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Abstract

Transferable Generative Models

By

Ajay Jain

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

We present progress in developing stable, scalable and transferable generative
models for visual data. We first learn expressive image priors using autoregressive
models which generate high-quality and diverse images. We then explore transfer
learning to generalize visual representations models to new data modalities with
limited available data. We propose twomethods to generate high quality 3D graphics
from sparse input images or natural language descriptions by distilling knowledge
from pretrained discriminative vision models. We briefly summarize our work on
improving generation quality with a Denoising Diffusion Probabilistic Model, and
demonstrate how to transfer it to new modalities including high-quality text-to-3D
synthesis using Score Distillation Sampling. Finally, we generate 2D vector graphics
from text by optimizing a vector graphics renderer with knowledge distilled from a
pretrained text-to-image diffusion model, without vector graphics data. Our models
enable high-quality generation across many modalities, and continue to be broadly
applied in subsequent work.
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Chapter 1

Introduction

I have been lucky to have a very full-stack PhD. In the beginning of my academic journey, I
focused on multiple parallel directions, yet aimed to make impossible tasks possible through a
combination of learning algorithms and computer systems. My PhD journey has focused on three
classes of work: (i) efficient computer systems that enable scaling up learning, (ii) developing more
expressive and stable models that can benefit from the scale, and (iii) transfer learning algorithms
that enable models to generalize to new modalities. In this thesis, I will focus on the latter two
bodies of work.
Estimating high-dimensional distributions from true samples is a long-standing challenge

problem in machine learning and statistics. Such a distribution estimate requires a model to
capture interdependencies between a collection of variables, such as the dimensions of a random
vector. Access to a parametric distribution estimate enables almost magical effects when applied to
real-world data. When the distributions describe images, these applications include unconditional
image generation e.g. synthesizing infinite artificial data, image generation conditioned on some
known properties, photo editing, enhancements such as superresolution or inpainting, domain
translation andmore. Deep generative models also drive progress in other data modalities including
speech synthesis, music generation and natural language generation.

Much of the research in deep generative models focuses on the estimation of an unconditional
parametric distribution 𝑝𝜃 (x), measuring progress by task-independent sample quality and like-
lihood metrics. Still, the appeal of generative modeling lies in the flexibility of the prior 𝑝𝜃 to
transfer to downstream tasks, where we usually have access to some conditioning information
like a class label 𝑦 or corrupted observation x̃. In these settings, it is crucial to be able to access
desired posterior distributions with low computational cost, such as 𝑝𝜃 (x|x̃). General-purpose
inference algorithms can sample from the desired posteriors in some cases, but we would ideally
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like a family of generative models that readily exposes controllable generation knobs and gives
the practitioner flexibility to adapt to various downstream tasks cheaply.

Our overall goal in this thesis is to learn and transfer expressive generative visual models
to many domains. We tackle the problem by removing architectural limitations in the generative
image prior, then by easing data requirements for generative applications by transfering knowl-
edge from large pretrained models. First, in Chapter 2, we propose a variant of the PixelCNN
autoregressive model architecture that supports image completion applications with arbitrary
conditional distributions over data dimensions. Our modified architecture, the Locally Masked
PixelCNN, allows parameter sharing across an ensemble that improves density estimation. Still,
autoregressive models are powerful density estimators, but suffer from poor sample quality at small
scale, are slow to sample, and are fairly inflexible for conditional generation tasks. In particular,
autoregressive models like PixelCNNs sample only one data dimension at a time, typically with a
full neural network forward pass that is wasteful.

In Chapter 3, we explore a challenging application of image synthesis: the novel view synthesis
(NVS) problem. The goal of NVS is to interpolate sparse views of a scene from new camera
poses. Given sparsely sampled observed views, existing approaches based on neural radiance
fields estimate the parameters of a neural network that encodes a specific scene’s geometry and
appearance. Then, volumetric rendering is used to generate novel views. In our work, we propose
an auxiliary loss in feature space that allows prior knowledge from large image encoders to
be transferred to the view synthesis problem. This gives neural radiance fields the ability to
extrapolate to unseen regions—an important capability for generative models. Using the auxiliary
loss to constrain the scene representation also improves the quality of view synthesis with as
few as 1-8 observed images. Using prior knowledge from self-supervised models is a promising
approach to improve the data efficiency, flexibility and controllability of generative models.

Are any observations required? In Chapter 4, we show that feature space losses can be used to
generate a 3D object from scratch given only a caption. We describe a method, Dream Fields, to
synthesize a 3D neural radiance field by test-time training. Dream Fields consists of a regularized
3D representation optimized with a loss function based on a pretrained language model and image
encoder with aligned feature spaces. Regularizations prove critical for high quality. Our work
paves the way to open-domain text-to-3D generation, without using any 3D training data.
DietNeRF and Dream Fields relied on priors from discrimative models like self-supervised

Vision Transformers and contrastive language-vision dual encoders. However, discriminative
models do not necessarily represent all of the visual details needed for high quality synthesis.
Chapter 5 briefly discusses two of our works in generative modeling that enable much higher
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fidelity cross-modal generation. We first develop a new Denoising Diffusion Probabilistic Model
(DDPM) that achieves state-of-the-art sample quality for image synthesis. DDPM has proven to be
a highly scalable, stable prior that can be directly trained in different modalities. Still, there will
always be a disparity in the amount of training data available in different formats: image datasets
currently are many orders of magnitude larger than the biggest 3D datasets. In subsequent work,
we find novel ways to transfer diffusion models out of their training modality. We propose the
Score Distillation Sampling loss to unlock this transfer capability, and a high quality text-to-3D
method called Dream Fusion as its first application.
Building on our work on diffusion models and Score Distillation Sampling, we develop a text-

to-SVG method called VectorFusion in Chapter 6 based on a pretrained text-to-image diffusion
model. VectorFusion shows the potential for generative models to create abstract, vectorized
graphics from text. Throughout this thesis, we built powerful synthesis tools by combining large
scale priors learned on data-rich modalities with differentiable renderers that represent tailored
modalities useful for downstream tasks. Chapter 7 provides closing thoughts.
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Chapter 2

Locally Masked Convolution for
Autoregressive Models

Work by Ajay Jain, Pieter Abbeel, and Deepak Pathak

High-dimensional generative models have many applications including image compression,
multimedia generation, anomaly detection and data completion. State-of-the-art estimators for
natural images are autoregressive, decomposing the joint distribution over pixels into a product of
conditionals parameterized by a deep neural network, e.g. a convolutional neural network such as
the PixelCNN. However, PixelCNNs only model a single decomposition of the joint, and only a
single generation order is efficient. For tasks such as image completion, these models are unable
to use much of the observed context. To generate data in arbitrary orders, we introduce LMConv:
a simple modification to the standard 2D convolution that allows arbitrary masks to be applied to
the weights at each location in the image. Using LMConv, we learn an ensemble of distribution
estimators that share parameters but differ in generation order, achieving improved performance
on whole-image density estimation (2.89 bpd on unconditional CIFAR10), as well as globally
coherent image completions. Our code is available at https://ajayjain.github.io/lmconv.

2.1 Introduction

Learning generative models of high-dimensional data such as images is a holy grail of machine
learning with pervasive applications. Significant progress on this problem would naturally lead to a
wide range of applications, including multimedia generation, compression, probabilistic time series
forecasting, representation learning, and missing data completion. Many generative modeling

https://ajayjain.github.io/lmconv
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GTOursObs GTOursObs GTOursObs GTOursObs

Locally masked
convolution

LMConv OriginalPixelCNN++Observed

Full contextObserved OriginalSome context

Obs LMConv Original Obs LMConv Original

Figure 2.1: The ideal autoregressive joint distribution decomposition and sampling order are task-
dependent. We learn to generate images under multiple orderings with the same
parameters via locally masked convolutions (top), enabling global coherence for image
completion (bottom).

frameworks have been proposed. Current state-of-the-art models for high-dimensional image
data include (a) autoregressive models [6, 33], (b) normalizing flow density estimators [136], (c)
generative adversarial networks (GANs) [43], (d) latent variable models such as the VAE [80,
137] and (e) energy-based models e.g. [32, 56, 85, 162]. While GANs, VAEs and EBMs have had
great success in high-dimensional image generation, exact likelihoods are generally intractable.
Likelihood estimation is key for many practical applications from uncertainty estimation, robust-
ness, reliability and safety perspectives. In contrast, autoregressive and flow models estimate
exact likelihoods and can be used for uncertainty estimation, though still have room for improved
generation quality. In this work, our focus is on autoregressive models.
Given 𝑛 variables, one can generate 𝑛! autoregressive decompositions of the joint likelihood,

each corresponding to a forward sampling order, and more if we assume conditional independence.
Early autoregressive texture synthesis [33, 129] work could support multiple orders. However,
recent CNN-based autoregressive models for images [112, 113, 148] capture only one of these
orders (typically left-to-right raster scan, Fig. 2.2) for practical computational efficiency. Training
and testing with a single order will not support all scenarios. Consider the image completion task
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in first row of Figure 2.1. If the top half of the image is missing, a raster scan generation order
from left-to-right and top-to-bottom does not allow the model to condition on the context given in
the observed bottom half of the image as the required conditionals are not estimated by the model.
In this work, we propose a scalable, yet simple modification to convolutional autoregressive

models to estimate more accurate likelihoods with a minor change in computation during training.
Our goal is to support arbitrary orders in a scalable manner, allowing more precise likelihoods
by averaging over several graphical models corresponding to orders (a form of Bayesian model
averaging). Some past works have supported arbitrary orders in autoregressive models by learning
separate parameters for each model [39], or by masking the input image to hide successor vari-
ables [84]. A more efficient approach estimates densities in parallel across dimensions by masking
network weights [41] differently for each order. However, all these methods are still inefficient
and difficult to scale beyond fully-connected networks to convolutional architectures.
In this work, we perform order-agnostic distribution estimation for natural images with state-

of-the-art convolutional architectures. We propose to support arbitrary orderings by introducing
masking at the level of features, rather than on inputs or weights. We show how an autoregressive
CNN can support and learn multiple orders, with a single set of weights, via locally masked

convolutions that efficiently apply location-specific masks to patches of each feature map. These
local convolutions can be efficiently implemented purely via matrix multiplication by incorporating
masking at the level of the im2col and col2im separation of convolution [71].
Arbitrary orders allow us to customize the traversal based on the needs of the task, which we

evaluate in experiments. For instance, consider the examples shown in Fig. 2.1. The flexibility
allows us to select the sampling order that exposes the maximum possible context for image
completion, choose orderings that eliminate blind-spots (unobservable pixels) in image generation,
and ensemble across multiple orderings using the same network weights. Note that such a model
is able to support these image completions without training on any inpainting masks.
In experiments, we show that our approach can be efficiently implemented and is flexible

without sacrificing the overall distribution estimation performance. By introducing order-agnostic
training via LMConv, we significantly outperform PixelCNN++ on the unconditional CIFAR10
dataset, achieving code lengths of 2.89 bits per dimension. We show that the model can generalize
to some novel orders. Finally, we significantly outperform raster-scan baselines on conditional
likelihoods relevant to image completion by customizing the generation order.
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Figure 2.2: The three pixel generation orders and corresponding local masks that we consider in
this chapter.

