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Abstract

Understanding correlated insulating ground states of magic-angle twisted bilayer graphene

by

Tomohiro Soejima

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Michael Zaletel, Chair

When two layers of graphene are put on top of each another with a relative twist, their lattice
mismatch gives rise to a moiré pattern. When the twist angle is near 1.1 degrees, a so-called
magic angle, the band structure of twisted bilayer graphene becomes extremely flat around
the Fermi energy, enhancing the effect of electron-electron interaction. Remarkably, magic-
angle twisted bilayer graphene (MATBG) becomes superconducting at low temperatures.
The origin of this superconducting behavior remains elusive.

Curiously, the superconducting behavior is usually accompanied by correlated insulating
behavior in nearby parameter regions in the phase diagram. These correlated insulators
cannot be described by non-interacting band theory, hinting at the importance of electron-
electron interaction.

In this thesis, we attempt to understand these correlated insulators by a combination of
numerical and analytical techniques. On the numerical side, we will utilize the density-matrix
renormalization group (DMRG) extensively to obtain the ground states of MATBG. Owing to
the complexity of the problem, this required us to develop a non-trivial routine for encoding
the Hamiltonian. We find that DMRG often reproduces the findings from Hartree-Fock
simulations. On the analytical side, we aim to understand different symmetry-breaking states
of MATBG. Based on symmetry analysis, we propose using scanning tunneling microscopy
(STM) to distinguish between different candidate ground states, and test our analytical
prediction using numerical simulation.

Taken together, this thesis represents a significant step toward understanding the correlated
insulating behavior of MATBG.
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Brillouin zones, rotated by ±θ/2. (b) Zoomed view of (a) showing the mini (or
moiré) Brillouin zone. We choose a square mBZ (thick red lines) for numerical
convenience. (c) The band structure of the BM model over the mBZ showing the
flat bands (red lines). The interacting BM model is defined by adding Coulomb
interactions to the BM model and projecting to the flat bands. (d) Schematic of
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2.3 Real space charge density of Wannier orbitals. The orbitals are maximally local-
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2.4 Polarization Px as a function of ky and w0/w1. At each value of w0/w1, there
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curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



iv
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of MPO compression as a function of the post-compression bond dimension D.
The precision is controlled by ϵ(D) = (
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a=D+1 s

2
a)

1/2, as described in Eq. (A.53).
Here ∆E(D) = E(D = 1000)− E(D) is the energy error in the ground state, F
is the fidelity per unit cell between the ground state at D and the ground state
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Φy = π. (c) DMRG correlation function on a 108 × 6 grid at Φy = π. (d) HF
on a 30 × 6 grid at Φy = π/10. (e) DMRG correlation function on a 108 × 6
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per Moiré unit cell, and the lattice dimensions nx × ny specify the number of
k-points sampled in the mini-BZ of the Moiré superlattice. . . . . . . . . . . . . 98
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Chapter 1

Introduction

1.1 Brief history of magic-angle twisted bilayer

graphene (MATBG)

Superconductivity in magic-angle twisted bilayer graphene was first reported in March 2018
in a jam-packed conference room at the APS March meeting in Los Angeles, concurrently
with the publication of two articles [1, 2] that detailed the correlated insulating behavior
and superconducting behavior of the system.

History tells us that new superconducting materials are uniquely good at exciting con-
densed matter physicists, and MATBG was no exception. The discovery was quickly repro-
duced (e.g. by Ref. [3]), and a flood of theoretical works attempted to explain the physics
of MATBG. With the help of some hindsight, we can understand why the problem attracted
so much attention:

1. The constituent material, monolayer graphene, has a simple description using a tight-
binding model. Since its discovery in 2005, its properties have been extensively char-
acterized, and high quality samples were readily available.

2. Two-dimensional materials can be probed by a wider array of techniques than three-
dimensional materials, including 1) the ability to change electron-doping by gating, and
2) direct access using surface probes such as scanning-tunneling microscopy (STM).

3. There was a well-motivated theoretical starting point in the form of the Bistritzer-
McDonald model (BM model) [4].

4. The prediction of the BM model indicated that electrons have small kinetic energy
(flat band) for certain twist angles near the so-called magic angle, suggesting that it is
a strongly-correlated electron system.

Many of these properties carry over to other two-dimensional materials. Starting from
materials with more layers of graphene (monolayer-bilayer, chiral trilayer, and chiral tetralayer
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and beyond), we also have a long list of moiré materials made from transition metal dichalco-
genides (TMDs). However, MATBG has remained one of the most exciting materials in this
newly emerging field.

In the rest of the introduction, we will briefly review the physics of MATBG, and highlight
the main challenges in understanding its physics.

1.2 What does twisting do to graphene?

Let us begin by asking what happens upon twisting two layers of graphene with respect to
each other when we limit ourselves to non-interacting description.

To start, we should understand the physics (and chemistry) of monolayer graphene.
Graphene is a two-dimensional material made of a honeycomb lattice of carbon atoms. The
four valence electrons of each carbon atom hybridize to form sp2 orbitals and a pz orbital.
The former forms strong in-plane σ bonds, providing strong binding force between carbon
atoms. For condensed matter physics, however, we focus our attention on pz orbitals, which
are lower-energy, and therefore more accessible, degrees of freedom.

The behavior of carbon pz electrons is well-described by a nearest neighbor tight-binding
model on a honeycomb lattice. Upon solving the tight-binding model, we find that 1) the
Fermi energy crosses graphene bands at two separate “valleys”, and 2) the dispersion relation
near the valleys can be described by that of a massless Dirac electron:

H(k ≈ K) = −vF (k−K) · σ, (1.1)

where K is the momentum of one of the valleys, σ = (σx, σy)
T is a vector of Pauli matrices,

and the Hamiltonian at the other valley is given by time reversal. Therefore, we can treat
electrons in graphene as consisting of two species of massless Dirac electrons.

When we put two layers of graphene on top of each other, we are allowing Dirac electrons
to tunnel from one layer to the other. If the two layers are in the unrotated, stable “Bernal”
structure, the result is a quadratic band dispersion [5].

The relative rotation between the two layers introduces a “twist” into this story. The
lattice mismatch between the top layer and the bottom layer gives rise to a moiré superlattice.
The size of the superlattice is determined by the ratio between the mismatch and the lattice
constant. Concretely, given the reciprocal lattice vector of graphene Gi and the twist angle
θ, the reciprocal lattice vectors for moiré superlattice are given by

gi = (R(θ/2)−R(−θ/2))Gi, (1.2)

where R(θ) is the rotation matrix. We see that a small rotation angle θ gives rise to a small
gi, and therefore a large moiré superlattice. As a result, the tunneling between the two layers
become spatially modulated with the same periodicity as the moiré superlattice, altering the
bandstructure.

At first sight, the task of computing the bandstructure of twisted bilayer graphene appears
daunting. The computation will need to keep track of all carbon atoms in a moiré unit cell,
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which could be as large as 10,000 even at the modestly small twist angle of 1 degree. However,
it turns out that a small twist angle allows for a continuum approximation [6]. By focusing
only on low-energy degrees of freedom, the continuum approximation greatly reduces the
complexity of the problem, and we can quite accurately obtain the low-energy bandstructure
of twisted bilayer graphene. Remarkably, Bistritzer and MacDonald noticed that two low-
energy bands at the Fermi energy become extremely flat around a series of “magic” angles,
the largest of them being around 1.1 degree. Twisting, therefore, significantly alters the
electronic properties of twisted bilayer graphene.

The flatness of the bands means that the kinetic energy is quenched, enhancing the impor-
tance of electron-electron interaction, giving rise to a wider range of interesting possibilities.
The effect of electron-electon interaction in magic-angle twisted bilayer graphene (MATBG),
however, could not be understood based on the non-interacting BM model. Therefore, the
experimental observation of superconductivity and correlated insulators in MATBG came as
quite a bit of surprise.

1.3 Superconductivity and correlated insulating

behavior in MATBG

A long line of experiments, starting with the initial reports [1, 2] have now established
that MATBG shows striking phenomena: superconductivity, mostly at fractional number of
electrons per moiré unit cell, and correlated insulating behavior at integer filling.

While the appeal of superconductivity is immediately clear to many of us, one may
wonder why correlated insulating behavior is a mystery worth our attention. After all, there
are many more insulators in the world than there are superconductors. However, the presence
of these correlated insulating states serve as a strong indirect evidence for the importance
of electron-electron interaction in MATBG. To see this, we must understand why we are
justified in calling them “correlated” insulators. Suppose, for the moment, that the system
is described by non-interacting electrons. The band structure tells us MATBG should be
(semi-)metallic at electron filling fraction between −4 and 4 1. This is because there are
two connected bands around the Fermi energy, and they are four-fold degenerate from spin
and valley degrees of freedom. We must go beyond band theory by taking electron-electron
interaction and correlation into account to understand correlated insulating behavior 2.

1The filling is measured with respect to charge neutrality
2To someone with quantum chemistry backgroud, our use of the term “correlation” might appear strange.

In quantum chemistry parlance, correlation energy is defined as the difference between the true ground state
energy and the variational energy obtained from Hartree-Fock calculation. In condensed matter physics,
it is common to refer to phenomena driven by electron-electron interaction as electron-electron correlation,
regardless of the resulting state is Slater-determinant like or not. In some cases, such as those we describe
in Chapters 2 and 3, the ground state might be very close to a Slater determinant, but we still call them
correlated insulators
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One way electron-electron interaction can go beyond the non-interacting theory is by
driving spontaneous symmetry breaking (SSB). For example, it can give rise to a ferromagnet
from the following mechanism: Due to the Pauli exclusion principle, electron interaction acts
differently between different species of electrons. If the system consists of spin-up electrons,
adding a spin-up electron costs less interaction energy than adding a spin-down electron 3.
In the language of band theory, this means the energy of the spin-up bands becomes lower
than the energy of the spin down bands, giving rise to a ferromagnet. If the shift is large
enough, we can obtain a state with full polarization. As this state fully filles the spin-up
bands while keeping the spin-down bands empty, the state is an insulating ferromagnet.

MATBG hosts a wealth of symmetries that can be broken, giving rise to a large family of
possible SSB insulators. The original BM model contains U(2)×U(2) symmetry correspond-
ing to independent charge and spin conservation within each valley. In addition, a series of
careful theoretical analysis has found a limit of MATBG Hamiltonian where the symmetry
is enhanced to U(4)×U(4) [7–9]. The interacting Hamiltonian can be solved exactly in this
limit, and the ground states are shown to be SSB states with distinct symmetry properties.
We will spend the bulk of this thesis on trying to understand various SSB insulators, some
related to this solvable limit, some not.

It is worth stressing that it is a priori not obvious whether superconductivity observed
in MATBG is a strongly correlated phenomenon. It is hard to exclude a more conventional
possibility, such as BCS superconductor mediated by electron-phonon coupling. However,
the presence of correlated insulators in proximate regions of the phase diagram hints at the
important role electron-electron interaction plays for superconductivity. At the very least, it
shows that a model of MATBG without electron-electron interaction is woefully incomplete.

In fact, there has been a proposal that electron-electron interaction might play a more
direct role in establishing superconductivity [10]. In the so-called “skyrmionic supercon-
ductivity” theory of MATBG, we start from one of the many broken symmetry insulators.
These insulators support topological skyrmions that carry charge. A subtle interplay be-
tween skyrmion physics and the band topology of MATBG acts to create a binding force for
charged skyrmions, creating skyrmionic Cooper pairs. Such prediction further enhances the
importance of understanding the correlated insulators.

1.4 Numerical challenges of simulating MATBG

Away from the aforementioned exactly solvable limit, it is difficult to obtain the ground
states of MATBG analytically. We must therefore turn to numerical simulations.

Arguably the most principled approach is to perform ab initio calculations with all 10,000
carbon atoms. However, the large number of atoms involved makes this task quite challeng-
ing. Moreover, the standard methods used for solid state ab initio tasks, such as the density
functional theory (DFT), are inadequate for capturing correlated phenomena. While DFT
can serve as a useful guide, especially when it comes to less correlated phenomena such as

3This is nothing other than the exchange energy and the Hund’s coupling in chemistry parlance
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the deformation of the lattice structure in the presence of twist, they cannot be trusted to
understand low-energy correlated behavior of MATBG.

Luckily, we can reduce the number of degrees of freedom drastically from O(10, 000) by
projecting to low-energy part of the Hilbert space. The band structure obtained from the
BM model provides a natural starting point for this: we can project our Hilbert space to
the two flat bands near the Fermi energy4. We can then apply computationally intensive
techniques, such as those we describe below, within this subspace.

A popular choice has been the Hartree-Fock(HF) method. It is a variational algorithm
based on Slater determinants. It can correctly capture the aforementioned SSB insulators
in the exactly solvable limit, and if the ground state remains similar to the SSB insulators,
we expect the HF method to work well. However, the method is known to overestimate
the degree of electron localization, and often give an insulating solution even when the true
ground state is metallic. We therefore need a more unbiased approach to tackle this problem.

Our method of choice is the density-matrix renormalization group (DMRG) method [11],
which is known to work well for 1D systems. We apply this method to 2D MATBG by
considering putting it on a finite×infinite cylinder geometry. DMRG is a variational method
based on matrix product states (MPS), where we represent quantum states by a product of
matrices. It is unbiased in the following sense: the variational set is dense in the space of
states in the limit of the matrix dimension going to infinity. DMRG can thus go beyond the
Hartree-Fock method.

Performing DMRG on MATBG comes with its own set of challenges. Even after pro-
jecting to a subspace, the Hamiltonian is highly complex. Electrons interact via long-range
Coulomb interaction, and we must keep track of many terms to accurately represent this
interaction. If we do this in a brute-force manner, the computational cost of representing
the Hamiltonian becomes prohibitively high. We will spend much of Chapter 2 on how we
solve this challenge.

1.5 A tiny strain on moiré changes physics of

MATBG

A recurring theme in the study of MATBG is that a seemingly minor perturbation can
drastically alter its physics. Consider stretching the top layer of graphene by a small amount
ϵ. This changes the reciprocal vector of the top layer from R(θ/2)Gi to (R(θ/2)+ ϵ)Gi. The
new moiré reciprocal lattice vector is now given by

g′i = (R(θ/2) + ϵS −R(−θ/2))Gi, (1.3)

where S is a 2 by 2 matrix with entries of size O(1) that characterize the response of
graphene to stretching. Therefore, the change of the reciprocal lattice vector is given by

4When using less computationally-demanding methods such as Hartree-Fock, we sometimes include more
than two bands
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∆gi = g′i − gi = ϵSGi. Noting |gi| ∼ |θ||Gi|, we see gi changes by ratio ∼ ϵ/θ. When θ
is small, as is the case for MATBG, even a tiny ϵ can cause a large change in the moiré
superlattice. For example, an ϵ of order 0.1% can change gi by around 5%.

The change in the geometric structure is accompanied by the change in electronic struc-
ture, stabilizing states that are not competitive in the absence of strain. In Chapter 3, we
take a careful look at the effect of strain, showing the existence of a quantum phase transition
driven by a change in strain.

Our subsequent numerical works [12, 13] considered the effect of strain at a broader
region of the phase diagram. We identified yet another state called Incommensurate Kekulé
spiral (IKS) can be stabilized by strain. This further underscores the importance of taking
such seemingly small perturbation seriously.

1.6 How can I see SSB in MATBG?

Theoretical and analytical works on MATBG, including those done by us, strongly support
SSB in the ground states. It is, however, an altogether different problem to ascertain the
nature of the ground state experimentally. One of the challenges is in the large symmetry of
MATBG. In addition to U(2)×U(2) symmetry coming from spin rotation in each valley, we
must also take into account the space group symmetry of MATBG. No single experimental
method can probe all these symmetries simultaneously, so we must wisely identify the best
probe for detecting SSB.

Scanning tunneling microscopy (STM) is a promising candidate for this task, since it can
access spatially-resolved properties of MATBG. The best STM devices available can achieve
atomic resolution, a feat nigh impossible for most other probes.

To make the most out of the incredible precision of STM, we must understand how
various competing ground states appear under STM. In Chapter 4, we describe a Hartree-
Fock based study on this question. We identify that different ground states of MATBG have
clearly observable signal in STM.

Subsequent to our theoretical prediction, an STM study on MATBG indeed confirmed
atomic-scale symmetry breaking [14]. In fact, based on a theoretical analysis we developed,
we could identify the STM data as the aforementioned IKS state. While there are many more
mysteries to be resolved, this kind of fruitful interaction between theory and experiment will
undoubtedly further our understanding of this intriguing system.

1.7 Organization of the rest of the thesis

• In Chapter 2, we describe the method for performing DMRG calculations of MATBG.
Because of the long-range Coulomb interaction and the large number of orbital degrees
of freedom, tBLG is difficult to study with standard DMRG techniques — even con-
structing and storing the Hamiltonian already poses a major challenge. To overcome
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these difficulties, we use a recently developed compression procedure to obtain a matrix
product operator representation of the interacting tBLG Hamiltonian which we show
is both efficient and accurate even when including the spin, valley and orbital degrees
of freedom. To benchmark our approach, we focus mainly on the spinless, single-valley
version of the problem where, at half-filling, we find that the ground state is a nematic
semimetal. Remarkably, we find that the ground state is essentially a k-space Slater
determinant, so that Hartree-Fock and DMRG give virtually identical results for this
problem. The content of this chapter is based on [15].

• In Chapter 3, we consider the effect of strain on MATBG. Using both self-consistent
Hartree-Fock and density-matrix renormalization group calculations, we find that small
strain values (ϵ ∼ 0.1 − 0.2%) drive a zero-temperature phase transition between the
symmetry-broken “Kramers intervalley-coherent” insulator and a nematic semi-metal.
The critical strain lies within the range of experimentally observed strain values, and
we therefore predict that strain is at least partly responsible for the sample-dependent
experimental observations. The content of this chapter is based on [16].

• In Chapter 4, we tackle the problem of experimentally identifying symmetry breaking in
MATBG. We show how atomically-resolved scanning tunneling microscopy can be used
as a fingerprint of symmetry breaking order. By analyzing the pattern of sublattice
polarization and “Kekulé” distortions in small magnetic fields, order parameters for
each of the most competitive symmetry-breaking states can be identified. In particular,
we show that the “Kramers intervalley coherent state,” which theoretical work predicts
to be the ground state at even integer fillings, shows a Kekulé distortion which emerges
only in a magnetic field. The content of this chapter is based on [17].
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Chapter 2

Density matrix renormalization group
study of twisted bilayer graphene

2.1 Introduction

Magic angle twisted bilayer graphene (tBLG) hosts a diverse array of correlated insulating
and superconducting phases [1–3, 18–37]. This rich system has inspired intensive theoretical
efforts to understand the origin and mechanism(s) behind these phases, and a large number
of theories already have been proposed. One way to assess these proposals — especially
when they are not associated to clear experimental signatures — is numerical calculation.
To that end, this chapter presents a proof-of-concept density matrix renormalization group
(DMRG) [11] study of a microscopically realistic, strongly interacting model of tBLG.[38]

Challenges of tBLG Numerics

Let us review what makes the tBLG problem so numerically challenging, and identify a viable
path around the obstacles. The first obstacle is the separation in scales between the graphene
lattice constant a and the moiré length scale LM ; at the magic angle LM/a ∼ 1/θM ∼ 50,
so the moiré unit cell contains over 10, 000 carbon atoms, and consequently the superlattice
band structure contains NB ∼ 10, 000 bands. Fortunately, various treatments of the band
structure [4, 39–41] (including the Bitzritzer-MacDonald (BM) continuum model [4] used
here) reveal that the flat bands of interest are separated from the tower of “remote” bands
by gaps of order 20meV–25meV (see Fig. 2.2(c)). Since these gaps are larger than the
Coulomb scale EC = e2

4πϵ0ϵrLM
∼ 10meV–20meV (using a relative permittivity ϵr = 12 – 6),

it is a reasonable starting point to project the Coulomb interaction V (r) into the flat bands.1

Each spin and valley of the graphene has two flat bands, for a total of eight, winning us a

1Hartree-Fock studies which include the remote bands do find that they have a quantitative effect (for
example, on the magnitudes of the symmetry-broken gaps), but there are some discrepancies regarding their
qualitative importance [8, 42].
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Figure 2.1: Flowchart of our approach to DMRG for tBLG. First we start from a continuum BM model, and
add Coulomb interactions, projected to the flat bands to reduce the number of degrees of freedom down to
a manageable level. Second, we perform hybrid Wannier localization, which maps the model to a cylinder in
mixed-xk space, thereby avoiding a topological obstruction and allowing all symmetries to act locally. Third,
we use a compression procedure to represent the long-range interactions with a reasonable bond dimension
to make DMRG numerically tractable. This allows us to perform DMRG with all NB = 8 components at
moderate cylinder radius (Ly = 6).

reduction from NB = 10, 000↘ 8. We refer to this as the “Interacting Bitzritzer-MacDonald
(IBM) model,” although our method works just as well for improved continuum models of
tBLG which take into account effects like lattice relaxation. The touching of these two
bands is locally protected by a crucial C2T symmetry (a 180-degree rotation combined
with time-reversal), which distinguishes tBLG from other moiré materials. The Coulomb
scale EC is much larger than the bandwidth t ∼ 5meV, so a priori unbiased, strongly-
interacting numerical approaches such as exact diagonalization [43], determinantal quantum
Monte Carlo, or DMRG are required.

Most strongly-interacting approaches proceed from a real space lattice model, so a natural
next step is to construct a lattice model via 2D Wannier localization of the continuum Bloch
bands. In real space, the density of states of the flat bands is predominantly located on the
AA-stacking regions of the moiré unit cell, which form a triangular lattice (see Fig. 2.2d).
So one might hope that the physics is then well-described by an 8-component triangular
lattice Hubbard model. However, there is a topological obstruction which complicates this
approach: the flat bands possess “fragile topology” which makes their Wannier localization
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very subtle [41, 44–49]. In particular, the presence of C2T , valley conservation Uv(1) and
translation make it impossible to Wannier localize the flat bands in a manner where Uv(1)
and C2T both act in a strictly local fashion. This is somewhat analogous to the obstruction
to finding a Wannier basis for a 2D topological insulator under the requirement that T acts
as a permutation of the orbitals [50].

Two resolutions to the Wannier obstruction issue have been proposed in the literature.
The conceptually simplest is to include some number of remote bands, at minimum NB =
8 → 20, which removes the topological obstruction and allows for a local symmetry action
[45]. But from a DMRG standpoint, a model with 20 orbitals per unit cell, all strongly-
interacting, appears to be numerically intractable. The other approach is to simply ignore the
symmetry considerations and Wannier-localize in a basis which hybridizes different valleys
or C2T sectors. In this approach, for example, valley number conservation Uv(1) becomes
slightly non-local, and the associated charge takes the form QV =

∑
i,j,m,nQ

ij
mnĉ

†
m,iĉn,j where

the sum runs over all sites i, j and internal degrees of freedomm,n. The matrix elementsQij
mn

fall off with distance |ri − rj| [44]. Intriguingly, the Wannier orbitals then take the shape
of three-lobed “fidget spinners” connecting three nearby AA regions [44, 51, 52]. In this
basis, the Coulomb interaction is not dominated by a Un̂2 Hubbard interaction, but instead
contains a profusion of all allowed V ijkℓ

mnopĉ
†
m,iĉ

†
n,j ĉo,kĉp,ℓ terms which decay exponentially over a

few moiré sites [51–53]. Numerically, however, the interactions must be cut off at some finite
range, which will spuriously break either the Uv(1) or C2T symmetry due to the non-local
form they take. This runs the risk of biasing the results by explicitly breaking a symmetry
which should be preserved, and would require careful extrapolation of the tails to ensure
the correct results. While not necessarily unworkable (in particular, see Ref. [54]), in our
estimation this approach makes numerical results delicate to interpret.

Fortunately, DMRG is a 1D algorithm, which allows us to avoid the construction of 2D
Wannier orbitals altogether. When DMRG is applied to the cylinder geometry, the model
must be in a localized basis along the length of the cylinder, to ensure favorable entanglement
properties, but it does not need to be in a localized basis around its circumference. Therefore,
we can consider “hybrid” real-space/momentum-space Wannier states which are maximally
localized along the length of the cylinder x, but Ty-eigenstates around its circumference y
(see Fig 2.3). There is no topological obstruction to the construction of hybrid Wannier
states, making them an attractive basis for the flat bands of magic angle graphene, as was
also recognized by the authors of Refs. [38, 55–57]. Geometrically, this defines a model on a
cylinder, with real-space in the x direction and k-space around the circumference[58]. The
hybrid approach allows the Uv(1), C2T , and translation symmetries to all act locally without
adding extraneous degrees of freedom. This is exactly the approach used by Kang and Vafek
in their recent DMRG study of tBLG [38], and it is the approach we take as well.

The hybrid approach is not without challenge, however, because upon mapping the or-
bitals to a 1D fermion chain for input into the DMRG, the effective Hamiltonian is quite
long-ranged. The localization width of the Wannier orbitals is comparable to the moiré
scale, so all the sites in a single column of the cylinder are strongly overlapping, generating
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a panoply of couplings V ijkℓ
mnopĉ

†
m,iĉ

†
n,j ĉo,kĉp,ℓ. Though these decay exponentially with distance,

a cylinder with circumference Ly = 6 with both spin and valley has on the order of 850, 000
non-negligible (i.e. above 10−2 meV) matrix elements per unit cell.

A similar problem is encountered in the context of cylinder-DMRG for the fractional
quantum Hall effect [59], or finite-DMRG simulations for quantum chemistry problems [60].
There, as here, it is essential to use tensor network methods to “compress” the V ijkl as a
matrix product operator (MPO). To do so, we leverage a recent algorithm for black-box
compression of Hamiltonian MPOs with various optimality properties [61]. We find that for
a circumference Ly = 6 cylinder, the spinless / single-valley problem (NB = 2) requires an
MPO bond dimension of D ∼ 100 for physical observable to obtain a relative precision of
10−2, while in the spinful / valleyful NB = 8 case, we estimate the required bond dimension
to be D ∼ 1000. While large, these values are tractable, especially when exploiting the
charge, spin, valley, and ky quantum numbers.

Overview of DMRG Results

After presenting details of the interacting tBLG Hamiltonian and its MPO compression, we
apply our approach in detail to a “toy” NB = 2 problem in which we keep only valley K
and spin ↑; more physical models will be considered in the next chapter. When filling 1 of
the 2 bands, this scenario is conceptually similar to fillings ν = −3, 3 of tBLG under the
assumption that these fillings are spin and valley polarized. However, we caution the reader
that our results are not a quantitative prediction for these fillings because the toy model
differs from |ν| = 3 of tBLG by a 4× difference in the magnitude of the Hartree poten-
tial generated relative to neutrality. We’ve made this choice so that we can quantitatively
compare with Refs. [38] prior results; the “physical” |ν| = 3 result, which differs in some
interesting respects, will be presented in a future work [13].

Following Ref. [38], we fix θ = 1.05◦ and vary the ratio of the AA and AB inter-layer
tunneling hopping strengths w0/w1 from 0 to 0.9. While physically w0/w1 ∼ 0.8 [39, 40,
52], the resulting phase diagram is conceptually interesting because the dominant effect of
w0/w1 is to redistribute the Berry curvature of the flatbands, rather than changing their
bandwidth, revealing that the former is crucial to the physics. As a précis of our findings,

1. In agreement with Ref. [38], we find that below a critical value w0/w1 ≲ 0.8, the
ground state spontaneously breaks the C2T symmetry, forming a quantum anomalous
Hall state (Chern insulator), with C = ±1.

2. In agreement with Ref. [38], above w0/w1 ≳ 0.8, the C2T is restored. In this region the
DMRG results of Ref. [38] did not reliably converge, but their mean-field calculations
suggested either a “nematic C2T symmetric semimetal” first proposed in Ref. [62], or
a gapped C2T -symmetry stripe [38]. Our DMRG numerics reliably converge to a state
in excellent agreement with the nematic C2T -semimetal, with two band touchings near
the Γ point.
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Figure 2.2: (a) The BM model for bilayer graphene is constructed from two regular graphene Brillouin zones,
rotated by ±θ/2. (b) Zoomed view of (a) showing the mini (or moiré) Brillouin zone. We choose a square
mBZ (thick red lines) for numerical convenience. (c) The band structure of the BM model over the mBZ
showing the flat bands (red lines). The interacting BM model is defined by adding Coulomb interactions to
the BM model and projecting to the flat bands. (d) Schematic of the real space moiré unit cell with Bravais
lattice vectors L1,2. (e) The IBM model on a cylinder has Ny discrete momentum cuts at ky values given by
Eq. (2.3), offset by Φy.

