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Abstract  1 

Agricultural management practices affect bulk soil microbial communities and the functions they carry 2 

out, but it remains unclear how these effects extend to the rhizosphere in different agroecosystem 3 

contexts. Given close linkages between rhizosphere processes and plant nutrition and productivity, 4 

understanding how management practices impact this critical zone is of great importance to optimize 5 

plant-soil interactions for agricultural sustainability. A comparison of six paired conventional-organic 6 

processing tomato farms was conducted to investigate relationships between management, soil 7 

physicochemical parameters, and rhizosphere microbial community composition and functions. 8 

Organically managed fields were higher in soil total N and NO3-N, total and labile C, plant Ca, S, and Cu, 9 

and other essential nutrients, while soil pH was higher in conventionally managed fields. Differential 10 

abundance, indicator species, and random forest analyses of rhizosphere communities revealed 11 

compositional differences between organic and conventional systems and identified management-specific 12 

microbial taxa. Phylogeny-based trait prediction showed that these differences translated into more 13 

abundant pathogenesis-related gene functions in conventional systems. Structural equation modeling 14 

revealed a greater effect of soil biological communities than physicochemical parameters on plant 15 

outcomes. These results highlight the importance of rhizosphere-specific studies, as plant selection likely 16 

interacts with management in regulating microbial communities and functions that impact agricultural 17 

productivity.  18 

Importance 19 

Agriculture relies in part on close linkages between plants and the microorganisms that live in association 20 

with plant roots. These rhizosphere bacteria and fungi are distinct from microbial communities found in 21 

the rest of the soil and are even more important to plant nutrient uptake and health. Evidence from field 22 

studies shows that agricultural management practices such as fertilization and tillage shape microbial 23 

communities in bulk soil, but little is known about how these practices affect the rhizosphere. We 24 

investigated how agricultural management affects plant-soil-microbe interactions by comparing soil 25 
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physical and chemical properties, plant nutrients, and rhizosphere microbial communities from paired 26 

fields under organic and conventional management. Our results show that human management effects 27 

extend even to microorganisms living in close association with plant roots and highlight the importance of 28 

these bacteria and fungi to crop nutrition and productivity. 29 

 30 

Introduction 31 

Soil microbial communities mediate the provision of many ecosystem services by soils and are 32 

increasingly recognized as fundamental regulators of plant and environmental outcomes of 33 

agroecosystems. Agricultural practices such as nutrient inputs and tillage have been shown to shape bulk 34 

soil microbial communities and functions across spatial and temporal scales (1–4). Comparisons of bulk 35 

soil under different management strategies, i.e. organic (nutrients provided from sources other than 36 

synthetic inputs) vs. conventional management have revealed effects on soil properties that in turn drive 37 

variation in microbial communities at small and intermediate scales (5–8). Small-scale studies designed to 38 

minimize environmental heterogeneity, such as long-term experiments on a single site, show strong 39 

effects of management on soil physicochemical parameters (9, 10), microbial biomass (9), and habitat-40 

specific bacterial and fungal taxa (11). At an intermediate spatial scale, such as paired fields within a 41 

region, contextual variables such as climate, soil type, and cropping system largely influence the soil 42 

physicochemical parameters and microbial processes that differ between conventional and organic fields. 43 

Organically managed processing tomato fields in California have higher levels of organic carbon, 44 

microbial abundance and diversity, and N mineralization potential compared to conventional, while soils 45 

under conventional management have higher inorganic N pools and salinity (7). However, these studies 46 

often have not extended to the rhizosphere, and the studies that have done so have not found universal 47 

predictors of rhizosphere community assembly across contexts and scales (4, 12–14).  48 
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While bulk soil communities affect recruitment and assembly of rhizosphere microbial communities (15), 49 

soil under the influence of plant roots represents a unique environment that must be studied separately 50 

(16). The rhizosphere is a hotspot of interactions where dynamic relationships between plant roots and 51 

soil microbial communities occur, allowing bacteria and fungi to break down and cycle organic matter 52 

and release nutrients (17), promote plant growth via direct and indirect mechanisms (18), and suppress 53 

pathogens (19). While linking agricultural management to large-scale outcomes such as nutrient fluxes or 54 

ecosystem services requires analysis of bulk soil properties and processes, understanding the complex 55 

relationship between management practices and plant nutrition and productivity necessitates shifting 56 

focus to the rhizosphere (20). Some evidence suggests that management can affect the ecosystem-level 57 

functions carried out by bulk soil microbial communities through impacts on microbial diversity (21), but 58 

the unique chemistry and microbial communities found in the rhizosphere (22) are more closely linked to 59 

plant outcomes of agricultural importance (23). Because rhizosphere soil is shaped by complex 60 

interactions between plant and bulk soil processes, the effects of agricultural management on rhizosphere 61 

communities and the functional implications are not always easy to predict. 62 

The few studies that have addressed this question have concluded that differences in bulk soil microbial 63 

and protist communities do carry over to some extent to rhizosphere communities (22, 24). However, 64 

such studies have frequently been conducted on long-term research stations (22, 24), leaving open the 65 

questions of scale and context. Do management effects on rhizosphere microbial communities extend to 66 

an intermediate scale, such as paired fields within a region? If so, what soil properties are most closely 67 

linked to microbial variation, and how do differences in rhizosphere microbial communities influence 68 

plant health and productivity?  69 

A regional-scale study of paired organic and conventional processing tomato fields in Northern California 70 

was conducted to i) characterize impacts of agricultural management on rhizosphere microbial 71 

community composition in California processing tomato agroecosystems at an intermediate spatial scale, 72 