2.2 Background

Deep autoregressive models estimate high-dimensional data distributions using samples from the
joint distribution over D-dimensions 𝑝data(x1, . . . , x𝐷 ). In this setting, we wish to approximate
the joint with a parametric model 𝑝𝜃 (x1, . . . , x𝐷 ) by minimizing KL-divergence 𝐷𝐾𝐿 (𝑝data | |𝑝𝜃 ), or
equivalently by maximizing the log-likelihood of the samples. As a general modeling principle, we
can divide high-dimensional variables into many low-dimensional parts such as single dimensions,
and capture dependencies between dimensions with a directed graphical model. Following the
notation of [79], these autoregressive (AR) models represent the joint distribution as a product of
conditionals,

𝑝𝜃 (x) = 𝑝𝜃 (𝑥1, . . . , 𝑥𝐷 )

= 𝑝𝜃 (𝑥𝜋 (1) )
𝐷∏
𝑖=2

𝑝𝜃
(
𝑥𝜋 (𝑖 ) | 𝑃𝑎(x𝜋 (𝑖 ) )

)
(2.1)

where 𝜋 : [𝐷] → [𝐷] is a permutation defining an order over the dimensions, 𝑃𝑎(x𝜋 (𝑖 ) ) =
x𝜋 (1) , . . . , x𝜋 (𝑖−1) defines the parents of 𝑥𝜋 (𝑖 ) in the graphical model, and 𝜃 is a parameter vector.
As any joint can be decomposed in this manner according to the product rule, this factorization
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(a) Graphical model for suffix completion 
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(b) Graphical model for prefix completion (c) Locally masked convolutions

Figure 2.3: (a) A graphical model where the final, unobserved variables 𝑥3, 𝑥4 can be efficiently
completed via forward sampling conditioned on the observed variables 𝑥1, 𝑥2. (b) When
𝑥4 is observed, we sample 𝑥1, 𝑥2, and 𝑥3 in the second graphical model using the same
parameters. (c) LMConv defines the model with masks at each filter location.

provides the foundation for many models including ours. The primary challenge in autoregressive
models is defining a sufficiently expressive family for the conditionals where parameter estimation
is efficient. Deep autoregressive models parameterize the conditionals with a neural network that
is provided the context 𝑃𝑎(x𝜋 (𝑖 ) ).
Decomposition (2.1) converts the joint modeling problem into a sequence modeling problem.

Forward (ancestral) sampling draws root variable 𝑥𝜋 (1) first, then samples the remaining dimen-
sions in order 𝑥𝜋 (2) , . . . , 𝑥𝜋 (𝐷 ) from their respective conditionals. Given a particular autoregressive
decomposition of the joint, forward sampling supports a single data generation order. The joint
model density for an observed variable can be computed exactly by evaluating each conditional,
allowing density estimation and maximum likelihood parameter estimation,

L(𝜃 ) = E𝑥∼𝑝data
𝐷∑︁
𝑖=1

log 𝑝𝜃
(
𝑥𝜋 (𝑖 ) | 𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑖−1)

)
𝜃 ∗ = arg𝜃 maxL(𝜃 ) (2.2)

With some choices of network architecture, the conditionals can be computed in parallel by
masking weights [41, 113]. In the PixelCNN model family, masked convolutions are causal: the
features output by a masked convolution can only depend on features earlier in the order.
While the choice of order is arbitrary, temporal and sequential data modalities have a natural

ordering from the first dimension in the sequence to the last. For spatial data such as images,
a natural ordering is not clear. For computational reasons, a raster scan order is generally used
where the top left pixel is modeled unconditionally and generation proceeds in row-major fashion
across each row from left to right, depicted in Figure 2.1, second column.
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2.3 Image Completion with Maximum Receptive Field

For estimating the distribution of 2D images, a raster scan ordering is perhaps as good of an order
as any other choice. That said, the raster scan order has necessitated architectural innovations to
allow the neural network to access information far back in the sequence such as two-dimensional
PixelRNNs [113], two-stream shift-based convolutional architectures [112], and self-attention
combined with convolution [22]. These structures significantly improve test-set likelihoods and
sample quality, but marry network architectures to the raster scan order.
Fixing a particular order is limiting for missing data completion tasks. Letting 𝜋 (𝑖) = 𝑖 denote

the raster scan order, PixelRNN and PixelCNN architectures can complete only the bottom part of
the image via forward sampling: given observations 𝑥1, . . . , 𝑥𝑑 , raster scan autoregressive models
sequentially sample,

𝑥𝑖 ∼ 𝑝𝜃 (𝑥𝑖 | 𝑥1, . . . , 𝑥𝑑 , 𝑥𝑑+1, . . . , 𝑥𝑖−1) . (2.3)

If all dimensions other than 𝑥𝑖 are observed, ideally we would sample 𝑥𝑖 using maximum condi-
tioning context,

𝑥𝑖 ∼ 𝑝𝜃 (𝑥𝑖 | 𝑥<𝑖 , 𝑥>𝑖). (2.4)

Unfortunately, the raster scan model only predicts distributions of the form 𝑝𝜃 (𝑥𝑖 | 𝑥<𝑖), and
ignores observations𝑥>𝑖 during completion. In theworst case, amodel with a raster scan generation
order cannot observe any of the context for an inpainting task where the top half of the image is
unknown (Figure 2.1, PixelCNN++). This leads to image completions that do not respect global
structure. A few dimensions could be sampled by computing the posterior, e.g. for 𝑖 = 1,

𝑝𝜃 (𝑥1 | 𝑥>1) =
𝑝𝜃 (𝑥1, 𝑥>1)∑
𝑥 ′1 𝑝𝜃 (𝑥

′
1, 𝑥>1)

, (2.5)

but this is expensive as each summand requires neural network evaluation, and becomes intractable
when several dimensions are unknown. Instead of approximating the posterior, we estimate
parameters 𝜃 that achieve high likelihood with multiple autoregressive decompositions,

LOA(𝜃 ) = E𝑥∼𝑝dataE𝜋∼𝑝𝜋 log 𝑝𝜃 (𝑥1, . . . , 𝑥𝐷 ;𝜋)

𝜃 ∗ = arg𝜃 maxLOA(𝜃 ) (2.6)

with 𝑝𝜋 denoting a uniform distribution over several orderings. The joint distribution under 𝜋
factorizes according to (2.1). The resulting conditionals are all parameterized by the same neural
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network. By choosing order prior 𝑝𝜋 that supports a 𝜋 such that 𝜋 (𝐷) = 𝑖 , we can use the network
with such an ordering to query (2.4) directly.

During optimization with stochastic gradient descent, we make single-sample estimates of the
inner expectation in (2.6) according to order-agnostic training [41, 174]. A single order is used
within each batch.

For a test-time task where {𝑥𝑖 : 𝑖 ∈ 𝑇obs} are observed, we select a 𝜋 that the model was trained
with such that

{𝜋 (1), . . . , 𝜋 ( |𝑇obs |)} = 𝑇obs,

i.e. the first |𝑇obs | dimensions in the generation order are the observed dimensions, then sample
according to the rest of the order so that the model posterior over each unknown dimension is
conditioned either on observed or previously sampled dimensions.

2.4 Local Masking

In this section, we develop locally masked convolutions (LMConv): a modification to the standard
convolution operator that allows control over generation order and parallel computation of
conditionals for evaluating likelihood. In the first convolutional layer of a neural network, 𝐶out

filters of size 𝑘 × 𝑘 are applied to the input image with spatial invariance: the same parameters
are used at all locations in a sliding window. Each filter has 𝑘2 ∗ 𝐶in parameters. For images
with discretized intensities, convolutional autoregressive networks transform a spatial 𝐻 ×𝑊 ,
multi-channel image into a tensor of log-probabilities that define the conditional distributions
of (2.1). These log-probabilities take the form of an 𝐻 ×𝑊 image, with channel count equal
to the number of color channels times the number of bins per color channel. The output log-
probabilities at coordinate 𝑖, 𝑗 in the output define the distribution 𝑝𝜃 (𝑥𝑖, 𝑗 | 𝑃𝑎(𝑝 (𝑥𝑖, 𝑗 )). Critically,
this distribution must not depend on observations of successors in the Bayesian network, or the
product of conditionals will not define a valid distribution due to cyclicity.

NADE [84] circumvents the problem by masking the input image, though requires independent
forward passes to compute each factor of the autoregressive decomposition (2.1). Instead, the
PixelCNN model family controls information flow through the network by setting certain weights
of the convolution filters to zero, similar to how MADE [41] masks the weight matrices in fully-
connected layers. We depict masked convolutions for the first convolutional layer in Figure 2.4. As
a single mask is applied to the 𝐶in × 𝑘 × 𝑘 parameter tensor defining each convolutional filter, the
same masking pattern is in effect applied at all locations in the image. The architectural constraint
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Figure 2.4: A comparison of standard weight masked convolutions and the proposed locally masked
convolution.

that the masking pattern is shared limits the possible orders supported by the PixelCNN model
family, and leads to blind spots which the output distribution is unable to condition upon.

In practice, convolutions are implemented through general matrix multiplication (GEMM) due
to widely available, heavily optimized and parallelized implementations of the operation on GPU
and CPU. To use matrix multiplication, the input to a layer is rearranged in memory via the im2col
algorithm, which extracts 𝐶in × 𝑘 × 𝑘 patches from the 𝐶in × 𝐻 ×𝑊 input at each location that a
convolutional filter will be applied. Assuming padding and a stride of 1 is used, the rearrangement
yields matrix 𝑋 with 𝐶in ∗ 𝑘2 rows and 𝐻 ∗𝑊 columns. To perform convolution, the framework
left-multiplies weight matrixW, storing 𝑌 =W𝑋 , adds a bias, and finally rearranges 𝑌 into a
spatial format via the col2im algorithm.
We exploit this data rearrangement to arbitrarily mask the input to the convolutional filter at

each location it is applied. The inputs to the convolution at each location, i.e. the input patches,
form columns of 𝑋 . For a given generation order, we construct mask matrix M of the same
dimensions as 𝑋 and set 𝑋 = M ⊙ 𝑋 prior to matrix multiplication. In particular, our locally
masked convolution masks patches of the input to each layer, rather than masking weights and
rather than masking the initial input to the network. LMConv combines the flexibility of NADE
and the parallelizability of MADE and PixelCNN. The LMConv algorithm is summarized in
Algorithm 1, and mask construction is detailed in Algorithm 2.

We implement two versions of the layer with the PyTorch machine learning framework [121].
The first is an implementation that uses autodifferentiation to compute gradients. As only the
forward pass is defined by the user, the implementation is under 20 lines of Python.
However, reverse-mode autodifferentiation incurs significant memory overheads during back-

propagation as the output of nearly every operation during the forward pass must be stored until
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Algorithm 1 LMConv: Locally masked 2D convolution
1: Input: image 𝑥 , weightsW, bias 𝑏, generation order 𝜋 . 𝑥 is 𝐵 ×𝐶in × 𝐻 ×𝑊 dimensional andW is
𝐶out ×𝐶in ∗ 𝑘1 ∗ 𝑘2 dimensional

2: Create mask matrixM with Algorithm 2
3: Extract patches: 𝑋 = im2col(pad(𝑥), 𝑘1, 𝑘2)
4: Mask patches: 𝑋 =M ⊙ 𝑋
5: Perform convolution via batch MM: 𝑌 =W𝑋 + 𝑏
6: Assemble patches: 𝑦 = col2im(𝑌 )
7: return 𝑦

gradient computation [47, 67]. Data rearrangement with im2col is memory intensive as features
patches overlap and are duplicated. We implement a custom, memory efficient backward pass that
only stores the input, the mask and the output of the layer during the forward pass and recomputes
the im2col operation during the backward pass. Recomputing the im2col operation achieves 2.7×
memory savings at a 1.3× slowdown.
Using locally masked convolutions, we can experiment with many different image generation

orders. In this work, we consider three classes of orderings: raster scan, implemented in baseline
PixelCNNs, an S-curve order that traverses rows in alternating directions, and a Hilbert space-
filling curve order that generates nearby pixels in the image consecutively. Alternate orderings
provide several benefits. Nearby pixels in an image are highly correlated. By generating these
pixels close in a Hilbert curve order, we might expect information to propagate from the most
important, nearby observations for each dimension and reduce the vanishing gradient problem.
If the image is considered a graph with nodes for each pixel and edges connecting adjacent

pixels, a convolutional autoregressive model using an order defined by a Hamiltonian path over
the image graph will also suffer no blind spot in a 𝐷 layer network. To see this, note that the
features corresponding to dimension 𝑥𝜋 (𝑖 ) in the Hamiltonian path order will always be able to
observe the previous layer’s features corresponding to 𝑥𝜋 (𝑖−1) . After at least 𝐷 layers of depth,
the features for 𝑥𝜋 (𝑖 ) will incorporate information from all 𝑖 − 1 previous dimensions. In practice,
information propagates with fewer required layers in these architectures as multiple neighbors are
observed in each layer. Finally, we select multiple orderings at inference and average the resulting
joint distributions to compute better likelihood estimates.