3. We analyze the k-space electron correlation function Pmn(k) = ⟨c†n,kcm,k⟩ of the DMRG
ground state, which can be directly compared with Hartree-Fock calculations. We find
that both phases are extremely well captured by a single k-space Slater determinant
(to within ≈ 1%), strongly supporting the validity of recent Hartree-Fock studies [8,
18, 35, 38, 42, 56, 57, 62–64].

4. Finally, we compare the energy of the DMRG ground state with various competing
variational ansatz such as the C2T -stripe ansatz proposed in Ref. [38]. In agreement
with their result, we find that the nematic semimetal and the C2T stripe compete at
the order of 0.1 meV per unit cell.

The remainder of this chapter is organized as follows. Section 2.2 introduces our model:
an interacting Bistritzer-MacDonald model, equipped with long range Coulomb interactions,
and projected to the flat bands. Section 2.3 discusses how the model may be expressed
as a Matrix Product Operator and both why and how it must be compressed to perform
DMRG. Section 2.4 provides the results of DMRG calculations, and shows that Hartree-Fock
accurately captures the ground state physics in this model. Section 2.5 discusses the nature
of the nematic C2T -semimetal. We conclude in Section 2.6. Extensive Appendices describe
all details needed to reproduce our results. Appendix A.1 details the IBM model. Appendix
A.2 deals with the Wannier localization and the gauge choice we make. App. A.3 constructs
the pre-compression MPO: an infinite MPO with arbitrary long range 4-body interactions.
App. A.4 provides the algorithm for MPO compression, as well as rigorous error bounds.
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Finally, App. A.5 explains the extensive numerical cross-checks we performed to ensure the
accuracy of our results.

2.2 The IBM Model

This section describes the interacting generalization of the Bistritzer-MacDonald (BM) model.
We first briefly recall the BM model and the geometry of the mini-Brillouin zone (mBZ),
then discuss how interactions are added. We then show how the model can be placed on a
cylindrical geometry, and conclude with the symmetries of the model.

Continuum Model

Our starting point is the single-particle Bistritzer-MacDonald (BM) model [4], composed of
two layers of graphene, with relative twist angle θ, coupled together by a spatially-varying
moiré potential. The potential is governed by two parameters, w0 and w1, which specify
the AA / AB interlayer tunneling respectively. DFT calculations which account for lattice
relaxation find that w1 = 109meV and w0/w1 ≈ 0.8 [39, 40, 52], but here we will treat
w0/w1 as an axis of the phase diagram. We maximize the ratio of band gap to band width
for the flat bands by setting θBM ∼ 1.05◦. Figure 2.2 details our choice of conventions. In
particular, we work with a rectangular mBZ grid for numerical convenience.

We now define an interacting Bistritzer-MacDonald (IBM) model where double-gate
screened Coulomb interactions are added to the single-particle model. As the interactions
are much larger than the spectral width of the flat bands, but smaller than the gap to nearby
bands, we expect interactions to act quite non-perturbatively inside the flat bands and per-
turbatively between seperated bands. We therefore project the interactions to the two flat
bands, akin to models of the fractional quantum hall effect [65]. Our presentation will focus
on a single spin and valley, but their inclusion is conceptually identical: we promote 2→ 8.

Consider a vector of fermions f †k =
(
f †
1,k, f

†
2,k

)
running over the two nearly flat bands. The

Hamiltonian is then given by

Ĥ =
∑

k∈mBZ

f †kh(k)fk +
1

2A

∑

q

Vq : ρqρ−q : . (2.1)

The single-particle term h(k) contains not only the flat band energies of the BM model, but
also band renormalization terms coming from the interaction with the filled remote bands,
and a subtraction to avoid double counting of Coulomb interaction effects. We refer to
Appendix A.1 for more details.

The second term in Eq. (2.1) corresponds to the dual gate-screened Coulomb interaction,
with A being the sample area and Vq = e2 tanh(|q| d)/(2ϵrϵ0 |q|). The screened Coulomb
potential depends on two parameters ϵr and d, which respectively are the relative permittivity
and the distance between the twisted bilayer graphene device and the metallic gates. While
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the effective dielectric constant of the typical substrate, hBN, is ϵr ≈ 4.4, here we use ϵr = 12
in order to phenomenologically account for screening from the remote bands of the tBLG
A.1. This sets the typical interaction energy scale to be several meV. For the gate distance
we choose d = 10 nm to facilitate comparison with Ref. [38]. The Fourier components of the
flat-band projected charge density operator are given by

ρq =
∑

k∈mBZ

f †kΛq(k)fk+q , (2.2)

where the 2× 2 form factor matrices [Λq(k)]ab = ⟨ψa,k|e−iq·r|ψb,k+q⟩ are defined in terms of
overlaps between the Bloch states of the BM model.

The model enjoys several global symmetries: time reversal followed by in-plane rotation
C2T , out-of-plane C2x rotation, and C3 rotation. We will describe their action on the basis
states explicitly below. In summary, the spinless, single-valley IBM model we have described
is a strongly interacting many-body problem defined in momentum space over the mini-
Brillouin Zone.

Cylinder Model

Our goal is to perform quasi-2D DMRG on Eq. (2.1). To this end, we work in an infinite
cylinder geometry of circumferenceNy with a mixed real and momentum space representation
of the model. In the momentum space, this corresponds to having Ny momentum cuts
through the mBZ at

ky/Gy =
n+ Φy/(2π)

Ny

(mod 1), 0 ≤ n ≤ Ny − 1 (2.3)

where Φy is the amount of flux threaded through the cylinder, which offsets the y momentum
as shown in Fig. 2.2. We will Fourier transform each of these momentum cuts in the x
direction, such that our basis states are hybrid Wannier orbitals, periodic in y direction and
localized in x direction.2 We will sometimes call this mixed xk representation.

The choice of real-space basis in the x direction is not unique, but we choose the basis
of maximally localized Wannier orbitals. Using the maximally-localized orbitals ensures
that the interactions are as short-ranged as possible and hence minimizes the range of the
interaction terms in the Hamiltonian and the entanglement of the ground state. Due to the
relation between maximal Wannier localization and the Bloch Berry connection Ak, this
basis will also make manifest their topology. We perform the change of basis:

ĉ†±,kx,ky := U±,b(k)f̂
†
b,kx,ky

,

ĉ†±,n,ky :=

∫
dkx√
Gx

eik·Rn ĉ†±,kx,ky ,
(2.4)

2A further advantage of this mixed representation over “snaking” around a real space cylinder is that ky
becomes a good quantum number, reducing the resource cost for a given radius[58, 66].
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Figure 2.3: Real space charge density of Wannier orbitals. The orbitals are maximally localized in the x
direction and periodic along y, with charge densities concentrated in AA stacked regions. The Wannier
center and the character changes with ky.

where ĉ†±,n,ky is the creation operator for the Wannier orbital for unit cell n in the x direction,

Rn = nL1 with L1 the Bravais lattice vector, and U(k) is a 2 × 2 change-of-basis matrix
for the internal (band index) degrees of freedom. The non-trivial topology of the tBLG flat
bands [41, 44–49] is made explicit in the hybrid Wannier basis by the fact that the states
with subscripts ± are constructed from bands with Chern numbers ±1. We will explain
this in more detail below. We choose the internal rotations U(k) so that the Wannier
orbitals are maximally localized (i.e., their spread in the x direction is minimized). Since
the problem is effectively 1D for each ky cut, we can employ a well-known algorithm [67]
to deterministically calculate the unique U(k) (up to (ky, ±) dependent phases). Fig. 2.3
shows examples of the Wannier orbitals. One can see they are localized in the x direction but
extended and periodic in y. The charge density is also not uniform in the y direction, but
is concentrated in certain regions corresponding to the AA region [4]. For later notational
convenience, we also define |w(±, n, ky)⟩ = ĉ†±,n,ky |0⟩. We emphasize that the ± basis is
not the energy eigenbasis of the single-particle Hamiltonian. In the ± basis with the gauge
convention described later, the k.p expansion of the two band Hamiltonian aroundK± points
takes the form h(K± + q) ∝ ∓(qx · σx + qy · σy).

A key physical property of Wannier orbitals is their polarization Px(±, ky), which can be
derived via modern theory of polarization [68–71]. They can be thought of as the center of
Wannier orbital inside the zeroth unit cell:

Px(±, ky) =
⟨w(±, 0, ky)|x̂|w(±, 0, ky)⟩

L1 · e1
, (2.5)

where we normalize the polarization by the x extent of the unit cell. The polarization
is related to the Berry phase along each momentum cut via the Wilson loop e2πiPx(ky) =
ei

∫
Ax(kx,ky)dkx/Gx , and is only defined modulo 1 [71]. Therefore Px returns to itself as ky
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Figure 2.4: Polarization Px as a function of ky and w0/w1. At each value of w0/w1, there are two bands
with Chern number ±1, which wraps once as ky/Gy increases by 1. This requires a single discontinuity in
Px, which we have chosen to place at ky = 0. One can see that Px is more linear for w0/w1 = 0, reflecting
flatter Berry curvature.

sweeps across the (mini)BZ. Furthermore, the Chern number of a band is conveniently ex-
pressed in terms of the total winding of the polarization, C =

∫
dky

dPx

dky
. In Fig. 2.4, we plot

the polarization versus ky momentum at various different w0. We make two observations:
first, we see that the polarization of the plus (minus) band winds from 0 to 1 (0 to −1) as
momentum goes from −0.5 to 0.5. We may therefore identify these bands as having Chern
numbers ±1 — hence our index convention. On the other hand, the profile of the polariza-
tion changes as w0/w1 increases from 0 to 0.85. At w0/w1 = 0, the slope is constant, and
the Wannier orbitals are almost equally spaced in the x direction, reminiscent of the lowest
Landau level of a 2D electron gas in a magnetic field. At w0/w1 = 0.85, however, Px is
constant for most ky values, and suddenly changes around the Γ point.

There is a subtle issue relating our convention for polarization to our choice of gauge
for single-particle wavefunctions in the mBZ. Since the polarization increases by ±1 as ky
increases by 2π, we must choose a ky where the polarization wraps around. We pick the
convention that the wrapping Px → Px ± 1 occurs at ky = 0, as shown in Fig. 2.4. In terms
of the Wannier orbitals, this means that their centers of charge move continuously with ky,
except at ky = 0 where they “exit” the unit cell and “enter” the neighboring unit cell. In

terms of the momentum space creation operator ĉ†±.k this corresponds to a a choice of gauge
that is smooth in the upper and lower halves of the Brillouin zone, but discontinuous across
ky = 0. This discontinuity will appear in several figures below.

Finally, let us give the explicit action of global symmetries on our basis states. We first
note the C3 symmetry of the continuum model is weakly broken by the cylindrical geometry
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and is no longer an explicit symmetry of the model. We also note that for flux values Φy ̸= 0
mod π, the C2x symmetry is not present.

Similar to Ref. [38], we partially fix the gauge of the flat band Bloch states such that the
symmetries act in a simple way on the hybrid Wannier orbitals:

TL1 |w(±, n, ky)⟩ = |w(±, n+ 1, ky)⟩
TL2 |w(±, n, ky)⟩ = ei2πky |w(±, n, ky)⟩
C2T |w(±, n, ky)⟩ = |w(∓,−n, ky)⟩
C2x |w(±, n, ky)⟩ = ∓ie−i2πkyn |w(∓, n,−ky)⟩

(2.6)

where the last equation holds only at C2x symmetric flux values. The first two definitions
are the consequence of Eq. (2.4), while the latter two come from demanding the following
actions in momentum space:

C2T ĉ†±,k(C2T )−1 = σxKĉ†±,k,

C2xĉ
†
±,kx,ky(C2x)

−1 = σy ĉ†±,kx,−ky ,
(2.7)

where σx acts on ± indices, and K is the complex conjugation operator. This, together with
a continuity criterion such that the Wannier functions are smooth function of ky, fixes the
phase ambiguity up to an overall minus sign (App. A.2).3

Now that we have described the interacting Bistritzer-MacDonald model in detail, we
proceed to discuss how we will solve for its ground state using DMRG.

2.3 MPO Compression and DMRG

In this section we consider the practical details of performing infinite DMRG on the IBM
model defined in the last section, and the necessity of MPO compression.

To perform infinite DMRG, we must express the Hamiltonian (Eq. (2.1)) as an infi-
nite 1D Matrix Product Operator (MPO) whose size D is called the bond dimension4 [72].
To map from 2D to a 1D chain, we order the Wannier orbitals |w(±, n, ky)⟩ by the po-
sitions Px(±, ky) + n of their Wannier centers. Translation along L1 simply increments
|w(±, n, ky)⟩ → |w(±, n+ 1, ky)⟩, so the 1D chain is periodic with a unit cell of size NBNy

sites (NB = 8 with spin and valley). Once the MPO is obtained, we can in principle find its
ground state with DMRG.

However, the long-range nature of the Coulomb interaction complicates matters. Al-
though the screened Coulomb interaction decays exponentially in real space, truncating it at

3In the absence of C2x symmetry, we use a heuristic such that the gauge is continuous as a function of
Φy.

4The MPO bond dimension is always denoted by D, and χ is reserved for the MPS bond dimension.
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Figure 2.5: (a) Energy difference between the QAH and the SM ansatz at different gate distances at w0/w1 ∼
0.8. (b) The relative error in energy difference between the QAH and SM ansatz. The black dashed lines
indicate 50% error and 1% error. (c) Precision of the compressed MPO as a function of bond dimension for
the IBM model with and without spin and valley degrees of freedom. The Hamiltonian is the IBM model at
the chiral limit w0 = 0 with parameters given by Table 2.1. For (b), the cutoff range is reduced to ∆x = 3.
(d) Relative precision of MPO compression as a function of the post-compression bond dimension D. The
precision is controlled by ϵ(D) = (

∑
a=D+1 s

2
a)

1/2, as described in Eq. (A.53). Here ∆E(D) = E(D =
1000)−E(D) is the energy error in the ground state, F is the fidelity per unit cell between the ground state
at D and the ground state at D = 1000, and ∆γz is the error in the polarization versus D = 1000, described

in Sec. 2.4. One can see that the precision improves roughly in proportion to ϵ, except for |1−F|1/2, which
is limited by the precision of DMRG (black dashed line).

short range can lead to physically incorrect results. To demonstrate this, Fig. 2.5 (a) exam-
ines the energy of two ground state wavefunction ansätze “QAH” and “SMy” as a function of
the truncation distance of the interaction ∆x 5 (these physical states are defined and used in
Sec. 2.5 below). In particular, we examine the energy difference ∆E = EQAH−ESM in Panel
(a), and the relative energy difference in Panel (b). The true energy difference between these
states is |∆E(∆x → ∞)| ≈ 0.1meV, yet the energy difference achieves 0.1meV precision
only at ∆x ≥ 3. Going from ∆x = 1 → 2, for example, their energies change by almost
0.1meV.

More importantly, the relative error in energy difference (∆E(∆x) − ∆E(∞))/∆E(∞)
reaches 1% only at the cutoff ∆x ≥ 4. This means that in order to resolve closely competing
ground state candidates — which we will encounter in practice in Section 2.2 below — we
require a relatively large cutoff ∆x.

Furthermore, the required cutoff is highly dependent on the model parameters. For
example, if we increase the gate distance to 20 nm, then the screening distance is increased,
and the relative energy gap does not achieve 50% precision until ∆x ≈ 3 (Fig. 2.5 (b)). 6

Together, these results suggest that premature truncation may lead to physically incorrect
results, and we are forced to retain relatively long-range interactions in the Hamiltonian.

After mapping to a 1D chain, this means we must keep track of interactions up to range

5We define ∆x as the distance between the first and last field operators along the cylinder
6Note, however, that larger precompression MPO bond dimension does not necessarily mean larger

postcompression MPO bond dimension. The relationship between Hamiltonian parameters and the post-
compression bond dimension is a subject of future work.
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R = NBNy∆x orbitals. An exact representation has an optimal bond dimension which
scales as D = O(R2) (App. A.3). However, this still produces an MPO of size D ∼ 1× 104

for ∆x ≤ 4 without spin and valley, and if we were to add in spin and valley it would be
D ∼ 1 × 105. As the computational complexity of DMRG increases as O(D2), and D is
usually a few hundred at most, the Hamiltonian for BLG is far too large for DMRG to be
practical. The DMRG results of Ref. [38] considered a single spin and valley with interactions
truncated at ∆x = 2, resulting in an MPO of D ∼ 2000 at Ly = 6. But increasing ∆x, or
adding spin and valley, makes the problem impractical.

On a finite system, the MPO can be viewed as a 2-sided MPS and compressed by SVD
truncation (this approach is implemented in the AutoMPO feature of the iTensor library [73]).
However, in the infinite limit we wish to take here, this naive SVD truncation is unstable
and actually destroys the locality of the Hamiltonian. To avoid this, Ref. [61] developed a
modification of SVD compression which guarantees that the compressed Hamiltonian remains
Hermitian and local in the thermodynamic limit.

As in finite SVD compression, an intermediate step of the algorithm produces a singular
value spectrum sa, and the bond dimension can be reduced by discarding the lowest values
of the spectrum. For an appropriate notion of distance this truncation is optimal, and when

applied to a single cut, the discarded weight ϵ(D) =
√∑D′

i=D+1 s
2
a upper bounds the error in

Ĥ with respect to the Frobenius norm. In the Appendix A.4 we present efficient algorithms
for finite-length unit cells and derive error bounds for various quantities. When exploiting
quantum numbers, the algorithm is capable of compressing MPOs with bond dimensions
5× 104 or larger on a cluster node.

With the bond dimension thus reduced to a reasonable value, we may perform DMRG.We
use the standard TeNPy library [74], written by one of us, taking full advantage of symmetries.
Careful checks guaranteeing the accuracy and precision of our code, benchmarks, and other
numerical details are given in App. A.5.

Figure 2.5 showcases the precision of our DMRG results. We performed DMRG at the
chiral limit w0 = 0 and computed the relative error in the ground state energy, ground
state fidelity, and expectation values as a function of post-compression bond dimension D,
relative to D = 1000. The relative precision ϵ(D)/ϵ(0) improves quickly with D, dipping
below 10−6 by D = 800. In accordance with the error bound on H, the ground state energy,
wavefunction, and expectation values converge quickly as ϵ→ 0.

As a proof of principle, we also performed MPO compression for the IBM model with
spin and valley at Ly = 6 and w0 = 0. Due to constraints on the size of the uncompressed
MPO we can handle, we chose a cutoff range of ∆x = 3, which resulted in a D ∼ 35, 000
uncompressed MPO. The singular value spectrum of the MPO is shown in Fig. 2.5. If we
define F as the fidelity per unit cell7 between the ground state of the compressed MPO with
bond dimension D and the ground state of the MPO with D = 1000, then we see from Fig.
2.5 that in the spinless, single-valley calculation, ϵ(D)/ϵ(0) and |1−F|1/2 have roughly the

7We define the fidelity per unit cell in the thermodynamic limit as F = limN→∞ |⟨ψN,D|ψN,D=1000⟩|2/N
, where N is the number of unit cells.
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same order of magnitude. Using this fact as a guide, we can estimate the bond dimension
where |1−F|1/2 ∼ 10−2 by looking at the value of ϵ(D)/ϵ(0). This gives us bond dimensions
D = {106, 317, 1057} for spinless/single-valley, spinless/valley, spin/valley MPO. While still
relatively large, such bond dimensions are tractable with a standard workstation or cluster
node when exploiting quantum numbers.

Of course the IBM model itself is only an approximation to the physical system, neglect-
ing effects such as lattice relaxation, phonons and twist angle disorder which, though small,
are expected to enter at the 1meV level. This provides a limit on the amount of precision
which is physically useful. To be safe, we choose ∆x = 10, 8 ϵ = 10−2 meV, which results in
post-compression bond dimensions of D ≈ 600− 1000, depending on the value of w0/w1. In
conclusion, we have used MPO compression to reduce the Hamiltonian to a computational
tractable size, incurring a precision error on the order of 10−2 meV — three orders of mag-
nitude below the relevant energy scale of the problem. We now discuss the results of DMRG
and the implications for the ground state physics of bilayer graphene.

2.4 Ground State Physics at Half Filling

In this section we report the results of our DMRG calculations and discuss the ground state
physics of the (spinless, single valley) IBM model at half filling. We will show there is a clear
transition from a quantum anomalous Hall state at small w0/w1 to a nematic semimetallic
state at large w0/w1. Furthermore, we will show that these ground states are almost exactly
described by the k-space Slater determinants predicted by Hartree-Fock.

Single particle projector and order parameter

We start by defining several crucial observables and order parameters. Because we find the
DMRG ground state is translation invariant, all one-body expectation values can be obtained
from the correlation matrix

P (k) :=

(
⟨c†+,kx,kyc+,kx,ky⟩ ⟨c

†
−,kx,kyc+,kx,ky⟩

⟨c†+,kx,kyc−,kx,ky⟩ ⟨c
†
−,kx,kyc−,kx,ky⟩

)
. (2.8)

This matrix is a projector when the expectation values are taken with respect to a Slater de-
terminant, and it is the central variational object for k-space Hartree-Fock calculations. For
DMRG in mixed-xk space, we calculate P (k) by Fourier transforming two-point correlation
functions. 9

8This gives us an uncompressed bond dimension of order 5× 104, close to what would be necessary for
spinful/valleyful calculation.

9Explicitly, P (k) is defined for k on a 108× Ly grid of k points in the mBZ by computing expectations

⟨c†±,0,ky
c±,n,ky

⟩ with respect to the DMRG ground state on the mixed-xk space cylinder for −53 ≤ n ≤ 54
and performing a discrete Fourier transform with respect to L1.
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Figure 2.6: The phase diagram of the IBM at half filling as a function of w0/w1. There is a transition from
a quantum anomalous hall (QAH) phase to a semimetallic (SM) phase at w0/w1 = 0.798 ≈ 0.8, represented
by a yellow star. (a) Entanglement entropy of the DMRG ground state with hybrid Wannier orbitals ordered
according to their polarization, maximized over all 12 entanglement cuts dividing the system into left and
right halves. (b) Expectation values of various observables (defined in the text) in the DMRG or Hartree-
Fock(HF) ground states. The polarization in Chern band space γz is an order parameter for the transition.
Its drop across the transition is accompanied by a commensurate increase in |γ+|, such that the DMRG
ground state remains close to a Slater determinant. DMRG is performed at bond dimension χ = 1024,
ϵMPO = 10−2 meV and is convergent away from the transition. (Gray shading indicates where DMRG is not
well converged.).

The one-body observables are spanned by the expectation values of Pauli matrices σ in
the ± band space,

γz(k) := tr[P (k)σz], (2.9)

and similarly for γx, γy, γ+ = γx + iγy. We denote mBZ averages by

γα :=
1

AmBZ

∫

mBZ

d2k γα(k). (2.10)

where AmBZ is the area of the mBZ. We will focus particularly on γz — which is an order
parameter for C2T and C2x, as follows from Eq. (2.6) which implies that γz(k) = 0 for a
C2T symmetric state, and γz(C2xk) = −γz(k) for a C2x symmetric state.

In the case where the state is indeed a momentum-diagonal Slater determinant, P (k)
acquires several special properties. In particular, if a momentum mode k is occupied by
one electron, P (k) takes values on the unit sphere and can be parametrized in spherical
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Parameter Value(s)

θBM ∼ 1.05◦

w1 ∼ 109meV
w0/w1 [0, 1]
Gate distance 10 nm
Relative permitivity 12

Ny 6
Φy π, π/10
χ ≤ 1024
∆x 10
ϵMPO < 10−2 meV

Kinetic energy scale (t) < 1meV
Interaction energy scale (V ) < 10meV

Table 2.1: Parameters of the IBM model, DMRG calculation, and relevant energy scales. See main text for
the definition of each entry.

coordinates as

P (k) =
1

2
(σ0 + cos θkσ

z + sin θk cosφkσ
x + sin θk sinφkσ

y) (2.11)

which implies |γ+|2 + |γz|2 = 1. If the projector respects C2T and C2x symmetries, then
respectively θk = π/2 and φk = −φC2xk + π at all k. Finally, since P (k) is a projector for
momentum-diagonal Slater determinants, it satisfies SvN(k) := −Tr[P (k) logP (k)] = 0. In
general, then, SvN(k) ≥ 0 measures the deviation of a state from a translationally-invariant
Slater determinant.

iDMRG details and parameter choices

Infinite DMRG (iDMRG) calculations were performed using the open source TeNPy package
[74]. The numerical parameters and physical energy scales of the problem are summarized
in Table 2.1. In particular, we take Ny = 6 and Φy = π as the “default” values. The MPO
bond dimension was compressed down to 600−1000, such that the expected error is of order
10−2 meV, as described in Sec. 2.2. To ensure that iDMRG was converged, we varied the
MPS bond dimension χ between 200 and 1024. We found that DMRG converged well even
at very low bond dimensions, except near the transition. We also allowed ground states
with broken translation invariance with a doubled unit cell, but we found a fully translation
invariant ground state for all parameters we tested.
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Figure 2.7: Comparison of HF and DMRG calculations of φk = arg[γ+(k)] ∈ [−π, π] over the mBZ at
w0/w1 = 0.85. (a) HF on a 30 × 29 grid with Φy = π. The crosses represent the approximate location
of Dirac points. (b) HF on a 30 × 6 grid at Φy = π. (c) DMRG correlation function on a 108 × 6 grid
at Φy = π. (d) HF on a 30 × 6 grid at Φy = π/10. (e) DMRG correlation function on a 108 × 6 grid at
Φy = π/10. The horizontal bands in (b) – (d) are centered on the ky cuts used, given by Eq. (2.3). One can
see that the DMRG and HF calculations are virtually identical. DMRG are performed using χ = 1024. The
discontinuity at ky = 0+ is a gauge choice, described in 2.2.

Ground State Transition and the QAH phase

We performed iDMRG at 44 values of w0/w1 in the range [0, 1]. Fig. 2.6 (b) shows that the
order parameter γz is non-zero for w0/w1 ≤ 0.8, and vanishes for larger values of w0/w1,
signaling a transition from a C2T and C2x broken phase to a C2T and C2x symmetric phase.

For low w0/w1, not only is C2T broken, but the state is almost perfectly polarized, with
γz ≈ 1. This implies that the state has a large overlap with the product state in which all
“+” orbitals are occupied:

|QAH⟩ ≈
∏

x,ky

ĉ†+,x,ky |0⟩ . (2.12)

Since the ± bands carry Chern number C = ±1, this state is a quantum anomalous hall
(QAH) insulator [42, 55, 75]. This approximation is quite good: the QAH state is well
described by a product state plus small corrections, |⟨Ψ0|ΨQAH⟩| ≈ 0.846 per unit cell at
w0 = 0. Consequently, the QAH state has low entanglement entropy (Fig. 2.6) and DMRG
converges at quite moderate bond dimensions.

Above w0/w1 ≈ 0.8, γz = 0 and the state instead develops a large expectation value for
γ+ = γx+ iγy. Section 2.5 below is devoted to the large w0/w1 phase, and we will see that it
is a nematic semimetal [62], which we refer to as “SMy”, in reference to the ordering in the
x/y plane. First, however, we analyze a surprising structure in the ground state correlations.
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The remarkable accuracy of Hartree-Fock

The ground states of the strongly interacting IBM model are – quite surprisingly – very well
described by k-space Slater determinants. For all values of w0/w1 away from the transition,
the difference between the ground state and a Slater determinant as quantified by SvN(k) is
small. In particular, Fig. 2.6 shows that SvN is low in the QAH phase, increases or diverges
near the transition, and is relatively small but growing in the SMy phase. In the QAH phase
this behavior is expected due to the large overlap with the simple Chern band polarized
Slater determinant Eq. (2.12).

