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ABSTRACT 

Causal thinking emphasizes the understanding of asymmetric causal relationships between 
variables, requiring us to specify which variable is the cause (independent variable) and which 
is the effect (dependent variable). Reversing the causal relationship direction can lead to 
profoundly different assumptions and interpretations. We demonstrate this by comparing two 
linear regression approaches used in thermal comfort research: Approach (a), which regresses 
thermal sensation votes (y-axis) on indoor temperature (x-axis); Approach (b), which does the 
reverse, regressing indoor temperature (y-axis) on thermal sensation votes (x-axis). From a 
correlational perspective, they may appear interchangeable, but causal thinking reveals 
substantial and practical differences between them. Approach (a) represents occupants’ 
thermal sensations as responses to indoor temperature. In contrast, Approach (b), rooted in 
adaptive comfort theory, suggests that thermal sensations can trigger behavioral changes, 
which in turn alter indoor temperature. Using the same data, we found that two approaches 
lead to different neutral temperatures and comfort zones. Approach (b) leads to what we call a 
‘preferred zone’, which is 10 °C narrower than the conventionally derived comfort zone using 
Approach (a). We hypothesize that the ‘preferred zone’ might be interpreted as thermal 
conditions that occupants are likely to choose when they have significant control over their 
personal and environmental thermal settings. This finding has important implications for 
occupant comfort and building energy efficiency. We highlight the importance of integrating 
causal thinking into correlation-based statistical methods, which have been prevalent in 
building science research, especially given the increasing volume of data in the built 
environment. 

KEYWORDS  

Causal inference; Regression analysis; Neutral temperature; Comfort zone; Adaptive thermal 
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1. INTRODUCTION 

Causality describes a directional relationship where making interventions on one entity can 
lead to changes in another (Imbens & Rubin, 2015). The ability to discern causality is 
foundational to human intelligence (Pearl & Mackenzie, 2018). For instance, humans 
understand that the Sun rising causes the rooster to crow, not the other way around, whereas 
artificial intelligence may only capture an association between the two events, even when 
trained on millions of data points (Pearl, 2019). Causality is pivotal in scientific inquiry (Pearl 
& Mackenzie, 2018; Imbens & Rubin, 2015). A scientific inquiry might ask, ‘Why does the 
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sun rise in the east and set in the west?’ Aristotle proposed a geocentric model, explaining 
that the sunrise occurs because the Sun orbits the Earth. Later, Copernicus, Galileo, and 
Kepler introduced the heliocentric model, challenging Aristotle’s causal explanation. Over 
time, with accumulated scientific evidence, we have come to understand that the sunrise is a 
result of the Earth’s rotation on its axis. This pursuit of a deeper and more accurate 
understanding of causality, known as causal inference, underpins the science- and technology-
based civilization in which we live today. 

Building scientists have long pursued causal inference studies. Houghten and Yagloglou 
initially considered temperature, humidity, and air motion as three principal causal factors of 
human thermal comfort. They proposed an index known as the effective temperature that 
integrates dry-bulb air temperature and relative humidity (Houghten & Yagloglou, 1923). 
Subsequently, Bedford expanded this index to include radiant heat and air movement factors 
(Bedford, 1948). This line of research led to the development of comprehensive thermal 
comfort models (Gonzalez et al., 1974), such as the Predicted Mean Vote (PMV) model 
(Fanger, 1970). We consider the PMV model a causal model because all model inputs are 
causal factors of thermal comfort, and the model development is based on laboratory 
experiments, where different thermal environments contribute to occupants’ comfort 
variations. This causal model allows us to find combinations of thermal conditions that 
provide similar comfort but use more energy-efficient systems (Kent et al., 2023; Miller et al., 
2021; Schiavon & Melikov, 2008). However, the PMV model has demonstrated limitations in 
real-world applications (Cheung et al., 2019). Persistent discrepancies between model 
predictions and actual field study observations suggest there are other potential factors 
influencing thermal comfort (de Dear et al., 2020; Parkinson et al., 2020; van Hoof, 2008; 
Humphreys & Nicol, 2002). 

Researchers are identifying the additional factors influencing thermal comfort in real-world 
settings through field studies beyond the investigation in climate chambers through laboratory 
experiments. Potential influencing factors include outdoor climate, building cooling systems, 
and aspects related to occupants, such as demographics, expectations, and behaviors 
(Parkinson et al., 2020; Wang et al., 2020; van Hoof et al., 2017; Fanger & Toftum, 2002; 
Humphreys & Nicol, 2002; Brager & de Dear, 1998; de Dear & Brager, 1998). While the 
correlation-based methods commonly used in field studies can reveal associations of interests, 
they fall short of establishing cause-and-effect relationships. For example, the adaptive 
comfort model demonstrates a correlation between outdoor conditions and indoor comfort 
temperature (de Dear & Brager, 1998; M. A. Humphreys, 1978). The model does not 
explicitly assert a causal relationship between the two variables. However, the applications 
and interpretations of the adaptive comfort model in building design and simulation imply a 
causal direction. For naturally ventilated buildings, comfortable indoor temperature ranges are 
determined by prevailing outdoor air temperatures, but not vice versa. It is not feasible to use 
comfortable indoor temperatures to predict or determine prevailing outdoor temperatures. 