2.5 Architecture

We use a network architecture similar to PixelCNN++ [148], the best-in-class density estimator in
the fully convolutional autoregressive PixelCNNmodel family. Convolution operations are masked
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Algorithm 2 Create input mask matrix
1: Input: Generation order 𝜋 (·), constants 𝐶in, 𝑘1, 𝑘2, dilation 𝑑 , is this the first layer?
2: Start with an empty set of generated coordinates
3: InitializeM as 𝑘1 ∗ 𝑘2 × 𝐻 ∗𝑊 zero matrix
4: for 𝑖 from 1 to 𝐻 ∗𝑊 do
5: Let (𝑟, 𝑐) be coordinates of dimension 𝜋 (𝑖)
6: for offsets Δ𝑟 ,Δ𝑐 in 𝑘1 × 𝑘2 kernel do
7: if (𝑟 + 𝑑Δ𝑟 , 𝑐 + 𝑑Δ𝑐 ) has been generated then
8: Allow output location (𝑟, 𝑐) to access features at (𝑟 + 𝑑Δ𝑟 , 𝑐 + 𝑑Δ𝑐 ) in previous layer: set
M𝑘2Δ𝑟+Δ𝑐 ,𝑊 𝑟+𝑐 = 1

9: end if
10: end for
11: Add (𝑟, 𝑐) to generated coordinates
12: end for
13: if not the first layer then
14: Allow previous layer features to be observed at all locations: set center row ⌊ 𝑘1∗𝑘22 ⌋ ofM to 1
15: end if
16: Repeat rows ofM, 𝐶in times
17: return binary mask matrixM

according to Algorithm 1. While our locally masked convolutions can benefit from self-attention
mechanisms used in later work, we choose a fully convolutional architecture for simplicity and to
study the benefit of local masking in isolation of other architectural innovations. We make three
modifications to the PixelCNN++ architecture that simplify it and allow for arbitrary generation
orders. Gated PixelCNN uses a two-stream architecture composed of two network stacks with
⌊𝑘2 ⌋ × 1 and ⌊

𝑘
2 ⌋ × 𝑘 convolutions to enforce the raster scan order. In the horizontal stream, Gated

PixelCNN applies non-square convolutions and feature map shifts or pads to extract information
within the same row, to the left of the current dimension. In the vertical stream, Gated PixelCNN
extracts information from above. Skip connections between streams allow information to propagate.
PixelCNN++ uses a similar architecture based on a U-Net [143] with approximately 54M parameters.
We replace the two streams with a simple, single stream with the same depth, using LMConv to
maintain the autoregressive property. Masks for these convolutions are computed and cached at
the beginning of training. Due to the regularizing effect of order-agnostic training, we do not use
dropout.
Second, we use dilated convolutions [189] at regular intervals in the model rather than down-

sampling the feature map. Downsampling precludes many orders, as the operation aggregates
information from contiguous squares of pixels together without a mask. Dilated convolutions
expand the receptive field without limiting the order, as local masks can be customized to hide or
reveal specific features accessed by the filter.
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Table 2.1: Average negative log likelihood of dynamically binarized and grayscale MNIST digits
under baselines and our model. Lower is better.

BINARIZED MNIST, 28x28 NLL (nats)
DARN (Intractable) [46] ≈84.13
NADE [174] 88.33
EoNADE 2hl (128 orders) [174] 85.10
EoNADE-5 2hl (128 orders) [131] 84.68
MADE 2hl (32 orders) [41] 86.64
PixelCNN [113] 81.30
PixelRNN [113] 79.20
Ours, S-curve (1 order) 78.47
Ours, S-curve (8 orders) 77.58

GRAYSCALE MNIST, 28x28 NLL (bpd)
Spatial PixelCNN [1] 0.88
PixelCNN++ (1 stream) 0.77
Ours, S-curve (1 order) 0.68
Ours, S-curve (8 orders) 0.65

Finally, we normalize the feature map across the channel dimension by applying positional
normalization [86]. Normalization allows masks to have varying numbers of ones at each spatial
location by rescaling features to the same scale.
As in PixelCNN++, our model represents each conditional with a mixture of 10 discretized

logistic distributions that imposes a distribution over binned pixel intensities. For the binarized
MNIST dataset [147], we instead use a softmax over two logits. We train with 8 variants of an
S-curve (zig-zag) order that traverses each row of the image in alternating directions so that
consecutively generated pixels are adjacent, and so that locally masked CNNs with sufficient depth
can achieve the maximum allowed receptive field.

Across all quantitative experiments, we use a model with approximately 46M parameters, trained
with the Adam optimizer with a learning rate of 2 ∗ 10−4 decayed by a factor of 1 − 5 ∗ 10−6 per
iteration with clipped gradients. For CelebA-HQ qualitative results, we increase filter count and
train a model with 184M parameters. More details are provided in the appendix.
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Table 2.2: Average negative log likelihood of CIFAR10 images under our model. Lower is better.

CIFAR10, 32x32 NLL (bpd)
Uniform Distribution 8.00
Multivariate Gaussian [113] 4.70
Attention-based
Image Transformer [120] 2.90
PixelSNAIL [22] 2.85
Sparse Transformer [23] 2.80
Convolutional
PixelCNN (1 stream) [113] 3.14
Gated PixelCNN (2 stream) [112] 3.03
PixelCNN++ (1 stream) 2.99
PixelCNN++ (2 stream) [148] 2.92
Ours, S-curve (1 stream, 1 order) 2.91
Ours, S-curve (1 stream, 8 orders) 2.89

2.6 Experiments

To evaluate the benefits of our approach, we study three scientific questions: (1) do locally masked

autoregressive ensembles estimate more accurate likelihoods on image datasets than single-order

models? (2) can the model generalize to novel orders? and (3) how important is order selection for

image completion?

We estimate the distribution of three image datasets: 28×28 grayscale and binary [147] MNIST
digits, 32×32 8-bit color CIFAR10 natural images, and high-resolution CelebA-HQ 5-bit color face
photographs [74]. Unlike classification, density estimation remains challenging on these datasets.
We train the CelebA-HQ models at 256×256 resolution to compare with prior density estimation
work, and at a bilinearly downsampled 64×64 resolution.

Our locally masked model achieves better likelihoods than PixelCNN++ by using multiple
generation orders. We then show that the model can generalize to generation orders that it has not
been trained with. Finally, for image completion, we achieve the best results over strong baselines
by using orders that expose all observed pixels.

2.6.1 Whole-image Density Estimation

Tractable generative models are generally evaluated via the average negative log likelihood (NLL)
of test data. For interpretability, many papers normalize base 2 NLL by the number of dimensions.
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Table 2.3: Average conditional negative log likelihood for Top, Left and Bottom half image com-
pletion.

BINARIZED MNIST 28x28 (nats) T L B

Ours (adversarial order) 41.76 39.83 43.35
Ours (1 max context order) 34.99 32.47 36.57
Ours (2 max context orders) 34.82 32.25 36.36

CIFAR10 32x32 (bpd) T L B

PixelCNN++, 1 stream 3.07 3.10 3.05
PixelCNN++, 2 stream 2.97 2.98 2.93
Ours (1 stream, adversarial order) 2.93 2.98 3.05
Ours (1 stream, 1 max context order) 2.77 2.83 2.89
Ours (1 stream, 2 max context orders) 2.76 2.82 2.88

By normalizing, we can measure bits per dimension (bpd), or a lower-bound for the expected
number of bits needed per pixel to losslessly compress images using a Huffman code with 𝑝 (x)
estimated by our model. Better estimates of the distribution should result in higher compression
rates. Tables 2.1 and 2.2 show likelihoods for our model and prior models.
On binarized MNIST (Table 2.1), our locally masked PixelCNN achieves significantly higher

likelihoods (lower NLL) than baselines, including neural autoregressive models NADE, EoNADE,
and MADE that average across large numbers of orderings. This is due to architectural advantages
of our CNN and increased model capacity. Our model also outperforms the standard PixelCNN,
which suffers from a blind spot problem due to sharing the same mask at all locations. Likelihood
is further improved by using ensemble averaging across 8 orders that share parameters. These
results are also observed on grayscale MNIST where each pixel has one of 256 intensity levels.
On CIFAR10, we achieve 2.89 bpd test set likelihood when averaging the joint probability of 8

graphical models, each defined by an S-curve generation order. Our results outperform the state-of-
the-art convolutional autoregressive model, PixelCNN++. We significantly outperform a 1 stream
architectural variant of PixelCNN++ that has the same number of parameters as our model and
uses a similar architecture, differing only in that it uses a single raster scan order. By introducing
order-agnostic ensemble averaging to convolutional autoregressive models, we combined the
best of fully-connected density estimators that average over orders, and the inductive biases of
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Figure 2.5: CIFAR10 image completions using our locally-masked convolutions with a specialized
ordering.

CNNs. These results could further improve with self-attention mechanisms and additional capacity,
which have been observed to improve the performance of singe-order estimation, marking an
opportunity for future research.

Our model is also scalable to high resolution distribution estimation. On the CelebA-HQ 256x256
dataset at 5-bit color depth, our model achieves 0.74 bpd with a single S-curve order, outperforming
Glow [77], an exact likelihood normalizing flow. In comparison, the state-of-the-art model, SPN
[96], achieves 0.61 bpd by using self-attention and a specialized architecture for high resolutions.

2.6.2 Generalization to Novel Orders

Ideally, an order-agnostic model would be able to generate images in orders that it has not been
trained with. To understand generalization to novel orders, we evaluate the test-set likelihood of a
CIFAR10 model that achieves 2.93 bpd with a single S-curve order and 2.91 bpd with 8 S-curve
orders under a raster scan decomposition. The model achieves 3.75 bpd with 1 raster scan order
(28% increase) and 3.67 bpd with 8 raster scan orders (26% increase). While the novel order degrades
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Figure 2.6: Completions of 64 × 64 px CelebA-HQ images at 5-bit color depth. Up to 2 samples are
shown to the right of each half-obscured face provided to the model. Missing pixels are
generated along an S-curve that first traverses the observed region. Additional samples
and ground truth completions are provided in the appendix.

compression rate, the model was trained with 8 fixed orders of the same S-curve type, which are
fairly different from a raster scan.

To study generalization to more similar orders, we trained a model on Binarized MNIST with 7
S-curves for 120 epochs. On the test set, the model has 0.144 bpd using each train order. Testing
with the held out (8th) S-curve, the model achieves 0.151 bpd, only 5% higher.

2.6.3 Image Completion

To quantitatively assess whether control over generation order improves image completions, we
measure the average conditional negative log likelihood of hidden regions of held-out test images
on the MNIST and CIFAR10 datasets, measured in bits per dimension. We compute the NLL of the
top half, left half, and bottom half of the image conditioned on the remainder of the image. The
hidden region is set to zero in the model input, as well as hidden via masks used in each model.

Table 2.3 shows average NLL on binary MNIST and CIFAR10. Top half inpainting is challenging
for PixelCNN baselines that use a raster scan order, as model conditional 𝑝𝜃 (𝑥𝑖 |𝑥<𝑖) does not
condition on observed pixels that lie below 𝑥𝑖 in the image. Similarly, our architecture under an
adversarial order, a single S-shaped curve from the top left to bottom left of the image, achieves
2.93 bpd on CIFAR in the T setting. In contrast, using the same parameters, when we decomposes
the joint favorably for maximum context with an S-curve generation order from the bottom left
to the top left of the image, we achieve 2.77 bpd. Averaging over two maximum context orders
further improves log likelihood to 2.76 bpd. A similar trend is observed for the other completion
tasks, L and B.
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2.6.4 Qualitative Results

Figure 2.1 shows completions of MNIST and CelebA-HQ 64×64 images. PixelCNN++ produces
MNIST digits that are inconsistent with the observed context. With a poor choice of order, our
model only respects some attributes of the input image, but not overall facial structure. The model
distributions over each missing pixel should condition on the entire observed region. This is
accomplished when the missing region is generated last via a maximum context order. With this
order, completions by our model are consistent with the given context.

Figures 2.5 and 2.6 show completions of held-out CIFAR10 32×32 and CelebA-HQ 64×64 images
for four different missing regions. The masked input to the model (Obs), our sampled completion
(Ours) and the ground truth image (GT) are shown. Missing image regions are generated in a
maximum context order. While samples have some artifacts such as blurring due to long sequence
lengths, images are globally coherent, with matching colors and object structure (CIFAR10) or
facial structure (CelebA-HQ). Across datasets and image masks, our model effectively uses available
context to generate coherent samples.