To provide further evidence that the ground state is essentially a Slater determinant,
we compare DMRG results with Hartree-Fock (HF) calculations. Hartree-Fock determines
an optimal Slater determinant approximation to the ground state of a many-body problem
through a self consistent equation. Computationally, HF scales only polynomially in the
number of ky cuts (rather than exponentially for DMRG), so it provides a much cheaper
alternative — when it is applicable. When the ground state of the IBM model is close to
a Slater determinant, the HF ground state should be quite accurate and would have high
overlap with the true ground state. We performed HF calculations on a Nx×Ny grid in the
mBZ; numerical details of our HF calculations have been reported elsewhere [8].

We find that HF and DMRG results are nearly identical. The C2T order parameter γz

differs by around 2% (Fig. 2.6). Fig. 2.7 shows a side-by-side comparison of the DMRG and
HF predictions for φk = arg[γ+(k)] in the SMy phase, where it completely specifies the Slater
determinant because θ ≡ π/2 is fixed by C2T symmetry (See Eq (2.11)). Panel (a) shows
a high-resolution HF calculation with Nx = 30, Ny = 29, which shows that φk ≈ π/2 over
most of the mBZ, but winds through 2π for ky cuts that go near the Γ point. Panels (b) – (d)
demonstrate that the same pattern appears with only Ny = 6 discrete momentum cuts. Both
HF and DMRG produce a C2x symmetric φk and the results obtained from both methods are
almost indistinguishable. Other observables are similarly accurate in HF. We may therefore
use HF to study large system sizes or observables that are not easily accessible in DMRG. For
instance, Koopman’s Theorem implies that the energies of single-fermion excited states are
given by the self-consistent Hartree-Fock spectrum. We found the Hartree-Fock spectrum at
the chiral limit has a gap of order 20meV, showing the QAH state is gapped. We conclude
that DMRG and HF agree to a remarkable degree and may be used almost interchangeably
in this regime.

2.5 The Nematic Semimetal

We now show that the large-w0/w1 phase is a nematic semimetal, first described in Ref. [62],
with energetics governed by the Berry curvature of the flat bands. This is an altogether
different state than the Dirac semimetal which appears in the non-interacting BM model.
Our analysis is based on combination of DMRG (at Ly = 6) and HF (at Ly ∼ 30), which agree
wherever they can be compared. After establishing the nature of the nematic semimetal,
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Figure 2.8: Result of HF calculation at Nx ×Ny = 30× 29 . (a) Energy gap between the top band and the
bottom band. We see there are two Dirac points near the gamma point. (b) Correlation length obtained
from thin cylinder DMRG at different flux values and the inverse HF gap size as a function of ky. We see
the correlation length becomes large near the Dirac points found in HF calculation. (c) The trace distance
between the density matrices for the BM ground state and Hartree-Fock ground state. One can see that
they are unrelated over much of the mBZ.

we make contact with recent ideas in the literature [38, 55, 62]. Namely, we explain how
the Ginzburg-Landau-like functional for the interband coherence φ proposed in Ref. [62]
provides an intuitive description of the nematic state and the transition, and also confirm
that the stripe state proposed in Ref. [38] is extremely competitive, with an energy only 0.2
meV / electron above the DMRG ground state.

The Large w0/w1 Phase is Nematic

The large w0/w1 phase is a nematic state which breaks C3 but preserves C2T . C2T requires
γz = 0, but allows for finite γx/y, so within the spherical coordinate description of Eq. (2.11)
the state is characterized by θ = π/2 and an azimuthal angle φk. This is clearly visible
in Fig. 2.7 (a): throughout most of the mBZ, including at the mini-K± points, the state
is γy ≈ 1 (φ ∼ π/2). A state with finite γx + iγy at the K± points breaks C3 symmetry
(nematicity) because C3 acts as C3 = eiπσ

z/3 there. This is in contrast to the BM ground
state, which has Dirac nodes at K±: the BM Dirac structure h(K± + q) ∝ qxσx + qyσy
instead causes γx + iγy to wind by +2π.

Consequently we denote the large w0/w1 state “SMy.” Presumably the other C3-rotated
versions are not found because the cylinder geometry weakly breaks the C3 symmetry for
finite Ny.

While the SMy phase is close to a Slater determinant, it is not a small perturbation to the
non-interacting ground state. To quantify this, Fig. 2.8(c) shows the trace distance between
the BM ground state projector and the SMy projector over the mBZ. Around the K± points,
the trace distance rotates between complete agreement and orthogonality, consistent with
the winding of γ+ in the BM state versus the fixed γy ≈ 1 in SMy. The trace distance also
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provides us with a gauge invariant way to identify the nematicity of the phase: the BM and
SMy projectors achieve near complete agreement along the y-axis.

C2T protected Dirac points

Near the Γ point, however φk deviates from φ = π/2. We now show that this is because
the SMy phase features two Dirac points in the vicinity of Γ, which cause φk to wind there.
This behaviour is in fact enforced by topological properties [44, 55]. For a generic two band
problem in the presence of C2T , any Wilson loop is quantized: W (C) := i

∫
C
A · dk = nπ

with n ∈ Z [76].10 In particular, W (C) = (2n+ 1)π if and only if it encloses a Dirac cone.
This is the well-known topological protection of Dirac cones. In the case of the single

valley BM model, Dirac cones at the mini K± points have the same chirality W (C) = +π.
Therefore, not only are the Dirac cones locally protected, but even if they move away from
K± they cannot meet and annihilate, enforcing the existence of either a pair of Dirac points
or quadratic band touching.11

The semimetallic nature of SMy is borne out in both HF and DMRG numerics. The
spectrum of the self-consistent HF Hamiltonian, shown in Fig. 2.8 (a), has a large (∆ ≈
30meV) gap across most of the mBZ, except near the Γ point. The structure of ∆ near the
Γ point is consistent with two Dirac points at k± := (kx, ky) ≈ (0,±0.05Gy) (Fig. 2.8(b)).
In contrast, the BM model is gapless at the K± points, but gapped near Γ.

DMRG numerics can also detect these nodes, but special care is required. This is because
the allowed momentum cuts, Eq. (2.3), generically avoid k±. To confirm their existence, we
continuously adjust the flux Φy through the cylinder (see Fig. 2.2 (e)) and monitor the
behavior of the DMRG ground state as the allowed momenta pass through the putative
Dirac points. Fig. 2.8(b) shows that the DMRG correlation length appears to diverge right
as the allowed momenta pass through the location of the Dirac points k± found in HF,
consistent with the gap closing.

We conclude that the large w0/w1 phase is a nematic semimetal: SMy preserves C2T ,
breaks C3, and has two Dirac nodes on the y axis near Γ.

Ginzburg-Landau-like Description of the SMy Phase

There is a very appealing Hartree-Fock picture for why the Coulomb interactions reconstruct
the single particle Dirac semimetal into the nematic SMy semimetal. When C2T is preserved,
the state is specified entirely by the phase of the inter-band coherence φk, so the HF energy
is a functional EHF[φk]. Ref. [62] analytically computed this functional for the IBM model,

10The Berry phase is computed for the filled band only.
11Note however that this “global” protection implicitly assumes translation symmetry: if the unit cell

doubles, the bands fold and the band count doubles. Beyond two bands, W (C) is only defined modulo π, so
Dirac points can meet and annihilate. This mechanism underlies the C2T stripe phase[38].
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Eq. (2.1), and found that the dominant contribution takes the form

EHF[φk] = EQAH
HF +

1

2

∫
gk(∇kφk − 2ak)

2d2k+ · · ·

gk =
1

A

∑

q

Vq q
2|Λq(k)|2 (2.13)

Here gk is a EC-scale function independent of φk, and E
QAH
HF is the Coulomb energy of the

QAH state. Finally, ak is a U(1) vector potential which encodes the band geometry: due to
the C2T = σxK symmetry, the SU(2) Berry connection of the Bloch states is constrained to
take the diagonal form A(k) = σzak, reducing it to a U(1) connection. 12

We see that the energy is similar to the Ginzburg-Landau functional for a superconductor
in a magnetic field Fk = dak. This isn’t a coincidence: ∇kφk can only appear via a gauge-
covariant derivative because φk, ak transform as a gauge pair under a C2T -preserving phase
redefinition of the Bloch states, ĉ±,k → e±iϕk ĉ±,k. However, there is no exact U(1) symmetry,
so the small “· · · ” terms we neglect (for example the dispersion h) do couple directly to φ.

The superconducting analogy can be made more concrete by applying a particle-hole
transformation to only the C = −1 band, so that the coherence φ between C = ±1 bands
maps to “superconducting pairing” between two C = 1 bands [55]. The Berry curvature Fk

then appears with the same form as a magnetic field, albeit in k-space, similar to how Berry
curvature manifests as a “k-space magnetic field” in the semiclassical equations of motion
for Bloch electrons [77].

If we treat the mBZ as the unit cell, the Chern number 1
2π

∫
Fk d

2k = 1 implies that
there is one flux quantum per unit cell. Just like the vortex lattice of a superconductor in a
magnetic field Fk, this forces φ to have two vortices per unit cell. Each vortex (+2π winding)
is equivalent to a Dirac point, so this recovers the topological protection of the Dirac points
discussed earlier. In the BM ground state, the two vortices are pinned to the K± points,
while in the SMy state they lie near Γ (Fig. 2.7 (a)).

The vortices lead to an energy penalty relative to the QAH state, explaining Eq. (2.13).
However, in our case the Berry curvature Fk is not uniform: instead, Fk is concentrated near
the Γ point (Fig. 2.9(a)). By analogy to a superconductor in a non-uniform field, the lowest
energy configuration of Eq. (2.13) will place the vortices in the region of concentrated Fk,
explaining their shift from K± → Γ. In Fig. 2.9(b), we confirm that ∇kφk − 2ak ≈ 0 in the
region where Fk is small, but is finite near Γ where Fk is concentrated. Accordingly, most
of the energy penalty comes from near the Γ point. Increasing w0/w1 makes Fk increasingly
concentrated, reducing the Coulomb penalty of SMy relative to QAH.

The final ingredient driving the finite w0/w1 transition are the small terms like the
dispersion h hidden in “· · · ”, which slightly prefer the SMy phase.

13 As w0/w1 increases, the

12Note that ak here does not have a quantized Wilson loop, unlike Ak discussed in Sec. 2.5. This is
because ak is defined in terms of Chern bands, which are not invariant under C2T .

13 For example, in the SMy phase, φk can perturbatively deform to follow the dispersion h, particularly
in the vicinity of Γ.
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Figure 2.9: (a) The Berry curvature Fk for w0/w1 = 0.85 shows concentration at the Γ-point. (b) The k-
space “supercurrent” |∇φk− 2ak| is concentrated in the same region as Fk. Both (a) and (b) are calculated
in the units Gx = Gy = 1, ABZ = 1.

Coulomb penalty for the SMy phase decreases due to the Berry curvature concentration, and
these subleading terms win out. Consequently, while increasing w0/w1 does slightly increase
the bandwidth, its primary effect is actually via the redistribution of Berry curvature, which
enters at the Coulomb scale (gk ∼ EC).

“Thin cylinder” DMRG Analysis

The DMRG ground state at Ny = 6 can be approximated by a particularly simple “thin
cylinder” ansatz, provided none of the momentum cuts cross the region of large Berry cur-
vature near Γ. We ensure this by taking Φy = π and focus on w0/w1 ≈ 0.85. In this case,
the DMRG ground state has a relatively small particle number fluctuation in the unit cell.
This is because away from Γ, P (k) varies slowly with kx, so in the xk-space the correlations
are local (intra-unit cell).

Table 2.2 shows the probability for each momentum mode in the unit cell to be occupied
by 0, 1, or 2 electrons. All modes have p(Nky = 1) larger than 0.9, and many of them larger
than 0.95. This suggests there is a simple “thin-cylinder” ansatz with no particle number
fluctuation per momentum mode: following Ref. [38], we define

|ΨTC⟩ =
∏

x,k

(
cos

θ(x, ky)

2
ĉ†+,x,ky

+ sin
θ(x, ky)

2
eiφ(x,ky)ĉ†−,x,ky

)
|0⟩ .

(2.14)

It is easy to check that if θ and φ are independent of x, these θ and φ corresponds to
those in Eq. (2.11). By inspecting Fig. 2.7 (b), we find θ = π/2 and φ = π/2 is a good
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ky − 5
12

−1
4

− 1
12

1
12

1
4

5
12

p(Nky = 0) 0.021 0.021 0.049 0.049 0.021 0.021
p(Nky = 1) 0.958 0.959 0.902 0.902 0.959 0.958
p(Nky = 2) 0.021 0.021 0.049 0.049 0.021 0.021

Table 2.2: Probability that some states are occupied by 0, 1, or 2 electrons in a given unit cell at w0/w1 =
0.85, Φy = π, and χ = 1024. Nky

is the number of electrons with momentum ky in the unit cell.

approximation for the SMy state14 so long as the momentum cuts are not close to ky = 0.
The fidelity per unit cell of the resulting ansatz |ΨSM⟩ and the DMRG ground state is
F ∼ 0.98 — remarkably accurate for such a simple ansatz. This ansatz also captures well
the behavior of entanglement entropy in Fig. 2.6: each momentum mode contributes a “Bell
pair” to entanglement, making the maximum entanglement 6 log 2 with our choice of orbital
ordering.

We can further motivate the thin-cylinder ansatz from the value of the polarization
Px(±, ky). (Fig. 2.4). At large w0/w1, Px is close to 0 for most ky values, and orbitals in one
unit cell are well separated from those in neighboring unit cells. The interaction therefore
strongly couples modes within the same unit cell, resulting in vanishing number fluctuation
per unit cell.

We also see why the thin-cylinder ansatz breaks down near the Γ point: P (k) changes
rapidly there (Fig. 2.7 (e)), leading to inter-unit cell correlations. We stress that the ansatz
is thus a crude approximation to the true HF ground state, since it fails to capture the
complex Berry curvature contribution to the energy that is dominant near the Γ point. As
Ny → ∞, the momentum cuts unavoidably approach Γ, and the thin-cylinder ansatz will
break down.

Finally, we comment on the energy competition between different candidate ground
states. The simple form of the ansatz enabled Kang and Vafek [38] to put forward an-
other candidate for the ground state, which breaks translation symmetry in the L1 direction
in favor of a period-2 stripe state with screw symmetry C2xTL1 . To crude approximation, this
state corresponds to θ(n, ky) = π/2 and φ(n, ky) = (−1)nπ/2 + π/2 in the parametrization
of Eq. (2.14). In order to test this ansatz, we computed the energy of the SM ansatz and the
stripe ansatz and compared it to the DMRG ground state energy (Table 2.3) and the QAH
ansatz (θ = 0). We also computed the energy of the ground state of the BM model with
respect to the IBM model to establish the relevant Coulomb energy scale. We find that the
energy of the QAH, SMy, and the stripe ansatz are within 1/3 meV of the DMRG energy.
While the stripe is not the true ground state for the parameter values studied here,15 this

14Taking our different gauge convention into account, this is in agreement with [38].
15We verify this by initializing the DMRG using the doubled unit cell stripe ansatz, and find the stripe

reverts to the SMy phase at convergence.
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State Energy [meV]

DMRG Ground State (SMy) −28.24
QAH Ansatz (Eq. 2.14) −28.04
SMy Ansatz (Eq. 2.14) −27.92
C2T - Stripe Ansatz (Eq. 2.14) −28.08
Dirac (BM Ground State) −20.62

Table 2.3: Energy per electron of various trial states, evaluated with respect to the IBM Hamiltonian at
w0/w1 = 0.85. Here “Dirac” refers to ground state of the single-particle BM Hamiltonian, and the parameters
for SM and Stripe Ansätze are described in the text. We see that the Stripe is very close to the DMRG
ground state, and the Dirac state is well-separated from the rest, reflecting the dominant importance of the
Coulomb interactions. Note that the energies are negative because we have subtracted off the q = 0 part of
the Coulomb interaction.

confirms the assertion in Ref. [38] that the stripe is a viable candidate in the wider phase
diagram.

2.6 Conclusions

In this chapter we have introduced a method for studying tBLG (and any other moiré mate-
rial) using DMRG. Our method (Fig. 2.1) starts with the BM model, adds interactions, and
compresses the resulting MPO down to a reasonable size so that the DMRG is computa-
tionally tractable. We carefully verified the correctness of our approach and showed that it
is sufficiently precise to capture the ground state physics of the IBM model. To benchmark
our approach we focused mostly on the spinless, single-valley case. However, we showed
in Section 2.3 that our method can be extended to the spinful, two-valley case with only
moderately greater computational resources. Therefore we have identified a method to study
the ground state physics of tBLG using DMRG.

Even though the spinless, single-valley model is not strictly physical, our results have
several important conceptual implications for the study of tBLG. Remarkably, we found
that the DMRG ground state is well-approximated as a k-space Slater determinant for all
w0/w1. However, we stress that the ground state nevertheless has no relation to the ground
state of the single-particle BM model: it mixes states very far from the Fermi surface of
the BM Hamiltonian (Fig. 2.8 (c)). At least near the magic angle this suggests that weak-
coupling approaches to tBLG, which rely on various details of the BM Fermi surface, will
miss the essential physics. Instead, the energetics are dominated by the exchange physics of
the Coulomb interaction. As a result, the effective band structure (as would be computed
from the self-consistent Hartree-Fock Hamiltonian) is entirely different than that of the BM
model, with a width set by EC (Fig. 2.8(a)). This is true even in the large w0/w1 nematic
semimetal phase SMy, which may have some relation to the ν = 0 semimetallic resistance
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peak found in experiment.
Furthermore, it is subtle to describe the observed ground states within a 2D Wannier-

localized “Mott insulating” picture. For small w0/w1 we have a QAH phase: the filled
states have net Chern number, so the projector onto the filled states cannot be 2D Wannier
localized. This is not to say that it is impossible to find these states within a numerical
approach which starts from 2D Wannier orbitals (which is just a change of basis), but rather
that in such a basis the order would manifest as a set of coherences ⟨c†icj⟩ between sites
rather than an onsite order parameter. Presumably this would complicate any mean-field
approach which depends on a site-local self energy.

Taken together, this supports the point of view that tBLG is more closely related to quan-
tum Hall ferromagnetism, where symmetry breaking is driven by the combination of band
topology and Coulomb exchange, than it is to the Mott insulating physics of the Hubbard
model. But of course in contrast to quantum Hall systems, tBLG comes with time-reversal
symmetry, making it amenable to superconductivity. Future work will explore the physics
of tBLG upon restoring the spin and valley degrees of freedom.
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Chapter 3

Effect of strain on twisted bilayer
graphene

3.1 Introduction

In this chapter, we will focus on the role strain plays on the phase diagram of MATBG.
Experiments on different twisted bilayer graphene (TBG) devices, all close to the first magic
angle, have produced a broad variety of different low-temperature phase diagrams. For
example, at the charge neutrality point (CNP), both semi-metallic [1–3, 30, 31, 78] and
insulating [20, 21, 27, 34, 36] states have been observed. The insulating devices are thought
to be divided into two groups. In the first group [20, 21], one of the graphene sheets is almost
perfectly aligned with the hexagonal Boron-Nitride (hBN) substrate, which breaks the two-
fold rotation symmetry and therefore generates mass terms for the Dirac cones [79–84] in the
single-particle continuum model of TBG [4, 85, 86]. In the second group of devices [27, 34],
those without substrate alignment, the Coulomb interaction is believed to be responsible for
the insulating behavior. Both analytical and numerical studies [8, 42] of pristine TBG at
the CNP indeed find an insulating ground state, due to spontaneous “Kramers inter-valley
coherent” (KIVC) order [8]. The KIVC state is thus a promising candidate for the CNP
insulators in Ref. [34], as well as the |ν| = 2 insulators in general, but cannot explain
the semimetals observed in Refs. [1, 3, 30, 31, 78]. Moreover, self-consistent Hartree-Fock
(SCHF) predicts a KIVC gap of ∼ 20meV [8], while experiments measure a global transport
gap of only ∼ 1meV [34].

An important question is thus: what weakens the insulators in some experimental de-
vices, and destroys them in others? Twist-angle disorder is expected to be at least partly
responsible for this [24, 87–89]. Another possible culprit is the presence of strain in the
graphene sheets. Uniaxial heterostrain is characterized by a parameter ϵ, which scanning
tunneling spectroscopy experiments have found to be in the range ϵ = 0.1−0.7% [18, 32, 35].
Although these values seem small at face value, strain contributes to the Hamiltonian as a
perturbation of order ϵℏvF/a, which is ∼ 20 meV for ϵ = 0.5% — precisely the energy scale
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at issue. Further evidence for the importance of strain comes from symmetry considerations.
In the absence of strain, models at even integer filling show that although the ground state
has KIVC order, there is a close competitor whose energy is only slightly higher: a nematic
semi-metal [8, 15, 18, 38, 62]. As elucidated in Ref. [62], the semi-metal has two Dirac points
close to, but not at, the mini-BZ Γ point, spontaneously breaking the three-fold rotational
symmetry C3z. The shear part of uniaxial strain breaks the C3z symmetry, and thus one ex-
pects on general grounds that strain will lower the energy of the nematic semi-metal relative
to the rotationally invariant insulating states. However, despite this expectation, Refs. [8,
62] found that if strain is modeled using the phenomenological method of Ref. [90], it cannot
stabilize the semi-metal.

This chapter provides a careful treatment of the effects of strain on the correlated insula-
tors using a more realistic model for strained TBG [91]. We find that physical strain values
can drive a zero-temperature phase transition from the KIVC insulator to a semi-metal at
even integer fillings. Our results at charge neutrality are obtained using SCHF, and our re-
sults at ν = −2 (ν is the number of electrons per moiré unit cell relative to charge neutrality)
using both density-matrix renormalization group (DMRG) and SCHF. Our DMRG considers
both valley degrees of freedom, which is essential for correctly identifying the even-integer
insulators. Similar to earlier works on single-valley models [15, 38], we find that DMRG and
SCHF agree remarkably well. In particular, DMRG confirms the presence of KIVC order at
ν = −2 in the absence of strain.

3.2 Continuum model with strain

To add uniaxial strain to the Bistritzer-MacDonald (BM) continuum Hamiltonian [4, 85,
86], we follow Ref. [91]. Uniaxial strain is characterized by the following symmetric matrix:

S =

(
ϵxx ϵxy
ϵxy ϵyy

)
= R(φ)T

(
ϵ
−νP ϵ

)
R(φ) , (3.1)

where νP ≈ 0.16 is the Poisson ratio of graphene. The angle φ corresponds to the uniaxial
strain direction, and R(φ) is a 2×2 rotation matrix. Throughout this chapter we take φ = 0,
but we have verified that our conclusions do not depend on the choice of φ. The strain
magnitude is determined by the dimensionless parameter ϵ, which in the devices prepared
for STM study has values in the range ϵ = 0.1− 0.7% [18, 32, 35, 92]. Under the combined
effect of rotation and strain, the coordinates of the carbon atoms in the two graphene layers
ℓ = ± of TBG transform as Rℓ,i →

[
R(ℓθ/2)− ℓ

2
S
]
Rℓ,i =: MT

ℓ Rℓ,i where θ is the twist angle.
The coordinate transformation matrix MT

ℓ is correct to first order in both θ and ϵ. Note that
we only consider heterostrain, as it affects the electronic structure much more strongly than
homostrain [93].

The continuum Hamiltonian in the presence of uniaxial heterostrain for the τ = + valley
is given by

Hτ+ =

(
D+ T (r)
T (r)† D−

)
, (3.2)
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with Dℓ the monolayer Dirac Hamiltonians, and T (r) the inter-layer tunneling (Hτ− is then
fully specified by time-reversal). The Dirac Hamiltonians are given by

Dℓ = −ℏvF [Mℓ(−i∇+Aℓ)−K] · σ , (3.3)

where σ = (σx, σy) are Pauli matrices acting in sublattice space, and K = (4π/3a, 0), with
a the graphene lattice constant, corresponds to location of the τ = + valley. Strain shifts

the locations of the Dirac points via a ‘vector potential’ Aℓ = − ℓ
2
β
√
3

2a
(ϵxx − ϵyy,−2ϵxy) [94,

95], where β ∼ 3.14 characterizes the dependence of the tight-binding hopping strength on
the bond length.

The tunneling term T (r) in Eq. (3.2) has the same form as in the original BM model, but
we update the microscopic parmaeters to follow recent density functional theory calculations
[39, 40, 52]. Specifically, we take differing intra and inter-sublattice interlayer tunneling
amplitudes wAA = 83meV and wAB = 110meV. To account for non-zero strain ϵ, the moiré
reciprocal lattice vectors are deformed to gj =

[
M−1

+ −M−1
−
]
Gj, where Gj are the reciprocal

vectors of undeformed graphene.
As was shown in Ref. [91, 93], uniaxial heterostrain has three important effects on the

BM band spectrum: (i) while strain preserves C2T symmetry, and hence the stability of
the two mini Dirac points, the three-fold rotation symmetry is broken and the two Dirac
points move away from the K±-points towards the Γ-point in the mBZ, (ii) the two Dirac
points are no longer degenerate, but are separated in energy by a few meV (thus creating
small electron and hole pockets at the CNP), and (iii) the bandwidth of the ‘narrow’ bands
increases significantly – for ϵ as small as 0.6%, the bandwidth of the narrow bands is ∼ 50
meV. Below, we investigate the effect of strain on the interacting phase diagram of TBG.

3.3 Hartree-Fock at neutrality

We model interacting TBG as the BM Hamiltonian plus Coulomb interactions:

H =
∑

k

f †
kh(k)fk +

1

2A

∑

q

Vq : ρqρ−q : , (3.4)

where A is the area of the sample, and f †
k,s,τ,m creates an electron with momentum k and

spin s in the BM band m in valley τ . The charge density operators are given by ρq =∑
k f

†
kΛq(k)fk+q, where the form factor matrices [Λq(k)](τ,m),(τ ′,n) = δτ,τ ′⟨uτ,m,k|uτ,n,k+q⟩ are

defined in terms of overlaps between the periodic part of the Bloch states of the BM Hamil-
tonian. The interaction is given by a gate screened Coulomb potential Vq =

∫
dr eiq·rV (r) =

tanh(dsq)[2ε0εrq]
−1. We work with a gate distance of ds = 25 nm, and we let the dielectric

constant εr vary between 6 and 12. In Eq. (3.4) we also project into a subspace where
most or all of the remote BM valence (conduction) bands are completely filled (empty), and
m,n run over only those bands whose filling is not fixed. The single-particle Hamiltonian
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Figure 3.1: Particle-hole gap in the SCHF band spectrum at the CNP as a function of both twist angle θ
and strain ϵ, for εr = 6 (left) and εr = 12 (right). The results were obtained on a 18× 18 momentum grid,
keeping six bands per spin and valley. The gapped regions have KIVC order, the gapless regions correspond
to a symmetric SM.

h(k) contains the BM band energies, a HF contribution from the remote filled bands, and a
subtraction term [42, 62]. For more details on the definition of h(k), see Ref. [15].

Without strain, Ref. [8] found that the ground state of H at ν = −2, 0, 2 has a charge
gap and spontaneously breaks both the valley charge symmetry eiατz , and the time-reversal
symmetry T = τxK, where K denotes complex conjugation. However, the product T ′ =
eiπτz/2T is preserved. Because T ′ = τyK is a (spinless) Kramers time-reversal, the insulating
ground state was dubbed the Kramers inter-valley coherent (KIVC) state [8].

Fig. 3.1 shows the HF phase diagram1 at the CNP as a function of twist angle and strain
magnitude, for both εr = 6 and εr = 12. Two phases are clearly visible. The region in
Fig. 3.1 with non-zero charge gap has KIVC order. The gapless region, on the other hand,
corresponds to a semi-metal (SM) without spontaneous symmetry breaking. The HF band
structure of the SM has two Dirac cones close to the Γ-point, and is therefore similar to the
band structure of the strained BM Hamiltonian (for more details, see [96]). The transition
from the KIVC state to the SM in Fig. 3.1 occurs at strain values ϵ ∼ 0.4 − 0.6% with
εr = 6, and at ϵ ∼ 0.1− 0.2% with εr = 12. These critical values lie exactly in the range of
strain values observed in STM devices [18, 32, 35, 92], from which we conclude that strain
plays an important role in TBG. From Fig. 3.1, we also see that the KIVC state is more
robust at larger θ. Because at ϵ = 0 the energy difference between the KIVC state and the
SM depends only weakly on θ [8], we attribute this feature to the fact that the active bands
are less affected by strain at larger θ (in particular, the Dirac points remain further away
from Γ, and the change in bandwidth is smaller).