ii) identify how taxonomic shifts affected predicted metabolic and ecological functions carried out by 73 
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these communities, and iii) explore the effects of management-induced microbial variation on crop 74 

nutrition and productivity. To address the first objective of identifying variation in rhizosphere microbial 75 

communities, we employed three complementary approaches: differential abundance, indicator species, 76 

and random forest analyses. Differential abundance analysis of microbial communities adapts RNA-seq 77 

methodology used for gene expression to identify taxa whose abundance varies significantly among 78 

groups of samples (25). Indicator species analysis, an alternative approach, detects taxa preferentially 79 

associated with a given habitat or sample group based on a combination of specificity and fidelity rather 80 

than relative abundance alone (26). Random forest analysis (27), a machine learning method, approaches 81 

the microbe-sample group linkage from the opposite direction than the differential abundance and 82 

indicator species approaches, identifying key taxa whose abundance can be used to assign samples to the 83 

appropriate group.  84 

The second objective, determining whether agricultural management induces shifts in rhizosphere 85 

microbial functions, was addressed using phylogeny-based trait prediction. This method predicts 86 

metagenomic data such as genes involved in key agroecological functions from 16S amplicon sequencing 87 

data (28).  Structural equation modeling (SEM), a statistical technique to test hypothesized relationships 88 

among variables (29), was used to address our final objective of exploring linkages between soil 89 

properties, microbial communities, and plant nutrition and productivity. We hypothesized that rhizosphere 90 

community structure and function would differ between conventional and organic systems and that 91 

divergent microbial communities would relate to variation in plant traits within and between fields.  92 

Results 93 

Site and management drive variation in soil and plant variables 94 

Site had a stronger influence on bulk soil and plant variables than management category (organic vs. 95 

conventional) (site R2=0.54, p=0.001; management R2=0.17, p=0.001) and the site x management 96 

interaction was significant (R2=0.09, p=0.001). Two principal components (PCs) explained 41.99% (PC1) 97 
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and 21.93% (PC2) of variation among samples, respectively (Figure 1). Samples tended to cluster 98 

primarily by site along PC1, which was affected by numerous plant and soil nutrients, and secondarily by 99 

management within each site. PC2 was primarily influenced by plant Cu, Mg, and Mn as well as soil Mg 100 

and NO3-N (Figure 1, Table 1). 101 

Management system significantly affected soil physicochemical variables (p<0.001). Soil parameters that 102 

were higher in organically managed fields included total N (p<0.001), C (p<0.001), NO3-N (p=0.008), 103 

Olsen-extractable P (p=0.008), K (p=0.0087), Na (p<0.001), organic matter (OM) (p=0.0022), and 104 

permanganate-oxidizable carbon (PoxC) (p<0.001), while pH was higher in conventionally managed 105 

fields (p=0.044). Soil physicochemical properties were highly correlated with one another (Table 2). 106 

Magnesium was correlated with only NO3-N, cation exchange capacity (CEC) and pH, but other 107 

macronutrients and key soil properties tended to vary together. Management also affected plant nutrients 108 

(p<0.001), many of which were correlated with one another (Table 3). Concentrations of Ca (p=0.0004), 109 

S (p<0.001), and Cu (p<0.001) were all higher in plants from organically managed fields. 110 

Rhizosphere microbial community composition responds to management practices  111 

The species composition of both bacterial and fungal rhizosphere communities varied according to site 112 

and management (Figure 2), and these effects were also observed when phylogenetic relatedness of 113 

bacterial communities was considered (Figure S1 in the supplementary material). Tests of multivariate 114 

homogeneity of group dispersions (betadisper function of the vegan package) showed that dispersions did 115 

not differ among sites or management types (both p>0.05). Management influenced rhizosphere microbial 116 

communities, but to different extents depending on the site identity (Figure 2, site x management 117 

interaction bacteria R2=0.12, p<0.01; fungi R2=0.10, p<0.01). Management accounted for the greatest 118 

proportion of variation (53%) in bacterial communities at the MR site (R2 = 0.53, p=0.02), slightly more 119 

than at the PF site (R2=0.43, p=0.02) and nearly three times as much as at the RR site (R2=0.19, p=0.01). 120 

Fungal communities were also affected by management, which accounted for 22% of variation at the MR 121 

site (R2=0.22, p=0.02), 38% at the RR site (R2=0.38, p=0.01), and 43% at the PF site (R2=0.43, p=0.02). 122 
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Bacterial diversity was affected by the site x management interaction (p<0.001). The Shannon index was 123 

higher in organically managed fields than conventionally managed fields at all sites except the MR site 124 

(Table 4). Fungal diversity was affected by site (p<0.001) and management (p<0.001), but not the 125 

interaction. Fungal diversity was higher in organically managed fields at all sites, and higher at the PF site 126 

than RR or MR (Table 4). 127 

Forty-eight bacterial amplicon sequence variants (ASVs) differed in abundance between the rhizospheres 128 

of conventionally and organically managed plants at the α=0.01 level (Figure 3a). ASVs more abundant 129 

in organically managed rhizospheres included two members of the genus Pseudomonas, while ASVs 130 

more abundant in conventionally managed rhizospheres included six members of the genus 131 