2.7 Related Work

Autoregressive models are a popular choice to estimate the joint distribution of high-dimensional,
multivariate data in deep learning. [39] proposes logistic autoregressive Bayesian networks
where each conditional is learned through logistic regression, capturing first-order dependencies
between variables. While different orders had similar performance, averaging densities from 10
differently ordered models achieved small improvements in likelihood. [6] extend this idea, using
artificial neural networks to capture conditionals with some parameter sharing. [84] propose the
neural autoregressive distribution estimator (NADE) for binary and discrete data, reducing the
complexity of density estimation from quadratic in the number of dimensions to linear. [175] extend
NADE to real-valued vectors (RNADE), expressing conditionals as mixture density networks. The
autoregressive approach is desirable due to the lack of conditional independence assumptions,
easy training via maximum likelihood, tractable density, and tractable, though sequential, forward
sampling directly from the conditionals.
These works all use a single, arbitrary order per estimated model. However, it is possible

to use the same parameters to define a family of differently ordered autoregressive Bayesian
networks. [174] propose EoNADE, an ensemble of input-masked NADE models trained with
an order-agnostic training procedure that achieve higher likelihoods when averaged and allows
forward sampling of arbitrary regions. Each iteration, EoNADE chooses a random prefix of an
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ordering 𝜋 (1), . . . , 𝜋 (𝑑), sample a training example 𝑥 and maximize the likelihood of 𝑥𝑑 under their
model. ConvNADE [173] adapts EoNADE with a convolutional architecture and conditions the
model on the input mask defining the order. Still, NADE, EoNADE and ConvNADE are serial: only
a single conditional is trained at a time, and density estimation requires 𝐷 passes. [41] propose
an order-agnostic MADE that masks the weights of a fully connected autoencoder to estimate
densities with a single forward pass by computing conditionals in parallel. While MADE supports
multiple orders, it is limited by a fully-connected architecture. Our Locally Masked PixelCNN can
be seen as a generalization of MADE that supports convolutional inductive bias.
Other deep autoregressive models use recurrent, convolutional or self-attention architectures.

In language modeling, autoregressive recurrent neural networks (RNNs) predict a distribution
over the next token in a sequence conditioned on a recurrently updated representation of the
previous words [98]. [113] extend this idea to images, proposing a multi-dimensional, sequential
PixelRNN for image generation and discrete distribution estimation, and a parallelizable PixelCNN.
Subsequent works capture correlations between pixels in an image with convolutional architectures
inspired by the PixelCNN [96, 112, 135, 148], often improving the ability of the network to capture
long-range dependencies. The PixelCNN family can generate entire high-fidelity images and, until
recently, achieved state-of-the-art test set likelihood among tractable, likelihood-based generative
models. PixelCNNs have also been used as a prior for latent variables [115], and can be sampled in
parallel using fixed-point methods [163, 182]. While convolutions process information locally in
an image, self-attention mechanisms have been used to gain global receptive field [22, 23, 120] for
improved statistical performance.
Normalizing flows [136] are parametric density estimators that give exact expressions for

likelihood using the change-of-variables formula by transforming samples from a simple prior
with learned, invertible functions. If tractable densities are not required, other families are
possible. Implicit generative models such as GANs [43] have been applied to high resolution image
generation [74] and inpainting [124]. Nonparametric approaches have also been successful for
inpainting [3, 33, 52]. Partial convolutions [89] improve CNN inpainting quality by rescaling
filter responses that access missing pixels, but are not causal unlike LMConv. Latent-variable
models like the VAE [80, 137] jointly learn a generative model for data 𝑥 given latent 𝑧 and an
approximation for the posterior over 𝑧. Other latent-variable models are based on Markov chains
[8, 108, 159].
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2.8 Conclusion

In this chapter, we proposed an efficient, scalable and easy to implement approach for supporting
arbitrary autoregressive orderings within convolutional networks. To do so, we propose locally
masked convolutions that allow arbitrary orderings by masking features at each layer while si-
multaneously sharing filter weights. This formulation can be efficiently implemented purely via
matrix multiplication. Our work is a synthesis of prior lines of inquiry in autoregressive models.
Locally Masked PixelCNNs support parallel estimation, convolutional inductive biases, and control
over order, all with one simple layer. Foundational work in this area each supported some of these,
but with incompatible architectures. As an additional benefit, arbitrary orderings allow image
completion with diverse regions. We achieve globally coherent image completions by choosing a
favorable order at test time, without specifically training the model to inpaint.
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Chapter 3

Putting NeRF on a Diet: Semantically
Consistent Few-Shot View Synthesis

Work by Ajay Jain, Matthew Tancik, and Pieter Abbeel

In Chapter 2, we showed how generative models trained on images can be made more flexible.
Our Locally Masked PixelCNNs can outpaint, or extend, regions of images in all directions. Still,
even flexible models trained on images are restricted to analyzing, synthesizing and editing
images, limiting their application to 2D. How can we extend the utility of 2D image models to new
modalities, such as 3D graphics? After all, image datasets contain snapshots of an underlying 3D
world, so image models may have greater potential.

In this chapter, we present DietNeRF, a 3D neural scene representation estimated from a few
images. Neural Radiance Fields (NeRF) learn a continuous volumetric representation of a scene
through multi-view consistency, and can be rendered from novel viewpoints by ray casting. While
NeRF has an impressive ability to reconstruct geometry and fine details given many images, up to
100 for challenging 360◦ scenes, it often finds a degenerate solution to its image reconstruction
objective when only a few input views are available. To improve few-shot quality, we propose
DietNeRF. We introduce an auxiliary semantic consistency loss that encourages realistic renderings
at novel poses. DietNeRF is trained on individual scenes to (1) correctly render given input views
from the same pose, and (2) match high-level semantic attributes across different, random poses.
Our semantic loss allows us to supervise DietNeRF from arbitrary poses. We extract these semantics
using a pre-trained visual encoder such as CLIP, a Vision Transformer trained on hundreds of
millions of diverse single-view, 2D photographs mined from the web with natural language
supervision. In experiments, DietNeRF improves the perceptual quality of few-shot view synthesis
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when learned from scratch, can render novel views with as few as one observed image when
pre-trained on a multi-view dataset, and produces plausible completions of completely unobserved
regions. Our project website is available at https://www.ajayj.com/dietnerf.

3.1 Introduction

In the novel view synthesis problem, we seek to rerender a scene from arbitrary viewpoint given a
set of sparsely sampled viewpoints. View synthesis is a challenging problem that requires some
degree of 3D reconstruction in addition to high-frequency texture synthesis. Recently, great
progress has been made on high-quality view synthesis when many observations are available.
A popular approach is to use Neural Radiance Fields (NeRF) [100] to estimate a continuous
neural scene representation from image observations. During training on a particular scene, the
representation is rendered from observed viewpoints using volumetric ray casting to compute
a reconstruction loss. At test time, NeRF can be rendered from novel viewpoints by the same
procedure. While conceptually very simple, NeRF can learn high-frequency view-dependent scene
appearances and accurate geometries that allow for high-quality rendering.

Still, NeRF is estimated per-scene, and cannot benefit from prior knowledge acquired from other
images and objects. Because of the lack of prior knowledge, NeRF requires a large number of input
views to reconstruct a given scene at high-quality. Given 8 views, Figure 3.2B shows that novel
views rendered with the full NeRF model contain many artifacts because the optimization finds a
degenerate solution that is only accurate at observed poses. We find that the core issue is that
prior 3D reconstruction systems based on rendering losses are only supervised at known poses,
so they overfit when few poses are observed. Regularizing NeRF by simplifying the architecture
avoids the worst artifacts, but comes at the cost of fine-grained detail.

Further, prior knowledge is needed when the scene reconstruction problem is underdetermined.
3D reconstruction systems struggle when regions of an object are never observed. This is partic-
ularly problematic when rendering an object at significantly different poses. When rendering a
scene with an extreme baseline change, unobserved regions during training become visible. A view
synthesis system should generate plausible missing details to fill in the gaps. Even a regularized
NeRF learns poor extrapolations to unseen regions due to its lack of prior knowledge (Figure 3.2D).
Recent work trained NeRF on multi-view datasets of similar scenes [153, 167, 171, 180, 188] to

bias reconstructions of novel scenes. Unfortunately, these models often produce blurry images
due to uncertainty, or are restricted to a single object category such as ShapeNet classes as it is
challenging to capture large, diverse, multi-view data.

https://www.ajayj.com/dietnerf
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Figure 3.1: Neural Radiance Fields are trained to represent a scene by supervising renderings from

the same pose as ground-truth observations (MSE loss). However, when only a few
views are available, the problem is underconstrained. NeRF often finds degenerate
solutions unless heavily regularized. Based on the principle that “a bulldozer is a
bulldozer from any perspective”, our proposed DietNeRF supervises the radiance
field from arbitrary poses (DietNeRF cameras). This is possible because we compute a
semantic consistency loss in a feature space capturing high-level scene attributes, not
in pixel space. We extract semantic representations of renderings using the CLIP Vision
Transformer [130], then maximize similarity with representations of ground-truth
views. In effect, we use prior knowledge about scene semantics learned by single-view
2D image encoders to constrain a 3D representation.

In this work, we exploit the consistency principle that “a bulldozer is a bulldozer from any

perspective” : objects share high-level semantic properties between their views. Image recognition
models learn to extract many such high-level semantic features including object identity. We
transfer prior knowledge from pre-trained image encoders learned on highly diverse 2D single-view

image data to the view synthesis problem. In the single-view setting, such encoders are frequently
trained on millions of realistic images like ImageNet [26]. CLIP is a recent multi-modal encoder that
is trained to match images with captions in a massive web scrape containing 400M images [130].
Due to the diversity of its data, CLIP showed promising zero- and few-shot transfer performance
to image recognition tasks. We find that CLIP and ImageNet models also contain prior knowledge
useful for novel view synthesis.

We propose DietNeRF, a neural scene representation based on NeRF that can be estimated from
only a few photos, and can generate views with unobserved regions. In addition to minimizing
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(A) NeRF
100 views

(B) NeRF
8 views

(C) Simplified NeRF
8 views

(D) Simplified NeRF
14 similar views

Figure 3.2: Few-shot view synthesis is a challenging problem for Neural Radiance Fields.
(A) When we have 100 observations of an object from uniformly sampled poses, NeRF
estimates a detailed and accurate representation that allows for high-quality view
synthesis purely from multi-view consistency. (B) However, with only 8 views, the
same NeRF overfits by placing the object in the near-field of the training cameras,
leading to misplaced objects at poses near training cameras and degeneracies at novel
poses. (C) We find that NeRF can converge when regularized, simplified, tuned and
manually reinitialized, but no longer captures fine details. (D) Finally, without prior
knowledge about similar objects, single-scene view synthesis cannot plausibly complete
unobserved regions, such as the left side of an object seen from the right. In this work,
we find that these failures occur because NeRF is only supervised from the
sparse training poses.

NeRF’s mean squared error losses at known poses in pixel-space, DietNeRF penalizes a semantic

consistency loss. This loss matches the final activations of CLIP’s Vision Transformer [30] between
ground-truth images and rendered images at different poses, allowing us to supervise the radiance
field from arbitrary poses. In experiments, we show that DietNeRF learns realistic reconstructions
of objects with as few as 8 views without simplifying the underlying volumetric representation,
and can even produce reasonable reconstructions of completely occluded regions. To generate
novel views with as few as 1 observation, we fine-tune pixelNeRF [188], a generalizable scene
representation, and improve perceptual quality.

3.2 Background on Neural Radiance Fields

A plenoptic function, or light field, is a five-dimensional function that describes the light radiating
from every point in every direction in a volume such as a bounded scene. While explicitly storing
or estimating the plenoptic function at high resolution is impractical due to the dimensionality
of the input, Neural Radiance Fields [100] parameterize the function with a continuous neural



CHAPTER 3. PUTTING NERF ON A DIET 26

network such as a multi-layer perceptron (MLP). A Neural Radiance Field (NeRF) model is a
five-dimensional function 𝑓𝜃 (x, d) = (c, 𝜎) of spatial position x = (𝑥,𝑦, 𝑧) and viewing direction
(𝜃, 𝜙), expressed as a 3D unit vector d. NeRF predicts the RGB color c and differential volume
density 𝜎 from these inputs. To encourage view-consistency, the volume density only depends
on x, while the color also depends on viewing direction d to capture viewpoint dependent effects
like specular reflections. Images are rendered from a virtual camera at any position by integrating
color along rays cast from the observer according to volume rendering [72]:

C(r) =
∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡)𝜎 (r(𝑡))c(r(𝑡), d)𝑑𝑡 (3.1)

where the ray originating at the camera origin o follows path r(𝑡) = o + 𝑡d, and the transmittance
𝑇 (𝑡) = exp

(
−
∫ 𝑡𝑓
𝑡𝑛
𝜎 (r(𝑠))𝑑𝑠

)
weights the radiance by the probability that the ray travels from the

image plane at 𝑡𝑛 to 𝑡 unobstructed. To approximate the integral, NeRF employs a hierarchical
sampling algorithm to select function evaluation points near object surfaces along each ray. NeRF
separately estimates two MLPs, a coarse network and a fine network, and uses the coarse network
to guide sampling along the ray for more accurately estimating (3.1). The networks are trained
from scratch on each scene given tens to hundreds of photos from various perspectives. Given
observed multi-view training images {𝐼𝑖} of a scene, NeRF uses COLMAP SfM [152] to estimate
camera extrinsics (rotations and origins) {p𝑖}, creating a posed dataset D = {(𝐼𝑖 , p𝑖)}.