Establishing causality has been recognized as a challenge. In statistics, inferring causation 
was deemed unscientific and largely discouraged (Ding, 2023; Pearl & Mackenzie, 2018; 
Pearl, 2009; Wasserman, 2004). As the well-known statistical mantra says, correlation does 
not imply causation. For instance, while there may be a statistically significant correlation 
between ice cream sales and shark attacks (given that both increase during the summer), it 
would be erroneous to infer that one causes the other. Unfortunately, building scientists 
sometimes rely on correlation-based statistical analysis to frame their questions and interpret 
results, which may lead to a misalignment with their true interests in understanding causal 
mechanisms and estimating causal effects. For example, the correlation between the distance 
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from a window and occupant satisfaction leads to an interpretation that the former directly 
influences the latter (Frontczak et al., 2012), whereas in reality there may be many 
confounding factors. In this paper, we will focus on the example of neutral temperature, 
where the true interest lies in finding a temperature that leads to a neutral thermal sensation 
(Nicol & Humphreys, 2010). However, given the complexity of real buildings, the 
conventional statistical methods and collected field study data do not allow us to fully 
understand all the causal relationships or accurately estimate the causal effects of indoor 
temperature on thermal sensations. Building scientists would benefit from recent 
advancements in causal inference frameworks that have revolutionized numerous scientific 
disciplines, ranging from quantum physics to social science (Costa & Shrapnel, 2016; Gelman 
& Vehtari, 2021; Greenland et al., 1999; Imbens & Rubin, 2015; Pearl, 2009; Rohrer, 2018; 
Rothman & Greenland, 2005). 

In this paper, we focus on causal thinking, which is a preliminary step in causal inference, a 
rigorous process of identifying causality using data. Causal thinking is a mindset that 
emphasizes understanding asymmetric causal relationships. It involves categorizing variables 
not merely as associated with each other, but specifically as causes and effects. We highlight 
the essential role of causal thinking in building science and advocate for a shift in recent data-
centric research, encouraging more rigorous data collection methods that enable analysis to 
move from a correlational to a causal perspective. To illustrate the importance of causal 
thinking, we compare the mathematical and theoretical aspects of two regression approaches 
used for neutral temperature estimation in thermal comfort field studies. The case study 
results reveal substantial differences between these approaches, with practical implications for 
future field study methods that could improve our understanding of both building energy 
efficiency and occupant comfort. 

2. BACKGROUND 

Neutral temperature is commonly defined from a correlational perspective as the indoor 
temperature associated with a neutral thermal sensation (Wang et al., 2020; Yan et al., 2017; 
Cao et al., 2014; Rijal et al., 2010; Schiller et al., 1988). The thermal sensation is evaluated 
using “right-now and right-here” surveys of Thermal Sensation Votes (TSV) based on the 
ASHRAE seven-point scale, which ranges from -3 (feeling cold) to 0 (neutral) to +3 (feeling 
hot). The indoor temperature is a proxy of the indoor thermal environment. It can be simply 
represented and measured as air temperature. We choose a more comprehensive metric called 
Standard Effective Temperature (SET), which integrates both physical and personal factors of 
air temperature, radiative temperature, humidity, air movement, clothing, and metabolic rate 
(ASHRAE 55, 2023). These variables are all measured simultaneously with TSV. Throughout 
this paper, the term ‘indoor temperature’ will sometimes refer to this SET equivalent 
temperature, representing the indoor thermal condition experienced and, in some cases, 
partially created by a building occupant. 

The neutral temperature is typically estimated through linear regression analysis between 
building occupants’ TSV and corresponding simultaneous indoor temperature. Existing 
literature presents two approaches for conducting linear regression analysis: Approach (a) 
regresses TSV on indoor temperature (de Dear & Brager, 1998; Nicol & Humphreys, 1973), 
while Approach (b) regresses indoor temperature on TSV (Wang et al., 2020; Parkinson et al., 
2020; Oseland, 1994). In either case, the resulting linear regression model between TSV and 
indoor temperature is used to calculate the neutral temperature by setting the TSV to zero.  
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Figure 1. Comparison of two linear regression approaches for estimating ‘neutral 
temperature’ by setting the TSV to zero. It is a common misconception that the two 
approaches are the same and would yield equivalent estimates of the temperature. However, 
they are fundamentally different both mathematically and theoretically. We use the term 
‘preferred temperature’ to refer to the ‘neutral temperature’ determined by Approach (b). 

Mathematically, the linear regression models resulting from the two approaches are based on 
minimizing different vertical error terms, visualized as curly brackets in Figure 1. Though the 
two graphs are based on the same set of artificial data points, the error terms represent 
different factors as the two approaches treat different variables as the y-axis. Therefore, the 
two regression models, each derived by minimizing the sum of vertical errors using the 
Ordinary Least Squares (OLS) method, are fundamentally different. The mathematical 
formulas for two OLS estimates of neutral temperature are attached in the Appendix. If the 
regression models are based on minimizing the sum of orthogonal distances between data 
points and the fitted lines, a method called Total Least Squares (TLS), the two approaches 
would result in the same estimates of neutral temperature. We acknowledge that the TLS 
method might be more suitable for neutral temperature estimation because it handles 
measurement errors in both the conventionally obtained integer values of TSV and continuous 
values of indoor temperature. However, in this paper, we will focus on the OLS method 
because it is the standard method used in most thermal comfort data analysis, and the 
assignment of dependent and independent variables in the OLS method indicates assumptions 
of causal relationships. 