Flavobacterium and three members of the genera Devosia and Lysobacter. An ASV belonging to the 132 

genus Pseudomonas had the highest relative abundance in organically managed fields, and an ASV 133 

belonging to the genus Chryseobacterium had the highest relative abundance in conventionally managed 134 

fields. 135 

Nineteen fungal ASVs differed in abundance between management systems at the p=0.01 level, only one 136 

of which was more abundant in conventionally managed fields (Figure 3b). ASVs more abundant in 137 

organically managed plant rhizospheres included three members of the genus Holtermanniella, three 138 

members of the genus Mucor, and two members of the genus Pyrenochaetopsis. The ASV more abundant 139 

in conventionally managed rhizospheres was identified as Plectosphaerella cucumerina. Mucor hiemalis 140 

was most abundant in organic systems relative to conventional. 141 

Since system management has a strong impact on multiple soil properties, we conducted redundancy 142 

analysis (RDA) with forward selection to identify which soil physicochemical properties have the greatest 143 

influence on rhizosphere bacterial and fungal community composition. After site and management, Ca 144 

was the most significant driver of both bacterial and fungal community composition. Bacterial community 145 

composition also responded to Mg levels, while fungi were significantly influenced by Na and K.  146 
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Indicator species of rhizosphere communities differ between systems 147 

Indicator species analysis showed 57 system-specific bacterial ASVs: 35 with the conventional system 148 

and 22 with the organic system (Table S3). Members of the genera Flavobacterium (8), Pedobacter (4), 149 

Lysobacter (3), and Pseudomonas (3) had by the greatest number of sequences in the conventional system 150 

and Pseudomonas (4) in the organic system. Fewer fungal indicator taxa were discovered, with only four 151 

fungal ASVs associated with the conventional system but 17 with the organic system. The four ASVs 152 

associated with the conventional system came from different genera, while Holtermanniella (6) and 153 

Mucor (4) were the most represented indicator genera in the organic system. Fifteen of the 78 taxa 154 

identified by indicator species analysis were also differentially abundant. Because the IndVal index 155 

represents the probability of finding a given species in the environment of interest, taxa with a high 156 

relative abundance in the environment will generally score high on the fidelity component of the IndVal 157 

index. This was the case for Flavobacterium in the conventional system and Pseudomonas, 158 

Holtermanniella, and Mucor in the organic system.  159 

Random forest (RF) analysis was used to identify ASVs that could be used to discriminate between 160 

management systems. ASVs belonging to the genera Lysobacter and Gibellulopsis had the greatest 161 

impact on the mean decrease in accuracy and mean decrease in Gini coefficient of the random forest 162 

model (Figure S2 in the supplementary material). Substantial overlap was observed between the results of 163 

RF analysis and differential abundance analysis. Eleven of the twenty most significant ASVs from the RF 164 

analysis had also been identified through differential abundance analysis, although ASVs such as 165 

Gibellulopsis that had a significant impact on the RF model only slightly differed in abundance between 166 

systems (Figure 3).   167 

Management induces changes in predicted rhizosphere bacterial functions  168 

Of the total number of genes predicted, 4.8% (169) differed in abundance between the rhizosphere of 169 

organic and conventional plants. Of those genes, 79 were more abundant in the organic system and 90 170 
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were enriched in the conventional system. Functions corresponding to cellular processes including 171 

quorum sensing, biofilm formation, and chemotaxis showed the greatest difference between systems, with 172 

only two peroxisome functions upregulated in the organic system and 31 upregulated in the conventional 173 

system (Figure 4). Genes with the highest relative abundance in the organic system were distributed 174 

across a variety of functions, including ABC transporters (12), two-component systems (8), biosynthesis 175 

of siderophores (5), starch and sucrose metabolism (5), and type I polyketide structures (5). A component 176 

of the trcR/trcS two-component regulatory system, trcR (K07672), was up-regulated by the greatest ratio 177 

in organic systems. Genes with greater relative abundance in the conventional system tended to be 178 

associated with biosynthesis of amino acids (19), two-component systems (18), quorum sensing (10), 179 

ABC transporters (9), and biofilm formation (9) (Figure 4).  180 

Structural equation modeling identifies key linkages among plant, soil, and microbial variables 181 

Hypothetical links between bulk soil physicochemical parameters, plant nutrition, rhizosphere microbial 182 

communities, and plant biomass were tested using structural equation modeling (SEM) across 183 

management systems (Figure 5a). Bacterial and fungal communities were represented by two vectors each 184 

(PC1B, PC2B, PC1F, PC2F) that were derived from principal components analysis shown in Figure 2. 185 

Plant biomass was most strongly positively correlated with plant P, which in turn was most strongly 186 

correlated with fungi from the PC2F vector (Figure 5b). The taxa that contributed most to PC2F were 187 

Vishniacozyma victoriae and an unidentified Solicoccozyma sp. Neither of these species were identified in 188 

the differential abundance analysis (Figure 3b). Fungi from the PC1F vector had a slight positive 189 

influence on plant Na and included ASVs classified as Alternaria sp., Cryptococcus aerius, and 190 

Plectosphaerella cucumerina. PC1B, the first principal component of bacterial communities, was 191 

negatively correlated with shoot C:N ratio; the three ASVs with the greatest contribution to this 192 

component were a strain of Pseudomonas and two strains of Stenotrophomonas. The second principal 193 

component of bacterial communities (PC2B) was slightly positively correlated with plant biomass, P, Na, 194 
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and C:N ratio; four of the five ASVs with the greatest contribution to this component were classified as 195 

Pseudomonas sp.  196 

The final SEM had a χ
2
 test statistic of 1.907 with 3 degrees of freedom, giving a χ