In Fig. 3.2(a) we plot the KIVC order parameter as a function of ϵ. The order parameter is
defined as |∆KIVC| := 1

N

∑
k ||PIVC(k)||, where N is the number of k values and PIVC is the in-

tervalley (τ ̸= τ ′) part of the KIVC correlation matrix [P(k)](s,τ,m),(s′,τ ′,n) = ⟨f †
k,s′,τ ′,nfk,s,τ,m⟩.

We see that the transition occurs at ϵ∗ ∼ 0.19% if we keep Nb = 6 BM bands per spin and
valley. By increasing Nb, ϵ∗ shifts to slightly smaller values, and converges for Nb = 12.

1Throughout this chapter, we allow HF to break all symmetries, except for translation symmetry.
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Figure 3.2: (a) KIVC order parameter |∆KIVC| := 1
N

∑
k ||PIVC(k)|| at charge neutrality as a function of

ϵ, obtained with SCHF using θ = 1.05◦, εr = 10 and Nb = 6, 10 or 12 bands per spin and valley. The
calculations were done on a 24 × 24 momentum grid. (b) DOS of the SCHF band spectrum on a 36 × 36
momentum grid using θ = 1.05◦, εr = 10 and Nb = 6. The edges of the KIVC gap are indicated with red
dots.

Fig. 3.2(a) shows a discontinuity in |∆KIVC|, implying that the transition is first order. How-
ever, we also find that close to the transition, |∆KIVC| decreases by a factor of 20 (using
Nb = 12) compared to its value at ϵ = 0. We therefore cannot exclude that the weakly
first-order behavior is an artifact of HF.

Fig. 3.2(b) shows the density of states (DOS) obtained in SCHF for different ϵ, in-
terpolating between the KIVC insulator and the SM. The dominant feature for both the
KIVC and SM DOS is a pair of broad peaks separated by ∼ 50meV. In the KIVC phase,
there is a finite window around the Fermi energy where the DOS is zero, which decreases
with ϵ and vanishes at the transition. This is a subtle feature, however, making it hard to
sharply distinguish the SM from the KIVC. A finer probe for the properties of the SM is the
(layer-resolved) local DOS (LDOS) [96]. In Fig. 3.3(a)-(b) we plot the LDOS of the SM at
energies E/W = −0.11 and E/W = 0.15, where W is the HF bandwidth. The LDOS at the
AA regions shows strong C3z breaking. This strong C3z breaking results from interactions,
as it does not show up in the LDOS of the BM ground state at the same energy ratios
E/W0 = −0.11 and E/W0 = 0.15, where W0 is the BM bandwidth (see Fig. 3.3(c)-(d) and
[96]). These properties of the HF LDOS agree with STM experiments [18, 32, 33]. In par-
ticular, Ref. [33] observed strong C3z breaking at the CNP, but not at ν = 4. We calculated
the LDOS at this filling, where the active bands are fully filled, and indeed found almost no
reconstruction of the BM LDOS by interactions, and as a result no strong C3z breaking.

Finally, strain can be invoked to explain the degeneracies of the Landau fan near the CNP
[90, 91] of the SM. At low densities quantum oscillations are governed by cyclotron orbits
around the mini Dirac points, with two Dirac points for each of the four iso-spins. When
mirror symmetry (C2x) ensures that the two Dirac points are equivalent, the resulting Landau
fan will have the 8-fold degeneracy νϕ = ±4,±12,±20, · · · , which is observed, for example,
far from the magic angle. However, mirror symmetry is broken by strain: for example, at
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Figure 3.3: Normalized LDOS for θ = 1.05◦ and ϵ = 0.22%. (a)-(b) LDOS of the self-consistent SM (for
εr = 10) at E/W = −0.11 and E/W = 0.15, where W ∼ 65 meV is the HF bandwidth. (c)-(d) LDOS of
the BM ground state at E/W0 = −0.11 and E/W0 = 0.15, where W0 ∼ 17 meV is the BM bandwidth.

ϵ = 0.22% and εr = 10, we find that the two Dirac points in the same valley are separated in
energy by ∆D ∼ 10 meV. For generic B, this halves the degeneracy, νϕ = 0,±4,±8,±12, · · · ,
as observed in most magic-angle experiments [2, 3]. When |ν| ≳ 0.25, the cyclotron orbits of
the two Dirac points merge and form one connected orbit with a 2π-Berry phase. Because
the resulting Landau fan νϕ = ±4,±8,±12, · · · has the same 4-fold degeneracy as the ∆D-
split Dirac points, the conclusion is the same. However we note that some devices show a
crossover from a low-B 8-fold degeneracy to a high-B 4-fold degeneracy (for example, at
B ∼ 1T in Ref. [37]). It may be that in devices where the strain configuration happens to
produce a small ∆D, the mirror-breaking manifests in the terms which are linear in B.

3.4 DMRG at ν = −2
While SCHF is a mean field approach, we may further confirm the existence of a strain-
induced transition using unbiased DMRG calculations. In Ref. [8], it was argued that in the
absence of strain, the ground state of the interacting Hamiltonian H at fillings ν = ±2 is a
spin polarized version of the KIVC state at neutrality. This claim was further substantiated



CHAPTER 3. EFFECT OF STRAIN ON TWISTED BILAYER GRAPHENE 38

10−1 100 101

x/ξK

1
0
−

4
1
0
−

3
1
0
−

2
1
0
−

1
1
0

0

ξ−
η

K
C
K

(x
/
ξ K

)
χ

1024

1536

2048

2560

3072

0.0% 0.1% 0.2% 0.3%

ε

0

2

4

6

8

10

1024 2048 3072
χ

0

5

10

ξ
K

(χ
)

|∆K| (HF)
ξK

Σc
SvN

(a) (b)

(c)

Figure 3.4: DMRG results at ν = −2 (spin-polarized) at θ = 1.05◦ and εr = 10. (a) Scaling collapse of the
KIVC correlator CK(x, ξK) at ϵ = 0. (b) Transition from KIVC to SM with strain. KIVC correlation length
ξK , average entropy S̄vN , the DMRG KIVC correlator ΣC = 10

∑
x CK(x) (scaled for visibility), and the

HF KIVC correlator |∆KIVC| as a function of ϵ. (c) Scaling of ξK with bond dimension at ϵ = 0. DMRG
parameters: Ly = 6, Φy = 0, χ ≈ 2048 for (b), and the Hamiltonian, Eq. (3.4), is represented to accuracy
better than 0.1meV. All quantities are defined in the text.

by Refs. [9, 53, 97]. Following the methods developed in Refs. [15, 38, 74], here we use
infinite DMRG to study H compactified onto a infinitely long cylinder of circumference Ly
moire cells. SCHF finds that the ground state is perfectly spin polarized for ϵ ≲ 0.2%,
so we accelerate our DMRG calculations by assuming full spin polarization of the narrow
bands at ν = −2, while keeping both valleys [96]. Projecting into the narrow bands, our
computational basis for the four remaining active bands consists of hybrid Wannier orbitals
that are localized in the x-direction, but have a well-defined momentum ky = 2πn/Ly.

The ground state of the unstrained model at ν = −2 is expected to have KIVC order,
and thus to spontaneously break the U(1) valley symmetry. The Hohenberg-Mermin-Wagner
(HMW) theorem, however, forbids such continuous symmetry breaking on the quasi-1D
cylinder geometry used by DMRG [98, 99]. Instead, the KIVC phase will manifest as alge-
braic long-range order [100] CK(x) := ⟨∆+

K(x)∆
−
K(0)⟩ ∼ x−η(Ly), where ∆±

K(x) are operators
at position x which have valley charge ±2 and satisfy T ′−1O±

K(x)T ′ = O∓
K(x) [96]. The

exponent η(Ly) depends on the circumference, and satisfies η(∞) = 0. An additional com-
plication for identifying the KIVC phase using DMRG is that at any finite DMRG bond
dimension χ (i.e., numerical accuracy), the ground state has exponentially decaying corre-
lations. This complication can be overcome by using “finite entanglement scaling” [101–
103] to characterize algebraic order via a scaling collapse as χ → ∞. Denoting the finite-χ
induced correlation length as ξK [Fig. 4(c)], the KIVC correlator can be written as a gen-
eral function CK(x, ξK). In the KIVC phase, we expect this function to satisfy the scaling
relation CK(x, ξK) = ξ−ηK CK(x/ξK , 1), which allows us to perform a scaling collapse of the
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data obtained at different χ. In Fig. 3.4(a), we find an excellent data collapse for χ ranging
between 1024 and 3072, from which we conclude that DMRG indeed finds a KIVC ground
state. Note that we find a very small exponent η(6) ∼ 0.06 [96], so there is no regime of
algebraic decay clearly visible in Fig. 3.4(a).

Fig. 3.4 (b) shows the effect of adding strain. Both the correlation length ξK and summed
correlator ΣC :=

∑
xCK(x) measure the amount of KIVC correlations in the ground state.

They are both order one for small strain, and decrease monotonically with ϵ. For ϵ ≳ 0.07%,
however, ξK and ΣC plateau at a small value, indicating that the algebraic KIVC order is
destroyed. For strain values larger than ∼ 0.07%, we find no evidence for symmetry breaking
in the DMRG ground state. In particular, we have verified that DMRG does not double
the unit cell, which excludes the stripe phase discussed previously for single-valley models
[15, 38]. The absence of symmetry breaking in DMRG is consistent with HF, where we find
a symmetric SM at large ϵ [96]. Fig 4(b) plots the SCHF order parameter |∆KIVC|, which
shows a transition from the KIVC state to the SM at a strain value ϵ ∼ 0.1%, close to
where the algebraic KIVC order disappears in DMRG. While the behaviour of the DMRG
correlation length is consistent with a first-order transition, much larger bond dimensions
— and cylinder circumferences — would be needed to decide this issue. To confirm that
the large strain phase found with DMRG is the same SM obtained in SCHF, we compute
the averaged single particle entropy S̄vN := − 1

N

∑
k tr (P(k) lnP(k)). This quantity is zero

iff the DMRG ground state is a Slater determinant. Fig 4(b) shows that S̄vN is negligibly
small at ϵ ≳ 0.07% (at smaller ϵ, HMW implies the KIVC state cannot be a symmetry
breaking Slater determinant in DMRG, so S̄vN is order unity). It thus follows that (i) SCHF
and DMRG agree closely for all strain, and are essentially identical at large ϵ and, (ii) the
transition in DMRG is indeed from the KIVC state to the SM.

3.5 Discussion

The results presented in this chapter show that strain is likely responsible for the semi-
metallic behavior and strong C3z breaking observed at the CNP of most TBG devices (for
related discussions of the CNP physics, see Refs. [104, 105]). C3z breaking has also been
observed in TBG near ν = −2 [31], and was discussed in various theoretical contexts in Refs.
[106–109]. From our DMRG and SCHF results, we found that TBG couples strongly to strain
both at ν = 0 and ν = −2. Two important questions that follow from this are (i) whether
the strong coupling to strain persists to ν = −2−δ with δ ∼ 0.1−0.9 (where nematicity was
observed in experiment [31]), and (ii) whether strain is important for superconductivity. Our
findings also invigorate the question about the origin of the insulating behavior consistently
observed at ν = −2, as we find that within the model studied here, strain drives the KIVC -
SM transition at roughly the same ϵ for both ν = 0 and ν = −2. One possibility is that band
structure effects we have neglected, such as lattice relaxation [39, 40] or non-local inter-layer
tunneling [40, 110] stabilize the insulators at ν = ±2 at larger strain values.
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Chapter 4

Detecting symmetry breaking in
magic angle graphene using scanning
tunneling microscopy

4.1 Introduction

Since superconductivity and correlated insulators (CIs) were found in magic angle twisted
bilayer graphene (MATBG) [1–3], there have been vigorous attempts to identify the nature
of the ground states at integer fillings. While widely believed to arise from spontaneous
symmetry-breaking in the space of spin and valley, theoretical works have identified a wealth
of candidate states which are close in energy, including insulators in the U(4)×U(4) manifold
[8, 9, 111], a nematic semi-metal (nSM) [18, 62], and the incommensurate Kekulé spiral (IKS)
[12]. However, clear experimental identification of the ground state order has proven difficult.

Scanning tunneling microscopy (STM), which measures the local density of states (LDOS),
is a promising tool for distinguishing between these phases. Thus far STM measurements in
MATBG have largely focused on modulations in the LDOS at the Moiré-scale [18, 23, 32,
33, 35]. STM has found evidence for a “cascade” of putative symmetry breaking transitions
[23, 112], but has not yet detected the relevant order parameters. Take, for example, the
Kramers-intervalley coherent (K-IVC) state [8, 9, 12, 97] and the nSM [62], which are believed
to compete at the charge neutrality point (CNP) [16, 113, 114]. While there are quantitative
differences between the DOS of the two phases (they are gapped and semimetallic respec-
tively), given finite energy resolution their DOS are in practice very similar (Fig. 4.1(c)),
making discrimination difficult [16]. Furthermore, the Moiré-scale spatial modulation of the
LDOS is largely dominated by the peaks at the triangular-lattice of AA-regions [18, 32, 33].
This is a feature of the flat bands common to all the phases, and it is thus inadequate for
identifying the ground state. What is needed is a probe capable of directly measuring the
order parameter of the symmetry breaking.

In this chapter we show that atomically-resolved STM measurements are an ideal method
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for distinguishing between these competing states. By measuring sublattice polarization,
bond nematicity, and Kekulé pattern, we can distinguish the following states based on their
symmetry properties: 1) symmetric Dirac semimetal 2) nSM 3) K-IVC 4) Generic IVC state
(e.g. IKS) 5) valley Hall (VH) and 6) valley polarized (VP) (Table. 4.1, Fig. 4.1).

The fact that the K-IVC can be distinguished from a generic IVC state may come as a
surprise. This is because the “Kramer’s time-reversal” symmetry T ′ extinguishes any Kekulé
charge-density signal. Applying perpendicular magnetic field breaks this symmetry, which
reveals the underlying IVC nature of the state.

The ability of atomically-resolved STM to detect symmetry breaking in low-density flat-
bands was recently demonstrated experimentally by Liu et al. [115]. They were able to
probe the symmetry breaking in the zeroth Landau-level of monolayer graphene by directly
measuring sublattice polarization and Kekulé order. As the Landau-levels and MATBG
bands have comparable electron densities and energy scales, their findings are encouraging
for the analogous measurements in MATBG.

4.2 Active bands of twisted bilayer graphene

We first review the flat band physics of MATBG and set the notation. We focus on a
single spin-species case for simplicity. A convenient basis for the four flatbands (per spin)
of MATBG is the “Chern” (or chiral) basis |k, τ, C⟩, where k is crystal momentum in the
mini-BZ, τ = ±1 is the valley label, and C = ±1 is the Chern number [7, 8]. We can obtain
the Chern basis by demanding C2T symmetry to act as C2T |k, τ, C⟩ = |k, τ,−C⟩. To a good
approximation, the Chern basis is sublattice-polarized according to A/B = σ = Cτ . We
further gauge-fix by demanding two-fold rotation C2 to act as C2 |k, τ, C⟩ = |−k,−τ, C⟩.

Neglecting small Umklapp terms, the Hamiltonian is invariant under valley-dependent
phase rotation UV (1). Using the Pauli matrix notation for τ , the action of UV (1) is written
as eiτzθ |k, τ, C⟩ = eiτθ |k, τ, C⟩.

4.3 STM-spectroscopy from self-consistent

Hartree-Fock calculation

Let us now review our numerical method. While many of our predictions presented below
are based on symmetry considerations, we also numerically computed the LDOS of various
competing phases using self-consistent Hartree-Fock (HF) method. We consider an inter-
acting Hamiltonian in which the Coulomb interaction is projected into the flatbands of the
Bistritzer-MacDonald (BM) continuum model [4]. Several studies have shown that HF is
accurate at even-integer fillings [8, 9, 42, 64, 97, 116], in some cases producing ground states
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Figure 4.1: Spectroscopy calculation results for the self-consistent HF solutions of spinless nSM, K-IVC0,
K-IVCB states at CNP (ν = 0) and IKS states at ν = −1. We present (a) total LDOS ρ(r; z) (b) total
FTLDOS ρ(q; z) (c) total and Kekulé -DOS ρ(z = E+iη) signals for the bottom layer AA-region of MATBG.
The signals are normalized by their maximum. For FTLDOS, logarithm is taken on the normalized signals.
Cyan lines in (c) indicate the scanning-energy, and the energy range was chosen to show the occupied states.
White dots in (a) denote carbon lattice sites.

nearly identical to the semi-exact solutions obtained from DMRG and exact diagonalization
[15, 16, 38, 117].

We also incorporate the effect of a perpendicular magnetic field via the phenomenological
Hamiltonian Hpert = EBC, where EB = 0.1meV. This choice will be justified in a later
section. States under magnetic field are denoted by a subscript B.

We use the single-particle eigenstates |Ei⟩ of the HF effective Hamiltonian Heff to obtain
the LDOS:

LDOS(E, r) = − 1

π
ℑ
∑

i

|⟨r|Ei⟩|2
Ei − E + iη

, (4.1)

where E is the scanning-energy of the electron and η is a Lorentzian-broadening parameter
1. We may similarly obtain the Fourier-transformed LDOS (FTLDOS) ρ(q;E), and the total

1Note that Vb = E/e is the bias voltage (not measured from the Fermi level, but rather from E = 0
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Phase UV (1) T ′ C3 Kekulé S.L. Pol.
B = 0 B ̸= 0 B = 0 B ̸= 0

DSM ✓ ✓ ✓ ✗ ✗ ✗ ✗

nSM ✓ ✓ ✗ ✗ ✗ ✗ ✗

VH ✓ ✓ ✓ ✗ ✗ ✓ ✓

VP ✓ ✗ ✓ ✗ ✗ ✗ ✓

K-IVC ✗ ✓ ✓ ✗ ✓ ✗ ✗

IKS ✗ ✗ ✗ ✓ ✓ ✗ ✗

Table 4.1: Symmetry properties of various ground state candidate states. DSM stands for symmetric Dirac
semimetal. The column for Kekulé denotes absence (✗) or presence (✓) of Kekulé pattern in LDOS. The
column for S.L. Pol. indicates whether the LDOS is A/B sublattice polarized at the very center of the
AA-stacking region, when averaging over 3 unit cells to remove contributions from the Kekulé signal.

DOS ρ(E). We refer to App. C for the full specification of the model, HF calculations, and
LDOS/FTLDOS/total DOS calculations.

4.4 STM-spectroscopy of competing phases

Different ground state candidates have different symmetry properties (Table. 4.1), which
allow us to distinguish them using STM. The main features are 1) Breaking of C2 symmetry
via sublattice polarization, 2) breaking of C3 symmetry via bond nematicity, and 3) breaking
of graphene-scale translation symmetry via a Kekulé pattern. In order to observe rotational
symmetry breaking, we measure the LDOS around C2 and C3 symmetry invariant AA-region
(AB/BA-region can also show interesting features[App. C]).

To illustrate this point, here we will focus on the following three states that were shown
by prior works to be most competitive at even integer fillings of the spinful model: the nSM
[15, 38, 62], K-IVC [8, 9, 16, 97], and IKS [12]. These states are predicted to undergo a
quantum phase transition to each other under change of heterostrain [12, 16], so it is of
great interest to distinguish them using a local probe.

In Fig. 4.1, we present the total LDOS/FTLDOS/DOS of the bottom layer in the region of
AA-stacking for these phases. Let us now walk through the features which are characteristic
of each phase.

(i) nSM: Reflecting the nematic nature of the state, the LDOS strongly breaks C3 but
preserves C2. The order manifests in two forms: first, in the orientation of the strong bonds,
and second, while the very center of the AA-region has equal weight on the two sublattices,
to the right(left) the dominant weight shifts to the A(B) sublattice. This polarization is
not observed along the axis rotated by 2π/3 (Fig. 4.1 (a)). FTLDOS also show nematicity,
where two of the six Bragg peaks (at the reciprocal vectors of the graphene lattice) have a

determined by our numerical conventions)
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nodal line across which the phase changes over the mini-BZ (Fig. 4.1 (b)). Similar nematic
behavior was observed in earlier STM experiments [33].

(ii-a) K-IVC0: The LDOS respects all the symmetries (Fig. 4.1 (a)). The absence of a
Kekulé pattern despite the inter-valley coherence is enforced by the T ′-selection rule to be
derived later. The FTLDOS is peaked only at the graphene reciprocal vectors (Fig. 4.1 (b)).

(ii-b) K-IVCB: For a small range of tunneling bias (Fig. 4.1 (c)) the LDOS shows a√
3×
√
3 Kekulé pattern respecting C3. The FTLDOS exhibits dominant peaks at the Bragg

points and subdominant peaks at intervalley-scattering momenta K−K ′ (Fig. 4.1 (b)). The
Kekulé signal only shows up for a range of bias close to the van-Hove peak (see Kekulé -DOS,
Fig. 4.1(c)), and in fact the signal changes sign as the peak is crossed. The origin of this
energy dependence will become clear shortly.

(iii) IKS: The LDOS exhibits a
√
3 ×
√
3 bond nematic pattern(Fig. 4.1 (a)). 2. The

graphene Bragg peaks show similar nodal line as in the nSM (Fig. 4.1 (b)), reflecting the
similarity of IKS to nSM [12]. The Kekulé -DOS is on the same order as the total DOS over
the entire range of occupied band energies (Fig. 4.1 (c)) 3.

The other three phases (DSM, VP, and VH) are discussed in detail in the SM [App. C].

4.5 Vanishing Kekulé signal of the K-IVC state

We now explain why the K-IVC Kekulé signal emerges only in a magnetic field. We focus on
the spinless case for simplicity, and leave the spinful case to the SM [App. C]. In Ref. [8] it
was shown that the K-IVC state produces a Kekulé -like pattern of circulating currents not
charge, as shown in Fig. 4.2(a). This is a consequence of a modified “Kramer’s” time-reversal
symmetry of K-IVC T ′ = τzT which applies a π-phase rotation between the valleys [8]. We
may formalize this extinction as a selection rule on the FTLDOS

ρ(q; z = E + iη) =
−1
2πi

(
Tr[ρ̂qĜ(z)]− Tr[ρ̂−qĜ(z)]

)
, (4.2)

where Ĝ(z) is the electron Green’s function and ρ̂q = e−iq·r̂ is the density operator [App. C].
The “Kekulé -LDOS” is the portion of the FTLDOS at inter-valley momentum transfer
q = ±(K −K ′) + ∆q, where ∆q is small.

We consider either a unitary symmetry with U−1Ĝ(z)U = Ĝ(z) or an anti-unitary sym-
metry with K−1Ĝ(z)K = Ĝ†(z). Suppose further that for some q of interest the density
transforms either as U−1ρ̂qU = ±ρ̂q, or K−1ρ̂qK = ±ρ̂−q, where the sign ± will depend
on the symmetry. By inserting these transformations into Eq.(4.2) [App. C], we obtain
ρ(q; z) = ±ρ(q; z). The odd case then enforces an extinction.

2IKS (and likewise K-IVC) state enjoys C2T symmetry only when θIVC takes particular values
3 As demonstrated in [App. C], the Kekulé -DOS signals however vanish for some of the conduction

bands due to loss of inter-valley coherence.
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For the case at hand, we expand the inter-valley part of ρ̂q in a plane-wave basis ⟨r|k, τ⟩ ∝
ei(k+Kτ )·r

ρ̂(q=K−K′+∆q) =
∑

k

|k+∆q, τ = 1⟩ ⟨k, τ = −1| , (4.3)

where k is restricted to the vicinity of the graphene Dirac points. In the absence of IVC
order, the symmetry U = τz ∈ UV (1) gives U−1ρ̂qU = −ρ̂q, enforcing an extinction, while
for a generic IVC the Kekulé -LDOS will be present. For the K-IVC we instead leverage
T ′ |k, τ⟩ = τ |−k,−τ⟩, giving T ′−1ρ̂qT ′ = −ρ̂−q, and conclude the K-IVC has vanishing
Kekulé -LDOS.

4.6 Effect of a T ′-breaking perturbation

In the presence of a T ′-breaking perturbation Hpert - e.g., an applied perpendicular magnetic
field B - the selection rule is inoperative and the K-IVCB phase will generically manifest a
Kekulé pattern. In order to understand its magnitude and the sensitive E-dependence found
in Fig. 4.1(c), we now analyze an approximate form of Hpert in detail.

An out-of plane B-field will have two effects. First, it will reconstruct the flat bands
into a Hofstadter butterfly; however this effect is small for weak (B < 1T) fields 4. Second,
B will couple to the orbital magnetic moment m(k, τ, C) = µBg(k, τ, C) of the flat bands,
where g ∼ 2 − 10 [28, 55, 118]. For simplicity we neglect the k-dependence, in which case
symmetry enforces the simpler form m(k, τ, C) = µBg C, so that Hpert = EBC,EB = µBgB.
For a B = 1T field, EB ∼ 0.1meV is thus a conservative estimate of its magnitude.

To compute the change in the LDOS, we diagonalize Heff+Hpert, as shown schematically
in Fig. 4.2(b). Since Hpert is small compared to the gap ∆KIVC ∼ 20 meV of Heff (Fig. 4.3(a)),
we project Hpert into the space spanned by the two occupied eigenstates |k, n = 0/1⟩ of Heff.
To constrain the form of Hpert, we combine C2, T , and a relative valley phase to obtain a
second symmetry of the K-IVC, C2T ′′ = C2T eiτz(θIVC−π/2)/2, which acts locally in k. Because
EBC anti-commutes with C2T ′′, the projection is constrained to take the general form

[Heff +Hpert](k) =

(
E0(k) 0
0 E1(k)

)
+

(
0 ∆B(k)

∆B(k) 0

)
. (4.4)

The effect of the perturbation is controlled by the ratio of ∆E(k) = E1(k)−E0(k) and the
perturbation ∆B(k). In Fig. 4.3(a,c) we see that ∆E(k) is much smaller than the band-gap
∆KIVC across most of the mini-BZ. A small ∆B could thus result in a significant change
in the LDOS even while the ground-state itself changes by a negligible amount of order
Hpert/∆KIVC ≪ 1.

It is instructive to construct eigenstates of Hpert in terms of the valley/Chern basis
|k, τ, C⟩. In the strong-coupling limit, it is given by the following Chern polarized states

4At 1T, the magnetic flux that goes through a Moiré unit cell is about 3% of the flux quantum
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Figure 4.2: (a) Total current-density of K-IVC eigenstates (Eq.(4.5)) |k =Mm, n = ±1⟩. Mm is the M -
point of the mini-BZ. Lime/pink dots are the A/B sublattice sites. (b) Schematic representation of the
energy levels of K-IVC. From left to right: the basis states; K-IVC eigenstates; perturbation eigenstates
(Eq.(4.4)). Red(blue) corresponds to superposed states with predominantly Chern +1 (−1) character. (c)
Kekulé charge-density of |k =Mm, occ, n = ±1⟩.

that span the occupied K-IVC bands[8]:

|k, occ,+⟩ ≈ (|k,+,+⟩+ eiθIVC |k,−,+⟩)/
√
2, (4.5)

|k, occ,−⟩ ≈ (|k,+,−⟩ − eiθIVC |k,−,−⟩)/
√
2. (4.6)

Individually, each Chern sector |k, occ,±⟩ contributes to Kekulé -LDOS, as in Fig. 4.2(c).
However, T ′ ensures that the Kekulé contribution from |k, occ,+⟩ and |−k, occ,−⟩ cancel
[App. C]. The perturbation, however, shifts their contributions to the LDOS in energy, and
a net signal appears.