3.3 NeRF Struggles at Few-Shot View Synthesis

View synthesis is a challenging problem when a scene is only sparsely observed. Systems like
NeRF that train on individual scenes especially struggle without prior knowledge acquired from
similar scenes. We find that NeRF fails at few-shot novel view synthesis in several settings.

NeRF overfits to training views Conceptually, NeRF is trained by mimicking the image-
formation process at observed poses. The radiance field can be estimated repeatedly sampling a
training image and pose (𝐼 , p𝑖), rendering an image 𝐼p𝑖 from the same pose by volume integration
(3.1), then minimizing the mean-squared error (MSE), which should align pixel-wise:

Lfull(𝐼 , 𝐼p𝑖 ) =
1

𝐻𝑊
∥𝐼 − 𝐼p𝑖 ∥22 (3.2)
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In practice, NeRF samples a smaller batch of rays across all training images to avoid the computa-
tional expense of rendering full images during training. Given subsampled rays R cast from the
training cameras, NeRF minimizes:

LMSE(R) =
1
|R |

∑︁
r∈R
∥C(r) − Ĉ(r)∥22 (3.3)

With many training views, LMSE provides training signal to 𝑓𝜃 densely in the volume and does not
overfit to individual training views. Instead, the MLP recovers accurate textures and occupancy
that allow interpolations to new views (Figure 3.2A). Radiance fields with sinusoidal positional
embeddings are quite effective at learning high-frequency functions [167], which helps the MLP
represent fine details.
Unfortunately, this high-frequency representational capacity allows NeRF to overfit to each

input view when only a few are available. LMSE can be minimized by packing the reconstruction
𝐼p of training view (𝐼 , p) close to the camera. Fundamentally, the plenoptic function represen-
tation suffers from a near-field ambiguity [193] where distant cameras each observe significant
regions of space that no other camera observes. In this case, the optimal scene representation
is underdetermined. Degenerate solutions can also exploit the view-dependence of the radiance
field. Figure 3.2B shows novel views from the same NeRF trained on 8 views. While a rendered
view from a pose near a training image has reasonable textures, it is skewed incorrectly and has
cloudy artifacts from incorrect geometry. As the geometry is not estimated correctly, a distant
view contains almost none of the correct information. High-opacity regions block the camera.
Without supervision from any nearby camera, opacity is sensitive to random initialization.

Regularization fixes geometry, but hurts fine-detail High-frequency artifacts such as
spurious opacity and rapidly varying colors can be avoided in some cases by regularizing NeRF. We
simplify the NeRF architecture by removing hierarchical sampling and learning only a single MLP,
and reducing the maximum frequency positional embedding in the input layer. This biases NeRF
toward lower frequency solutions, such as placing content in the center of the scene farther from
the training cameras. We also can address some few-shot optimization challenges by lowering the
learning rate to improve initial convergence, and manually restarting training if renderings are
degenerate. Figure 3.2C shows that these regularizers successfully allow NeRF to recover plausible
object geometry. However, high-frequency, fine details are lost compared to 3.2A.

No prior knowledge, no generalization to unseen views As NeRF is estimated from scratch
per-scene, it has no prior knowledge about natural objects such as common symmetries and
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object parts. In Figure 3.2D, we show that NeRF trained with 14 views of the right half of a Lego
vehicle generalizes poorly to its left side. We regularized NeRF to remove high-opacity regions
that originally blocked the left side entirely. Even so, the essential challenge is that NeRF receives
no supervisory signal from LMSE to the unobserved regions, and instead relies on the inductive
bias of the MLP for any inpainting. We would like to introduce prior knowledge that allows NeRF
to exploit bilateral symmetry for plausible completions.

3.4 Semantically Consistent Radiance Fields

Motivated by these challenges, we introduce the DietNeRF scene representation. DietNeRF uses
prior knowledge from a pre-trained image encoder to guide the NeRF optimization process in the
few-shot setting.

3.4.1 Semantic consistency loss

DietNeRF supervises 𝑓𝜃 at arbitrary camera poses during training with a semantic loss. While
pixel-wise comparison between ground-truth observed images and rendered images with LMSE is
only useful when the rendered image is aligned with the observed pose, humans are easily able to
detect whether two images are views of the same object from semantic cues. We can in general
compare a representation of images captured from different viewpoints:

LSC,ℓ2 (𝐼 , 𝐼 ) =
𝜆

2 ∥𝜙 (𝐼 ) − 𝜙 (𝐼 )∥
2
2 (3.4)

If 𝜙 (𝑥) = 𝑥 , Eq. (3.4) reduces to Lfull up to a scaling factor. However, the identity mapping is
view-dependent. We need a representation that is similar across views of the same object and
captures important high-level semantic properties like object class. We evaluate the utility of two
sources of supervision for representation learning. First, we experiment with the recent CLIP
model pre-trained for multi-modal language and vision reasoning with contrastive learning [130].
We then evaluate visual classifiers pre-trained on labeled ImageNet images [30]. In both cases, we
use similar Vision Transformer (ViT) architectures.

A Vision Transformer is appealing because its performance scales very well to large amounts of
2D data. Training on a large variety of images allows the network to encounter multiple views
of an object class over the course of training without explicit multi-view data capture. It also
allows us to transfer the visual encoder to diverse objects of interest in graphics applications,
unlike prior class-specific reconstruction work that relies on homogeneous datasets [12, 73]. ViT
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Algorithm 3 Training DietNeRF on a single scene
1: Input: Observed viewsD = {(𝐼 , p)}, semantic embedding function𝜙 (·), pose distribution 𝜋 , consistency

interval 𝐾 , weight 𝜆, rendering size, batch size |R |, lr 𝜂𝑖𝑡
2: Result: Trained Neural Radiance Field 𝑓𝜃 (·, ·)
3: Initialize NeRF 𝑓𝜃 (·, ·)
4: Pre-compute target embeddings {𝜙 (𝐼 ) : 𝐼 ∈ D}
5: for it from 1 to num_iters do
6: Sample ray batch R, ground-truth colors C(·)
7: Render rays Ĉ(·) by (3.1)
8: L ← LMSE (R,C, Ĉ)
9: if it % 𝐾 = 0 then
10: Sample target image, pose (𝐼 , p) ∼ D
11: Sample source pose p̂ ∼ 𝜋
12: Render image 𝐼 from pose p̂
13: L ← L + LSC (𝐼 , 𝐼 )
14: end if
15: Update parameters: 𝜃 ← 𝐴𝑑𝑎𝑚(𝜃, 𝜂𝑖𝑡 ,∇𝜃L)
16: end for

extracts features from non-overlapping image patches in its first layer, then aggregates increasingly
abstract representations with Transformer blocks based on global self-attention [176] to produce a
single, global embedding vector. ViT outperformed CNN encoders in our early experiments.

In practice, CLIP produces normalized image embeddings. When 𝜙 (·) is a unit vector, Eq. (3.4)
simplifies to cosine similarity up to a constant and a scaling factor that can be absorbed into the
loss weight 𝜆:

LSC(𝐼 , 𝐼 ) = 𝜆𝜙 (𝐼 )𝑇𝜙 (𝐼 ) (3.5)

We refer to LSC (3.5) as a semantic consistency loss because it measures the similarity of high-level
semantic features between observed and rendered views. In principle, semantic consistency is
a very general loss that can be applied to any 3D reconstruction system based on differentiable
rendering.

3.4.2 Interpreting representations across views

The pre-trained CLIP model that we use is trained on hundreds of millions of images with captions
of varying detail. Image captions provide rich supervision for image representations. On one
hand, short captions express semantically sparse learning signal as a flexible way to express
labels [27]. For example, the caption “A photo of hotdogs” describes Fig. 3.2A. Language also
provides semantically dense learning signal by describing object properties, relationships and
appearances [27] such as the caption “Two hotdogs on a plate with ketchup and mustard”. To be
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predictive of such captions, an image representation must capture some high-level semantics that
are stable across viewpoints. Concurrently, [42] found that CLIP representations capture visual
attributes of images like art style and colors, as well as high-level semantic attributes including
object tags and categories, facial expressions, typography, geography and brands.

In Figure 3.3, we measure the pairwise cosine similarity between CLIP representations of views
circling an object. We find that pairs of views have highly similar CLIP representations, even for
diametrically opposing cameras. This suggests that large, diverse single-view datasets can induce
useful representations for multi-view applications.

3.4.3 Pose sampling distribution

We augment the NeRF training loop with LSC minimization. Each iteration, we compute LSC

between a random training image sampled from the observation dataset 𝐼 ∼ D and rendered
image 𝐼p from random pose p ∼ 𝜋 . For bounded scenes like NeRF’s Realistic Synthetic scenes
where we are interested in 360◦ view synthesis, we define the pose sampling distribution 𝜋 to be
a uniform distribution over the upper hemisphere, with radius sampled uniformly in a bounded
range. For unbounded forward-facing scenes or scenes where a pose sampling distribution is
difficult to define, we interpolate between three randomly sampled known poses p1, p2, p3 ∼ D
with pairwise interpolation weights 𝛼1, 𝛼2 ∼ U(0, 1).

3.4.4 Improving efficiency and quality

Volume rendering is computationally intensive. Computing a pixel’s color evaluates NeRF’s MLP
𝑓𝜃 at many points along a ray. To improve the efficiency of DietNeRF during training, we render
images for semantic consistency at low resolution, requiring only 15-20% of the rays as a full
resolution training image. Rays are sampled on a strided grid across the full extent of the image
plane, ensuring that objects are mostly visible in each rendering. We found that sampling poses
from a continuous distribution was helpful to avoid aliasing artifacts when training at a low
resolution.

In experiments, we found thatLSC converges faster thanLMSE for many scenes. We hypothesize
that the semantic consistency loss encourages DietNeRF to recover plausible scene geometry early
in training, but is less helpful for reconstructing fine-grained details due to the relatively low
dimensionality of the ViT representation 𝜙 (·). We exploit the rapid convergence of LSC by only
minimizing LSC every 𝑘 iterations. DietNeRF is robust to the choice of 𝑘 , but a value between
10 and 16 worked well in our experiments. StyleGAN2 [75] used a similar strategy for efficiency,
referring to periodic application of a loss as lazy regularization.
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Figure 3.3: CLIP’s Vision Transformer learns low-dimensional image representations through
language supervision. We find that these representations transfer well to multi-view
3D settings. We sample pairs of ground-truth views of the same scene and of different
scenes from NeRF’s Realistic Synthetic object dataset, then compute a histogram of
representation cosine similarity. Even though camera poses vary dramatically (views are
sampled from the upper hemisphere), views within a scene have similar representations
(green). Across scenes, representations have low similarity (red)

As backpropagation through rendering is memory intensive with reverse-mode automatic
differentiation, we render images for LSC with mixed precision computation and evaluate 𝜙 (·) at
half-precision. We delete intermediate MLP activations during rendering and rematerialize them
during the backward pass [20, 66]. All experiments use a single 16 GB NVIDIA V100 or 11 GB
2080 Ti GPU.

Since LSC converges before LMSE, we found it helpful to fine-tune DietNeRF with LMSE alone
for 20-70k iterations to refine details. Alg. 3 details our overall training process.

3.5 Experiments

In experiments, we evaluate the quality of novel views synthesized by DietNeRF and baselines
for both synthetically rendered objects and real photos of multi-object scenes. (1) We evaluate
training from scratch on a specific scene with 8 views §3.5.1. (2) We show that DietNeRF improves
perceptual quality of view synthesis from only a single real photo §3.5.2. (3) We find that DietNeRF
can reconstruct regions that are never observed §3.5.3, and finally (4) run ablations §3.6.