Theoretically, the two approaches also represent different perspectives on which variable 
influences the other. The conventional Approach (a) represents that people experience a 
thermal sensation (y-axis) in response to a set of indoor thermal conditions (x-axis). In 
Approach (b), using the same variables, the relationship is depicted differently, suggesting 
that indoor thermal conditions (y-axis) are a response to occupants’ thermal experiences (x-
axis). This perspective offers a different but perhaps equally valid reflection of the complex 
interplay between the indoor thermal environment and people’s response, in terms of both 
behavior and thermal response. For example, if one is uncomfortable, one might then take 
actions such as turning up or down the thermostat (often referred to as a “coping 
mechanism”), making the adjusted indoor temperature the dependent variable. In 
environments where this is possible, Approach (a) and (b) both co-exist, representing the 
inherent feedback loops in real buildings. 
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3. CAUSAL THINKING 

From a correlational standpoint, the indoor temperature (represented by SET) and occupants’ 
thermal experience (represented by TSV) are symmetrically associated with each other. In 
contrast, regression treats one variable as the independent variable and the other as the 
dependent variable. This is an essential part of causal thinking, which requires us to specify 
which variable is the cause and which is the effect. Using simplified causal diagrams, we 
explore two causal relationships between SET and TSV, visualized by the different 
directional arrows in Figure 2. These relationships correspond to the two regression 
approaches. 

 

Figure 2. Simplified causal diagrams depicting two different causal relationships between 
indoor thermal conditions and thermal sensations. In the diagrams, the causal factor or 
independent variable is represented as the X node, and the resultant effect or dependent 
variable as the Y node. Approach (a) posits that changing in indoor thermal conditions (X) 
leads to different thermal sensations (Y). Conversely, Approach (b) suggests that changing 
thermal sensations (X) results in different indoor thermal conditions (Y). In this paper, the 
term ‘cause’ refers broadly to total causality without distinguishing between direct and 
indirect causality. 

A feedback loop would better reflect the relationship between two variables in any buildings 
where people have some degree of control over their environment. A comprehensive causal 
diagram could also show many other factors in between the indoor temperature and thermal 
sensation relationships. For instance, Approach (a) causal diagram might incorporate skin 
temperature as a mediating factor, while Approach (b) diagram could encompass the actual 
control mechanisms affecting SET, like adjusting thermostats, windows, blinds, and fans. 
Additionally, both graphs could include confounding variables like outdoor climate and 
occupant demographics that influence both indoor temperature and thermal sensations. Future 
papers plan to explore these more detailed diagrams. However, in this paper, we focus on 
simplified two-node diagrams, excluding feedback and mediating factors, to emphasize the 
importance of causal directions and to discuss their respective implications. 

3.1. Approach (a)  

Approach (a) reflects a conventional idea that the temperature affects thermal sensations. We 
use SET to represent an equivalent indoor temperature that integrates both environmental and 
personal factors of heat transfer. Therefore, the causal relationship is that indoor thermal 
conditions cause thermal sensations. This relationship has framed many research questions 
and subsequent data analysis. For example, the design and control of HVAC systems focus on 
it. The thermal comfort research community has widely studied the effect of indoor thermal 
conditions on thermal sensation in both laboratory settings and field settings. It is the basis for 
the definitions and estimations of neutral temperature and the comfort zone. 

Approach (a) is clearly applicable under most laboratory conditions, where a person is subject 
to an imposed indoor temperature, and their thermal sensation is assessed while other thermal 

X Y
SET TSV

Y X
SET TSV

Approach (a) Approach (b)
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factors are maintained at constant values (Fanger, 1970). In this context, participants have 
little influence over the climate chamber’s settings, i.e., temperature, humidity, and air 
movement. Participants are also not allowed to change their clothing and activities. Approach 
(a) could also be applicable in certain buildings where subjects do not have the ability, 
directly or indirectly, to influence their thermal conditions. However, occupants in actual 
buildings usually have some levels of control over the environment or personal factors. Even 
in centrally conditioned buildings with inoperable windows, people might be able to adjust 
clothing, move around, access a portable fan or heater, control a shading element, or complain 
to a building manager. Such feedback mechanisms mean that the simplified Approach (a) 
faces limitations in real-world settings by not revealing these control actions. 

Approach (a) remains a prevalent method in thermal comfort field studies for determining the 
neutral temperature in all buildings and the resulting adaptive comfort models for naturally 
ventilated buildings (Bouden & Ghrab, 2005; de Dear & Brager, 1998; Indraganti, 2010; 
Nicol & Humphreys, 2002; Singh et al., 2011; Yan et al., 2017; Zaki et al., 2017). However, 
analyzing the impact of indoor temperature by itself on thermal sensations using Approach (a) 
doesn’t explicitly account for the influences of occupants’ psychological and behavioral 
adaptations, which unfortunately isn’t a typical part of the data collection. Moreover, field 
studies differ from laboratory experiments in that they do not maintain a constant 
environment. Both indoor thermal environments and occupants’ thermal perceptions are 
dynamic and subject to various confounding factors in real-world settings. 

A catalyst for the adaptive comfort model framework was the discrepancy in the effect of 
indoor temperature on thermal sensation when comparing laboratory experiments to field 
studies. Many found that when using the PMV model to estimate neutral thermal sensation, 
the resulting neutral temperatures did not fit various contexts in actual buildings, especially 
those with natural ventilation. The general conclusion was that while the assumed causal 
relationship between temperature and thermal sensation as estimated by the PMV may hold 
true in laboratory experiments, it did not reliably describe what was being experienced by 
building occupants in real-world settings. In the context of this paper, this long-held thinking 
is reformulated, both conceptually and mathematically, as a challenge to the limitations of 
using Approach (a) exclusively. This perspective has been suggested decades ago by other 
thermal comfort researchers: 

“In a climate chamber or fully air-conditioned building the occupant has no or little control 
over the environmental conditions. If the temperature, humidity, clothing, and activity are 
fixed, then the reported thermal sensation (i.e., the response) is dependent on the surrounding 
conditions (i.e., the stimulus); hence most studies regress the thermal sensation on the 
temperature [Approach (a)]. The adaptive model stresses the importance of the human drive 
to achieve thermal comfort and argues that thermal comfort is best ensured by giving as much 
effective control to the occupants as possible, rather than by fixing the room temperature at 
some theoretically determined optimum. Furthermore, in the home or a "free-running" 
building, the constraints placed on the occupants are fewer so that they have more individual 
control over their environment. As the occupants can adapt the environment to their 
requirements then their thermal sensation is not necessarily the response and the changing 
environment is not necessarily the stimulus... It may therefore be possible that the neutral 
temperatures are being miscalculated in other studies” (Oseland, 1994).  