4.7 K-IVC band-structure

As an explicit illustration of the T ′-breaking mechanism we compute the band-structures
of K-IVC0 and K-IVCB. The occupied DOS of KIVC0 (Fig. 4.3(d)) has a dominant peak
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Figure 4.3: (a-b) Self-consistent HF band-structure and DOS of K-IVC0 at CNP and η = 0.5meV. Yellow
patch denotes the spectrum within valence bands probed at η = 0.1meV in (c-d). (c) Band-structure of
K-IVCB at EB = 0.1 meV. Area of the blue (red) dots corresponds to the degree of positive (negative)
Chern polarization of the wavefunction. (d) Total/Kekulé -DOS of K-IVC0 and K-IVCB along with Chern
polarization-weighted total DOS.

at EvH ∼ −20meV which is in fact composed of two van-Hove singularities separated by
∆EvH ∼ 0.5meV. These two peaks originate from two different bands |k, n = 0/1⟩, so we
may estimate |∆E(k)| ∼ ∆EvH. Indeed, the eigenstates of K-IVCB shows substantial Chern-
polarization (Fig. 4.3(c)) for EB = 0.1meV. When probing the LDOS at energies near the
higher (lower) vH peak, we couple predominantly to the C = 1(−1) sector, and hence their
Kekulé signals (Fig. 4.2(c)) no longer cancel. The two peaks have opposite Kekulé signal;
for the experiment to work, it is thus crucial that the broadening η remains smaller than the
peak separation ∼ ∆EvH.

4.8 Discussion

There has already been some work on atomically-resolved STM measurement of MATBG.
In particular, Ref. [33] found a nematic state at the CNP, and observed a stripe-like signal
in the atomically-resolved LDOS of the AB/BA-regions. This feature is consistent with our
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LDOS calculations for the nSM (see [App. C] for AB/BA-regions), suggesting they have
identified the nSM as the ground state of this sample.

We note that while we have analyzed insulators of MATBG, the symmetry analysis
applies more generally. It should thus be possible to map out the symmetry-breaking order
as a function of electron density, and correlate it with the observed “cascade”. Furthermore,
since magic angle twisted trilayer graphene (MATTG) features the same symmetries and
band topology [119–121], our conclusions apply to STM measurements [122, 123] of MATTG
mutatis mutandis.
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Appendix A

Appenix for chapter 2

A.1 Interacting Bistritzer-MacDonald Model

In this appendix, we review the interacting BM model projected into the flat bands. We use
the conventions and definition of h(k) from Supp. Mat. I of [8].

Let us first consider the Coulomb interaction

ĤC =
1

2

∫
dr

∫
dr′ V (r− r′)ψ†

α(r)ψ
†
β(r

′)ψβ(r
′)ψα(r)

=
1

2A

∑

k,k′,q

Vq ψ
†
α,k+qψ

†
β,k′−qψβ,k′ψα,k , (A.1)

where A is the sample area, Vq =
∫
drV (r)eiq·r and α, β are combined layer-sublattice

indices. Summation over repeated indices is implicit. The Fourier components of the Fermi
operators are defined to satisfy the canonical anti-commutation relations:

{ψ†
α,k, ψβ,k′} = δα,βδk,k′ (A.2)

Next, we relabel the sums over the momenta k and k′ as

∑

k

→
∑

k∈mBZ

∑

τ

∑

G

, (A.3)

where τ = ± is a valley label, and G are the moiré reciprocal lattice vectors. We can now
approximate the Coulomb interaction as

ĤC =
1

2A

∑

τ,τ ′

∑

q

∑

k,k′∈mBZ

∑

G,G′

Vq × (A.4)

ψ†
α,τ,G(k+ q)ψ†

β,τ ′,G′(k
′ − q)ψβ,τ ′,G′(k′)ψα,τ,G(k) ,
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where ψ†
α,τ,G(k) = ψ†

α,k+τKΓ+G and KΓ denotes the Γ point of the mBZ centered at the

K points of the graphene layers. Note that by definition, ψ†
α,τ,G(k + G′) = ψ†

α,τ,G+G′(k).
Eq. (A.4) is only an approximation to the complete Coulomb interaction, as inter-valley
scattering terms have been neglected. This can be justified because of the long-range nature
of the interaction, which suppresses inter-valley scattering by a factor of order V2KΓ

/V0.
Next, we perform a unitary transformation to the BM band basis and define

f †
m,τ,k =

∑

α,G

um,τ ;α,G(k)ψ
†
α,τ,G(k) , (A.5)

where m labels the bands of the single-valley BM model, and um,τ ;α,G(k) are the periodic

part of the Bloch states of the BM Hamiltonian. Note that f †
m,τ,k+G′ = f †

m,τ,k because the
BM Bloch states satisfy um,τ ;α,G(k +G′) = um,τ ;α,G+G′(k). With this definition, Eq. (A.4)
takes the following form in the BM band basis:

ĤC =
1

2A

∑

τ,τ ′

∑

q

∑

k,k′∈mBZ

Vq
[
Λτq(k)

]
mn

[
Λτ

′
−q(k

′)
]
m′n′

×f †
m,τ,k+qf

†
m′,τ ′,k′−qfn′,τ ′,k′fn,τ,k , (A.6)

where the sums over band indices are implicit, and the form factors are given by

[
Λτq(k)

]
mn

=
∑

α,G

u∗m,τ ;α,G(k+ q)un,τ ;α,G(k) . (A.7)

In this work, we consider the single-valley model, which means that we fix all valley labels,
i.e. τ = + everywhere. The single-valley Coulomb interaction is then given by

ĤC,sv =
1

2A

∑

q,k,k′

Vq :
[
f †k+qΛq(k)fk

] [
f †k′−qΛ−q(k

′)fk′

]
: (A.8)

where Λq(k) = Λ+
q (k) and f †k = f †+,k is a vector of creation operators running over the BM

bands.
As a final step, we now project ĤC into the subspace where all remote valence bands are

occupied, and all remote conduction bands are empty. To do that, we first define following
Hartree Hamiltonian functional:

Ĥh[P (k)] =
V0
A

∑

G

[∑

k′

tr (P (k′)ΛG(k
′))

]

×
∑

k

f †kΛ−G(k)fk , (A.9)
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where the fermion operators are restricted to the flat bands, and which depends on a general
Slater determinant correlation matrix ⟨f †

m,kfn,k′⟩ =∑G δk+G,k′ [P (k)]nm. We also similarly
define a Fock Hamiltonian functional:

Ĥf [P (k)] = −
1

A

∑

q,k

Vq f †kΛq(k− q)P (k− q)Λ−q(k)fk , (A.10)

where again the fermion operators are restricted to the flat bands. With these definitions,
one can write the flat-band projected Coulomb interaction as

ĤC,sv

∣∣∣
FB

= H̃C,sv + Ĥh[Pr(k)] + Ĥf [Pr(k)] , (A.11)

where H̃C,sv is obtained from ĤC,sv by simply restricting all band indices to the flat bands,
and Pr(k) is the correlation matrix of the Slater determinant where only the remote valence
bands are filled.

Having obtained the flat-band projected single-valley Coulomb interaction, we now have
to be careful not to double count certain interaction effects. In particular, the value of
the hopping parameter in the tight-binding model of mono-layer graphene is chosen to best
reproduce the experimentally observed Dirac velocity. Importantly, this Dirac velocity is
already renormalized by the Coulomb interaction. So if we want to explicitly add back
the complete Coulomb interaction, we must make sure not to forget to subtract off the
renormalization of the dispersion. In practice, this means that we have to subtract off the
following Hartree-Fock Hamiltonian:

Ĥsub = Ĥh[P0(k)] + Ĥf [P0(k)] , (A.12)

where P0(k) is the correlation matrix of the charge-neutrality Slater determinant of two
decoupled graphene layers [42] restricted single spin and valley, expressed in the BM band
basis. The complete projected single-valley BM model thus takes the form

Ĥ = ĤBM,sv + ĤC,sv

∣∣∣
FB
− Ĥsub . (A.13)

Because the inter-layer tunneling is only a small perturbation compared to the intra-layer
hopping, it does not significantly change the remote bands. It thus holds to a very good
approximation that

[Pr(k)]mn = [P0(k)]mn for m,n ∈ remote bands . (A.14)

Now combining all the single-particle terms in Eq. (A.13), one obtains the matrix h(k)
defined in Eq. (2.1). The remaining interaction Hamiltonian of Eq. (A.13) is then exactly
the second term of Eq. (2.1).

Finally, let us also comment on the value of the dielectric constant ϵr that we use for
the projected model. The dielectric constant of the unprojected model is determined by the
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insulating hexagonal Boron-Nitride (hBN) substrate. In particular, it is given by the geo-
metric mean of the dielectric constants of hBN parallel and orthogonal to the atomic plane:
ϵhBN =

√
ϵ⊥ϵ∥ ≈ 4.4. When we restrict to the flat bands we have to take into account that

the filled remote bands which have been projected out act as another insulating background,
whose polarization will also contribute to the dielectric constant. We phenomologically in-
corporate this effect by screening the Coulomb potential with the static RPA polarization
of eight Dirac cones at neutrality. In doing so, we ignore the small inter-layer tunneling
terms (whose effect on the remote bands is expected to be small), and we overcount a small
contribution coming from the states in the flat bands themselves. The polarization bubble of
Dirac fermions in mono-layer graphene was calculated in Ref. [124]. Using the results from
that paper, we obtain a dielectric constant ϵr = ϵhBN+ND ∗0.73 ≈ 10.3, where ND = 8 is the
number of Dirac cones. This gives an order-of-magnitude estimate for the dielectric constant
of the projected model. Given the many approximations used in deriving this estimate, it is
safest to assume that the true dielectric constant lies somewhere in the interval ϵr ∼ 6− 12.

We also note that the effective gate distance d appearing in Vq = e2

4πϵq
tanh(qd) is modified

by the anisostropy of the substrate dielectric constant. Specifically, if dg is the physical

distance to the gate, then d =
√

ϵ⊥
ϵ∥
dg, due to the bending of field lines in an anisotropic

substrate.

A.2 Wannier Localization, Gauge fixing, and

Symmetrization

In this section, we list several invariants enforced by the maximal localization of Wannier
orbitals and gauge fixing. We also comment on the different between our gauge choice and
the gauge choice in [38], and how we can map states from one gauge to another.

We denote the periodic part of momentum space orbitals c†±,k by |u±(kx, ky)⟩. We define
2× 2 overlap matrix as

Oαβ(k,k
′) = ⟨uα(k)|uβ(k′)⟩ . (A.15)

For each overlap matrix O, we define unitary overlap matrix Õ by the unitary part of the
polar decomposition of O. Wannier localization [67] guarantees that the unitary overlap
matrix in the kx direction is always given by

Õαβ(k,k+∆kx) = δαβe
iPx(α,ky), (A.16)

where ∆kx is the unit of discretization in the x direction. Physically, this corresponds to
choosing constant Ax = Px/Gx.

Wannier localization fixes relative phases within each ky mode. To fix relative phases
between different ky modes, we demand a continuity criterion in the ky direction. One
natural choice is to demand the unitary overlap matrix in the y direction be the identity
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matrix:
Õαβ(k,k+∆ky) = δαβ, (A.17)

where the x component of k is some fixed kx0. The condition notably does not wraparound
the mBZ: the mode near ky/Gy = 0.5 and the mode near ky/Gy = −0.5 are not subject to
the continuity condition with each other.

This leaves us with a global U(1) × U(1) phase ambiguity. Fortunately, the Wannier
localization and continuity conditions are compatible with the symmetry requirements

C2T |u±(k)⟩ = |u∓(k)⟩ ,
C2x |u±(k)⟩ = ∓i |u∓(−k)⟩ ,

(A.18)

which fixes the gauge up to an overall minus sign.
We note that the gauge fixing condition is different from [38] on two accounts: we use a

different continuity criterion, and we fix C2x to act as σy rather than σx. The latter is easy
to account for by a eiπσx/4 rotation, which maps σy to σx, but there is no guarantee that the
gauge is the same even after such rotation.

Luckily, in the case of Ly = 6,Φy = π,w0 = 0.185, eiπσx/4 rotation maps our ground
state ansatz in Sec. 17 to their ground state ansatz, suggesting our gauge choice is the same
up to the rotation. In particular, this means we can go from their parametrization to our
parametrization simply by changing φ→ φ+ π/2. We make use of this fact when we write
down the Stripe ansatz in our gauge.

A.3 An Uncompressed MPO for BLG

This Appendix details the construction of the uncompressed infinite MPO for bilayer graphene.
More concretely, we show how to construct an iMPO which encodes arbitrary 4-fermion in-
teractions up to range R. 1 Schematically, what is the iMPO for the Hamiltonian

Ĥ =
∑

ij

tijc
†
icj +

∑
Vijkℓc

†
ic

†
jckcℓ, (A.19)

for arbitrary interactions t and V ?
We proceed in several stages. First we provide a straightforward construction of such an

MPO of size D = O(R3). However, this gives an iMPO which is too large to even begin
compressing (D ≈ 8, 000, 000 for our standard Hamiltonian parameters). Second, therefore,
we provide a more efficient MPO which represents the same operator at size D = O(R2),
which will give D ≈ 100, 000 — small enough to be compressed.

1For the construction of finite MPO for interacting fermions, as is relevant to quantum chemistry appli-
cations, we refer the reader to [60].
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A Straightforward MPO Construction

This section will give a relatively straightforward way to construct an MPO for a long-range
4-fermion Hamiltonian. For simplicity, we restrict ourselves to a 1D spin chain of spinless
fermions and no internal degrees of freedom and construct a iMPO representation for a class
of “toy” 4-body Hamiltonians

Ĥsimple =
∑

i<j<k<ℓ

Vijkℓc
†
ic

†
jckcℓ (A.20)

with |i− j| , |j − k| , |k − ℓ| ≤ R. 2 In particular, we have imposed the artificial proper-
ties that H contains only terms of the form c†c†cc (which makes this non-Hermitian), is
completely translationally invariant, and has i < j < k < ℓ with strict inequalities. These
restrictions will be lifted below.

i j k `

r1 r2 r3

Let us work in the finite state machine picture for the iMPO. For convenience, define
r1 = j − i, r2 = k − j, r3 = ℓ − k. As 0 < r1, r2, r3 ≤ R, our operator can have up to R3

terms. For each one, we must first place a c†, then place r1 − 1 identity operators 1̂, then
place another c†, and so on. To encode these into the finite state machine, we make a unique
path for each term from the initial to final nodes, as shown in Fig. A.1. For each term in

2This is slightly different from how we implemented ∆x cutoff for BLG, where we demanded ℓ− i < R.
This will only change the complexity by a constant factor, so we stick to the simpler cutoff

i 1, r2, r3

2, r2, r3

3, r2, r3

...

r1, r2, r3

...

R, r2, r3

1, r3

2, r3

3, r3

...

r2, r3

...

R, r3

1

2

3

...

r3

...

R

f

1̂

V
r
1 r

2 r
3 ĉ †

1̂

1̂

1̂

1̂

ĉ †

1̂

1̂

1̂

1̂ ĉ

1̂

1̂

1̂

1̂

ĉ

1̂
R3 nodes R2 nodes R nodes

Figure A.1: A straightforward but rather inefficient MPO for Ĥsimple.
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the Hamiltonian, there is an edge Vr1r2r3 from the initial node (i) to node (r1, r2, r3). After
that, there is a unique path from node (r1, r2, r3) to node (f). The nodes are labeled by
the distances to non-identity nodes that have yet to be placed. In each column, the path
simply “counts down” in the first index, until it reaches 1. At that site a non-identity on-site
operator is placed, and the path goes on to the next column. As a matrix, the operation of
counting down is encoded by a “skipping matrix”, with identities on the first superdiagonal:

Ŝ =




0 1̂

0 1̂
. . . . . .

0 1̂

0



.

We therefore adopt a concise diagrammatic notation where rectangular nodes represent nodes
that count down, as shown in Fig. A.2. In this notation, Ŝi acts on a node as3

Ŝi(Ô[ri...]) = (Ô[ri − 1...]). (A.21)

We will use this notation below. We also note that some transitions are deterministic, in
the sense that the next node is fully specified by the current node (e.g. (2, r2, r3)→ (1, r2, r3)).
On the other hand, the transition from the initial node is highly branching, giving rise to
the R3 different terms in the Hamiltonian. We show such highly branching transitions in the
figure by double arrows, while deterministic transitions are shown by single solid arrows.

Overall, this construction requires C1 (R) := R3 + R2 + R + 2 nodes. This is already
somewhat efficient, as multiple terms will partially reuse the same paths. For instance, the
paths through the state machine for V5,r2,r3 and V6,r2,r3 will be the same after the first few
edges. To add other types of terms, such as cc†cc† or ccc†c†, one must duplicate all these
nodes, giving 4C1(R) nodes. For bilayer graphene, we use a unit cell of size 12 and interaction
cutoff of 10 unit cells, giving D = 6, 970, 088 just for the four-body terms. This makes the
O(D3) compression algorithm impractical, so we must seek a more efficient way to encode
the MPO.

An Efficient MPO Construction

We now describe a more efficient way to encode the uncompressed MPO, and give explicit
state machines for 2-body, 3-body, and 4-body interaction terms. The key idea is to place
the coefficient Vr1r2r3 in the middle of the path rather than at the beginning.

Fig. A.2 (Bottom) shows the more efficient construction of the MPO for the same operator
as before, Eq. (A.20). Let us unpack how it works. For each term Vr1r2r3c

†c†cc, we start at
node (i), jump to the node (ĉ†[1]) by placing c†, then “count up” to r1, at which point we

3This is slight abuse of notation, since it doesn’t convey that Ŝi places an identity operator upon the
transition.
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i ĉ†ĉĉ[r1; r2, r3] ĉĉ[r2; r3] ĉ[r3] f

1̂ Ŝ1 Ŝ2 Ŝ3 1̂

Vr1r2r3 ĉ
†

ĉ† ĉ ĉ

i ĉ†[r1] ĉĉ[r2; r3] ĉ[r3] f

1̂ ŜT1 Ŝ2 Ŝ3 1̂

ĉ† Vr1r2r3 ĉ
†

ĉ ĉ

Figure A.2: (Top) Definition of the compact state machine notation. This is the same state machine as in
Fig. A.1, but where columns have been replaced by rectangular nodes. Rectangular nodes label the on-site
operators that are yet to be placed, as well as the distances to them. The first rectangle contains R3 nodes,
the second contains R2 and the third contains R. The self-loop Ŝ means one should place an identity 1̂ and
decrement the first index of the node. (Bottom) Another MPO which represents the same Hamiltonian with
only D = O(R2) nodes instead of O(R3). Rectangular nodes to the right of the branching arrow are labeled
similarly to the (Top), while the rectangular node to the left of the branching arrow is labeled by which
operator it has already picked up, and the distance to it.

place the on-site operator Vr1r2r3c
†. The state machine then “counts down” for distance r2,

places a c operator, counts down for distance r3, places a second c, and reaches the final
node.

To distinguish “count up” skipping matrix and ”count down” skipping matrix, we intro-
duced “transposed skipping matrix” ŜTi such that

ŜTi (Ô[ri...]) = (Ô[ri + 1...]). (A.22)

The advantage over the previous method is that, instead of having a unique path for
each term in the Hamiltonian, many of the paths are partially shared. For example the
terms Vr15r3 and Vr17r3 will share the same first r1 and last r3 steps in their path through
the state machine. This means that instead of requiring columns of sizes R3, R2, and R,
we instead only need R,R2, and R, which is vastly more efficient. Another way to see this
is to observe when the highly-branching transitions occur. In this more efficient algorithm,
branching occurs between ĉ† to ĉ†ĉ†), thereby reducing the number of paths to keep track
of to R2. Of course, one could continue to further optimize the layout of the state machine,
but we do not need a generic or completely optimal solution to this problem, only one that
will render the BLG Hamiltonian small enough to fit in memory to be compressed.

Now that we have described the technique for writing down a sufficient efficient MPO
construction, we will relax the artificial assumptions. Let us first relax the assumption that
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only c†c†cc terms appear. In general, we will have a Hamiltonian of the form

H = Hhop +Hint = Hhop +H2 +H3 +H4 (A.23)

Hhop =
∑

i<j

Ṽ ċc
ij c

†
icj +

∑

i<j

Ṽ cċ
ij cic

†
j

H2 =
∑

i<j

Ṽ nn
ij ninj

H3 =
∑

i<j<k

Ṽ ċnc
ijk c

†
injck + Ṽ nċc

ijk nic
†
jck + Ṽ ċcn

ijk c
†
icjnk

+ Ṽ ncċ
ijk nicjc

†
k + Ṽ cnċ

ijk cinjc
†
k + Ṽ cċn

ijk cic
†
jnk

H4 =
∑

i<j<k<ℓ

Ṽ ċċcc
ijkℓ c

†
ic

†
jckcℓ + Ṽ ċcċc

ijkℓ c
†
icjc

†
kcℓ

+ Ṽ ċccċ
ijkℓ c

†
icjckc

†
ℓ + Ṽ ccċċ

ijkℓ cicjc
†
kc

†
ℓ

+ Ṽ cċcċ
ijkℓ cic

†
jckc

†
ℓ + Ṽ cċċc

ijkℓ cic
†
jc

†
kcℓ,

with all 2-body, 3-body, and 4-body interactions involving c†, c, and n operators, and c† is
represented by ċ for concision. We can make this representation more amenable to finite
state machine description by mapping Ṽijkl to Vr0r1r2r3 such that Vi(j−i)(k−j)(ℓ−k) = Ṽijkl(See
Fig. A.3). By combining all of these, one can generate the full Hamiltonian Eq. (A.23) with
D(R) = 4R2 + 6R+ 2 nodes. In practice, then, the spinless, single-valley BLG Hamiltonian
on a cylinder with 6 momentum cuts (i.e. a unit cell of 12 sites) and interactions of range
10 unit cells is size D ≈ 58, 000 before compression.

A.4 Compression of infinite MPOs with general unit

cells

This Appendix will present an algorithm for compressing infinite Matrix Product Operators
(iMPOs) with non-trivial unit cells, a generalization of Ref. [61]. The main application for
these algorithms to compress the Hamiltonian for bilayer graphene down to a sufficiently
small bond dimension that DMRG may be performed easily, while retaining sufficient preci-
sion to determine its physical properties. However, as the technique may be of independent
interest, we will keep our discussion sufficiently general that the results apply to any iMPO
that shows up in 2D DMRG.

Let us briefly review the context in which this algorithm is useful. Suppose that you
have a Hamiltonian Ĥ for a 2D system, and wish to find the ground state with DMRG
[11, 125]. A standard technique is to use a ‘thin cylinder’ geometry of circumference Ny

sites and length Nx → ∞. One then chooses a linear (1D) ordering for the sites on the
cylinder by wrapping around in a helical pattern. This effectively reduces the problem to
a 1D chain, but at a cost: interactions at distance r in 2D can be as far as Ny × r in
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ĉ†

ĉ
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ĉ†

ĉ
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Ŝ2

Ŝ3
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ċċc
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Figure A.3: Finite state machines for constructing the 2-body, 3-body, and 4-body interactions of Eq. (A.23).
The notation is the same as in Fig. A.2: boxes stand for collections of many nodes with 1 ≤ ri ≤ R. For
concision, the operator c† is represented by ċ in superscripts. Note that some of the nodes can be reused
among 2, 3, and 4-body paths. We have suppressed the r0 index for clarity on the initial node and for the
V coefficients; this shows the case of unit cell of size N = 1.
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1D. Furthermore, the resource cost grows hugely, as the matrix product state (MPS) bond
dimension needed to accurately capture a 2D area law state grows as χ ∼ eNy [125]. In
practice, therefore, 2D DMRG is often limited to around Ny = 6 − 12, even with bond
dimensions of χ ∼ 10, 000 or more. For sufficiently long-range interactions in 2D, however,
the bottleneck is not the MPS bond dimension, but rather the MPO bond dimension needed
to encode the Hamiltonian. For example, long-range 4-body interactions of range R result
in iMPOs of bond dimension D ∼ R2 (see App. A.3), and hence DMRG scales as D2 ∼ R4,
which becomes quickly impractical. The algorithms given below allow one to proceed by
finding the best approximation for the iMPO of bond dimension D′ < D. For many physical
Hamiltonians, this compression incurs only a minor penalty (say, 10−4) in the precision of
the eventual ground state. In the case of the single-valley IBM model we have used in this
paper, the bond dimension may be reduced by a factor of 103, vastly improving the speed of
DMRG.

The rest of this Appendix is organized as follows. We first give an overview of iMPO
compression in the case without unit cells to set notation. We then discuss how an iMPO may
be “topologically ordered”, how this vastly speeds up compression, and present a practical
compression algorithm. Afterwards we examine the properties of compressed Hamiltonians:
under reasonable assumptions (1) Hermiticity is retained, (2) the fidelity of the compressed
ground state versus the true ground state is high, and (3) their ground state energy and
expectations values are accurate.

Lightning Review of iMPO Compression

We briefly review the notion of iMPO compression from [61]. It is well-known that the
optimal way to compress a 1D matrix product state is to perform a Schmidt decomposition
and drop the smallest singular values (see [126] or [74] for a review). For iMPOs, we employ
the same basic technique with a few modifications to preserve the locality of the operator.

We first present the algorithm in terms of (non-matrix product) local operators. Consider

a local operator Ĥ on an infinite 1D chain. We can split Ĥ into left and right halves at some
bond:

Ĥ = ĤL1̂R + 1̂LĤR +
D∑

a,b=1

ĥaLMabĥ
b
R (A.24)

where a subscript L or R means the operator is supported entirely on the left or right
half, respectively, and the matrix M keeps track of the terms which straddle the cut. This
decomposition is not unique; we have the freedom to apply arbitary unitaries on the left and
right. We can take advantage of this freedom to put Ĥ into almost-Schmidt form

Ĥ = ĤL1̂R + 1̂LĤR +
D∑

a=1

Ôa
LsaÔ

a
R (A.25)
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where both {Ôa
L} and {Ôa

R} are orthonormal collections under the scaled Frobenius norm

⟨A,B⟩ := Tr[Â†B̂]/Tr[I], (A.26)

and where s1 ≥ s2 ≥ · · · ≥ sD ≥ 0 are referred to as the singular values.4 We further require
that the operators Ôa

L,R are identity free, i.e. ⟨1̂L,R, Ôa
L,R⟩ = 0 ∀a. The compressed

operator is then simply the truncation of the sum to the largest D′ < D singular values

Ĥ ′ := ĤL1̂R + 1̂LĤR +
D′∑

a=1

Ôa
LsaÔ

a
R. (A.27)

One can show that Ĥ ′ is the best approximation to Ĥ with only D′ ‘terms’ straddling the
cut [61]. Furthermore, as we shall see below, the accuracy of the approximation is controlled
by the truncated singular value weight

ϵ2(D′) :=
D∑

a=D′+1

s2a. (A.28)

To compute almost-Schmidt forms and compress operators, we work in the framework
of matrix-product operators. We now recall their definitions to set notation and a few
essential properties. Suppose we have a space of on-site operators with an orthonormal
basis {1̂, Ô2, . . . , Ôd} where ⟨Ôα, Ôβ⟩ = δαβ is an inner product.5 Any translation-invariant
operator, with unit cell of size N , can be written as6

Ĥ = · · ·
[
Ŵ (1)Ŵ (2) · · · Ŵ (N)

] [
Ŵ (1) · · · Ŵ (N)

]
· · · (A.29)

where each Ŵ (n) =
∑d

α=1[W
(n)]αÔα is an operator-valued matrix of size D(n) ×D(n+1). We

require each Ŵ (n) to have blocks of size (1, D(n) − 2, 1)× (1, D(n+1) − 2, 1)

Ŵ =



1̂ ĉ d̂

Â b̂

1̂


 (A.30)

This ensures that each operator is a sum of terms that are the identity far enough to the left
or right — a physical and mathematical necessity for a local operator.

4We note that the singular values resulting from an almost-Schmidt decomposition and a true Schmidt
decomposition are slightly different. Their relation is described in Section 8 of [61].

5For example, a spin-12 chain has an on-site basis of the Pauli matrices {1̂, X̂, Ŷ , Ẑ}.
6This is notation for multiplication along the virtual indices: [Ŵ (1)Ŵ (2)]ac :=

∑D(2)

b=1

[
W (1)

]α
ab

[
W (2)

]β
bc
Ôα ⊗ Ôβ .
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An MPO is said to be in left-canonical form if all but the last column of each Ŵ (n)

are mutually orthonormal:7

D−1∑

a=1

⟨Ŵ (n)
ab , Ŵ

(n)
ac ⟩ = δbc, ∀n ∈ Z/NZ, 1 ≤ b, c ≤ D − 1. (A.31)

Similarly, an MPO is right-canonical if all the rows except the first are mutually orthonor-
mal.