Datasets The Realistic Synthetic benchmark of [99] includes detailed multi-view renderings of
8 realistic objects with view-dependent light transport effects. We also benchmark on the DTU
multi-view stereo (MVS) dataset [68] used by pixelNeRF [188]. DTU is a challenging dataset that
includes sparsely sampled real photos of physical objects.
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Table 3.1: Quality metrics for novel view synthesis on subsampled splits of the Realistic Synthetic
dataset [100]. We randomly sample 8 views from the available 100 ground truth training
views to evaluate how DietNeRF performs with limited observations.

Method PSNR ↑ SSIM ↑LPIPS ↓FID ↓KID ↓
NeRF 14.934 0.687 0.318 228.1 0.076
NV 17.859 0.741 0.245 239.5 0.117
Simplified NeRF 20.092 0.822 0.179 189.2 0.047
DietNeRF (ours) 23.147 0.866 0.109 74.9 0.005
DietNeRF, LMSE ft 23.591 0.874 0.097 72.0 0.004

NeRF, 100 views 31.153 0.954 0.046 50.5 0.001

Low-level full reference metrics Past work evaluates novel view quality with respect to
ground-truth from the same pose with Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) [158]. PSNR expresses mean-squared error in log space. However, SSIM
often disagrees with human judgements of similarity [194].

Perceptual metrics Deep CNN activations mirror aspects of human perception. NeRF measures
perceptual image quality using LPIPS [194], which computes MSE between normalized features
from all layers of a pre-trained VGG encoder [155]. Generative models also measure sample quality
with feature space distances. The Fréchet Inception Distance (FID) [55] computes the Fréchet
distance between Gaussian estimates of penultimate Inception v3 [166] features for real and fake
images. However, FID is a biased metric at low sample sizes. We adopt the conceptually similar
Kernel Inception Distance (KID), which measures the MMD between Inception features and has
an unbiased estimator [9, 109]. All metrics use a different architecture and data than our CLIP ViT
encoder.

3.5.1 Realistic Synthetic scenes from scratch

NeRF’s Realistic Synthetic dataset includes 8 detailed synthetic objects with 100 renderings from
virtual cameras arranged randomly on a hemisphere pointed inward. To test few-shot performance,
we randomly sample a training subset of 8 images from each scene. Table 3.1 shows results. The
original NeRF model achieves much poorer quantitative quality with 8 images than with the full
100 image dataset. Neural Volumes [92] performs better as it tightly constrains the size of the
scene’s bounding box and explicitly regularizes its scene representation using a penalty on spatial
gradients of voxel opacity and a Beta prior on image opacity. This avoids the worst artifacts, but



CHAPTER 3. PUTTING NERF ON A DIET 33

DietNeRF, fine-tuned (ours)Neural Volumes Simplified NeRF

Figure 3.4: Novel views synthesized from eight observations of scenes in the Realistic Synthetic
dataset.

reconstructions are still low-quality. Simplifying NeRF and tuning it for each individual scene also
regularizes the representation and helps convergence (+5.1 PSNR over the full NeRF). The best
performance is achieved by regularizing with DietNeRF’s LSC loss. Additionally, fine-tuning with
LMSE even further improves quality, for a total improvement of +8.5 PSNR, -0.2 LPIPS, and -156
FID over NeRF. This shows that semantic consistency is a valuable prior for high-quality few-shot
view synthesis. Figure 3.4 visualizes results.

3.5.2 Single-view synthesis by fine-tuning

NeRF only uses observations during training, not inference, and uses no auxiliary data. Accurate
3D reconstruction from a single view is not possible purely from LMSE, so NeRF performs poorly
in the single-view setting (Table 3.2).
To perform single- or few-shot view synthesis, pixelNeRF [188] learns a ResNet-34 encoder

and a feature-conditioned neural radiance field on a multi-view dataset of similar scenes. The
encoder learns priors that generalize to new single-view scenes. Table 3.2 shows that pixelNeRF
significantly outperforms NeRF given a single photo of a held-out scene. However, novel views
are blurry and unrealistic (Figure 3.5). We propose to fine-tune pixelNeRF on a single scene using
LMSE alone or using both LMSE and LSC. Fine-tuning per-scene with MSE improves local image
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Input: 1 view Novel views from pixelNeRF Novel views from DietPixelNeRF (ours)NeRF, 3 views

Figure 3.5: Novel views synthesized from a single input image from the DTU object dataset.
Even with 3 input views, NeRF [100] fails to learn accurate geometry or textures
(reprinted from [188]). While pixelNeRF [188] has mostly consistent object geometry
as the camera pose is varied, renderings are blurry and contain artifacts like inaccurate
placement of density along the observed camera’s z-axis. In contrast, fine-tuning with
DietNeRF (DietPixelNeRF) learns realistic textures visually consistent with the input
image, though some geometric defects are present due to the ambiguous nature of the
view synthesis problem.

quality metrics, but only slightly helps perceptual metrics. Figure 3.6 shows that pixel-space MSE
fine-tuning from one view mostly only improves quality for that view.
We refer to fine-tuning with both losses for a short period as DietPixelNeRF. Qualitatively,

DietPixelNeRF has significantly sharper novel views (Fig. 3.5, 3.6). DietPixelNeRF outperforms
baselines on perceptual LPIPS, FID, and KID metrics (Tab. 3.2). For the very challenging single-
view setting, ground-truth novel views will contain content that is completely occluded in the
input. Because of uncertainty, blurry renderings will outperform sharp but incorrect renderings
on average error metrics like MSE and PSNR. Arguably, perceptual quality and sharpness are
better metrics than pixel error for graphics applications like photo editing and virtual reality as
plausibility is emphasized.

3.5.3 Reconstructing unobserved regions

We evaluate whether DietNeRF produces plausible completions when the reconstruction problem
is underdetermined. For training, we sample 14 nearby views of the right side of the Realistic
Synthetic Lego scene (Fig. 3.7, right). Narrow baseline multi-view capture rigs are less costly than
360◦ captures, and support unbounded scenes. However, narrow-baseline observations suffer from
occlusions: the left side of the Lego bulldozer is unobserved. NeRF fails to reconstruct this side of
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Table 3.2: Single-view novel view synthesis on the DTU dataset. NeRF and pixelNeRF PSNR,
SSIM and LPIPS results are from [188]. Finetuning pixelNeRF with DietNeRF’s semantic
consistency loss (DietPixelNeRF) improves perceptual quality measured by the deep
perceptual LPIPS, FID and KID evaluation metrics, but can degrade PSNR and SSIM
which are local pixel-aligned metrics due to geometric defects.

Method PSNR SSIM LPIPS FID KID

NeRF 8.000 0.286 0.703 — —
pixelNeRF 15.550 0.537 0.535 266.1 0.166
pixelNeRF, LMSE ft 16.048 0.564 0.515 265.2 0.159
DietPixelNeRF 14.242 0.481 0.487 190.7 0.066

pixelNeRF

Fine-tuned

Fine-tuned

Input view and
reconstructions

Ground
truth

LMSE
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Novel views

(ours)

Figure 3.6: Semantic consistency improves perceptual quality. Fine-tuning pixelNeRF with
LMSE slightly improves a rendering of the input view, but does not remove most
perceptual flaws like blurriness in novel views. Fine-tuning with both LMSE and LSC
(DietPixelNeRF, bottom) improves sharpness of all views.
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of observed
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DietNeRF,
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Input: 14 views

Figure 3.7: Renderings of occluded regions during training. 14 images of the right half of the
Realistic Synthetic lego scene are used to estimate radiance fields. NeRF either learns
high-opacity occlusions blocking the left of the object, or fails to generalize properly to
the unseen left side. In contrast, DietNeRF fills in details for a reconstruction that is
mostly consistent with the observed half.

Table 3.3: Extrapolation metrics. Novel view synthesis with observations of only one side of
the Realistic Synthetic Lego scene.

Views Method PSNR ↑ SSIM ↑ LPIPS ↓
14 NeRF 19.662 0.799 0.202
14 Simplified NeRF 21.553 0.818 0.160
14 DietNeRF (ours) 20.753 0.810 0.157
14 DietNeRF + LMSE ft 22.211 0.824 0.143

100 NeRF [100] 31.618 0.965 0.033

the scene, while our Simplified NeRF learns unrealistic deformations and incorrect colors (Fig. 3.7,
left). Remarkably, DietNeRF learns quantitatively (Tab. 3.3) and qualitatively more accurate colors
in the missing regions, suggesting the value of semantic image priors for sparse reconstruction
problems. We exclude FID and KID since a single scene has too few samples for an accurate
estimate.

3.6 Ablations

Choosing an image encoder Table 3.4 shows quality metrics with different semantic encoder
architectures and pre-training datasets. We evaluate on the Lego scene with 8 views. Large ViT
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Table 3.4: Ablating supervision and architectural parameters for the ViT image encoder
𝜙 (·) used to compare image features. Metrics are measured on the Realistic Synthetic
Lego scene.

Semantic image encoder PSNR ↑ SSIM ↑ LPIPS ↓
ImageNet ViT L/16, 3842 21.501 0.809 0.167
ImageNet ViT L/32, 3842 20.498 0.801 0.174
ImageNet ViT B/32, 2242 22.059 0.836 0.131
CLIP ViT B/32, 2242 23.896 0.863 0.110

Table 3.5: Varying the number of iterations that DietNeRF is fine-tuned with LMSE on
Realistic Synthetic scenes. All models are initially trained for 200k iterations with LMSE
and LSC. Further minimizing LMSE is helpful, but the model can overfit.

Method PSNR ↑ SSIM ↑ LPIPS ↓
DietNeRF, no fine-tuning 23.147 0.866 0.109
DietNeRF, LMSE ft 10k iters 23.524 0.872 0.101
DietNeRF, LMSE ft 50k iters 23.591 0.874 0.097
DietNeRF, LMSE ft 100k iters 23.521 0.874 0.097
DietNeRF, LMSE ft 200k iters 23.443 0.872 0.098

models (ViT L) do not improve results over the base ViT B. Fixing the architecture, CLIP offers a
+1.8 PSNR improvement over an ImageNet model, suggesting that data diversity and language
supervision is helpful for 3D tasks. Still, both induce useful representations that transfer to view
synthesis.

Varying LMSE fine-tuning duration Fine-tuning DietNeRF with LMSE can improve quality by
better reconstructing fine-details. In Table 3.5, we vary the number of iterations of fine-tuning
for the Realistic Synthetic scenes with 8 views. Fine-tuning for up to 50k iterations is helpful, but
reduces performance with longer optimization. It is possible that the model starts overfitting to
the 8 input views.

3.7 Related work

Few-shot radiance fields Several works condition NeRF on latent codes describing scene
geometry or appearance rather than estimating NeRF per scene [153, 171, 188]. An image encoder
and radiance field decoder are learned on a multi-view dataset of similar objects or scenes ahead of
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time. At test time, on a new scene, novel viewpoints are rendered using the decoder conditioned
on encodings of a few observed images. GRAF renders patches of the scene every iteration to
supervise the network with a discriminator [153]. Concurrent to our work, IBRNet [180] also
fine-tunes a latent-conditioned radiance field on a specific scene using NeRF’s reconstruction loss,
but needed at least 50 views. Rather than generalizing between scenes through a shared encoder
and decoder, [40, 167] meta-learn radiance field weights that can be adapted to a specific scene in
a few gradient steps. Meta-learning improves performance in the few-view setting. Similarly, a
signed distance field can be meta-learned for shape representation problems [156]. Much literature
studies single-view reconstruction with other, explicit 3D representations. Notable recent examples
include voxel [172], mesh [60] and point-cloud [183] approaches.

Novel view synthesis, image-based rendering Neural Volumes [92] proposes a VAE [80, 138]
encoder-decoder architecture to predict a volumetric representation of a scene from posed image
observations. NV uses priors as auxiliary objectives like DietNeRF, but penalizes opacity based on
geometric intuitions rather than RGB image semantics. TBNs [111] learn an autoencoder with a 3-
dimensional latent that can be rotated to render new perspectives for a single-category. SRNs [158]
fit a continuous representation to a scene and also generalize to novel single-category objects if
trained on a largemulti-view dataset. It can be extended to predict per-point semantic segmentation
maps [83]. Local Light Field Fusion [99] estimates and blends multiple MPI representations for
each scene. Free View Synthesis [140] uses geometric approaches to improve view synthesis in
unbounded in-the-wild scenes. NeRF++ [193] also improves unbounded scenes using multiple
NeRF models and changing NeRF’s parameterization.