The limitations of implementing Approach (a) in field studies have been highlighted in 
previous work. Specifically, achieving a statistically significant regression model with indoor 
temperature regressed against TSV is challenging, often resulting in unreasonable or illogical 
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neutral temperatures (Indraganti, 2010; Rijal et al., 2010; Oseland, 1994). The Griffith 
method was introduced as a solution to those issues (Nicol & Humphreys, 2010; McCartney 
& Nicol, 2002). This method sets the regression coefficient, or the slope of the fitted 
regression line, as a constant value, known as the Griffith constant. Nevertheless, the Griffith 
constant varies considerably across different contexts (Rupp et al., 2019). The Griffith method 
has the same causal assumption and faces the same limitations as Approach (a). 

3.2. Approach (b)  

Approach (b) assumes a different causal relationship between indoor thermal conditions and 
thermal sensation: the latter causes the former. This reversed causal relationship describes 
how occupants adjust their thermal environmental and personal conditions to achieve their 
preferred thermal sensations. For example, an occupant feeling slightly warm may decide to 
modify their environment to achieve a cooler thermal sensation. This may include reducing 
temperature setpoint on a thermostat, removing layers of clothing, turning on a fan, or 
opening windows. This causal relationship aligns with the adaptive comfort theory that asserts 
building occupants are not merely passive recipients of their thermal environment (Brager & 
de Dear, 1998). Instead, people are active agents who use a variety of adaptive opportunities 
and coping mechanisms to move themselves from uncomfortable to comfortable conditions.  

In contrast to most laboratory settings, this causal relationship likely presents the essential 
part of feedback loops in occupied buildings. The exclusive one-directional impact of indoor 
thermal conditions on thermal sensation is diminished in actual buildings because of 
behavioral adjustment of thermal conditions (such as air movement), psychological adaptation 
due to experience and expectation (the perception of control can alone increase the 
temperature range that people find comfortable), and physiological adaptation if exposed for a 
long time. All these factors effectively cause changes in the thermal conditions experienced 
by that occupant, leading to an amplified impact of thermal sensation on the indoor 
temperature and other elements of the thermal experience. However, the applicability of 
Approach (b) in field studies has either been overlooked entirely (in both data collection and 
subsequent analysis), or has been raised and then considered as the ‘wrong’ method for 
neutral temperature estimation for general circumstances: 

“It often seems sensible to put the comfort graph the other way around with the temperature 
on the vertical axis and the comfort on the horizontal [Approach (b)] ... The problem is that 
mathematically this means that you are trying to predict the temperature from the comfort 
vote, which is to assert that the comfort vote is the independent variable that “causes” the 
change in temperature. There are particular circumstances where this might be defensible but 
for the normal prediction of comfort from temperature this will give you the wrong answer” 
(Nicol et al., 2012). 

Adaptive opportunities need to be encouraged in buildings to become the dominant 
relationship, whether it is simply thermostat control or greater opportunities to have operable 
windows, fans, and personal comfort systems. Building occupants are commonly dissatisfied 
with thermal environments (Graham et al., 2021; Karmann et al., 2018), and they should have 
the ability to exercise thermal adaptations, which in turn affect indoor thermal conditions. In 
these cases, the observed indoor thermal conditions are more likely to be the result of 
occupants’ effort to create or maintain their preferred thermal sensations at that moment. 
Initially, people might suffer from hot or cold conditions due to the immediate impact of 
temperature on thermal sensation. However, in the long term, they will actively adapt to 
conditions and consistently learn how to make changes to achieve thermal comfort. Assuming 
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adaptive mechanisms are in place in certain buildings, Approach (b) might conceptually be 
more representative than Approach (a), or at least complementary, regardless of whether we 
have data to quantify the behavioral actions. Again, this has been acknowledged by thermal 
comfort pioneers: 

“When we consider the relation between subjective warmth and room temperature, it is 
obvious that the room temperature, via the clothing insulation and via the characteristics of 
the body and the mind, causes the thermal sensation. This is a fairly straightforward example 
of the thermal environment being the predictor variable (or the ‘independent’ variable) when 
regression analysis is used, and therefore the room temperature can be used to predict the 
thermal sensation. Yet when people have easy control over their room temperature, a reverse 
path of causation is possible. If they feel too warm, they may turn the heating down, while if 
they feel too cool they may turn it up a bit. They adjust the room temperature to ensure that 
their warmth sensation is the one they desire at the time. The subjective warmth could then be 
regarded as causing the room temperature, and, if so, the subjective warmth becomes the 
predictor variable and the room temperature the dependent variable” (Nicol et al., 2015). 