2
/v ratio of 0.64, root 197 

mean square error of approximation (RMSEA) of 0.000 (90% confidence interval 0.000≤x≤0.195), 198 

comparative fit index (CFI) of 1.000, Tucker Lewis index (TLI) of 1.062, and standardized root mean 199 

square residual (SRMR) of 0.016. A low χ2/v ratio indicates a good model, although this test statistic does 200 

not perform well with small sample sizes (30). The CFI and TLI model indices perform well with small 201 

sample sizes and are above acceptable threshold (0.95 for a good model (31)). An SRMR less than 0.08 202 

generally indicates that a model fits the data well (32).  203 

 204 

Discussion 205 

Our objectives were to explore how management practices implemented in organic and conventional 206 

tomato production systems shape rhizosphere microbial composition, infer how taxonomic shifts affected 207 

microbe-mediated functions, and identify linkages between management-induced shifts in soil 208 

physicochemical parameters, rhizosphere microbial communities, and plant nutrition and productivity. In 209 

support of our hypotheses, we identified specific taxa that differed in abundance between management 210 

systems and predicted the functional implications of those shifts in community composition (Figure 3, 211 

Figure 4, Figure S2). Some differentially abundant taxa were confirmed as indicator species that could be 212 

used to distinguish communities between management systems. More importantly, phylogeny-based trait 213 

prediction showed that management-induced differences in rhizosphere bacterial community composition 214 

translated into agriculturally relevant outcomes, particularly with regard to plant nutrition and pathogen-215 

related functions such as quorum sensing and biofilm formation(33, 34) (Figure 4, Figure 5). Although 216 

our techniques could not examine the contribution of fungi to predicted function, it is likely that observed 217 

compositional shifts in fungal communities increase divergence in functional outcomes between systems. 218 
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Bacterial diversity was higher in the rhizospheres of organically managed plants at all sites except MR, 219 

and fungal diversity was higher in the organic system across sites, consistent with other studies finding 220 

increased microbial diversity under organic management (2, 7, 35–37). Numerous bacterial ASVs 221 

belonging to the genus Pseudomonas, which contains members known to possess plant-growth-promoting 222 

properties (18, 19), had a higher relative abundance in organic systems (Figure 3a). Sixteen of the 17 223 

differentially abundant fungal ASVs were found at higher abundance in the rhizosphere of plants growing 224 

in the organic system; these included numerous members of the genera Holtermanniella and Mucor 225 

(Figure 3b). Holtermanniella is a small, cold-tolerant genus of potentially parasitic fungi (38) that 226 

includes species able to metabolize diverse carbon compounds and generate unique fatty acid profiles 227 

(39). Mucor are a genus of starch decomposing fungi (40) that are capable of metabolizing a wide range 228 

of complex carbohydrates (41). Although a long-term comparison of conventional and organic 229 

management found no difference in the relative abundance of Mucor sp. in bulk soils (42), potential shifts 230 

in the rhizosphere have not been shown. In addition, predicted potential community functions also 231 

differed between soils under different management systems. Although our approach relies on predicted 232 

potential (DNA-based) functions rather than genomic or transcriptomic information from the strains 233 

found at these sites, tax4fun performs well in comparison with shotgun metagenomic data from soils (28), 234 

suggesting that broad patterns may be informative. Bacterial community shifts in the rhizospheres of 235 

organically managed plants were associated with a higher abundance of predicted genes involved in 236 

starch and sucrose metabolism and biosynthesis of siderophores, which can increase the availability of 237 

micronutrients such as iron (Figure 4). Other enzymes with high relative abundance in the organic system 238 

catalyze reactions involved in the metabolism of tyrosine, carotenoids, and other complex organic 239 

compounds (Figure 4).  240 

Rhizosphere diversity was generally lower under conventional management, and community composition 241 

and functions were notably different. ASVs belonging to the genera Flavobacterium, Devosia, and 242 

Lysobacterium had higher relative abundances in the conventional system. The Flavobacterium genus has 243 
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been found elsewhere to increase in abundance in response to six years of intensive organic vegetable 244 

production (43), suggesting that individual species within the genus may respond differently to 245 

conventional and organic management. Members of Lysobacterium have been shown to degrade complex 246 

aromatic compounds (44). Plectosphaerella cucumerina, a known pathogen that causes rots on a variety 247 

of horticultural species (45), was the only fungal ASV found to be more abundant in the conventional 248 

system. Perhaps due to the greater abundance of this pathogen, functions upregulated in the conventional 249 

system included genes related to quorum sensing and biofilm formation (Figure 4).  250 

Management practices and sites had strong influence on soil chemical properties, which in turn affected 251 

bacterial and fungal community composition. Forward selection revealed that the two kingdoms 252 

responded to different sets of soil physicochemical parameters: bacterial community composition was 253 

affected by Ca and Mg, while fungal community composition was affected by Ca, Na, and K. These 254 

predictors are notably different from variables commonly accepted as important for microbial community 255 

composition, such as organic matter (46, 47), pH (48, 49), and N. The failure of organic matter and N to 256 

predict microbial community structure is surprising at first glance, given that scarce C and N availability 257 

can limit rates of microbial growth and functions such as mineralization, and that the abundance of N-258 

cycling microbial taxa often varies with C and inorganic N species. However, this result is consistent with 259 

multiple studies showing no effect of N on microbial community composition (50–52). Agricultural 260 

management might outweigh the effects of variation in these parameters, since Ca and Mg were not 261 

affected by management. It may also be that low variation in organic matter, pH, and soil N within the 262 

context of this study reduced the ability of these parameters to explain variation in community 263 

composition (Table S2 in the supplementary material).  264 

Soil Ca and Na have similarly appeared elsewhere as significant predictors of microbial community 265 

composition. In another comparison of management systems, soil Ca was higher in soils receiving 266 

organic amendments than synthetic amendments and was among the parameters correlated with microbial 267 

community composition (53). Ca was also a primary driver of microbial community composition in a 268 
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multi-year study of a soil amended with composted tannery sludge (54). Salinity frequently drives 269 

variation in microbial community composition, especially in irrigated systems, although most commonly 270 

when a stronger salinity gradient is present due to environmental filtering based on salinity tolerance (55–271 