Semantic representation learning Representation learning with deep supervised and unsu-
pervised approaches has a long history [7]. Without labels, generative models can learn useful
representations for recognition [19], but self-supervised models like CPC [54, 114] tend to be
more parameter efficient. Contrastive methods including CLIP learn visual representations by
matching similar pairs of items, such as captions and images [70, 130], augmentated variants of an
image [21], or video patches across frames [62].

3.8 Conclusions

Our results suggest that single-view 2D representations transfer effectively to challenging, un-
derconstrained 3D reconstruction problems such as volumetric novel view synthesis. While
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pre-trained image encoder representations have certainly been transferred to 3D vision applica-
tions in the past by fine-tuning, the recent emergence of visual models trained on enormous 100M+
image datasets like CLIP have enabled surprisingly effective few-shot transfer. We exploited this
transferrable prior knowledge to solve optimization issues as well as to cope with partial observ-
ability in the NeRF family of scene representations, offering notable improvements in perceptual
quality. In the future, we believe “diet-friendly” few-shot transfer will play a greater role in a wide
range of 3D applications.
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Chapter 4

Zero-Shot Text-Guided Object
Generation with Dream Fields

Work by Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter Abbeel and Ben Poole

While DietNeRF paved the way toward incorporating image-text representations in 3D recon-
struction, it still required several input photographs. In many graphics applications, new assets are
digitally designed that have never existed in the real world. In this chapter, we extend DietNeRF
to synthesize 3D objects from natural language descriptions alone, without any input images.
We combine neural rendering with multi-modal image and text representations to synthesize

diverse 3D objects solely from natural language descriptions. Our method, Dream Fields, can
generate the geometry and color of a wide range of objects without 3D supervision. Due to the
scarcity of diverse, captioned 3D data, prior methods only generate objects from a handful of
categories, such as ShapeNet. Instead, we guide generation with image-text models pre-trained
on large datasets of captioned images from the web. Our method optimizes a Neural Radiance
Field from many camera views so that rendered images score highly with a target caption ac-
cording to a pre-trained CLIP model. To improve fidelity and visual quality, we introduce simple
geometric priors, including sparsity-inducing transmittance regularization, scene bounds, and
new MLP architectures. In experiments, Dream Fields produce realistic, multi-view consistent
object geometry and color from a variety of natural language captions. Project website and code:
https://ajayj.com/dreamfields.

https://ajayj.com/dreamfields
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Figure 4.1: Example Dream Fields generated from captions, then rendered from four perspectives.
On the right, we show transmittance from the final perspective. We create diverse
outputs using the compositionality of language; these captions from MSCOCO describe
three flower arrangements with different properties like context and color.

4.1 Introduction

Detailed 3D object models bring multimedia experiences to life. Games, virtual reality applications
and films are each populated with thousands of object models, each designed and textured by
hand with digital software. While expert artists can author high-fidelity assets, the process is
painstakingly slow and expensive. Prior work leverages 3D datasets to synthesize shapes in the
form of point clouds, voxel grids, triangle meshes, and implicit functions using generative models
like GANs [11, 49, 184, 196]. These approaches only support a few object categories due to small
labeled 3D shape datasets. But multimedia applications require a wide variety of content, and
need both 3D geometry and texture.

In this work, we propose Dream Fields, a method to automatically generate open-set 3D models
from natural language prompts. Unlike prior work, our method does not require any 3D training
data, and uses natural language prompts that are easy to author with an expressive interface for
specifying desired object properties. We demonstrate that the compositionality of language allows
for flexible creative control over shapes, colors and styles.

A Dream Field is a Neural Radiance Field (NeRF) trained to maximize a deep perceptual metric
with respect to both the geometry and color of a scene. NeRF and other neural 3D representations
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Figure 4.2: Given a caption, we learn aDream Field, a continuous volumetric representation of an
object’s geometry and appearance learned with guidance from a pre-trained model. We
optimize the Dream Field by rendering images of the object from random camera poses
that are scored with frozen pre-trained image and text encoders trained on web images
and alt-text. 2D views are derived from the same radiance field for 3D consistency.

have recently been successfully applied to novel view synthesis tasks where ground-truth RGB
photos are available. NeRF is trained to reconstruct images from multiple viewpoints. As the
learned radiance field is shared across viewpoints, NeRF can interpolate between viewpoints
smoothly and consistently. Due to its neural representation, NeRF can be sampled at high spatial
resolutions unlike voxel representations and point clouds, and are easy to optimize unlike explicit
geometric representations like meshes as it is topology-free.

However, existing photographs are not available when creating novel objects from descriptions
alone. Instead of learning to reconstruct known input photos, we learn a radiance field such that its
renderings have high semantic similarity with a given text prompt. We extract these semantics with
pre-trained neural image-text retrieval models like CLIP [130], learned from hundreds of millions
of captioned images. As NeRF’s volumetric rendering and CLIP’s image-text representations are
differentiable, we can optimize Dream Fields end-to-end for each prompt. Figure 4.2 illustrates our
method.
In experiments, Dream Fields learn significant artifacts if we naively optimize the NeRF scene

representation with textual supervision without adding additional geometric constraints (Fig-
ure 4.3). We propose general-purpose priors and demonstrate that they greatly improve the realism
of results. Finally, we quantitatively evaluate open-set generation performance using a dataset of
diverse object-centric prompts.
Our contributions include:
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“a large blue bird standing
next to a painting of flowers.”

(c) Dream Fields

(b) Neural Radiance Fields

G

conditioning information
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Figure 4.3: Challenges of text-to-3D synthesis: (a) Poor generalization from limited 3D
datasets: Most 3D generative models are learned on datasets of specific object cate-
gories like ShapeNet [16], and won’t generalize to novel concepts zero-shot. (b) Neural
Radiance Fields are too flexible without multi-view supervision: NeRF learns
to represent geometry and texture from scene-specific multi-view data, so it does not
require a diverse dataset of objects. Yet, when only a source caption is available instead
of multi-view images, NeRF produces significant artifacts (e.g., near field occlusions).
(c) Dream Fields: We introduce general geometric priors that retain much of NeRF’s
flexibility while improving realism.

• Using aligned image and text models to optimize NeRF without 3D shape or multi-view
data,

• Dream Fields, a simple, constrained 3D representation with neural guidance that supports
diverse 3D object generation from captions in zero-shot, and

• Simple geometric priors including transmittance regularization, scene bounds, and an MLP
architecture that together improve fidelity.

4.2 Related Work

Our work is primarily inspired by DeepDream [102] and other methods for visualizing the preferred
inputs and features of neural networks by optimizing in image space [104, 105, 110]. These
methods enable the generation of interesting images from a pre-trained neural network without the
additional training of a generative model. Closest to our work is [103], which studies differentiable
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image parameterizations in the context of style transfer. Our work replaces the style and content-
based losses from that era with an image-text loss enabled by progress in contrastive representation
learning on image-text datasets [27, 70, 130, 191]. The use of image-text models enables easy
and flexible control over the style and content of generated imagery through textual prompt
design. We optimize both geometry and color using the differentiable volumetric rendering and
scene representation provided by NeRF, whereas [103] was restricted to fixed geometry and only
optimized texture. Together these advances enable a fundamentally new capability: open-ended
text-guided generation of object geometry and texture.
Concurrently to Dream Fields, a few early works have used CLIP [130] to synthesize or ma-

nipulate 3D object representations. CLIP-Forge [149] generates multiple object geometries from
text prompts using a CLIP embedding-conditioned normalizing flow model and geometry-only
decoder trained on ShapeNet categories. Still, CLIP-Forge generalizes poorly outside of ShapeNet
categories and requires ground-truth multi-view images and voxel data. Text2Shape [18] learns a
text-conditional Wasserstein GAN [2, 44] to synthesize novel voxelized objects, but only supports
finite resolution generation of individual ShapeNet categories. In [24], object geometry is opti-
mized evolutionarily for high CLIP score from a single view then manually colored. ClipMatrix
[69] edits the vertices and textures of human SMPL models [93] to create stylized, deformable
humanoid meshes. [125] creates an interactive interface to edit signed-distance fields in localized
regions, though they do not optimize texture or synthesize new shapes. Text-based manipulation
of existing objects is complementary to us.

For images, there has been an explosion of work that leverages CLIP to guide image generation.
Digital artist Ryan Murdock (@advadnoun) used CLIP to guide learning of the weights of a SIREN
network [157], similar to NeRF but without volume rendering and focused on image generation.
Katherine Crowson (@rivershavewings) combined CLIP with optimization of VQ-GAN codes
[35] and used diffusion models as an image prior [29]. Recent work from Mario Klingemann
(@quasimondo) and [123] have shown how CLIP can be used to guide GAN models like StyleGAN
[76]. Some works have optimized parameters of vector graphics, suggesting CLIP guidance is
highly general [37, 63, 150]. These methods highlighted the surprising capacity of what image-text
models have learned and their utility for guiding 2D generative processes. Direct text to image
synthesis with generative models has also improved tremendously in recent years [134, 192], but
requires training large generative models on large-scale datasets, making suchmethods challenging
to directly apply to text to 3D where no such datasets exist.

There is also growing progress on generative models with NeRF-based generators trained solely
from 2D imagery. However, these models are category-specific and trained on large datasets

https://twitter.com/advadnoun
https://twitter.com/rivershavewings
https://twitter.com/quasimondo
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of mostly forward-facing scenes [14, 48, 107, 153, 197], lacking the flexibility of open-set text-
conditional models. Shape-agnostic priors have been used for 3D reconstruction [4, 185, 195].

4.3 Background

Our method combines Neural Radiance Fields (NeRF) [100] with an image-text loss from [130].
We begin by discussing these existing methods, and then detail our improved approach and
methodology that enables high quality text to object generation.

4.3.1 Neural Radiance Fields

NeRF [100] parameterizes a scene’s density and color using a multi-layer perceptron (MLP) with
parameters 𝜃 trained with a photometric loss relying on multi-view photographs of a scene. In
our simplified model, the NeRF network takes in a 3D position x and outputs parameters for
an emission-absorption volume rendering model: density 𝜎𝜃 (x) and color c𝜃 (x). Images can be
rendered from desired viewpoints by integrating color along an appropriate ray, r(𝑡), for each
pixel according to the volume rendering equation:

C(𝑟, 𝜃 ) =
∫ 𝑡𝑓

𝑡𝑛

𝑇 (r, 𝑡)𝜎𝜃 (r(𝑡))c𝜃 (r(𝑡))𝑑𝑡, (4.1)

where 𝑇 (r, 𝜃, 𝑡) = exp
(
−
∫ 𝑡

𝑡𝑛

𝜎𝜃 (r(𝑠))𝑑𝑠
)
. (4.2)

The integral 𝑇 (r, 𝜃, 𝑡) is known as “transmittance” and describes the probability that light along
the ray will not be absorbed when traveling from 𝑡𝑛 (the near scene bound) to 𝑡 . In practice [100],
these two integrals are approximated by breaking up the ray into smaller segments [𝑡𝑖−1, 𝑡𝑖) within
which 𝜎 and c are assumed to be roughly constant:

C(r, 𝜃 ) ≈
∑︁
𝑖

𝑇𝑖 (1 − exp(−𝜎𝜃 (r(𝑡𝑖))𝛿𝑖))c𝜃 (r(𝑡𝑖)) (4.3)

𝑇𝑖 = exp
(
−∑𝑗<𝑖 𝜎𝜃 (r(𝑡 𝑗 ))𝛿 𝑗

)
, 𝛿𝑖 = 𝑡𝑖 − 𝑡𝑖−1 . (4.4)

For a given setting of MLP parameters 𝜃 and pose p, we determine the appropriate ray for each
pixel, compute rendered colors 𝐶 (r, 𝜃 ) and transmittances, and gather the results to form the
rendered image, 𝐼 (𝜃, p) and transmittance 𝑇 (𝜃, p).
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In order for the MLP to learn high frequency details more quickly [169], the input x is prepro-
cessed by a sinusoidal positional encoding 𝛾 before being passed into the network:

𝛾 (x) =
[
cos(2𝑙x), sin(2𝑙x)

]𝐿−1
𝑙=0

, (4.5)

where 𝐿 is referred to as the number of “levels” of positional encoding. In our implementation, we
specifically apply the integrated positional encoding (IPE) proposed in mip-NeRF to combat aliasing
artifacts [5] combined with a random Fourier positional encoding basis [169] with frequency
components sampled according to

𝜔 = 2𝑢d, where 𝑢 ∼ U[0, 𝐿], d ∼ U(S2) . (4.6)

4.3.2 Image-text models

Large-scale datasets of images paired with associated text have enabled training large-scale models
that can accurately score whether an image and an associated caption are likely to correspond [27,
70, 130]. These models consist of an image encoder g, and text encoder h, that map images and
text into a shared embedding space. Given a sentence 𝑦 and an image I, these image-text models
produce a scalar score: g(I)Th(y) that is high when the text is a good description of the image,
and low when the the image and text are mismatched. Note that the embeddings g(I) and h(y)
are often normalized, i.e. ∥g(I)∥ = ∥h(y)∥ = 1. Training is typically performed with a symmetric
version of the InfoNCE loss [117, 128] that aims to maximize a variational lower bound on the
mutual information between images and text. Prior work has shown that once trained, the image
and text encoders are useful for a number of downstream tasks [130, 191]. In [134], the image and
text encoders are used to score the correspondence of outputs of a generative image model to a
target caption [134]. We build on this work by optimizing a volume to produce a high-scoring
image, not just reranking.