4. CASE STUDY 

We explored different neutral temperature estimation results determined by the two 
approaches using the ASHRAE Thermal Comfort Database II (version 2.1), which is the 
largest existing dataset of thermal comfort field studies, containing more than 800 buildings 
and 10,000 records (Földváry Ličina et al., 2018). In a typical field study, each data collection 
point includes an individual occupant’s right-now-right-here TSV and a full set of indoor 
thermal condition measurements. A field study could last for several weeks or even months, 
so multiple collections occur at various times, including both repeated measurements of the 
same occupant and different measurements across people. Consequently, the impact of earlier 
collected TSV on subsequent indoor temperature changes, i.e., Approach (b), might be 
indirectly reflected in the data. In other words, it’s possible that a building’s dataset includes 
one person’s concurrent temperature and too-warm TSV at one time, and the same person or 
another person’s adjusted temperature and neutral TSV at another time, thus reflecting the 
directional causality implied by the Approach (b). It is important to emphasize that this is an 
assumption we are making about the relevance of this limited dataset for our analysis to 
support our conceptual argument, acknowledging that each data point is actually concurrent 
and without direct recording of the occupants’ actions. 

We conducted case studies on several randomly selected buildings, and they all resulted in 
different neutral temperature estimations using Approach (a) and (b). For this paper, we 
selected one building (ID = 735) from the database that has timestamps for each record and 
information about occupant control behaviors. The building, an air-conditioned office space 
in Malaysia, likely provides occupants with access to the thermostat and operable windows, 
as implied by the original paper (Damiati et al., 2016). The field study was conducted 
between April 13 and May 5, 2015, during the cooling season. A total of 629 records were 
collected from 90 occupants across the study period. We used both regression approaches to 
conduct data analysis for this specific building. Given the different causal assumptions 
underlying the two approaches, the analysis results obtained from each approach should be 
interpreted distinctly. 
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4.1. Neutral Temperature and ‘Preferred Temperature’ 

Using Approach (a), the regression model (TSV = 0.16	𝑆𝐸𝑇 − 4.33) yields an estimated 
neutral temperature (SET) of 27 °C (mathematical formulas are provided in the Appendix). 
This neutral temperature is interpreted as exposing the average occupant of the example 
building to an indoor SET of 27 °C would lead to a TSV of zero. This has been the 
conventional approach to relating experienced thermal conditions to predicted sensation. 
Considering the underlying assumption is no behavioral adaptation, and no associated 
feedback, we believe this interpretation may be limited in thermal comfort field studies, 
particularly in buildings like this that offer adaptive mechanisms. Similar limitations can also 
be applied to the interpretation of the slope of the fitted regression line as thermal sensitivity. 

In contrast, the regression model using Approach (b) is SET = 0.65	𝑇𝑆𝑉 + 24.53, and the 
differently calculated neutral temperature, which we call preferred temperature, is 25 °C. This 
result is more than just a mathematical manipulation. For the sake of our conceptual argument 
presented here, we could perhaps interpret this preferred temperature as suggesting that if the 
average occupant can control their environment, the person would adjust the indoor 
temperature (SET) to 25 °C to achieve a TSV of zero. This is an entirely different question and 
answer. Comparing the neutral temperature from Approach (a) and the preferred temperature 
from Approach (b), we believe, reflects the extent of behavioral actions (i.e., people feel a 
certain way first, and they then adjust their thermal conditions). If there were no behavioral 
actions, in theory, these approaches might produce the same result. When there are actions, 
feedback loops exist, and a combination of Approach (a) and (b) is likely warranted. 

We chose this example building because we know, in general, that occupants are making 
environmental changes, even though it is not reflected in each “right now” concurrent data 
point. 50% of the building occupants in this field study reported that they had changed the 
thermostat when they felt hot, and some occupants informed that they opened the windows to 
let in warmer outdoor air when the indoor temperature was too cold (Damiati et al., 2016). 
Thus, we interpret our analysis as saying that if each individual could achieve a mean TSV of 
zero by adjusting the thermostat setting or windows, the mean preferred indoor equivalent 
temperature (SET) for the group would be 25 °C. In naturally ventilated buildings, occupants’ 
behavioral adaptations, such as changing layers of clothing or opening windows and 
increasing air movement, could be viewed as adjusting an imagined SET thermostat. The 
slope of the fitted regression line might indicate occupants’ control sensitivity, reflecting the 
extent to which people would like to adjust an imagined thermostat, given certain thermal 
sensations. 

We acknowledge limitations in our interpretations of the preferred temperature determined by 
Approach (b), as the concurrent measurement dataset might not perfectly reflect the cause-
and-then-effect relationships and inherent feedback loops in buildings. However, our primary 
intention in this analysis is to highlight the need to apply different interpretations to two 
regression results, and the idea that they each offer complementary ways to understand 
occupant response. A correlational perspective doesn’t specify the direction of the 
relationship between two variables, and conventional field study analyses have rarely utilized 
or discussed the implications of considering Approach (b). Causal thinking has motivated us 
to explore the difference between the two temperatures and the likelihood they might indicate 
the degree of behavioral adaptations or interactions that happened in this building. 
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4.2. Comfort Zone and ‘Preferred Zone’ 

After using the regression model to find two different neutral temperature, we explored 
comfort zones of this example building, starting with an assumption that TSV being between 
±0.85 is considered comfort. It is based on the PMV/PPD relationship that 80% satisfaction 
corresponds to PMV within ±0.85, a relationship founded on analysis that originally used 
Approach (a), and was utilized in an earlier version of  ASHRAE Standard 55’s conventional 
comfort zone, and also the adaptive comfort model (ASHRAE 55, 2023; de Dear & Brager, 
1998). While the adaptive comfort model applied this assumption to regressions from the 
entire database, we apply it here to the single building just for illustrative comparison, shown 
in Figure 3. 