The representation (A.29) is not unique, which is a manifestation of gauge freedom. Two

MPOs {Ŵ (n)} and {Ŵ (n)′} are gauge equivalent if there gauge exist matrices {Gn} such
that

Gn−1Ŵ
(n)′ = Ŵ (n)Gn, n ∈ Z/NZ. (A.32)

So long as Ĥ is sufficiently local, one can show[61] there exist a gauge where the Ŵ (n)’s are
left-canonical (and another gauge for right canonical).

Now that we have set definitions, the next section describes the compression algorithm
for unit cell MPOs.

The Unit Cell Compression Algorithm

The rough idea of the compression algorithm for unit cell MPOs {Ŵ (n)} is as follows.

1. Compute the right-canonical form {Ŵ (n)
R }.

2. Find the gauge transform {Gn} needed to transform to left-canonical form {Ŵ (n)
L }.

3. Take the SVD decomposition of the gauge transformation matrix: Gn = UnSnV
†
n and

absorb the unitaries into the Ŵ ’s. This realizes the almost-Schmidt decomposition of
Eq. (A.25).

4. Truncate the number of singular values in Sn from D(n) to D(n)′ and correspondingly
reduce the bond dimensions of the Ŵ ’s, producing the compressed Hamiltonian.

The rest of this section is devoted to showing the correctness of this procedure and filling in
the details. It turns out that the most subtle part by far is canonicalization — the algorithm
for putting an MPO into left/right canonical form. We therefore delay the discussion of
canonicalization to Appendix 31 below and for now simply assume it can be done.

We specialize to the case of N = 2 sites in the unit cell for concision, as larger unit cells
are a direct generalization. Suppose that

Rn−1Ŵ
n
R = Ŵ (n)Rn (A.33)

7More explicitly, if
∑d

α=1

∑D−1
a=1 [W

(n)]α∗ab [W
(n)]αac = δbc for each Ŵ (n).
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is a gauge transformation so that the Ŵ
(n)
R ’s are right-canonical. Then

Ĥ = · · · Ŵ (1)Ŵ (2)Ŵ (1)Ŵ (2) · · · (A.34)

= · · · Ŵ (1)
R Ŵ

(2)
R Ŵ

(1)
R Ŵ

(2)
R · · · (A.35)

(A.36)

by introducing R2 at ∞ and sweeping to the right. We can then impose a further gauge
transformation to make the first row of each Ŵ

(n)
R simultaneously identity-free. This is done

by

R′
n :=



1 tn 0
0 I 0
0 0 1


 , (A.37)

where the 1× (D(n)−2)-dimensional vectors tn are chosen such that 0 = c
(n)
0 + tn− tn+1A

(n)
0

where A
(n)
0 and c

(n)
0 are the 1̂-components of rA(n) and c(n) respectively.

(
c
(1)
0 · · · c

(N)
0

)
=

(
t1 · · · tN

)




I · · · −A(n)
0

−A(1)
0 I

. . . . . .

−A(n−1)
0 I


 .

(A.38)

In practice, one should solve this by imposing the identity free condition column-by-column.
For each new column, this requires solving a linear equation of size N . Using the same
technique from Eq. (71) of [61], the total operation can be performed in O(ND2) operations.

Imposing this gauge we may assume Ŵ
(n)
R has no identity components in its first row.

This implies that the first column of Ŵ
(n)
R is already orthogonal to all the other columns,

such that the gauge transformation to the left-canonical form can be written as

Cn−1Ŵ
(n)
R = Ŵ

(n)
L Cn , (A.39)

with block-diagonal gauge transformation matrices Cn = diag(1 Cn 1). Putting in a C2

matrix at −∞ and sweeping it to the center, we arrive at a mixed canonical form

Ĥ = · · · Ŵ (1)
L Ŵ

(2)
L C2Ŵ

(1)
R Ŵ

(2)
R · · · (A.40)

= · · · Ŵ (2)
L Ŵ

(1)
L C1Ŵ

(2)
R Ŵ

(1)
R · · · (A.41)

As Cn are block diagonal, we can compute their SVD’s

Cn = UnSnV
†
n (A.42)
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Algorithm 1 Unit Cell iMPO Compression

Require: {Ŵ (n)} is a first-order (see [61]) unit cell iMPO.

1: procedure UnitCellCompress(Ŵ (n), η) ▷ Cutoff η

2: Ŵ
(n)
R ← RightCan[Ŵ (n)]

3: Ŵ
(n)
R ← R′

n−1Ŵ
(n)
R R

′−1
n so that ĉ

(n)
0 = 0 ▷ Use tn from Eq. (A.38).

4: Ŵ
(n)
L , Cn ← LeftCan[Ŵ

(n)
R ]

5: (Un, Sn, V
†
n )← SVD[Cn]

6: Q̂(n), P̂ (n) ← U †
n−1Ŵ

(n)
L Un , V

†
n−1ŴRV

7: D(n) ← maxa{1 ≤ a ≤ D(n)] : S
(n)
aa > η} ▷ Defines the projector Pn.

8: Q̂(n) ← P†
n−1Q̂nPn

9: Sn ← P†
nS

(n)Pn
10: P̂ (n) ← P†

n−1P̂
(n)Pn

11: return Q̂(n)

which will also be block-diagonal. Define

Q̂(n) := U †
n−1Ŵ

(n)
L Un (A.43)

P̂ (n) := V †
n−1Ŵ

(n)
R Vn (A.44)

for n ∈ Z/NZ. Then, since UnU †
n = I = VnV

†
n , we have

Ĥ = · · · Q̂(1)Q̂(2)S2P̂
(1)P̂ (2) · · · (A.45)

= · · · Q̂(2)Q̂(1)S1P̂
(2)P̂ (1) · · · (A.46)

which is analogous to center-canonical form for MPS. The center bond can be swept back
and forth via the gauge relation

Sn−1P̂
(n) = Q̂(n)Sn, n ∈ Z/NZ. (A.47)

To see how compression works, we adopt the technique of assuming that the operator
can be represented exactly by an MPO of lower bond-dimension, i.e. that a number of
the singular values vanish exactly. Finding the lower bond dimension MPO uses the same
algorithm as compression when the small singular values are truncated, so this shows the
correctness of the algorithm.

Thus we assume, temporarily, that only D(n)′ of the D(n) singular values of Sn are non-
zero. Hence there are projection operators Pn from bond dimension D(n) to bond dimension
D(n)′ with PnP†

n a projector and P†
nPn = I1+χ(n)′+1 and

Sn = SnPnP†
n = PnS ′

nP†
n = PnP†

nSN (A.48)
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where S ′
n is the projected diagonal matrix of non-zero singular values.

We can then introduce pairs of projectors on each bond:

Ĥ = · · · Q̂(1)Q̂(2)S2P2P†
2P̂

(1)P̂ (2) · · · (A.49)

= · · · Q̂(1)S1P̂
(2)P2P†

2P̂
(1)P̂ (2) · · ·

= · · · Q̂(1)S1P1P†
1P̂

(2)P2P†
2P̂

(1)P̂ (2) · · ·
= · · ·P†

2Q̂
(1)P1P†

1P̂
(2)P2S

′
2P

†
2P̂

(1)P1P†
1P̂

(2)P2 · · ·
= · · ·P†

1Q̂
(2)P2P†

2P̂
(1)P1S

′
1P

†
1P̂

(2)P2P†
2P̂

(1)P1 · · ·

It is now clear how to define a new representation for Ĥ with a reduced bond dimension:

P̂ (n)′ := P†
n−1P̂

(n)Pn (A.50)

Q̂(n)′ := P†
n−1Q̂

(n)Pn (A.51)

(A.52)

whereupon
Ĥ = · · · Q̂(1)′Q̂(2)′S2P̂

(1)′P̂ (2)′ · · · (A.53)

is a representation of Ĥ with lower bond dimension. If we now relax the requirement that
the truncated singular values were exactly zero, the strict equality of the new representation
becomes approximate.

Canonicalization & Topological Sorting for Unit Cell MPOs

In this section we provide the “missing link” needed to complete the compression procedure:
a canonicalization algorithm. Any unit cell MPO (UCMPO) can be put into left or right
canonical form using QR iteration [61] with cost O(ND3). As many as 40 iterations can
be necessary to reach high precision, making this quite slow in practice. However, the
MPOs for Hamiltonians in DMRG have a special property, a “topological ordering”, which
enables canonicalization to be performed with cost O(ND3) but without iteration. For large
MPOs such as the one for BLG with D ∼ 100, 000, this is a crucial speed-up. We first
define a “topological ordering,” then provide the canonicalization algorithm and a proof
of its correctness and runtime. We conclude the section with a few remarks on practical
implementation details.

An MPO can be thought of as a finite state machine (FSM) for placing on-site operators
in a certain order [127]. For MPOs with N tensors in a unit cell, the FSM gains an additional
structure: the FSM has N parts, with the nodes of part n corresponding to the bond between
Ŵ (n−1) and Ŵ (n) and edges between parts n − 1 and n corresponding to tensor elements
Ŵ

(n)
ab . See Fig. A.4 for an example.

When one writes down an (non-unit cell) MPO Ŵ for a Hamiltonian “by hand”, then the

MPO generally has a special structure: Ŵ is upper-triangular as a matrix. In Ref. [61], the
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Ŵ (1) Ŵ (2) Ŵ (3) Ŵ (4)
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Figure A.4: An example of the finite state machine for an MPO with unit cell size 4. One on-site operator
is placed for each arrow, and the arrows wrap around from right to left. Each gray box represents the data
stored in one tensor. The UCMPO has bond dimension (D4, D1, D2, D3) = (5, 4, 4, 5) and is loop free. The
blue numbers are a (non-unique) topological ordering for the nodes.

upper triangular structure was shown to permit a fast canonicalization algorithm. However,
this does not immediately generalize to a unit cell MPO, for a simple reason: if a unit cell
MPO {Ŵ (n)} has bond dimensions D(1), D(2) . . . D(n), not all equal, then the matrices are
rectangular and cannot all be upper triangular. To find a good generalization of triangularity,
we must look to the finite state machine.

A UCMPO {Ŵ (n)}Nn=1 is said to be loop free if its finite state machine contains no
loops after the initial and final nodes are removed from the graph. For N = 1, then an
upper-triangular MPO is always loops free, and a loop-free MPO is always upper-triangular
(up to permutation). We stress that both the upper triangular and loop free conditions are

gauge-dependent. Furthermore, for any N , if each Ŵ (n) is square and upper-triangular, then
the UCMPO is loop free. The converse is almost true as well; any loop free UCMPO is an
upper-triangular MPO “in disguise”. To see this, we need a definition, which will be at the
heart of this section.

Definition 1. A topological ordering for a UCMPO {Ŵ (n)}Nn=1 is an ordering of the
nodes of the FSM (excluding the initial and final nodes)

O = {(a1, n1) ≺ (a2, n2) ≺ · · · ≺ (aD, nD)} (A.54)

such that
Ŵ

(n)
ab = 0 whenever (a, n) ⪰ (b, n+ 1), (A.55)
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where n ∈ Z/NZ indexes the bonds (explicitly, bond n+1 connects Ŵ (n) to Ŵ (n+1)), a ∈ N
indexes the node within the bond, and D =

∑
nD

(n) is the total number of nodes.

If an MPO is loop free, then its finite state machine (excluding the initial and final nodes)
is a directed acyclic graph, and thus contains at least one topological ordering. This is easily
computed by Kahn’s algorithm (a standard result in graph theory) with cost linear in the
number of nodes plus edges in the FSM. With this, we can show that loop free UCMPOs are
upper triangular ones “in disguise” and then use this ordering as the basis for an efficient
canonicalization algorithm.

Lemma 2. Suppse {Ŵ (n)}Nn=1 is a loop free MPO. Then, by inserting rows and columns
of zeros and permuting the rows and columns of the matrices (which is a gauge transform),

{Ŵ (n)} can be made upper triangular.

Proof. Suppose the bond dimension of Ŵ (n) is D(n) on the left and D(n+1) on the right, with
D =

∑
nD

(n). Let O be a topological ordering for {Ŵ (n)} of the form (A.54). Define a
gauge matrix Pn of dimension D(n) ×D with matrix elements

[Pn]b,i =

{
1 if (b, n+ 1) = Oi

0 otherwise.
(A.56)

This “blows up” Ŵ (n) on the right to bond dimension D > D(n+1) by inserting zeros, and
puts the indices into topological order. One can check that P†

nPn = ID(n+1) , so we may define

Ŵ (n)′ := P†
n−1Ŵ

(n)Pn of size D × D (which obeys Pn−1Ŵ
(n)′ = Ŵ (n)Pn, making it a gauge

transformation).

The new MPO Ŵ (n)′ is upper-triangular. To see this, take i ≥ j. Then either Ŵ
(n)′

ij =

W
(n)
ab for Oi = (a, n) and Oj = (b, n + 1), or Ŵ

(n)′

ij = 0. But Oi = (a, n) ⪰ (b, n + 1) = Oj,

so W
(n)
ab = 0 regardless. Therefore Ŵ (n)′ is upper triangular.

We present the algorithm for (left) canonicalization of loop free UCMPOs in Alg 2. We
now prove its correctness, then analyze its cost.

Proposition 3. Suppose {Ŵ (n)}Nn=1 is loop free. The output of Alg. 2 is a left canonical
UCMPO.

Proof. The main idea is to iterate over the columns of {Ŵ (n)} in topological order, orthog-
onalizing each column against all the previous ones as in Gram-Schmidt.

Let O be a topological order for the nodes as in (A.54). As each Ŵ (n) has the form (A.30),
the first column of each is already orthonormal. We proceed by induction. Suppose that we
have orthogonalized columns up to (d, n+ 1) ∈ O. Then for (a,m), (b,m) ≺ (d, n+ 1),

∑

c

⟨Ŵ (m)
ca , Ŵ

(m)
cb ⟩ = δab. (A.57)
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Algorithm 2 Unit Cell iMPO (Left) Canonicalization

Require: {Ŵ (n)}Nn=1 is a loop free UCMPO.

1: procedure UnitCellLeftCanonical(Ŵ (n), η)

2: O = Kahn’sAlgorithm[FSM[{Ŵ (n)}]]
3: for (b, n+ 1) ∈ O do
4: P ← {a : O ∋ (a, n+ 1) ≺ (b, n+ 1)}
5: ra ←

∑
c ⟨Ŵca, Ŵcb⟩ , ∀a ∈ P

6: R← IDn , Rab ← ra, ∀a ∈ P
7: Ŵ (n) ← Ŵ (n)R, Ŵ (n+1) ← R−1Ŵ (n+1)

8: R← IDn , Rbb ←
(∑

c ⟨Ŵ
(n)
cb , Ŵ

(n)
cb ⟩
)−1/2

9: Ŵ (n) ← Ŵ (n)R, Ŵ (n+1) ← R−1Ŵ (n+1)

10: return {Ŵ (n)}

Let the predecessor nodes be P := {(a, n + 1) : (a, n + 1) ≺ (d, n + 1)} and for each
(a, n) ∈ P , define the inner products with all previous columns as

ra :=
∑

c

⟨Ŵ (n)
ca , Ŵ

(n)
cd ⟩ , (A.58a)

R := ID(n+1 −
∑

a∈P
raead (A.58b)

where ead is the elementary matrix where entry ad is 1 and the rest are zero: (ead)ij = δaiδdj.
Here R is only non-identity in column d, and it performs elementary column operations when
acting to the left and elementary row operations acting to the right. In particular, we have
chosen it to perform one Gram-Schmidt step, orthogonalizing column d against previous
columns of Ŵ (n). It is easy to invert R, R−1 = ID(n) +

∑
a∈P raead, so we can cast this

Gram-Schmidt step as a gauge transform with a single non-identity gauge matrix:

Ŵ (n)′ := Ŵ (n)R, (A.59a)

Ŵ (n+1)′ := R−1Ŵ (n+1). (A.59b)

We then have two things to show: (i) that this gauge transform really does orthogonalize

column d of Ŵ (n) against previous columns and (ii) that the gauge transform does not ruin
the orthogonality condition of Eq. (A.57). Both are easy computations.

For (i), the effect of R acting on Ŵ (n) on the right is to add column c to column d with
coefficient rc:

Ŵ (n)R = Ŵ (n) −
∑

c∈P
rcŴ

(n)ecd.
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The matrix Ŵ (n)ecd is the matrix with only column d non-zero, and whose values are those
from column c of Ŵ (n). Let Ŵ:,a denote the ath column vector of Ŵ , as usual. Then

⟨Ŵ (n)
:,a , [Ŵ

(n)ecd]:,d⟩ = ⟨Ŵ (n)
:,a , Ŵ

(n)
:,c ⟩ = δac

by (A.57). Therefore, for any (a, n) ≺ (d, n),

⟨Ŵ (n)′
:,a , Ŵ

(n)′

:,d ⟩
= ⟨Ŵ (n)

:a , Ŵ
(n)
:d ⟩ −

∑

c∈P
rc ⟨Ŵ (n)

:,a , [Ŵ
(n)ecd]:,d⟩

= ra −
∑

c∈P
rcδca = 0.

Therefore column d of Ŵ (n) is orthogonal to each previous column.
For (ii), the effect of R−1 acting to the left on Ŵ (n+1) is to add row d to row c with

coefficient rc:

Ŵ (n+1)′ = Ŵ (n+1) +
∑

c∈P
rc
∑

e

(
Ŵ

(n+1)
de

)
ece =: Ŵ + δŴ .

Take (a, n+ 1), (b, n+ 1) ≺ (d, n). Then

[δŴ ]:,a =
∑

c∈P
rc

(
Ŵ

(n+1)
da

)
eca = 0

since Ŵ
(n+1)
da = 0 as (d, n) ⪰ (a, n+ 1) by (A.55), and similarly [δŴ ]:,b = 0. Therefore,

⟨Ŵ (n+1)′
:,a , Ŵ

(n+1)′

:,b ⟩ = ⟨Ŵ:,a + δŴ:,a, Ŵ:,b + δŴ:,b⟩
= ⟨Ŵ:,a, Ŵ:,b⟩+ 0 = δab,

so the induction hypothesis (A.57) holds for {Ŵ (n)′}.
As the gauge transform R adds previous columns to column d of Ŵ (n) and adds row d of

Ŵ (n+1) to previous rows, the transformed UCMPO is also loop free. Thus after this gauge
transform, column d of Ŵ (n)′ is orthogonal to all previous columns and all of the structure
of the UCMPO is preserved.

A similar, simpler gauge transform

R = ID(n+1) +
(∑

c

⟨Ŵ (n)′

cd , Ŵ
(n)′

cd ⟩
)−1/2

edd

can then be used to normalize column d of Ŵ (n)′ . Repeating the previous arguments, one
can show that this similarly does not disrupt the orthogonality of Ŵ (n+1)′ or the loop free
condition. Therefore we have made one more column orthonormal to the previous ones,
completing the proof.
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Algorithm 2 is quite efficient, with cost that scales as O(
∑

n[D
(n)]3). This is somewhat

surprising, as it seems we are doing a total of D =
∑

nDn gauge transformations, each of
which is a matrix multiplication. However, the R matrices are particularly simple: they
only differ from the identity in a single column. The transformations Ŵ (n)′ = Ŵ (n)R and
Ŵ (n+1)′ = RŴ (n+1) to orthogonalize a column may be performed with rank-1 matrix up-
dates whose cost is only O([D(n)]2). Similarly, the gauge transform to normalize a column,
which simply scales a row or column, costs only O(D(n)). As we must iterate over every
column of every tensor, the total cost is then O(

∑
n[D

(n)]3). However, each iteration re-
quires only elementary matrix operations, for which highly optimized libraries are available,
and a low constant factor on the algorithm. One can also employ these algorithms with
charge-conserving MPOs, which vastly decreases the runtime in practice.

Properties of Compressed Hamiltonians

We now show that compressed Hamiltonians are accurate approximations to the original
Hamiltonian. This will give us guarantees that the (ground state) physics we are interested
in is unchanged by compression. In fact, just as with matrix product states, the error is
controlled by the weight of the truncated singular values. We demonstrate three properties
of the compressed Hamiltonian H ′ when we truncate a single bond :

ĤBLG → Ĥ ′(ϵ) (A.60)

where Ĥ ′ satisfies the following:

1. Ĥ ′ is Hermitian

2. The ground state energy is accurate: δE ≤ 42 ϵ

3. Observables are accurate: ∆ ⟨Ô⟩ ≤ 43

∆E
||Ô|| ϵ

4. The ground state wavefunction is accurate: |1−F| ≤ 44

∆E2 ϵ
2,

We reiterate that these are local bounds, corresponding to truncating a single bond. It
is reasonable to expect that these results can be generalized to global bounds which apply
when all bonds are truncated simulataneously, just as they can for matrix product states.
However, such generalizations are often highly technical and therefore beyond the scope of
this work. As a practical matter, Fig. 2.5 demonstrates that the global errors in the ground
state energy, fidelity, and expectation values are small and decrease as ϵ(D)→ 0.

Compressed Hamiltonians are Hermitian

All Hamiltonians in quantum mechanics are Hermitian. We now show that Hermiticity is
preserved by dropping singular values of an Hamiltonian. There is just one caveat: if the
spectrum contains a set of degenerate singular values, then one must drop either all of them
or none of them:
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Proposition 4. Let Ĥ be a Hermitian operator with the following almost-Schmidt form:

Ĥ = ĤL1̂R + 1̂LĤR +
Ns∑

a=1

Da∑

i=1

Ôa,i
L saÔ

a,i
R (A.61)

where a labels degenerate singular values, Ns is the number of distinct singular values, and
Da is the degeneracy of the ath Schmidt value. Then, for any subset A ⊂ {1, 2, ..., Ns}, the
compressed operator

Ĥ ′ = ĤL1̂R + 1̂LĤR +
∑

a∈A

Da∑

i=1

Ôa,i
L saÔ

a,i
R (A.62)

is Hermitian.

For concision, we sketch the proof. Due to the orthonormality condition, ĤL1̂R, 1̂LĤR,
and

∑Ns

a=1

∑Da

i Ôa,i
L saÔ

a,i
R must be independently Hermitian. This implies they satisfy the

relation
∑Ns

a=1

∑Da

i Ôa,i
L saÔ

a,i
R =

∑Ns

a=1

∑Da

i (Ôa,i
L )†sa(Ô

a,i
R )†. Note that both the LHS and

the RHS of this equation can be regarded as a singular value decomposition in operator
space. It follows from the uniqueness of singular value decomposition that

∑Da

i Ôa,i
L saÔ

a,i
R =∑Da

i (Ôa,i
L )†sa(Ô

a,i
R )† for any a. The proposition follows.

In practice, this means that one should always drop singular values by imposing a mini-
mum value to retain rather than a maximum number.

We note that this result readily generalizes to a case when we truncate all bonds at the
same time. To see this, we note that the proof above shows the action of Hermitian conju-
gation commutes with the singular value matrix. Then, just like in the case of symmetric
MPS, singular values can be dropped without ruining Hermiticity.

Compressed Hamiltonians are Accurate

The accuracy of a compressed Hamiltonian is controlled by the weight of the truncated
singular values in almost-Schmidt form, Eq. (A.28). Conceptually, one should think of
truncation as introducing a small perturbation to the Hamiltonian. If the truncated weight
is small, then the perturbation is small, and its effects to the ground state energy, the fidelity,
and other observables are also small.

To quantify these effects, we employ the sup norm, an operator norm well-suited for
ground state properties. If Ĥ is an operator, then its sup norm ||Ĥ|| is given by

||Ĥ||2 := sup
|ψ⟩

⟨ψ|ĤĤ|ψ⟩
⟨ψ|ψ⟩ . (A.63)

As the sup norm is extensive, we work with the sup norm per unit cell, so that it is finite.
We first quote a result from [61]: the change in the ground state energy is small under

truncation.
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Proposition 5 (Prop. 5 of [61]). Suppose Ĥ is a k-body Hamiltonian with on-site dimension

d.8 If Ĥ is compressed from bond dimension D to Ĥ ′ with D′ with truncated weight

ϵ2 :=
D′∑

a=D+1

s2a, (A.64)

Then the change in the ground state energy is bounded by

δE ≤ ||Ĥ − Ĥ ′|| ≤ d
k
2 ϵ. (A.65)

In practice, the singular values for an Hamiltonian fall off quite quickly — often expo-
nentially, or as a power law at worse. So retaining only a small number of singular values
can produce a highly accurate approximation for the ground state energy.

It is natural to assume that if the ground state energy is accurate, then the other ground
state properties — such as expectation values of observables and even the entire ground state
wavefunction — are accurate as well. Unfortunately, there is a rare but severe failure of this
assumption. Near a first-order phase transition, a tiny perturbation to a Hamiltonian can
push the system across the phase transition, changing the properties of the ground state in
a discontinuous manner (except for the energy). However, as long as the competing states
have large energy difference away from the transition, this will only cause infinitesimal shift
of critical parameters. We can therefore understand the generic case by simply assuming we
are far from a phase transition and the ground state changes continuously.

To do this, we work in first order perturbation theory. Suppose Ĥ is a k-body Hamiltonian
with a unique ground state with gap ∆E. Suppose we write Ĥ = Ĥ ′ + δĤ with truncated
weight ϵ2 as in (A.64), and consider an observable of interest Ô. Then we can write the new
ground state as

|E0(δ)
′⟩ = |E0⟩+ |δE0⟩+O(ϵ2),

|δE0⟩ =
∑

λ ̸=0

⟨Eλ|δĤ|E0⟩
Eλ − E0

|Eλ⟩ .

Then

∆O :=
∣∣∣⟨E0(δ)

′|Ô|E0(δ)
′⟩ − ⟨E0|Ô|E0⟩

∣∣∣

= 2
∣∣∣Re ⟨E0|Ô|δE0⟩

∣∣∣+O(ϵ2),

8e.g. d = 4 for spin- 12 ’s or spinless fermions.
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so
∣∣∣⟨E0|Ô|δE0⟩

∣∣∣

≤
∣∣∣∣∣
∑

λ ̸=0

⟨E0|δĤ|Eλ⟩ ⟨Eλ|Ô|E0⟩
Eλ − E0

∣∣∣∣∣

≤ 1

∆E

∣∣∣∣∣
∑

λ ̸=0

⟨E0|Ô|Eλ⟩ ⟨Eλ|δĤ|E0⟩
∣∣∣∣∣

≤ 1

∆E

∣∣∣⟨E0|Ô δĤ|E0⟩ − ⟨E0|Ô|E0⟩ ⟨E0|δĤ|E0⟩
∣∣∣

≤ 2

∆E
||Ô|| · ||δĤ||

where we have used
∑

λ ̸=0 |Eλ⟩ ⟨Eλ| = I − |E0⟩ ⟨E0| and submultiplicativity of the norm.
Using (A.65), the change in the expectation value is bounded by

∆O ≤ 4d
k
2

∆E
||Ô|| ϵ. (A.66)

We may therefore conclude that the error in expectation values should be small, provided
that the uncompressed Hamiltonian is sufficiently far from a first-order phase transition. The
condition of a gapped ground state may be relaxed, in which case the error will be controlled
by the matrix elements of Ô between the ground state and low-lying excited states.

Compressed Hamiltonians have High Fidelity

We have now seen that the ground state energy and expectation values of observables are
accurately captured by the approximate, compressed Hamiltonian. In fact, the entire ground
state wavefunction |E ′

0⟩ of Ĥ ′ is very close to the original ground state wavefunction |E0⟩
of Ĥ. This allows us to use structural properties of |ψ′⟩, such as its correlation length as a
function of MPS bond dimension, as an accurate stand-in for the true ones and use them to
e.g. diagnose the scaling properties of phase transitions.

To see this, we again work in perturbation theory, this time to second order. Let Ĥ =
Ĥ ′ + δĤ and take the same assumptions as above. Then we write

|E0(δ)
′⟩ = |E0⟩+ |δE0⟩+ |δ2E0⟩+O(ϵ3).

so

⟨E0|E0(δ)
′⟩ = 1 + 0− 1

2

∑

λ ̸=0

⟨E0|δĤ|Eλ⟩ ⟨Eλ|δĤ|E0⟩
(Eλ − E0)2

.