57). 272 

SEM tied together this observed variation in microbial community composition with soil and plant 273 

variables and tested a hypothetical model linking plant and soil biological and physicochemical 274 

parameters with plant biomass (Figure 5). Management was not retained in the final model, suggesting 275 

that management effects were indirect and captured by other included variables at these sites. Other 276 

studies have similarly found that soil type and physicochemical parameters affect microbial community 277 

composition and catabolic functions more than long-term agricultural management practices (58).  Within 278 

this study, it appears that rhizosphere microbial communities were more closely linked to differences in 279 

bulk soil properties created by management systems than to the management practices themselves. 280 

SEM revealed a greater relative influence of rhizosphere biological communities than bulk soil 281 

physicochemical characteristics on plant nutrient content and biomass (Figure 5). A strong indirect 282 

linkage was observed between microbial communities and plant biomass: fungal community composition 283 

was strongly positively correlated with plant P, which in turn strongly correlated with shoot biomass 284 

(Figure 5). The link between plant P and fungal communities is particularly striking given the absence of 285 

sequences belonging to the phylum Glomeromycota, which contains mycorrhizal fungi (data not shown). 286 

The lack of mycorrhizal sequences may be partly explained by choice of amplicon or primer bias (59). 287 

Since the length of the amplified region differs for mycorrhizae compared to the more abundant 288 

Ascomycota and Basidiomycota (60); it is unlikely that mycorrhizae were truly absent from all samples. 289 

Nonetheless, even non-mycorrhizal fungi can improve plant P status through solubilization, 290 

mineralization, and direct transfer of phosphate (61). Genera such as Aspergillus and Penicillium release 291 

organic acids that can solubilize phosphate, potentially rendering it available for direct uptake by plants or 292 

mycorrhizae (62). 293 
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PC2B was slightly positively correlated with plant Na and PC1B was negatively correlated with C:N 294 

ratio. The correlation between bacterial community composition and plant Na could be the direct effect of 295 

microbial interference in plant metabolism, or changes in soil parameters could foster unique microbial 296 

communities and also increase plant Na. While limitations of the measured data do not allow us to 297 

distinguish between these explanations in this context, microbial influence on plant Na has been reported 298 

elsewhere; certain bacterial strains are capable of plant tissue-specific regulation of sodium transporters 299 

that increases salt tolerance in Arabidopsis (63), while other bacterial strains reduce salt accumulation in 300 

salinity-stressed plants (64). A negative correlation with C:N ratio indicates that the bacterial populations 301 

improved plant N content, a result that could be due to increased N availability via N fixation or 302 

mineralization of organic matter.  303 

This study identified rhizosphere microbial taxa and functions affected by agricultural management and 304 

illuminated unexpected linkages between soil, microbes, and crop nutrition and productivity, but 305 

compelling questions remain. Organic certification encompasses a diverse set of management practices 306 

and variation in cover crop species, green manure inputs, or crop rotation complexity and duration likely 307 

lead to diverse effects on soil microbes. To translate the broad, extensive conventional-organic literature 308 

into tangible recommendations, future studies should focus on causal relationships between specific 309 

inputs or techniques and key soil physicochemical parameters. This could be achieved in part by 310 

employing SEM with a much larger dataset (a sample size of at least 200 (65) and data satisfying the 311 

requirement of multivariate normality (66)) to allow the incorporation of additional variables (e.g. crop 312 

genotype, N fertility source and rate, tillage) and improve the predictive power of the model. Such 313 

analysis would add nuance to the results of this study and enable the development of management 314 

systems that foster agricultural productivity by maximizing beneficial plant-soil-microbe interactions in 315 

the rhizosphere. 316 

Our results add an additional layer of complexity to previous investigations of the effects of agricultural 317 

management on microbial communities. Others have noted the importance of scale in determining how 318 
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soil properties relate to microbial community composition or function, as geographic scale alters the 319 

relative importance of factors such as environmental heterogeneity and distance that influence microbial 320 

distribution (67, 68). We emphasize the importance of integrating plants and rhizosphere processes into 321 

these discussions of microbial biogeography, particularly at intermediate scales, as plants exert strong 322 

influence on rhizosphere communities and may modulate management effects on rhizosphere 323 

communities. Management of plant-microbe-soil interactions in the rhizosphere is a critical step toward 324 

building more resource-efficient and resilient agricultural systems, and our study indicates that soil 325 

management has strong and consistent effects on landscape-level variation in the rhizosphere composition 326 

and predicted function.   327 

Materials and Methods 328 

Sample collection  329 

Samples were collected from 6 paired fields under conventional and organic management on Yolo Silt 330 

Loam during the 2017 growing season (details of sites and management practices can be found in Table 331 

S1 in the supplementary material). Plant and soil samples were collected ~ 6 weeks after transplanting on 332 

the same date at paired fields. Samples were taken from six locations per field (two on the exterior 333 

margins of the field and four internal). At each location, two entire plants were excavated and shoot and 334 

root samples were separated by clipping at the base of the shoot. A bulk soil sample was collected from 335 

the upper 10 cm of soil immediately adjacent to each plant. Roots were separated from bulk soil, stored in 336 

paper bags and transported to the lab on ice. Twelve root fragments from each plot (6 from each 337 

individual plant) were pooled and rhizosphere soil was collected using a shaking wash in an 0.9% 338 