Based on Approach (a) regression model coefficients, the comfort zone is between 21 °C and 
32 °C (mathematical formulas are provided in the Appendix). It implies that exposing all 
building occupants to any indoor temperature between 21 °C and 32 °C would lead to 80% 
thermal satisfaction rate or a mean TSV within ±0.85. As noted above, this is the conventional 
way that research has asked and answered questions about thermal experience. But we think 
the alternative approach might answer different questions. 

In comparison, using Approach (b), we estimate a different ‘comfort zone’, which we term 
the ‘preferred zone’. We want to acknowledge an additional limitation where we are now 
mixing our quantitative approach—using a relationship derived from Approach (a) and now 
applying it to Approach (b)—and emphasize that we are doing it to conceptually support our 
argument that we need to think more holistically about feedback loops in buildings. In spite of 
these limitations, curiously, this alternatively calculated preferred zone suggests that, in 
buildings where occupants have adaptive opportunities such as occurred in the case study 
building, maintaining 80% thermal satisfaction rate among building occupants would result in 
them controlling the mean indoor SET to range between 24 °C and 25 °C. In other words, if 
we imagine that the only means for control was through the thermostat (not clothing, air 
movement, etc.), and that the data actually measured each person’s adaptive actions, the 
indoor temperature would be stabilized at around 24 °C after many back-and-forth thermostat 
wars. A final mean TSV that would fall within ±0.85 likely represents a compromise that 
balances different individuals’ thermal preferences. 

By coloring the data points, we can better understand how these assumed adaptive behaviors 
might have been happening even just over the three weeks of this field study. For this specific 
building, both high indoor temperatures and concurrent hot thermal sensations are recorded at 
the beginning of the field study (early April), which appear as the yellow-green upper-right 
data points in Figure 3. During the field study, occupants might adapt to hot conditions 
passively or actively, such as lowering metabolic rates, lightening clothing, or changing 
thermostat settings. Towards the end of the study (early May), lower indoor temperatures and 
concurrent cooler sensations occurred, appearing as the darker-blue lower-left data points in 
both graphs. The regression model or the fitted line in this scenario indicates the collective 
impact of a group of building occupants’ thermal sensations on indoor temperature changes. 
One can imagine that over a month, these changes resulted from a combination of cooler 
outdoor climates, the HVAC plant responding non-linearly in relation to the outdoor 
temperature, and also from occupants’ directly adjusting the thermostat themselves to create 
cooler environments and, hence, cooler sensations. Unfortunately, the data doesn’t allow us to 
demonstrate this directly, nor do we know what happened prior to the start of the field study.  
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Figure 3. Comparison of two linear regression approaches for estimating ‘comfort zone’ by 
setting the TSV to ±0.85. Each data point represents a building occupant’s TSV and concurrent 
indoor temperature, represented by SET. Graph a) shows a fitted regression line and a comfort 
zone derived using Approach (a). Based on the same dataset and TSV values, Graph b) displays 
another fitted regression line and a 10 °C narrower zone derived using Approach (b), which we 
term ‘preferred zone’. Though both approaches yield the same 𝑅! value of 0.11 and the same 
Pearson correlation coefficient of 0.50, they result in substantially different temperature zones. 

The comfort zone has a large implication for building design and building operational energy 
consumption. Take the operational energy as an example, if the temperature setpoint was set 
as a lower comfort limit, choosing Approach (b)’s lower limit (24 °C) could save about 30% 
of building cooling energy compared to Approach (a)’s lower limit (21 °C) (Hoyt et al., 
2015). If the setpoint was set as the upper comfort limit, choosing Approach (b)’s upper limit 
(25 °C) will increase building cooling energy usage, compared to Approach (a)’s upper limit 
(32 °C). 

5. DISCUSSION 

We have explored the two approaches using the same dataset, revealing substantial 
differences in the numerical results. However, interpreting these results is challenging for 
both approaches. We question the limitations of the prevalent Approach (a) used in field 
studies, since it does not account for occupant behavior and the inherent feedback available in 
real buildings. On the other hand, the implications of Approach (b)’s narrower preferred 
temperature zone remain unclear, and we can only hypothesize what it might mean. Causal 
thinking points us to examine the data-collection process in thermal comfort field studies as a 
crucial element. 

5.1. Data Collection in Field Studies 

Unlike laboratory experiments, typical thermal comfort field studies do not control personal 
or environmental parameters. This is due to the inability to control such conditions in most 
situations and the intention of a field study to capture the natural circumstances. The observed 
subjective and physical measurements don’t fully capture how the data influence each other. 
Consequently, it limits our capacity to sufficiently explore research questions such as adaptive 
thermal comfort, which involves both directions of causal relationships, formulating feedback 
loops. In existing field study datasets, it is usually unknown whether variations in indoor 
temperature could be attributed to several factors - differing outdoor climatic conditions, 
changes in building façade elements like shades or operable windows, facility manager’s 
operations, or occupant behaviors. A high indoor temperature at a given moment could result 
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from direct solar gain due to occupants raising blinds, opening windows when the outdoor 
temperatures exceed indoor temperatures, or from earlier adjustments of raising the 
thermostat setpoint if feeling cold. These are all examples of how one’s thermal sensation 
leads to an action that then causes a change in temperature (or air movement, or other factors) 
but is not typically measured and thus not understood. 