By the same argument as above the error in the ground state fidelity is bounded as

|1− ⟨ψ′|ψ⟩| ≤ dk

∆E2
ϵ2. (A.67)
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k space xk space MPO
Ekin (meV) -69.099 -69.095 -69.095
Eint (meV) 32.263 32.257 32.257

∆Ekin (meV) - 4.2× 10−3 4.2× 10−3

∆Eint (meV) - 7.0× 10−3 6.4× 10−3

Table A.1: Energy of |ψkin⟩ per momentum per band at Ny = 2, w0/w1 = 0.825, d = 30nm. MPO
compression was performed with singular value truncation cutoff at 10−3meV. The energy difference is
calculated against the k space result.

In conclusion, we have now seen that the compressed MPOs should accurately reproduce the
true ground state physics and provided error bounds on the precision. This justifies our use
of compressed Hamiltonians to study twisted bilayer graphene.

A.5 Numerical cross checks

In addition to the analytic error bounds from the previous section, we also performed ex-
tensive numerical checks to verify that our computations were correct in practice as well as
in principle. As mentioned above, we used the standard TeNPy library [74], written by one
of us, for all DMRG calculations. The MPO compression code was carefully verified by unit
testing, benchmarking, and a variety of cross-checks. The two primary cross-checks, which
we now describe, verify the accuracy of the compression algorithm and the accuracy of the
transformations between the various representations of the Hamiltonian.

Gauge Transform Verification

It is crucial that the compression algorithm is not only precise, as we have shown in previous
sections, but also accurate. That is, the output of the implementation of the compression
algorithm is indeed the compressed MPO described analytically. To verify this, we use the
fact that Algorithm 1 is a gauge transformation, up until the truncation step. This gauge
transformation obeys gauge relations given in Sec. 31, and reproduced here for convenience:

Rn−1Ŵ
n
R = Ŵ (n)Rn,

Cn−1Ŵ
(n)
R = Ŵ

(n)
L Cn,

Sn−1P̂
(n) = Q̂(n)Sn.

(A.68)

Due to the large number of small matrix elements, many indexing errors and other accuracy
problems only manifest as small errors in the gauge relations. We therefore verified the
gauge relations to precision 10−13, nearly the floating point limit. Together with checks for
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canonicality of ŴR,L, this constitutes a sufficient check for the correctness of the algorithmic
implementation.

Cross checks for tBLG Hamiltonian

In order to perform HF and DMRG calculations, one needs to represent the Hamiltonian in
a variety of ways, as shown in Fig. 2.1, and it is imperative to make sure there is no error
when we transform one representation to another. This section reviews a list of numerical
checks we performed to guarantee correctness.

We first start from the momentum space representation, which is suitable for HF cal-
culations. This interaction is specified by Vq, together with the form factors Λq. This
representation can be Wannier localized (i.e. Fourier transformed) to obtain the mixed-xk
space representation for iDMRG. Finally we use the mixed-xk space representation to con-
struct an MPO, and compress it down to a smaller bond dimension. The first transformation
is a unitary transformation, and is in principle exact up to numerical precision, whereas the
precision of the compression is limited by MPO singular value cutoff.

In order to check if these transformations are accurate, we calculate a physical observable
using each representation. The kinetic part Hkin of the BM Hamiltonian h(k) is gapped for
a wide range of parameters for small Ny, and the ground state |ψkin⟩ is easy to calculate in
each representation. Therefore, we can easily evaluate the following energies in momentum
space, mixed-xk space, and DMRG.

Ekin = ⟨ψkin|Hkin |ψkin⟩
Eint = ⟨ψkin|Hint |ψkin⟩

(A.69)

where Hkin and Hint are the kinetic and interaction part of the Hamiltonian, respectively.
The comparison for Ny = 2 is shown in Table A.1. We see that the energy error is very
small. We further check that these errors decrease as the accuracy of each calculation is
increased (e.g. by increasing the cutoff range for MPO creation). We may conclude that the
transformations between Hamiltonian representations are sufficiently accurate.
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Appendix B

Appendix to chapter 3

B.1 Properties of the strained BM model and the

self-consistent semi-metal at neutrality

In this appendix, we discuss additional properties of both the non-interacting BM model in
the presence of non-zero strain, and the self-consistent semi-metal obtained in HF at the
CNP for sufficiently large ϵ.

Fig. B.1 shows the single-valley BM band spectrum along a cut through the 2D mBZ,
using θ = 1.05◦, and both ϵ = 0 and ϵ = 0.3%. At finite strain, the bandwidth of the
two active bands is much larger than the bandwidth at ϵ = 0. Importantly, for ϵ = 0.3%
there is still a sizable gap between the active bands and the remote bands. This is especially
important for our DMRG simulations, which work with an interacting Hamiltonian projected
into the active bands only.
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Figure B.1: Band spectrum of the single-valley BM model with twist angle θ = 1.05◦ along a cut through
the mini-BZ. (a) Original BM model with ϵ = 0. (b) Strained BM model with ϵ = 0.3%.

In Fig. B.2(a)-(b), we plot the difference and the average of the two active band energies
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Figure B.2: BM and HF band energies in the τ = + valley using θ = 1.05◦ and ϵ = 0.22%. A coordinate
transformation is performed in momentum space such that even with non-zero strain, the mBZ is a regular
hexagon, indicated by the dashed lines. (a)-(b) Energy difference ∆E and average energy Ē of the two active
bands of the BM Hamiltonian. (c)-(d) Energy difference ∆E and average energy Ē of the two active HF
bands of the self-consistent SM. A dielectric constant εr = 10, a 24× 24 momentum grid and Nb = 6 bands
per spin and valley were used.

of the single-valley BM Hamiltonian in the entire mBZ, using a non-zero strain ϵ = 0.22%.
Note that we have performed a coordinate transformation in momentum space such that
the mBZ is a regular hexagon. From the difference in energies, one can clearly identify the
position of the two Dirac cones, which as mentioned in the main text are in the vicinity of
the Γ-point.

In Fig. B.2(c)-(d), we plot the energy difference and average of the two active bands
in the mean-field band spectrum of the self-consistent SM in the τ = + valley at charge
neutrality. The self-consistent SM was obtained using a strain value ϵ = 0.22%, at which
the KIVC order is destroyed and the SM is the lowest-energy state. Similarly to the non-
interacting BM Hamiltonian, the Dirac cones of the self-consistent SM are located near Γ.
Away from these Dirac points, however, the two active bands in the τ = + valley are now
separated by an energy difference of roughly 50 meV (using εr = 10), which is larger by a
factor of 5 compared to the energy separation in the non-interacting BM model at the same
value of ϵ.

To quantify how different the BM ground state is from the self-consistent SM at charge
neutrality, we plot the Frobenius norm of P(k)− PBM(k) in Fig. B.3. As in the main text,
[P(k)](s′,τ ′,m),(s,τ,n) = ⟨f †

k,s,τ,nfk,s′,τ ′,m⟩ is the correlation matrix of the self-consistent Slater
determinant with the lowest energy, which is the SM for the strain value ϵ = 0.22% used
in Fig. B.3. [PBM(k)](s′,τ ′,m),(s,τ,n) = δs,s′δτ,τ ′δm,nΘ(εk,τ,n), with Θ(x) the Heaviside step
function, is the correlation matrix of ground state of the non-interacting BM Hamiltonian
at charge neutrality. From Fig. B.3, we see that ||P(k)− PBM(k)|| is equal to ∼ 0.1 almost
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Figure B.3: Norm of the difference between the correlation matrix P(k) of the self-consistent SM and the
correlation matrix PBM(k) of the ground state of the non-interacting BM Hamiltonian at charge neutrality,
using twist angle θ = 1.05◦ and strain ϵ = 0.22%. A coordinate transformation is performed in momentum
space such that the mBZ is a regular hexagon, indicated by the dashed lines. The self-consistent SM is
obtained using εr = 10 and Nb = 6 bands per spin and valley.

everywhere in the mBZ, except close to the Γ point, where it becomes of order one. This
shows that the self-consistent SM has significant overlap with the BM ground state in most
of the mBZ already at small strain values.

The discrepancy between the BM ground state and the self-consistent SM in a small
region near the Γ point is responsible for the differences in the LDOS discussed in the main
text. Here, we further elaborate on this point. We define the energy and layer-resolved
LDOS as

ρℓ(E, r) =
1

AmBZ

∑

s,τ,n

∫
d2k δ(E − εk,s,τ,n)

∑

σ=A,B

|ψℓ,σk,s,τ,n(r)|2 , (B.1)

where ℓ = ± denotes the graphene layers, AmBZ is the area of the mBZ, εk,s,τ,n are the

single-particle energies of the mean-field band spectrum, and ψℓ,σk,s,τ,n(r) are the corresponding
single-particle wavefunctions. In practice, we calculate ρℓ(E, r) by replacing the momentum
integral by a discrete sum, and the delta-function by a Gaussian with a standard deviation
of ∼ 0.5 meV for the self-consistent SM, and ∼ 0.2 meV for the BM ground state.

In Fig. B.4, we plot ρ+(r, E) for E/W = −0.35,−0.11, 0.15 and 0.35, whereW ∼ 65 meV
is the HF bandwidth (an overall energy constant is fixed by imposing that

∑
k,n εk,n = 0).

In Fig. B.4(a)-(b), we see a very clear C3z-breaking in the LDOS at energies E/W = −0.11
and E/W = 0.15, which respectively correspond to E ∼ −7 meV and E ∼ 10 meV and thus
lie outside the broad peaks in the DOS ρ(E) =

∫
d2r
∑

ℓ ρℓ(E, r) (see Fig. 3.2 in the main
text). At larger energies E/W = ±0.35, which correspond to values E ∼ ±20 meV inside
the broad peaks in the DOS, the C3z breaking is also present, but is much less pronounced.
At E/W = −0.11 and E/W = 0.15, the local charge distributions at the AA regions are
clearly elongated in one direction. Contrary to what one might expect, these strongly C3z-
breaking charge distributions are not simply a consequence of strain, but instead rely on the
Coulomb interaction. In particular, we find that for any value of E inside the active bands,
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Figure B.4: (a)-(d) Local density of states ρ+(E, r) on the top layer (in arbitrary units) of the self-consistent
SM obtained in HF. An overall energy constant is fixed by requiring that the HF single-particle energies εk,n
satisfy

∑
k

∑
n εk,n = 0. The results were obtained on a 24×24 momentum grid using θ = 1.05◦, ϵ = 0.22%,

εr = 10, and six bands per spin and valley.

ρ+(E, r) obtained from the non-interacting BM ground state does not show the same clear
asymmetric charge distributions at the AA regions as does the self-consistent SM (for an
example of the BM LDOS at two representative energies, see Fig. 3.2 in the main text).
This implies that interactions are necessary to reconstruct the BM LDOS in order to obtain
strong C3z breaking.

B.2 Hartree-Fock at ν = −2
In Fig. B.5 we show the SCHF results at filling ν = −2. In particular, we plot the KIVC
order parameter |∆KIVC| as a function of ϵ. We have performed four SCHF calculations, each
with a different set-up. The first SCHF calculation was done using both spin flavors on a
24× 24 momentum grid, keeping Nb = 6 bands per spin and valley. The second calculation
was done on a rectangular 96× 6 momentum gird, also with two spin flavors and six bands.
The third SCHF calculation was again done on the same rectangular grid with two spin
flavors, but now keeping only Nb = 2 bands per spin and valley. In the fourth and final
SCHF calculation we reduced the number of spin components in the active bands from two
to one (again working on the same rectangular grid and using Nb = 2). Importantly, even
though we keep only one spin flavor for the active bands, the remote bands retain two spin
flavors. This shows up in our Hamiltonian via the HF contribution of the remote bands to
the free fermion part h(k) of H [Eq. (4) main text].
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Figure B.5: Hartree-Fock KIVC order parameter as a function of strain ϵ at ν = −2. ↑↓ means that both
spin flavors were used, while ↑ means that the active bands were taken to be spin polarized. The momentum
grids used were of sizes 24 × 24 and 96 × 6 (with the smallest direction being the y-direction). Nb is the
number of bands kept per spin and valley.

From Fig. B.5 we see that going from the square to the rectangular momentum grid
stabilizes the KIVC state over larger strain values. On reducing the number of bands Nb from
six to two, however, the strain interval over which we find KIVC order becomes significantly
smaller. For all SCHF calculations where we keep both spin flavors, we find that the spin
polarization Ps := 1

N

∑
k tr (P(k)sz), with sz the Pauli-z matrix acting on spin indices, is

independent of ϵ and retains its value Ps = 2. This is because the filled active bands
are completely spin polarized by the exchange interaction. As a result, we see that the
SCHF calculation on the rectangular grid with only one spin component for the active bands
produces results that are indistinguishable from the results obtained for the complete model
with both spin flavors. This justifies doing DMRG on the model with spin polarized active
bands. We also see that the transition from the KIVC to the SM on the rectangular grid
with Nb = 2 happens near ϵ ∼ 0.1%, which is very close to the value where DMRG puts the
phase transition (see main text).

B.3 Details of the DMRG Calcuations

Our DMRG calculations follow the method described in [15]. In brief, we start with a
Bistrizer-MacDonald-like continuum model for TBG. We perform 1D hyrid Wannier local-
ization which gives states that are localized in x and periodic along y. These states form the
computational basis and have corresponding creation operators c†x,ky ,σ,τ where x ∈ N indexes

the x position, ky = 2πn/Ly runs over Ly momentum cuts through the mBZ, σ = ±1 labels
sublattice, and τ = ± labels the K and K ′ valleys. Each unit cell has 4Ly tensors, and
respects U(1) charge and valley symmetry. We then add Coulomb interactions as proscribed
in Eq. (3.4), with a cutoff of 6 moiré unit cells. The matrix product operator (MPO) for
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Figure B.6: The MPO singular values [61] for the Hamiltonian as a function of Ly. The dashed line represents
our truncation level.

this Hamiltonian has bond dimension D ≈ 40, 000 at Ly = 6 — large, but unsurprising
since this is a 2D model with a large unit cell, and long-range interactions. We use the
MPO compression procedure of [61] to reduce this to D ≈ 1100 while retaining a precision
of 0.01meV, as shown in Fig. B.6. Our DMRG is performed using the TeNPy library [74],
written by one of us.

KIVC order parameter and correlation lengths with DMRG

This section details the KIVC order parameter used for DMRG. As mentioned in the main
text, the KIVC phase breaks both valley charge conservation symmetry eiατ

z
as well as

spinless time-reversal symmetry T = τxK (K is complex conjugation), but preserves the
product T ′ = eiπτ

z/2T = τ yT . In 2D, the KIVC phase can be detected by the order
parameters

∫
d2k O±

K(k), where O
±
K(k) = σyτ±(k). Here we have introduced the notation

σiτ j(k) := c†kσ
iτ jck, and τ

± = τx ± iτ y. The Pauli matrices σi act on the orbital indices of

the two hybrid Wannier states in the same valley. The creation operators c†k,σ,τ are in turn

defined as c†kx,ky ,σ,τ :=
∑

x∈N e
−ix(kx+ky/2)c†x,ky ,σ,τ (in units where kx ∈ [0, 2π) ).

It is important to distinguish the KIVC phase from the time-reversal intervalley coherent
(TIVC) phase, whose order parameters are O±

T (k) = σxτ±(k). The following table shows
how these operators behave under conjugation by symmetries: O → U−1OU .

Symmetry O±
T (k) O±

K

T O∓
T (−k) −O∓

K(−k)
T ′ −O∓

T (−k) O∓
K(−k)

eiατz e±i2αO±
T (k) e±i2αO±

K(k)

From this table it follows that Ox
K(k) := [O+

K(k) + O−
K(k)]/2, averaged over the whole BZ,

vanishes for T -symmetric phases but is generically non-zero for T ′-symmetric states — and
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Figure B.7: (a) The correlation length in the KIVC sector ξK , as well as the summed KIVC and TIVC
correlators ΣK =

∑
x CK(x) and ΣT =

∑
x CT (x) plotted as a function of strain ϵ. Note that ξK diverges

with χ in the KIVC phase, as shown in Fig 4(c). One can see that ΣK tracks ξK closely, but ΣT does not,
and that ΣT ≪ ΣK . (b) The correlator CK(x) at a range of strain values. The transition is clearly visible.
Parameters: ν = −2, Ly = 6,Φy = 0, χ = 2048.

therefore distinguishes between the KIVC and TIVC states.
DMRG, as noted in the main text, uses a quasi-1D geometry which cannot support the

spontaneously broken U(1) valley symmetry that accompanies the KIVC phase. However,
two-point functions of any order parameter with the correct symmetry quantum numbers
will exhibit long-range order with a diverging correlation length. To that end, we consider

CK(x) = ⟨Ψ|


 ∑

ky=±ky0
O+
K(x, ky)




 ∑

k′y=±ky0
O−
K(0, k

′
y)


 |Ψ⟩ . (B.2)

where

O±
K(x, ky) = [σyτ±](x, ky) = ic†x,ky ,σ=1,τ=±1cx,ky ,σ=−1,τ=∓1 − ic†x,ky ,σ=−1,τ=±1cx,ky ,σ=1,τ=∓1.

(B.3)
We have restricted the sum over ky to a single pair of modes, symmetric across Γ to preserve
T ′. At large x, CK(x) ∼ e−x/ξK , where e−1/ξK is the largest eigenvalue of the MPS transfer
matrix in the relevant charge sector ∆QK . Explicitly, ∆QK = (∆qelectric = 0,∆qvalley =
2,∆ky = 0). One way long-range order manifests is a divergence ξK(χ) ∝ χ, which we show
in Fig. 4 (main text). We caution that the divergence ξK(χ) alone is not enough to uniquely
identify the KIVC phase; the TIVC order parameter CT (x) defined analogously to Eq. (B.2)
with O±

T = [σxτ±](x, ky), is also governed by the ∆QK sector of the transfer matrix, so a
divergence in ξK(χ) could also be a sign of a TIVC phase. If this phase were TIVC, however,
then CT (x) would exhibit long-range order, leading to a large value of ΣT =

∑
xCT (x), and

moreover that value would be governed by the correlation length ξK . Fig. B.7 shows this
does not occur. Indeed, the TIVC correlator is suppressed by several orders of magnitude
relative to the KIVC correlator. We may thus conclude the small strain phase in DMRG is
indeed KIVC.
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Let us give a few details on how the scaling collapse in Fig. 4 (a) of the main text
was performed. We expect the KIVC correlator to obey the scaling relation CK(x, ξK) =

ξ
−η(Ly)
K CK(x/ξK , 1) for some η(Ly)

Ly→∞−−−−→ 0. Our task is to determine η via a fitting proce-
dure to perform the scaling collapse. At a finite bond dimension, all correlators must decay
exponentially at sufficiently large x as e−x/ξK (perhaps after a regime of algebraic decay).
We therefore perform fits CK(x ≫ 1, ξK) = C0(ξK)e

−x/ξK . By comparison with the scaling
relation, one can see the prefactor to the exponential should scale as C0(ξK) ≈ ξ−η. Fig. B.8
shows C0(ξK) does indeed decay as a power law for sufficiently large ξK , and fitting shows
η(Ly = 6) ≈ 0.057. A few comments are in order. First, the behavior of η is non-monotonic
with Ly. We attribute this to finite size effects; one requires a cylinder radius of at least
Ly = 5 for KIVC order to be clearly detectable. Second, the magnitude η is quite small.
Typically, long-range order is visible at finite bond dimension as a range of intermediate x
where CK(x) ∼ x−η. However, as η is so small here, this intermediate range is extremely
short, so the algebraic decay is not visible in the scaling collapse. Nevertheless, the fact that
the data does obey the scaling collapse indicates it must have long-range order.

The Semimetal phase in DMRG

We now briefly describe how the semimetal phase found with SCHF can be detected within
DMRG. Within DMRG, a phase with zero charge gap has an electronic correlation length
which diverges with bond dimension. In this case, we expect a semimetal with two Dirac
nodes, so the correlation length will diverge only for particular momenta. As our DMRG
uses Ly = 6 evenly spaced cuts through the moiré Brillouin zone at ky = 2πn/Ly, we
will generically “miss” the Dirac nodes, and the correlation length will appear to be finite.
However, we can insert (valley-dependent) flux Φy, which shifts the cuts to ky[n] = 2π(n +
τΦy)/Ly where τ = ±1 is the valley label. Varying 0 ≤ Φy ≤ 1 will sweep the momentum
cuts across the BZ, leading to a divergence in the electronic correlation length when the cut
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is near to the Dirac node. As SCHF suggests that the Dirac nodes should be quite close
to ky = 0, we select the correlator Ce(x) = ⟨c†x,−ky [n=0],σ=+1,τ=+1c

†
0,ky [n=0],σ=+1,τ=+1⟩ ∼ e−x/ξe .

Figure B.9 shows that the correlation lengths do indeed begin to diverge with χ precisely
where the gap in SCHF is minimal. Together with the fact that SvN ≈ 0 for large ϵ— which
signals that DMRG finds Slater determinant states — we may conclude that DMRG detects
the same nematic semimetal phase as Hartree-Fock. Indeed, DMRG and SCHF even agree
closely on the location of the phase transition from KIVC to semimetal which is around ϵ =
0.1 %.
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Appendix to chapter 4

C.1 Geometry of Moiré superlattice
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Figure C.1: Geometry of a twisted bilayer graphene (TBG) lattice in real- and reciprocal- space. (See
Eq.(C.1)-(C.5) for notations.) (a) Zoomed-in top-view of a perfectly aligned bilayer graphene (BLG) and
the AA,AB,BA-stacking regions of a TBG lattice obtained after rotating by a commensurate twist angle
θ ∼ 7.34◦. Here we demonstrate D6-configuration where rotation center (also our origin) is at the center
of a plaquette, so that the TBG respects C2-symmetry. (See Fig. C.4(a) for D3, D2-configurations). (A,B)
and (A′,B′) denotes sublattice sites of the top and bottom layer, respectively. (b) Schematic illustration of
the Moiré superlattice structure of TBG and its Moiré unit cell (gray region). (c) First Brillouin-Zone (BZ)
of BLG and a mini-BZ (MBZ) of TBG (gray region) near the valley K. Intervalley scattering momenta Qj

(j = 0, · · · , 5) are related by sixfold-rotations. (See Eq. C.6, Fig. C.2(b), Fig. C.4(c).) One representative
momentum Q0 (blue arrow) is drawn here for brevity.
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Geometry of a graphene lattice is defined by (Fig. C.1(a,c))

l1 = a0
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(
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G1 =
2π

a0

(
−1, 1√

3

)
, G2 =

2π

a0

(
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1√
3

)
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3a0
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4π

3a0
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(C.2)

Let R(θ) be a 2D rotation operator which rotates a vector by angle θ in the counter-clockwise
direction. We adopt a convention where a twisted bilayer graphene (TBG) lattice is obtained
by applying R(±θ/2) to the top and bottom graphene layer respectively. The resultant Moiré
superlattice structure is defined by (Fig. C.1(b,c))

L1 = aM

(√
3

2
,
1

2

)
, L2 = aM

(√
3

2
,−1

2

)
, AM =

√
3a2M
2

, aM =
a0

2 sin(θ/2)
(C.3)

Kτ,b = R

(
θ

2

)
Kτ , Kτ,t = R

(
−θ
2

)
Kτ , Mm,τ =

1

2
(Kτ,b +Kτ,t) (C.4)

γτ =
2π

3aM

(
τ

(√
3 + cot

(
θ

2

))
, 0

)
, g1 =

2π

aM

(
1√
3
, 1

)
, g2 =

2π

aM

(
− 1√

3
, 1

)
. (C.5)

Here AM denotes the area of a Moiré unit cell, τ = +,− labels the graphene valleys K,K ′,
and γ-point refers to the origin of the mini-Brillouin Zone (MBZ) whose momentum-vector
(γτ ) is measured with respect to the Γ-point of the graphene BZ. Intervalley scattering
momenta Qj for j = 0, · · · , 5 are defined by

Qj = R
(π
3
(j + 2)

)
K. (C.6)

We used a commensurate D6 lattice configuration depicted in Fig. C.1(a) for our LDOS
calculations unless otherwise specified. In the presence of strain, we followed Ref. [12, 16,
91] to take into account the effect of the lattice distortions.

C.2 Self-consistent Hartree-Fock calculations

We performed self-consistent Hartree-Fock (HF) calculations of the spinless interacting BM
model. We used the double-gate screened Coulomb potential Vq = tanh |q|ds/(2|q|ϵ0ϵr)
and peformed so-called subtraction procedure to avoid double counting of the Coulomb
interaction. The details were reported elsewhere [8, 15]. We incorporated the effect of
heterostrain according to Ref. [91]. The parameters used to perform HF calculation can be
found in Table. C.1. We note that the DSM ground state is obtained from the BM model,
so the interaction parameters do not matter for it.
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By default, we use as our ansatz valley-diagonal and translation-independent Slater de-
terminant. This means our basis states for the Slater determinant has coupling only within
the same valley, and among states whose momenta are related by MBZ reciprocal lattice
vectors.

In order to find the IVC phases, we allow wavefunctions in K-valley to couple to wave-
functions in K ′-valley if their momentum difference is a MBZ reciprocal lattice vector. We
emphasize that this choice does not break the Moiré-scale translation symmetry of the Hamil-
tonian.

The IKS state is found by further allowing breaking of the Moiré-scale translation sym-
metry. We allow a three-fold translation breaking in the L1-direction. While some incom-
mensurate IKS states have lower energy, commensurate IKS is believed to capture most of
important physics [12].

DSM/VP/VH/K-IVC nSM IKS

gate distance ds 250 nm
Relative permitivity ϵr 12

Twist angle 1.05 ◦

w1 110meV
w0/w1 0.8

Number of active bands 2
Filling factor ν 0 -1

lattice dimensions nx × ny 24× 24
heterostrain ϵ 0 % 0.1 % 0.7 %

Table C.1: Parameters used for Hartree-Fock (HF) calculation. Filling factor ν is measured relative to
the charge neutrality point (CNP) in the unit of number of electrons per Moiré unit cell, and the lattice
dimensions nx × ny specify the number of k-points sampled in the mini-BZ of the Moiré superlattice.

C.3 Spectroscopy calculations

In this Section, we apply the Green’s function formalism to self-consistent Hartree-Fock
(HF) solutions of MATBG electronic system and define the spectroscopic observables (DOS,
LDOS, FTLDOS) computed in this work. We further provide details on numerical evaluation
procedure.

Green’s function formalism

Let |k, τ, C⟩ be the valley/Chern-polarized basis [7, 8] for the flat bands of Bistritzer-
Macdonald (BM) Hamiltonian [4], where k is crystal momentum in the mini-BZ, τ = ±1
labels the valleys K± = K,K ′, and C = ±1 labels the Chern number. A self-consistent



APPENDIX C. APPENDIX TO CHAPTER 4 99

eigenstate solution |k, n⟩ of a HF Hamiltonian Heff can be expressed as a linear combination
of |k, τ, C⟩, whose wavefunction is given by

⟨r|k, n⟩ =
∑

g,τ,C

F k,n
τ,C e

i(γτ+g+k)·r uk,τ,Cg (r). (C.7)

F k,n
τ,C are complex weights determined from the HF density matrix, g are the Moiré reciprocal

lattice vectors, and uk,τ,Cg (r) is a cell-periodic function which satisfies uk,τ,Cg (r) = uk,τ,Cg (r+L)
for a commensurate Moiré superlattice.

We can recover ukg,τ,C(r) by expanding it in terms of the Wannier-orbital basis φα(r−rα)
localized at the carbon lattice sites rα = Rα + tα. Here α ∈ (A,B,A′, B′) labels the
sublattices in top layer (A,B) and bottom layer (A′, B′), while Rα/tα denotes the graphene
unit cell/sublattice position vectors. Assuming φα(r − rα) has no spatial extent in the
z-direction for simplicity, they form an orthonormal basis set and satisfy normalization
condition

∫
R2 d

2rφ(r− rα)φ(r− rβ) = δα,βδrα,rβ . In terms of φα(r− rα), we can write

uk,τ,Cg (r) =
1√

NkNuc

∑

Rα,α

e−i(γτ+k+g)·(r−Rα−tα)Bk,τ,C
g,α φα(r−Rα − tα). (C.8)

Nk is the number of k-points in the mini-BZ, Nuc is the number of graphene unit cells in a
Moiré unit cell, and Bk,τ,C

g,α are the complex coefficients obtained by diagonalizing the BM
Hamiltonian.