NaCl/0.01% Tween 80 (v/v) solution followed by centrifugation. Because this volume of soil was 339 

insufficient for full textural and nutrient analysis, we assumed that rhizosphere soil characteristics such as 340 

texture, organic matter, etc. would be similar to the parameters measured for the corresponding bulk soil. 341 

Shovels and other sampling implements were cleaned thoroughly between samples. The remaining roots 342 

and shoots were dried at 60°C and weighed.  343 
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Plant and soil analysis 344 

Dried bulk soil samples and aboveground dried biomass were homogenized and analyzed for total 345 

nitrogen (N) and carbon (C) via combustion analysis (69). Soil nitrate was measured using a flow 346 

injection analyzer (70), soil extractable phosphorus (P) was determined according to Olsen and Sommers 347 

(71), and other soil nutrients were measured using ICP-AES (72). Soil organic matter content was 348 

determined via the loss-on-ignition method (73). Soil pH was measured on a saturated paste extract. Bulk 349 

soil properties can be found in Table S2 in the supplementary material. 350 

Dried aboveground biomass was ground thoroughly to pass a 2 mm sieve. Plant leaf samples were 351 

analyzed for N, P, K, Ca, Mg, Mn, Fe, Cu, B, and Zn at the Agricultural Analytical Services Lab of 352 

Pennsylvania State University. Total N was analyzed via combustion (74), and concentrations of the 353 

remaining elements were determined via hot block acid digestion (75).  354 

Microbial community analysis 355 

DNA was extracted from rhizosphere samples using the MoBio PowerSoil Kit (Qiagen). At least 5 ng of 356 

DNA from each sample was sent for library prep and sequencing using MiSeq at Dalhousie IMR 357 

facility. The V4-V5 region of the 16S rRNA region was sequenced to characterize bacterial communities 358 

and the ITS region of the rRNA gene was sequenced to characterize fungal communities (76, 359 

77). Negative controls were also extracted and submitted, but no reads were recovered. All statistical 360 

analyses were carried out using R software (78). Reads were error-corrected and assembled into amplicon 361 

sequence variants (ASVs) using DADA2 v.1.8 (79), with taxonomy assigned using SILVA v.128 for 362 

bacteria (80) and UNITE database (2017 release) for fungi (81). Taxa without a taxonomic assignment, or 363 

assigned to Archaea, mitochondria, or chloroplasts were removed from this dataset. Those not assigned to 364 

the kingdom Fungi were removed from the fungal dataset. Sequence abundance was rarefied to 15,310 365 

sequences per sample for bacteria and 13,000 per sample for fungi and all samples approached saturation. 366 
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Sequencing data is available in the NCBI SRA data repository under the project accession number 367 

PRJNA539989. 368 

Non-metric multidimensional scaling (NMDS) was used to ordinate samples in two-dimensional space 369 

(ordinate function of the phyloseq package using method = “NMDS”). Two outliers were removed from 370 

this and subsequent analyses in order to minimize the stress function. A second NMDS ordination was 371 

performed based on weighted UniFrac distances (distance function of phyloseq package with “wunifrac” 372 

command) to determine whether phylogenetic distance among samples was affected by site and 373 

management. Shannon diversity was calculated for each sample using the estimate_richness function 374 

(measures = “Shannon”) of the phyloseq package. 375 

Differential abundance of microbial taxa 376 

Differential abundance of bacterial and fungal in the rhizosphere of plants grown in organically and 377 

conventionally managed systems was carried out using the DESeq2 package (25). Although applying this 378 

analysis to compositional datasets obtained from sequencing microbial communities has been critiqued 379 

(82), the method has been shown to be effective when library sizes are similar across groups and sample 380 

size is small (<50 samples per group) (83), as was the case here. Sequences occurring in fewer than three 381 

samples were filtered out prior to the analysis to avoid bias due to rare taxa (filter_taxa function of 382 

phyloseq package). Dispersions were fit to the mean intensity using a gamma-family GLM by setting the 383 

parameter fitType= “parametric” and significance was assessed using the Wald test with a significance 384 

threshold of α=0.01.  385 

Indicator species analysis 386 

Indicator species analysis was conducted to identify specific rhizosphere microbial taxa that were 387 

associated with the conventional or organic system using the indicspecies package (84). Briefly, the 388 

Indicator Value (IndVal) index was calculated for each ASV-system combination as the product of 389 

specificity and fidelity indices (84). The highest IndVal index for each ASV was tested for significance 390 
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with 999 permutations (multipatt function of indicspecies package using duleg = TRUE and control= 391 

how(nperm=999). A Bonferroni correction was used to control the family-wise error rate at α = 0.01. 392 

Random forest analysis 393 

We complemented the indicator species analysis with a random forest approach, which identifies bacterial 394 

and fungal ASVs that could be used to classify samples by management system through a machine 395 

learning algorithm. Random forest analysis was conducted using the randomForest package (27). The 396 

dataset was split into subsets for training (70% of observations) and validation (30% of observations). 397 

Model parameters were adjusted to minimize the error rate, but the default parameters for ntree (ntree = 398 