These same limitations in the level of detail accompanying physical measurements apply to 
the subjective measurements from comfort surveys. Field studies of thermal comfort should 
collect more information about nuanced aspects of human response to better understand the 
relationship between the physical environment and experience. Causal thinking is an essential 
starting point of the causal inference framework. It can lead to deeper understanding only if 
there are datasets to be reliably applied. For example, thermal sensation alone says very little 
about perception or how people understand those sensations (i.e., are they positive or 
negative, pleasurable, or annoying). It is this perception that is going to lead to actions that 
ultimately affect the thermal environment, as understood by Approach (b). In field studies, 
TSV is often collected as right-now data and matched to the timestamp of coincident 
environmental measurements. Although this might be similar to what is done in laboratory 
studies, its meaning might not be the same given the dynamic complexities of real buildings 
playing out over time. For example, TSV and other perceptions are likely influenced by more 
than the current moment. It could be partially influenced by the concurrent indoor temperature 
and also the recent history of thermal conditions, which may or may not have been recorded. 
It could also be affected by the psychological impact of whether one had personal control 
over the environmental conditions. 

The ASHRAE Global Thermal Comfort Database II we use in this paper does not perfectly 
match our interests in showing how causal thinking can generate a deeper understanding of 
how the indoor environments and occupant response can influence each other in both 
directions. An ideal dataset would be a time-series monitoring of each building occupant’s 
subjective responses (TSV and many more metrics of perception), surrounding thermal 
environment (temperature and more), thermal control actions, etc. For example, a study might 
follow a single person over time to record a sequence of perceptions and actions. Feeling hot 
and perceiving adaptive opportunities precedes an action of taking off a clothing item or 
decreasing the thermostat temperature, which leads to new thermal conditions, clothing 
ensemble measurements, and, subsequently, a new feeling. Some existing data resources 
might deserve to be explored: the ASHRAE Global Building Occupant Behavior Database 
(Dong et al., 2022), the SAMBA Continuous IEQ Monitoring Database (Parkinson et al., 
2019), six-month field study data of 20 occupants with wearable devices (Tartarini et al., 
2022), and six-month field study data of 37 occupants with personal comfort systems (Kim et 
al., 2019). Perhaps more importantly, new field study data collection protocols should be 
developed that could standardize these important, more nuanced approaches. 

5.2. Causal Thinking in Adaptive Thermal Comfort, Occupant Response, and Building 
Energy Use 

Exploring the application of causal thinking to the role of adaptive actions in influencing 
one’s thermal comfort has raised some discussion points around our understanding of the 
adaptive framework. One of those discussion points is the difference in the comfort zone 
resulting from Approach (a) and the preferred zone resulting from Approach (b). Neither of 
these approaches comprehensively reflect the inherent feedback loops in buildings, which are 
inadequately represented in typical field study datasets. We believe that, with adequate 
datasets, new analysis methods under a causal inference framework could potentially address 
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the need to combine the perspectives of both approaches, and generate comfort zones that 
more accurately represent the implications of occupants’ behavioral interactions in buildings. 

As noted earlier, the existing adaptive comfort model does not explicitly assert a causal 
relationship between the prevailing outdoor air temperature and indoor comfort temperature. 
Adaptive theory hypothesizes that indoor comfort is more related to prevailing outdoor 
climate patterns in naturally ventilated buildings compared to air-conditioned buildings for 
several reasons: indoor and outdoor conditions are more closely linked, inhabitants’ clothing 
patterns might vary more (behavioral adaptation), and expectations shift (psychological 
adaptation) due to a combination of perceived control of operable windows and a greater 
diversity of thermal experiences. The adaptive comfort model was developed as a simplified 
tool for practical use, where the outdoor climate is simply used as a proxy and does not 
explain all these potential causal mechanisms in-between that remain to be studied, measured, 
and proven.  

The applicability of causal thinking can extend to other research questions related to building 
occupants. Occupant responses and behaviors are not as well understood as building physics, 
which is a relatively mature field. Building physics has established more accurate cause-and-
effect relationships, and the value of causal thinking and causal inference is less critical. Take 
Fourier’s law of heat conduction as an example: 𝑞 = −𝑘∇𝑇. In an ideal dataset where there is 
no measurement error, regressing the heat flux against the temperature gradient, or vice versa, 
would give us the same estimates of thermal conductivity. In contrast, both the causes and 
effects of building occupants’ responses are very complicated. For instance, research has 
shown that non-thermal factors, such as access to window views, can influence thermal 
sensations (Ko et al., 2020). The well-known discrepancy between building energy simulation 
results and actual energy consumption emphasize the need to include the significant impact of 
occupant behaviors (Yan et al., 2015). Moreover, data-driven building energy models could 
lead to biased results (Chen et al., 2024). Therefore, integrating causal thinking is especially 
critical when addressing research questions related to building occupants and energy use. 

6. CONCLUSION 

This paper addresses the significance of causal thinking by exploring different causal 
assumptions and interpretations in two similar regression approaches used in thermal comfort 
field studies. Our findings reveal that the direction of regression analysis matters, leading to 
substantial differences in results, and questions about the implications. The disparity between 
the comfort zone and what we called the preferred zone, calculated from these approaches, 
remains largely unexplained, primarily due to the limitations in current data collection 
methods in field studies. While they may mean entirely different things, it is also possible that 
the implications are complementary and, upon further exploration, may together lead us to a 
greater understanding. The lack of more detailed and comprehensive data collection within 
actual buildings hinders our ability to analyze complex causal diagrams or to accurately 
quantify the causal relationships between building occupants and their physical environment 
in either direction. 

