Trees inequality has the potential of being
extended by replacing the van Trees inequality by inequalities developed within this disser-
tation. This leads to possibilities for improvements of previous and future developments.
For example, recent work by Barnes et al. [2020] apply the van Trees inequality to lower
bounds on minimax risk of learning distributions under communication constraints. It is in-
teresting to see whether our bounds provide utility in similar scenarios. Moreover, Gill and
Levit [1995] were able to apply the van Trees inequality to give lower bounds on minimax
risk of nonparametric models through identifying and establishing lower bounds on minimax
risk for difficult parametric sub-models. Successful applications to nonparametric problems
range from linear estimators [van Rooij and Ruymgaart, 1996, Belitser and Levit, 1996] to
estimation of quantum states [Lahiry and Nussbaum, 2022]. For all of these applications,
our bounds can naturally be applied in a similar fashion and has the potential of providing
improvements.

It is of sufficient interest to extend beyond this framework; for example, Barnes and Ozgur
[2021] discuss lower bounds on mutual information expressed in terms of Fisher information
under certain subgaussian constraints. While their setup is different from our parametric
framework, there is potential that our upper bounds on mutual information may be a good
complement.

In the context of machine learning, our lower bounds on risk can in some cases be inter-
preted as lower bounds on the training error in the speak of the machine learning community.
It is of broad practical interest to ask whether our bounds on mutual information can be
converted into bounds for generalization error, which has gained massive interest in recent
times; see, e.g., [Pensia et al., 2018, Lopez and Jog, 2018, Rigollet, 2007, Murphy, 2005, Meir
and Zhang, 2003] for some recent developments.

Finally, there are a wide variety of statistical models of practical interest that are closely
related to the GLM, to which our techniques for bounding risk can be applied without too
much difficulty. These models include, for example, matrix completion and recovery [Recht,
2011, Candes and Plan, 2011, 2010, Keshavan et al., 2010], covariance matrix estimation
[Friedman et al., 2008, Cai et al., 2010] and phase retrieval [Cai et al., 2016, Candes et al.,
2015, Candes et al., 2015, Fienup, 1982].

7.2 Concluding remarks
We first make a brief recap of the dissertation: We introduced a family of inequalities indexed
by reference measures satisfying an LSI (Theorem 2). Under a suitably chosen Gaussian
reference measure, we recover Efroimovich’s inequality (Corollary 3) and consequently the
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celebrated van Trees inequality (2.9). We established two new inequalities under log-concave
priors (Theorems 4 and 7). Procedures of applying our new inequalities to lower bound risk
via tools in rate distortion theory were shown in Chapter 4. We established a variety of
lower bounds for the GLM and GPM is Chapters 5 and 6 respectively.

Some of the most interesting contributions that thread through the entire dissertation are
the previously unknown connections between the LSI, information inequalities and statistical
applications. This dissertation serves to give a glimpse of some of the exciting results under
the framework of Theorem 2. Of course, the results presented here are not the end of the
story and likely the tip of the iceberg. We believe there is strong potential for more interesting
results to emerge through future work.
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