Let z = E + iη where E is energy and η > 0 is a Lorentzian broadening parameter in
R. Using Eq.(C.7), Eq.(C.8) and spectral representation of the retarded Green’s function

Ĝ(z) = (z −Heff)
−1 [128], total LDOS ρ(r; z) = −ℑ

(
Tr Ĝ(z)

)
/π can be expressed as

ρ(r; z) =
−1
π
ℑ
(∑

k,n

|⟨r|k, n⟩|2
z − Ek,n

)
(C.9)

=
−1
π
ℑ
( ∑

k,n,τ,τ ′,α,β,rα,rβ

φ(r− rα)
Λk,n
τ,τ ′;α,β(rα,∆rαβ)

z − Ek,n

φ(r− rα −∆rαβ)

)
, (C.10)

where

Λk,n
τ,τ ′;α,β(rα,∆rαβ) =

1

NkNuc

∑

g,dg

ei(k+g+dg+γτ ′ )∆rαβei(dg+γτ ′−γτ )rαϕ
k,n

g,τ,αϕ
k,n
g+dg,τ ′,β. (C.11)

ϕk,n
g,τ,α =

∑

C

F k,n
τ,CB

k,τ,C
g,α , ∆rαβ = rβ − rα. (C.12)

Ek,n = ⟨k, n|Heff|k, n⟩ is the HF-energy and dg denotes a set of Moiré reciprocal lattice
vectors chosen independently from g. In numerical evaluation, we truncate the sum over g
and dg after ensuring convergence, which required |g| < 0.3/a0 and |dg| < 0.8/a0. ∆rαβ is
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limited up to third nearest neighbors. For all LDOS calculations, we chose an r-meshgrid of
resolution 0.01 nm× 0.01 nm.

Total DOS of the system is then obtained by integrating ρ(r; z) over a Moiré unit cell
ΩM of area AM ,

ρ(z) =

∫

ΩM

d2r

AM
ρ(r; z). (C.13)

It is useful to decompose the total DOS/LDOS expressions in Eq.(C.9),(C.13),(C.16) into
specific (τ, τ ′;α, β) components by using Eq.(C.11). In particular, we define ‘Kekulé -LDOS’
ρKekulé (r; z) and ‘Kekulé -DOS’ ρKekulé (z) for τ ̸= τ ′ as what follows:

ρKekulé (r; z) =
−1
π
ℑ
( ∑

k,n,τ ̸=τ ′,α,β,rα,rβ

φ(r− rα)
Λk,n
τ,τ ′;α,β(rα,∆rαβ)

z − Ek,n

φ(r− rα −∆rαβ)

)

(C.14)

ρKekulé (z) =

∫

ΩM

d2r

AM

∣∣∣ρKekulé (r; z)
∣∣∣. (C.15)

We take the absolute value in Eq.(C.15) since Kekulé -LDOS can take negative value, unlike
total LDOS. The Kekulé -DOS serves as our proxy for the graphene-scale modulation (Kekulé
signal) due to intervalley scattering.

Let us now work out the analytic form of the total FTLDOS ρ(q; z) =
∫
R2 d

2r e−iq·rρ(r; z).
By applying continuum Fourier-transformation to Eq.(C.9), we obtain

ρ(q; z) =
−1
2πi

((∑

k,n

⟨k, n|ρ̂q|k, n⟩
z − Ek,n

)
−
(∑

k,n

⟨k, n|ρ̂−q|k, n⟩
z − Ek,n

))
(C.16)

=
−1
2πi

(
Tr[ρ̂qĜ(z)]− Tr[ρ̂−qĜ(z)]

)
(C.17)

where ρ̂q = e−iq·r̂ is density operator. Its matrix elements are given by

⟨k, n|ρ̂q|k, n⟩ =
∫

R2

d2r e−iq·r
( ∑

τ,τ ′,α,β,rα,rβ

φ(r− rα)Λ
k,n
τ,τ ′;α,β(rα,∆rαβ)φ(r− rα −∆rαβ)

)
.

(C.18)
In practice, FTLDOS data is extracted by performing a Fourier transform of experimen-

tally measured LDOS. To best mimic this procedure, FTLDOS data presented in this work is
also computed via discrete Fourier transform of numerically computed LDOS. Given LDOS
signals on a meshgrid of size [−L,L]× [−L,L], we computed discrete Fourier-transform after
applying a Gaussian window function W (x, y) = exp(−(x2 + y2)/(2σ2L2)) with σ = 0.35.
As long as the meshgrid region is sufficiently large enough to capture Moiré-scale modu-
lations in ρ(r; z) (i.e. to resolve ‘internal’ splitting of the FTLDOS peaks in O(g)-scale),
we explicitly checked that the discrete Fourier-transformed LDOS data matches well with
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the exact FTLDOS obtained from the evaluation of Eq.(C.16),(C.18) in momentum-space.
Small spectral leakage and broadening of the Fourier modes were induced by the finite-sized
window [129], but they did not affect qualitative features near the peaks of FTLDOS and
hence were negligible.

Choice of orbitals

Let us briefly comment on our choice of φ. We construct our phenomenological Wannier
orbitals from 2D Gaussian functions localized at rα:

ϕα(r− rα) =

√
2

πl2orb
e−|r−rα|2/l2orb , (C.19)

whose density |ϕα(r − rα)|2 is normalized to unity in R2. We imposed an approximate
orthonormality of the orbitals by taking a superposition

φα(r− rα) = ϕα(r− rα)−
∑

β∈⟨αβ⟩

⟨ϕα, ϕβ⟩
2

ϕβ(r− rβ) (C.20)

where the sum is over the nearest neighbor sites of α, and ⟨,⟩ is an overlap integral between
the orbitals. This ensures orthonormality up to O(⟨ϕα, ϕβ⟩2) corrections.

We chose lorb ≈ 0.263a0 to roughly reproduce the observed STM pattern of graphene
[115] in the expectation that the orbital has substantial amplitude at the nearest-neighbor
bond centers. This gives a bond-centered weight of |ϕα(|r− rα| = a0/2

√
3)|2/|ϕα(0)|2 ≈ 0.3.

In practice, lorb can be a fitting parameter for reproducing experiment.

C.4 Derivation of Kekulé -LDOS signal extinction

We first show the case of antiunitary operator satisfying K−1ρ̂qK = ±ρ̂−q. Starting from
Eq.(C.16), we check the total FTLDOS transforms under K via

ρ(q; z) =
−1
2πi

(
Tr[ρ̂qĜ(z)]− Tr[ρ̂−qĜ(z)]

)
(C.21)

=
−1
2πi

(
Tr[KK−1ρ̂qKK−1Ĝ(z)]− Tr[KK−1ρ̂−qKK−1Ĝ(z)]

)
(C.22)

=
−1
2πi

(
Tr[K−1ρ̂qKK−1Ĝ(z)K]− Tr[KK−1ρ̂−qKK−1Ĝ(z)K]

)
(C.23)

=
−1
2πi

(
± Tr[ρ̂−qĜ†(z)]∓ Tr[ρ̂qĜ

†(z)]

)
= ±ρ(q; z), (C.24)
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where in going from second to third line we used skew-cyclicity of trace of antiunitary
operators: Tr[AB] = Tr[BA] for A, B antiunitary.

Similarly, for unitary operators satisfying U †ρ̂qU = ±ρ̂q we have

ρ(q; z) =
−1
2πi

(
Tr[ρ̂qĜ(z)]− Tr[ρ̂−qĜ(z)]

)
(C.25)

=
−1
2πi

(
Tr[U †ρ̂qUU

†Ĝ(z)U ]− Tr[U †ρ̂−qUU †Ĝ(z)U ]

)
(C.26)

=
−1
2πi

(
± Tr[ρ̂qĜ(z)]∓ Tr[ρ̂−qĜ(z)]

)
= ±ρ(q; z). (C.27)

In either case, we see that the minus sign enforces ρ(q; z) = 0.

C.5 Extraction of θIV C

In this Section, we explicitly demonstrate that the θIVC of K-IVC states can be extracted
from LDOS measurement of K-IVCB. As explained by Liu et al. [115], the intervalley
coherent phase θIVC can be extracted from the phase structure of the FTLDOS up to a π/3
ambiguity. In that work the FTLDOS was used to detect Kekulé -symmetry breaking in
the zeroth Landau-level of monolayer graphene in a magnetic field, and even the presence
of skyrmions in the symmetry-breaking order parameter. The key ingredient was to identify
particular combinations of FTLDOS signals that correspond to sublattice polarization and
valley coherence. An essentially identical procedure can be applied to MATBG, since Moiré
scale modulation should not change the analysis. We review this procedure, making suitable
adjustments to account for the unique symmetry properties of K-IVCB. This suggests that
K-IVC skyrmions, which is a prerequisite for the proposed skyrmionic superconductivity of
MATBG [10], might be observable from STM measurements.

For simplicity we start by assuming a MATBG in D6-configuration (Fig. C.1(a)), such
that the lattice has an exact C2-symmetry at the origin, a honeycomb plaquette center of the
AA-region. Recall that a generic K-IVC state respects T ′ and C2T ′′, where T ′ = τzT and
T ′′ = T eiτz(θIVC−π/2)/2 [8]. Let us first look at ‘special’ states, e.g. C2T ′-invariant state which
must have θIVC = 0, π. In the presence of a perpendicular magnetic field which breaks T ,
the system still retains C2. Following an argument similar to Eq.(C.25)-(C.27), this implies
that the Kekulé -FTLDOS of K-IVCB is purely real. In other words, Kekulé -LDOS is
symmetric under C2 and results in a C2-symmetric total LDOS, see Fig. C.2(a). Similarly,
C2T -invariant states, necessarily at θIVC = ±π/2, preserve C2τz and its Kekulé -FTLDOS
becomes purely imaginary (i.e. Kekulé -LDOS is anti-symmetric under C2 and total LDOS
loses C2-invariance, see Fig. C.2(b)). Because Kekulé -FTLDOS, directly sensitive to θIVC, is
by definition peaked at the intervalley scattering-momenta Qj, we henceforth focus on the
intervalley peaks ρ(Qj) while assuming that the bias voltage of STM is chosen appropriately
to maximize the Kekulé signals.
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Figure C.2: (a) Total LDOS ρ(r; z = E+iη) and (b) phases of total FTLDOS ρ(q; z) for the C2T ′, C2T , C2T ′′-
invariant spinless K-IVC states at CNP under magnetic field EB = 0.1meV, characterized by θIVC = 0◦,
30◦, 23.61◦ mod 60◦, respectively. Using Eq.(C.29), we extract θIVC = −2.34◦, 27.72◦, 21.29◦ mod 60◦. The
data shown is for the AA-region of bottom layer, at E = −19.8meV and η = 0.1meV.

Generic C2T ′′-invariant states with θIVC = ∆θ are related to the C2T ′-invariant states via
valley rotation eiτz∆θ/2. This induces a phase shift ρ(Qj) → ei∆θρ(Q0/2/4), e

−i∆θρ(Q1/3/5).
Because the peaks are purely real for the C2T ′-invariant states, we get

ang[ρ(Qj)] = θIVC mod π. (C.28)

In practice, we do not know the position (rc) of the C2-rotation center precisely with respect
to an origin of the lattice, which induces an arbitrary phase shift ρ(Qj) → eiQj ·rcρ(Qj). To
eliminate this origin-dependence, we can take a product of the peaks whose total momentum
is zero. {Q0, Q2, Q4} is one such combination, so we obtain

ang[ρ(Q0)ρ(Q2)ρ(Q4)] = 3θIVC mod π. (C.29)

Thus, θIVC can be determined up to π/3 ambiguity. In Fig. C.2, we show the total LDOS
and total FTLDOS of three different K-IVCB states obtained via invoking valley rotations to
the Hartree-Fock density matrix: (i) (approximately) C2T ′-invariant state, (ii) C2T -invariant
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state, and (iii) C2T ′′-invariant state at ∆θ = 23.61◦. By using Eq.(C.29), we extract θIVC =
−2.34◦, 27.72◦, 21.29◦ mod 60◦ respectively, which matches with the expectations up to a
small error ∼ O(1◦).

Let us comment a few noteworthy aspects about the extraction procedure. First, the
FTLDOS peaks are typically broadened from the existence of Moiré-scale modulations in
LDOS (e.g. due to smooth change of sublattice polarization textures), and may exhibit
phase variations across nodal lines in vicinity of the peaks. In such cases, even if we choose
ρ(q = Qj + ϵj) with small deviations ϵj ∼ O(g), the extraction procedure will still be robust
as long as ϵ0 + ϵ2 + ϵ4 = 0. Second, even when the system lacks an exact C2-symmetry
(e.g. D3-configuration, see Fig. C.4), the above procedure can still be used to extract θIVC

because slowly varying part of the DOS retains an approximate C2-symmetry about some
honeycomb plaquette near the very center of the AA-region. This allows us to leverage the
origin-independence. Nevertheless for the AB/BA-regions, there exists no such C2-invariant
center, so the extraction procedure above will be inapplicable. This is in contrast to the case
of monolayer graphene which always has a local C2-invariant center.

We note that the local extraction of θIVC in different AA-regions can in principle be used
to detect translation-breaking order of the IKS states. The IKS breaks translation-symmetry
of the Moiré lattice but instead enjoys a “screw”-like symmetry along the translation-broken
direction (e.g. ∝ L1), which combines the translation L1 followed by a valley rotation [12].
This manifests as different Kekulé patterns at different Moiré unit cells, as valley rotation
takes θIVC → θIVC +2π/M , where M ∼ 3 depends on model detail [12]. However, we expect
this extraction to be difficult in practice because (i) M is expected to be close to 3, which
suffers from π/3 ambiguity and (ii) the Moiré lattice is not commensurate at generic strain
and twist angle.

C.6 Spin structure at |ν| = 0, 2

In this section, we discuss the behavior of K-IVC in the presence of the spin degree of freedom
sµ. Most theoretical models discussed in the literature have an enhanced SU(2)+ × SU(2)−
symmetry in which spins can be rotated independently within each valley. The sign of
the small “Hund’s” coupling which breaks this symmetry down to the global spin-rotation
SU(2) is unknown, but regardless we may expect one of two scenarios [8, 130]. The most
natural case is a “ferromagnetic” Hund’s coupling, which prefers a singlet state (ν = 0) or
a spin polarized state (|ν| = 2). Because the STM signal is additive across spin-species, the
discussion in the main text is unchanged.

On the other hand, “anti-ferromagnetic” (AF) states are obtained by starting from the
ferromagnetic case and applying a π-spin rotation about some axis n̂ in only one of the two
valleys. For non-IVC states this rotation leaves the order (and hence the LDOS) unchanged,
but for the IVC states the inter-valley coherence transforms from τx/y → τx/y(n̂ ·s) where n̂ is
1) arbitrary for ν = 0, and 2) perpendicular to the spin direction for |ν| = 2. This effectively
shifts the IVC phase θIVC by π between the two spin-species, changing our conclusions. At
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both |ν| = 0, 2, the AF K-IVC state is symmetric under the unitary Un̂ ≡ τzR
π
⊥, where R

π
⊥

is a π spin-rotation about 1) any axis perpendicular to n̂ for ν = 0, or 2) the original spin
axis for |ν| = 2. The Kekulé -signal is odd under Un̂, enforcing an extinction. Unlike T ′,
the perturbation Hpert = EBC is even under Un̂, so within this approximation the Kekulé
-signal remains absent even for B > 0.

Fortunately, a magnetic field will also couple through a spin-Zeeman field, Hpert = EBC+
EZs

z. The spin-orientation of the AF K-IVC will in general lock and cant with EZ , breaking
Un̂ and allowing the Kekulé pattern to appear. Assessing the magnitude in this case requires
a detailed knowledge of the Hund’s coupling [131], which we thus leave to future work.

C.7 Supplementary numerical data

DSM/VP0/VPB/VH: LDOS and DOS spectrum
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Figure C.3: Spectroscopy calculation results for the spinless DSM states and self-consistent HF solutions
of the spinless VP0, VPB , VH states at charge-neutrality (ν = 0). We present (a) total LDOS ρ(r; z), (b)
total and Kekulé -DOS ρ(z = E + iη) signals for the bottom layer AA-region of MATBG. The signals are
normalized by their maximum. For DSM we set the Lorentzian broadening parameter η = 0.1meV, while
for VP0, VPB , and VH we set η = 0.5meV. The scanning-energies E = 1.7, −21.2, −21.2, −19.0meV
(cyan lines in (b)) are chosen respectively for each phase to compute LDOS. For DSM, DOS signals for
an energy window encompassing both the filled/empty bands are shown in (b), so that the two van-Hove
singularity peaks originate from the occupied/empty states respectively. For VP0, VPB , and VH, energies
below −8meV are presented to show DOS signals for the occupied states. White dots in (a) denote carbon
lattice sites.

In Fig. C.3, we present numerical LDOS/DOS data for several candidate ground states
at charge-neutrality (ν = 0) in the spinless model which preserve valley-dependent phase
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rotation symmetry UV (1): symmetric Dirac semimetal (DSM); valley-polarized without per-
turbation (VP0); valley-polarized with small perpendicular magnetic field (VPB); valley-Hall
(VH). The DSM band-structure is obtained from the non-interacting Bistritzer-Macdonald
(BM) model. VP0/VPB/VH states are obtained by performing self-consistent Hartree-
Fock (HF) calculations on the spinless interacting BM model (See Table. C.1 for details
on HF calculations). For VPB, the effect of a perpendicular magnetic field was modeled by
EB ≈ 0.5meV between the C = ±1 Chern-polarized VP0 states. We have omitted including
the FTLDOS, as we only observed featureless Bragg peaks for these states.

We now describe the qualitative features of each phase observable from the numerical
data.

(iv) DSM: The ground state of the non-interacting BM model [4] (or a dressed version
thereof) respects all symmetries of MATBG. In particular, it has C3 and UV (1) symmetry,
which prohibits a nematic axis and Kekulé signal, respectively. The LDOS is indeed fully
symmetric.

(v) VP0/VPB: The valley-polarized state VP0 is obtained by doubly occupying one
valley (e.g. |τ = 1, C = 1⟩, |τ = 1, C = −1⟩), breaking C2 and T while preserving C3 and
C2T . C2T rules out sublattice polarization, so the LDOS is fully symmetric, as can be
confirmed from the numerical LDOS. However, when B > 0, C2T is broken and we expect
sublattice polarization to emerge in a narrow range of tunneling bias (∼ EB) close to the
van-Hove (vH) singularity. We indeed observe a substantial sublattice polarization for VPB
near the lower vH singularity. As discussed for the K-IVC in the main text, this reflects the
sublattice-polarized nature of the Chern-polarized states.

(vi) VH: The valley-Hall state is obtained by occupying either the σ = A or B sublattice
(e.g. |τ = 1, C = 1⟩, |τ = −1, C = −1⟩), breaking C2. We thus expect strong sublattice
polarization, with opposite sign in the filled / empty DOS. In the numerical LDOS, we
indeed see a highly sublattice-polarized signal.

K-IVCB: LDOS/FTLDOS for D3-configuration

In order to confirm that our predictions do not rely on the detailed geometry (in particular
the existence of an exact C2-symmetry at the AA-region) of a TBG lattice, we performed
LDOS calculations on MATBG in the D3-configuration (Fig. C.4(a)). For concreteness,
we computed LDOS/FTLDOS for approximately C2T ′-invariant K-IVCB states at EB =
0.1meV. As we see in Fig. C.4(b,c), not only are the Kekulé -LDOS patterns are similar to
those of D6-configuration, the same θIVC can be extracted from the phases of the FTLDOS
up to a small error (c.f. Fig. C.2(a)).

K-IVC: magnetic field dependence of the Kekulé -DOS spectrum

In Fig. C.5 we show the total DOS and Kekulé -DOS of K-IVC states under various magnetic
fields at η = 0.1meV. The Kekulé -DOS signal increases approximately linearly as a function
of the perturbation strength EB, and reaches ∼ 10% of the total DOS signal (near the
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Figure C.4: (a) Zoomed-in view of the AA-region of MATBG in various lattice configurations at twist
angle θ ∼ 7.34◦. Each configuration is generated by choosing a plaquette-, site-, and bond-center as the
rotation-center, and respects symmetries of the point group D6, D3, and D2, respectively. (b) Total LDOS
ρ(r; z = E + iη) and (c) phases of total FTLDOS ρ(q; z) for the spinless, approximately C2T ′-invariant
K-IVC states at CNP under magnetic field EB = 0.1meV, defined on a MATBG in D3-configuration. Using
Eq.(C.29), we extract θIVC = −2.31◦ mod 60◦. The data shown is for the AA-region of bottom layer, at
E = −19.8meV and η = 0.1meV.

energies indicated by the dotted vertical lines) at EB = 0.1meV. This is consistent with our
prediction in the main text that EB ≳ η is necessary for observing substantial Kekulé signal.

nSM: comparison of the full DOS spectrum and charge-density
signals at different heterostrain parameters

We show in Fig. C.6 the total DOS spectrum and the energy-integrated LDOS (charge-
density) ρ(r) =

∫
dEρ(r;E) of the conduction/valence band (CB/VB) for the two distinct

nSM states at CNP, computed at heterostrain parameters [91] (a) ϵ = 0.1% and (b) ϵ =
0.5%. Via shape distortion and Moiré-scale spatial distribution of the charge-density signals
in the AA-regions, we can observe the global charge-nematicity and the effect of strain.
Furthermore, we observe that CB↔VB switches its nematic axis; following Ref. [33], this
feature can be quantified by measuring the ‘net-charge’ ∆ρ(r) = ρVB(r)− ρCB(r) (Fig. C.7),
where the blue/red signifies the degree of electron/hole doping. We see clearly the emergence
of a stripy, quadrupolar net-charge order at the AA-regions (more prominently for ϵ = 0.5%),
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Figure C.5: Total DOS ρ(z = E + iη) and Kekulé -DOS ρKekulé (z) (Eq.(C.15)) spectrum of the valence
bands for the spinless K-IVC states at CNP under various magnetic fields, at η = 0.1meV. Dotted vertical
lines identify two sub-peaks (∼ −20.4,−19.9meV) within a van-Hove singularity peak of the valence-bands.

which qualitatively matches with an experimental data [33].
We show in Fig. C.8 the graphene-scale charge-density of the CB/VB for the same nSM

states shown in Fig. C.6 at (a) ϵ = 0.1% and (b) ϵ = 0.5%, focusing on the very center of
the AA/AB/BA-regions in bottom layer. From the AA-region, we see that the direction
of local bond-anisotropy switches as VB↔CB for both strain values, in a similar spirit
to the switch of nematicity observed in Moiré-scale signals. At the AB/BA-regions the
signals are dominantly sublattice B/A-polarized, same for the CB/VB. This can be explained
from the chiral limit phenomenology of the valley/Chern basis |k, τ, C⟩ [7, 8] for the flat
bands which are σ = A/B = Cτ -polarized; as shown by Ref. [7], each A/B-polarized flat
band wavefunction then has zero density at the AB/BA-region respectively, resulting in
local sublattice polarization. This phenomenology survives away from the chiral limit, as
evidenced by the polarization of CB+VB.

Comparing the strain-dependence of the AB/BA-region signals, we see a more strik-
ing feature, the prominence of B/A-centered “tadpole-like” bond-anisotropy along a zigzag
direction (±60◦ from the y-axis) for ϵ = 0.5%, in contrast to the strong equal-weight bond-
anisotropy observed in the AA-region for both heterostrain values. A similar qualitative
feature has been observed in experiment as well [33]. Such stripy bond-nematicity in the
AB/BA-regions (with graphene translation symmetry) could be a signature of a non-IVC
phase stabilized under a weak strain. Along with the quadrupolar net-charge distributions
shown in Fig. C.7, our observations suggest that strain significantly alters the charge order
of an nSM state.

We comment that the observed bond-nematicity patterns should be sensitive to choice of
the Wannier orbitals and direction of the applied strain, which can enter as tuning parameters
for reproducing experiment.
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Figure C.6: (i) Total DOS ρ(z = E + iη) spectrum with η = 0.5meV and (ii) total charge-density ρ(r) of
the conduction/valence bands (CB/VB) for the two spinless nSM states at CNP, obtained at heterostrain
parameter (a) ϵ = 0.1% and (b) ϵ = 0.5%. The electrons fill 2 bands out of the 4 bands (VB, shaded blue area
of (a-i,b-i)). The colored contour lines in (a-ii,b-ii) represent the iso-signal contours within [0.0, 0.3]-range
of the normalized ρ(r). The data shown is for the bottom layer.

IKS: full DOS spectrum and charge-density signals at the
AA/AB/BA-regions

We show in Fig. C.9 the total DOS and Kekulé -DOS spectrum of the spinless IKS states
at ν = −1 and heterostrain ϵ = 0.7%. There are 12 bands total available due to three-fold
translation symmetry breaking along L1 [12]. The IKS is an insulating state at ν = −1 with
a band gap 10− 20meV, where the electrons fill 3 out of the 12 bands (VB). In contrast to
the VB and low-energy conduction bands (CB1) which have a sizable Kekulé -DOS, we find
that the Kekulé -DOS signal is significantly reduced for the higher-energy conduction bands
(CB2) at E ≳ 30meV. Because there exists no symmetries such as T ′ in IKS which enforce
selection rules in ρq (Eq.(C.21),(C.25)), the absence of Kekulé -DOS implies that the CB2 has
lost intervalley coherence. Such “IVC-depletion” of the IKS has been theoretically analyzed
via energetic considerations of the momentum-dependent valley-hybridization pattern, and
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Figure C.7: Net charge-density signal ∆ρ(r) = ρVB(r) − ρCB(r) for the nSM states shown in Fig. C.6, at
heterostrain parameter (a) ϵ = 0.1% and (b) ϵ = 0.5%. The data shown is for the bottom layer.

is consistent with high valley-polarization predicted for the upper bands (see Ref. [12] for
detail.)

We show in Fig. C.10 the graphene-scale charge-density of the valence/conduction bands
(VB, CB1, CB2) for the same IKS states at the very center of the AA/AB/BA-regions. For
CB2, we find that the Kekulé pattern disappears as expected from the vanishing Kekulé -
DOS while the signal resembles those of the nSM conduction bands (c.f. Fig. C.8), indicating
a non-IVC but nematic charge order. For VB and CB1, we see clear

√
3×
√
3 Kekulé patterns

as well as sublattice polarizations in the AB/BA-regions. The equal-weight bond-anisotropy
in the AA-region and the stripy “tadpole-like” bond-anisotropy in the AB/BA-regions are
also observed. Such resemblances to the nSM charge order under the heterostrain ϵ = 0.5%
(c.f. Fig. C.8) shows that a strain leaves sharp density fingerprints on IVC states as well,
via bond-anisotropic charge order.
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Figure C.8: Graphene-scale charge-density ρ(r) of the conduction/valence bands (CB/VB) for the nSM
states shown in Fig. C.6, at heterostrain parameter (a) ϵ = 0.1% and (b) ϵ = 0.5%. Subplots at each row
are centered at the AA/AB/BA-regions of the strained MATBG lattice, depicted in Fig. C.6(a-ii,b-ii). The
data shown is for the bottom layer.
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Figure C.9: Total DOS ρ(z = E+ iη) and Kekulé -DOS ρKekulé (z) (Eq.(C.15)) spectrum of the spinless IKS
states at filling ν = −1, η = 0.5meV, and heterostrain ϵ = 0.7%. The electrons fill 3 valence bands (VB,
shaded blue area) out of the 12 bands to form an insulating state. The conduction bands are grouped into
CB1 and CB2 separated by a dip near 30meV, corresponding to holes filling 3 and 6 bands respectively.
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Figure C.10: Graphene-scale charge-density ρ(r) of the valence/conduction bands (a) VB (b) CB1 (c) CB2
for the IKS states shown in Fig. C.9, at filling ν = −1 and heterostrain ϵ = 0.7%. Subplots at each row
are centered at the AA/AB/BA-regions of the strained MATBG lattice (c.f. Fig. C.6(a-ii,b-ii)). The data
shown is for the bottom layer.
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