500) and mtry (mtry = √p, with p representing the number of model parameters) resulted in the lowest 399 

error rate (6.52%). The classification accuracy was calculated to be 95%, indicating high prediction 400 

accuracy. ASVs with the greatest contribution to the classification algorithm were identified according to 401 

the highest scores for mean decrease in accuracy or mean decrease in the Gini coefficient (importance 402 

function of randomForest package). 403 

Phylogeny-based functional trait prediction 404 

We determined potential shifts in rhizosphere microbial functions with management and soil properties 405 

using functional trait prediction of 16S communities with the themetagenomics package (85). Briefly, this 406 

package implements Tax4Fun (28) to predict functions from the KEGG Orthology database that are 407 

associated with provided abundance tables, sample metadata, and phylogenetic information. Phylogeny is 408 

assigned according to the SILVA rRNA database project (80). To identify functions that differed in 409 

abundance between systems, predicted functions were subjected to differential abundance analysis using 410 

the DESeq2 package. Parameters were identical to those described previously and the significance 411 

threshold was set at α=0.01.  412 

Principal component analysis of plant and soil variables  413 
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Principal component analysis (PCA) was used to reduce the dimensions of the multivariate dataset 414 

containing scaled soil and plant variables, visualize samples in two-dimensional space, and calculate 415 

factor loadings (prcomp function of stats package). Outliers for individual soil and plant variables were 416 

identified with Grubb’s test (grubbs.test function of outliers package) and removed from the dataset prior 417 

to PCA. The multivariate homogeneity of group dispersions (betadisper function of vegan package) was 418 

tested to determine whether variances differed among sampling sites. The effect of management on soil 419 

and plant variables was tested with multivariate analysis of variance (MANOVA) using the manova 420 

function of the stats package (78). 421 

Permutational multivariate analysis of variance  422 

Permutational multivariate analysis of variance was used to test the effect of the interaction between site 423 

and management on microbial community composition (adonis function of vegan package), separately for 424 

bacteria and fungi. If the interaction was significant, the magnitude of the management effect was then 425 

tested within each site. If the interaction was not significant, PERMANOVA was used to test the relative 426 

magnitude of site and management effects. Redundancy analysis (RDA) was conducted to identify soil 427 

physicochemical properties with the greatest influence on rhizosphere microbial community composition. 428 

Parameters that significantly explained variation in bacterial or fungal community composition were 429 

identified using forward selection (ordistep function of vegan package).  430 

Structural equation modeling (SEM) 431 

SEM was used to test a hypothetical model linking soil, plant, and microbial variables that affect shoot 432 

biomass (Figure 5a). Parameters included in the model were chosen using forward selection of a linear 433 

model with shoot biomass as the response variable and all other soil, microbial, and plant parameters as 434 

independent variables (step function of stats package) (78). The model was established using the sem 435 

function of the lavaan package (86) and visualized with the semPlot package (87). The model was then 436 

refined by sequentially removing variables with poor explanatory power (R2<0.50). Management (organic 437 
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vs. conventional) was originally included as a variable but was ultimately removed because management 438 

significantly and consistently decreased the fit statistics for the model, perhaps because the variables 439 

retained in the model were good indicators of management differences. 440 

Although the variables identified by forward selection (soil Na, soil Ca, plant P, plant C:N, plant Na) 441 

were not consistent with a hypothesis of multivariate normality, sample size was too small to permit the 442 

exclusion of outliers. The first two principal components of microbial species composition, which 443 

accounted for 31% and 15% of bacterial variation (PC1B and PC2B respectively) and 26% and 21% of 444 

fungal variation (PC1F, PC2F respectively), were used to represent microbial communities in the model 445 

(Figure 5). The maximum likelihood (ML) method was used to estimate model fit test statistics. The 446 

goodness of fit of the model was tested using standard model fit indices: the ratio of the chi-square 447 

statistic to degrees of freedom (χ2/v), Root Mean Square Error of Approximation (RMSEA), Comparative 448 

Fit Index (CFI), Tucker-Lewis Index (TLI), and Standardized Root Mean Square Residual (SRMR) (88).  449 
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Figure Legends 699 

Figure 1: PCA of soil and plant variables measured in six processing tomato fields. Soil 700 

physicochemical parameters and plant variables separated primarily by site along PC1, which explained 701 

42% of variation. Samples separated secondarily by management within site, and a significant site x 702 

management interaction was observed. 703 

Figure 2: NMDS ordination of microbial communities sampled from the rhizosphere of processing 704 

tomatoes. Non-metric dimensional scaling based on Bray-Curtis dissimilarity matrices revealed that A) 705 

bacterial and B) fungal communities separated primarily by site and secondarily by management. 706 

Figure 3: Differentially abundant microbial taxa. A) 48 bacterial and B) 19 fungal taxa differed in 707 

abundance between conventional and organic management systems at the α=0.01 level. Colored bars 708 

represent the natural logarithm of abundance of each taxa and gray bars represent the ratio of abundance 709 

in the organic system to abundance in the conventional system. Multiple strains or species within genus 710 

are shown. NA indicates that sequences could not be identified at the genus level. 711 

Figure 4: Differentially abundant functions. Phylogeny-based trait prediction revealed 169 functional 712 

genes that differed in abundance between the two systems at the α=0.01 level, 79 of which were more 713 

abundant in the organic system and 90 in the conventional system.  714 

Figure 5: Structural equation model linking soil, plant, and microbial variables. A) A hypothetical 715 

model linking soil, microbial, and plant parameters was tested using structural equation modeling. B) The 716 

final SEM showed that microbial communities had a strong but indirect effect on plant biomass through a 717 

positive correlation between fungal community composition and plant P. Soil Ca and Na affected fungal 718 

communities more strongly than bacterial communities. Red represents soil variables, blue represents 719 

microbial variables (principal components 1 and 2 extracted from PCA of bacterial and fungal 720 

communities, respectively), and green represents plant variables. Dashed lines represent fixed parameters. 721 

Table 1. Factor loadings of scaled soil and plant variables contributing to PC1 and PC2.  
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 PC1 PC2 