The need for future research to refine and expand the data collection process in field studies is 
clear, especially in an era where data in the built environment is rapidly expanding. While 
data-driven statistical methods, ranging from simple regression analysis to other complex 
machine learning algorithms, are gaining traction, we stress the importance of scrutinizing the 
causal assumptions underlying these methods, and the relevance of the data used in each. This 
is particularly important when the statistical model prediction results are interpreted and 
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applied causally. Neglecting to do so can lead to decisions based merely on correlations, 
potentially compromising occupant comfort, health, and the sustainability of building design 
and operations. 
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APPENDIX 

Approach (a) presumes a linear relationship between TSV and indoor temperature (SET), as 
expressed in Equation (a1). The indoor temperature is treated as the cause (independent 
variable) and the TSV is treated as the effect (dependent variable). The predicted TSV is 
derived from the regression function in Equation (a2), which contains an error term 
encapsulating the variance not explained by the SET, which could be unknown causal factors 
of TSV in addition to random noises (Pearl et al., 2016). For each data point i, this error 
represents the disparity between the predicted value, denoted as 𝑇𝑆𝑉9 ", and the actual value, 
denoted as 𝑇𝑆𝑉", as demonstrated in (a3). The model parameters are designated as 𝛼#; and 𝛽#9. 
They are derived by minimizing the sum of squared error terms, depicted in (a4). The 
prediction function can be found in (a5). By setting the 𝑇𝑆𝑉9  to zero in this function, we can 
derive the neutral temperature, 𝑇#$, as shown in from (a6). By setting the 𝑇𝑆𝑉9  to ±0.85 in this 
function, we can derive the comfort temperature range, 𝑇#%, as shown in (a7). The Pearson 
correlation coefficient between SET and TSV is calculated as (a8). 

𝑇𝑆𝑉 = 𝛼#𝑆𝐸𝑇 + 𝛽# (a1) 

𝑇𝑆𝑉9 = 𝛼#;𝑆𝐸𝑇 + 𝛽#9+ 𝜀# (a2) 

𝜀#" = 𝑇𝑆𝑉" − 𝑇𝑆𝑉9 " = 𝑇𝑆𝑉" − 𝛼#;𝑆𝐸𝑇" − 𝛽#9 (a3) 

>𝛼#;,𝛽#9@ = 𝑎𝑟𝑔𝑚𝑖𝑛('!,)!)∑ 𝜀#"!$
"+# = 𝑎𝑟𝑔𝑚𝑖𝑛('!,)!)∑ (𝑇𝑆𝑉" − 𝛼#;𝑆𝐸𝑇" − 𝛽#9)!$

"+#   (a4) 

𝑇𝑆𝑉9 = 𝛼#;𝑆𝐸𝑇 + 𝛽#9 (a5) 

𝑇#$ = −𝛽#9/𝛼#; (a6) 

𝑇#% = (0.85 − 𝛽#9)/𝛼#;	− (−0.85 − 𝛽#9)/𝛼#; 	= 1.7/𝛼#; (a7) 
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𝜌,-.,.,/ =
%01(,-.,.,/)
2"#$2$"%

= -[(,-.45"#$)(.,/45$"%)]
2"#$2$"%

	 (a8) 

Approach (b) employs an alternate linear model, indicated in (b1). Equations (b1) and (a1) 
can be interchanged. The model parameters 𝛼! and 𝛽! can be represented as 𝛼! = 1/𝛼# and 
𝛽! = −𝛽#/𝛼#. However, the regression function in (b2) varies from (a2) because of distinct 
error terms. The error term 𝜀!" in (b3) captures the difference between predicted and actual 
indoor temperatures, while the 𝜀#" represents the difference between predicted TSV and actual 
TSV. Since the estimation of model parameters depends on error minimization, the results 𝛼!; 
and 𝛽!9 differ from 𝛼#; and 𝛽#9 and are not interconvertible. The prediction function (b5) 
predicts indoor temperature based on TSV, while (a5) predicts TSV based on indoor 
temperature. When setting the TSV to zero in (b5), the preferred temperature 𝑇!$ is equal to 
𝛽!9, which varies from −𝛽#9/𝛼#;. Therefore, 𝑇!$ is not equal to 𝑇#$. When setting the TSV to 
±0.85 in (b5), the comfort temperature range, 𝑇!% is 1.7𝛼!;, which varies from 1.7/𝛼#;. 
Therefore 𝑇!% is not equal to 𝑇#%. Interestingly, the Pearson correlation coefficient (b8) is the 
same as (a8), which might lead to the misunderstanding that the two linear regression 
approaches are identical. 

𝑆𝐸𝑇 = 𝛼!𝑇𝑆𝑉 + 𝛽! (b1) 

𝑆𝐸𝑇9 = 𝛼!;𝑇𝑆𝑉 + 𝛽!9+ 𝜀! (b2) 

𝜀!" = 𝑆𝐸𝑇" − 𝑆𝐸𝑇9 " = 𝑆𝐸𝑇" − 𝛼!;𝑇𝑆𝑉" − 𝛽!9 (b3) 

>𝛼!;,𝛽!9@ = 𝑎𝑟𝑔𝑚𝑖𝑛('&,)&)∑ 𝜀!"!$
"+# = 𝑎𝑟𝑔𝑚𝑖𝑛('&,)&)∑ (𝑆𝐸𝑇" − 𝛼!;𝑇𝑆𝑉" − 𝛽!9)!$

"+#   (b4) 

𝑆𝐸𝑇9 = 𝛼!;𝑇𝑆𝑉 + 𝛽!9 (b5) 

𝑇!$ = 𝛽!9 (b6) 

𝑇!% = 0.85𝛼!; + 𝛽!9− [−0.85𝛼!; + 𝛽!9] = 1.7𝛼!; (b7) 

𝜌.,/,,-. =
%01(.,/,,-.)
2$"%2"#$

= -[(.,/45$"%)(,-.45"#$)]
2$"%2"#$

	 (b8) 
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