Soil N (total) -0.243 -0.159 

Soil C -0.254 -0.159 

Soil NO3-N -0.063 -0.202 

Soil P (Olsen) -0.186 -0.024 

Soil K -0.260 -0.132 

Soil Na -0.190 -0.161 

Soil Ca -0.215 -0.166 

Soil Mg -0.108 0.361 

CEC -0.227 0.219 

SOM -0.264 -0.050 

pH -0.186 0.120 

PoxC -0.221 -0.173 

Shoot mass -0.211 0.199 

Root mass 0.025 0.025 

Shoot:root 

ratio -0.111 0.031 

Plant C -0.217 0.230 

Plant N -0.118 0.145 

Plant C:N -0.097 0.034 

Plant P -0.190 0.250 

Plant K -0.253 0.055 

Plant Ca -0.251 -0.074 

Plant Mg -0.112 0.347 

Plant S -0.213 -0.117 

Plant Mn 0.165 0.284 

Plant Cu 0.012 -0.356 

Plant B -0.185 -0.114 

Plant Zn 0.248 -0.124 

Plant Na 0.006 0.234 

 

 

 

 

 

 

 

 722 
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Table 2. Correlations among soil physicochemical properties based on the Pearson correlation coefficient. 

* = p<0.05, ** = p< 0.01, *** = p<0.001. 

 

N C NO3-N P K Na Ca Mg CEC OM pH PoxC 

N 1.00 0.96*** 0.46*** 0.66*** 0.84*** 0.79*** 0.64*** -0.04 0.37** 0.82*** 0.25 0.84*** 

C 

 

1.00 0.26 0.50*** 0.90*** 0.71*** 0.76*** -0.02 0.45*** 0.90*** 0.41** 0.89*** 

NO3-N 

  

1.00 0.62*** 0.32* 0.56*** 0.22 -0.44*** -0.24 0.06 -0.29* 0.21 

P 

   

1.00 0.57*** 0.55*** 0.36** 0.13 0.35** 0.43** 0.12 0.35** 

K 

    

1.00 0.63*** 0.88*** 0.02 0.55*** 0.85*** 0.61*** 0.79*** 

Na 

     

1.00 0.53*** -0.13 0.23 0.55*** 0.22 0.59*** 

Ca 

      

1.00 -0.11 0.48*** 0.76*** 0.60*** 0.67*** 

Mg 

       

1.00 0.81*** 0.25 0.51*** -0.06 

CEC 

        

1.00 0.68*** 0.79*** 0.36** 

OM 

         

1.00 0.55*** 0.76*** 

pH 

          

1.00 0.34** 

PoxC 

           

1.00 
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Table 3. Correlations among plant variables based on the Pearson correlation coefficient. * = p<0.05, ** = p< 0.01, *** = p<0.001. 

 Shoot 

biomas

s 

C N P K Ca Mg S Mn Cu B Zn Na C:N Root 

biomas

s 

Shoot:roo

t 

Shoot 

biomass 

1.00 0.75**

* 

0.39** 0.86**

* 

0.69**

* 

0.55**

* 

0.77**

* 

0.48**

* 

-0.03 -0.38** 0.27* -

0.74*** 

0.29* 0.28* -0.01 0.33* 

C  1.00 0.58**

* 

0.80**

* 

0.73**

* 

0.54**

* 

0.71**

* 

0.32* -0.04 -0.57*** 0.35** -

0.87*** 

0.20 0.31* -0.21 0.36** 

N   1.00 0.53**

* 

0.52**

* 

0.33* 0.40** 0.06 0.03 -0.44*** 0.13 -0.36** 0.40** -

0.59*** 

-0.17 0.30* 

P    1.00 0.72**

* 

0.53**

* 

0.84**

* 

0.42** 0.10 -0.47*** 0.17 -

0.69*** 

0.39** 0.17 -0.05 0.33* 

K     1.00 0.78**

* 

0.42** 0.55**

* 

-0.43** -0.13 0.60*** -

0.74*** 

0.03 0.17 -0.09 0.38** 

Ca      1.00 0.20 0.81**

* 

-0.57*** 0.27* 0.59*** -

0.64*** 

-0.14 0.20 -0.21 0.42** 

Mg       1.00 0.14 0.42** -0.69*** -0.14 -

0.52*** 

0.60*** 0.19 0.00 0.24 

S        1.00 -0.59*** 0.45*** 0.25 -

0.47*** 

-0.08 0.31* -0.19 0.26 

Mn         1.00 -0.58*** -

0.53*** 

0.20 0.37** -0.16 0.07 -0.16 

Cu          1.00 0.15 0.35** -

0.49*** 

0.00* -0.10 0.02 

B           1.00 -

0.57*** 

-

0.48*** 

0.26* -0.01 0.20 

Zn            1.00 0.08 -

0.46*** 

0.18 -0.37** 

Na             1.00 -0.31* 0.11 -0.02 

C:N              1.00 0.00 -0.01 

Root 

biomass 

              1.00 -0.62*** 
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Shoot:roo

t 

               1.00 
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Table 4. Alpha diversity of bacterial and fungal communities by site and management. Values reported are Shannon index ± standard error. 

 MR RR PF  

 Conv. Org. Conv. Org. Conv. Org. 

16S 3.50 ± 0.14 2.90 ± 0.09 2.72 ± 0.05 2.99 ± 0.08 3.28 ± 0.08 3.58 ± 0.07 

ITS 2.60 ± 0.08 2.62 ± 0.18 2.68 ± 0.08 3.12 ± 0.06 2.89 ± 0.16 3.32 ± 0.07 
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