4.4 Method

In this section, we develop Dream Fields: a zero-shot object synthesis method given only a natural
language caption.
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4.4.1 Object representation

Building on the NeRF scene representation (Section 4.3.1), a Dream Field optimizes an MLP with
parameters 𝜃 that produces outputs 𝜎𝜃 (x) and c𝜃 (x) representing the differential volume density
and color of a scene at every 3D point x. This field expresses object geometry via the density
network. Our object representation is only dependent on 3D coordinates and not the camera’s
viewing direction, as we did not find it beneficial. Given a camera pose p, we can render an
image I(𝜃, p) and compute the transmittance 𝑇 (𝜃, p) using 𝑁 segments via (4.4). Segments are
spaced at roughly equal intervals with random jittering along the ray. The number of segments,
𝑁 , determines the fidelity of the rendering. In practice, we fix it to 192 during optimization.

4.4.2 Objective

How can we train a Dream Field to represent a given caption? If we assume that an object can be
described similarly when observed from any perspective, we can randomly sample poses and try
to enforce that the rendered image matches the caption at all poses. We can implement this idea
by using a CLIP network to measure the match between a caption and image given parameters 𝜃
and pose p:

LCLIP(𝜃, pose p, caption 𝑦) = −g(I(𝜃, p))Th(y) (4.7)

where g(·) and h(·) are aligned representations of image and text semantics, and I(𝜃, p) is a
rendered image of the scene from camera pose p. Each iteration of training, we sample a pose
p from a prior distribution, render I, and minimize LCLIP with respect to the parameters of the
Dream Field MLP, 𝜃 . Equation (4.7) measures the similarity of an image and the provided caption
in feature space.
We primarily use image and text encoders from CLIP [130], which has a Vision Transformer

image encoder g(·) [31] and masked transformer text encoder h(·) [176] trained contrastively on
a large dataset of 400M captioned 2242 images. We also use a baseline Locked Image-Text Tuning
(LiT) ViT B/32 model from [191] trained via the same procedure as CLIP on a larger dataset of
billions of higher-resolution (2882) captioned images. The LiT training set was collected following
a simplified version of the ALIGN web alt-text dataset collection process [70] and includes noisy
captions.
Figure 4.2 shows a high-level overview of our method. DietNeRF [65] proposed a related

semantic consistency regularizer for NeRF based on the idea that “a bulldozer is a bulldozer from
any perspective”. The method computed the similarity of a rendered and a real image. In contrast,



CHAPTER 4. TEXT-GUIDED OBJECT GENERATION WITH DREAM FIELDS 48

(4.7) compares rendered images and a caption, allowing it to be used in zero-shot settings when
there are no object photos.

4.4.3 Challenges with CLIP guidance

Due to their flexibility, Neural Radiance Fields are capable of high-fidelity novel view synthe-
sis on a tremendous diversity of real-world scenes when supervised with multi-view consistent
images. Their reconstruction loss will typically learn to remove artifacts like spurious density
when sufficiently many input images are available. However, we find that the NeRF scene repre-
sentation is too unconstrained when trained solely with LCLIP (4.7) alone from a discrete set of
viewpoints, resulting in severe artifacts that satisfy LCLIP but are not visually compatible accord-
ing to humans (see Figure 4.3b). NeRF learns high-frequency and near-field [193] artifacts like
partially-transparent “floating“ regions of density. It also fills the entire camera viewport rather
than generating individual objects. Geometry is unrealistic, though textures reflect the caption,
reminiscent of the artifacts in Deep Dream feature visualizations [102, 110].

4.4.4 Pose sampling

Image data augmentations such as random crops are commonly used to improve and regularize
image generation in DeepDream [102] and related work. Image augmentations can only use
in-plane 2D transformations. Dream Fields support 3D data augmentations by sampling different
camera pose extrinsics at each training iteration. We uniformly sample camera azimuth in 360◦

around the scene, so each training iteration sees a different orientation of the object. As the
underlying scene representation is shared, this improves the realism of object geometry. For
example, sampling azimuth in a narrow interval tended to create flat, billboard geometry.

The camera elevation, focal length and distance from the subject can also be augmented, but we
did not find this necessary. Instead, we use a fixed camera focal length during optimization that is
scaled by𝑚focal = 1.2 to enlarge the object 20%. Rendering cost is constant in the focal length.

4.4.5 Encouraging coherent objects through sparsity

To remove near-field artifacts and spurious density, we regularize the opacity of Dream Field
renderings. Our best results maximize the average transmittance of rays passing through the
volume up to a target constant. Transmittance is the probability that light along ray 𝑟 is not
absorbed by participating media when passing between point 𝑡 along the ray and the near plane
at 𝑡𝑛 (4.2). We approximate the total transmittance along the ray as the joint probability of light



CHAPTER 4. TEXT-GUIDED OBJECT GENERATION WITH DREAM FIELDS 49

4K iterations 8K iterations 24K iterations 100K (final)

Figure 4.4: To encourage coherent foreground objects, Dream Fields train with 3 types of back-
ground augmentations: blurred Gaussian noise, textures and checkerboards. At test
time, we render with a white background. Prompt: “A sculpture of a rooster.”

passing through𝑁 discrete segments of the ray according to Eq. (4.4). Then, we define the following
transmittance loss:

L𝑇 = −min(𝜏,mean(𝑇 (𝜃, p))) (4.8)

Ltotal = LCLIP + 𝜆L𝑇 (4.9)

This encourages a Dream Field to increase average transmittance up to a target transparency 𝜏 .
We use 𝜏 = 88% in experiments. 𝜏 is annealed in from 𝜏 = 40% over 500 iterations to smoothly
introduce transparency, which improves scene geometry and is essential to prevent completely
transparent scenes. Scaling 1 − 𝜏 ∝ 𝑓 2/𝑑2 preserves object cross sectional area for different focal
and object distances.
When the rendering is alpha-composited with a simple white or black background during

training, we find that the average transmittance approaches 𝜏 , but the scene is diffuse as the
optimization populates the background. Augmenting the scene with random background images
leads to coherent objects. Dream Fields use Gaussian noise, checkerboard patterns and the random
Fourier textures from [103] as backgrounds. These are smoothed with a Gaussian blur with
randomly sampled standard deviation. Background augmentations and a rendering during training
are shown in Figure 4.4.

We qualitatively compare (4.9) to baseline sparsity regularizers in Figure 4.5. Our loss is inspired
by the multiplicative opacity gating used by [103]. However, the gated loss has optimization
challenges in practice due in part to its non-convexity. The simplified additive loss is more stable,
and both are significantly sharper than prior approaches for sparsifying Neural Radiance Fields.
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Figure 4.5: Our transmittance losses and background augmentations are complementary. Top:
Without background augmentations, priors on transmittance (right three columns) do
not remove low-density structures. NeRF’s density perturbations improve coherence,
but cloudy artifacts remain. Bottom: When the object is alpha composited with random
backgrounds during training, CLIP fills the scene with opaque material to conceal the
background. However, gated and our simplified additive transmittance regularizers
both limit the opacity of the volume successfully and lead to a sharper object. Inset
panels depict transmittance. Prompt: “an illustration of a pumpkin on the vine.”

4.4.6 Localizing objects and bounding scene

When Neural Radiance Fields are trained to reconstruct images, scene contents will align with
observations in a consistent fashion, such as the center of the scene in NeRF’s Realistic Synthetic
dataset [100]. Dream Fields can place density away from the center of the scene while still satisfying
the CLIP loss as natural images in CLIP’s training data will not always be centered. During training,
we maintain an estimate of the 3D object’s origin and shift rays accordingly. The origin is tracked
via an exponential moving average of the center of mass of rendered density. To prevent objects
from drifting too far, we bound the scene inside a cube by masking the density 𝜎𝜃 .

4.4.7 Neural scene representation architecture

The NeRF network architecture proposed in [100] parameterizes scene density with a simple
8-layer MLP of constant width, and radiance with an additional two layers. We use a residual MLP
architecture instead that introduces residual connections around every two dense layers. Within a
residual block, we find it beneficial to introduce Layer Normalization at the beginning and increase
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the feature dimension in a bottleneck fashion. Layer Normalization improves optimization on
challenging prompts. To mitigate vanishing gradient issues in highly transparent scenes, we
replace ReLU activations with Swish [132] and rectify the predicted density 𝜎𝜃 with a softplus
function. Our MLP architecture uses 280K parameters per scene, while NeRF uses 494K parameters.

4.5 Evaluation

We evaluate the consistency of generated objects with their captions and the importance of
scene representation, then show qualitative results and test whether Dream Fields can generalize
compositionally. Ablations analyze regularizers, CLIP and camera poses. Finally, supplementary
materials have further examples and videos.

4.5.1 Experimental setup

3D reconstruction methods are evaluated by comparing the learned geometry with a ground-truth
reference model, e.g. with Chamfer Distance. Novel view synthesis techniques like LLFF [99] and
NeRF do not have ground truth models, but compare renderings to pixel-aligned ground truth
images from held-out poses with PSNR or LPIPS, a deep perceptual metric [194].

As we do not have access to diverse captioned 3D models or captioned multi-view data, Dream
Fields are challenging to evaluate with geometric and image reference-based metrics. Instead, we
use the CLIP R-Precision metric [118] from the text-to-image generation literature to measure
how well rendered images align with the true caption. In the context of text-to-image synthesis,
R-Precision measures the fraction of generated images that a retrieval model associates with the
caption used to generate it. We use a different CLIP model for learning the Dream Field and
computing the evaluation metric. As with NeRF evaluation, the image is rendered from a held-out
pose. Dream Fields are optimized with cameras at a 30◦ angle of elevation and evaluated at 45◦

elevation. For quantitative metrics, we render at resolution 1682 during training as in [65]. For
figures, we train with a 50% higher resolution of 2522.

We collect an object-centric caption dataset with 153 captions as a subset of the Common Objects
in Context (COCO) dataset [88] (see supplement for details). Object centric examples are those that
have a single bounding box annotation and are filtered to exclude those captioned with certain
phrases like “extreme close up". COCO includes 5 captions per image, but only one is used for
generation. Hyperparameters were manually tuned for perceptual quality on a set of 20-74 distinct
captions from the evaluation set, and are shared across all other scenes. Additional dataset details
and hyperparameters are included in the supplement.
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4.5.2 Analyzing retrieval metrics

In the absence of 3D training data, Dream Fields use geometric priors to constrain generation.
To evaluate each proposed technique, we start from a simplified baseline Neural Radiance Field
largely following [100] and introduce the priors one-by-one. We generate two objects per COCO
caption using different seeds, for a total of 306 objects. Objects are synthesized with 10K iterations
of CLIP ViT B/16 guided optimization of 168×168 rendered images, bilinearly upsampled to the
contrastive model’s input resolution for computational efficiency. R-Precision is computed with
CLIP ViT B/32 [130] and LiTuu B/32 [191] to measure the alignment of generations with the source
caption.
Table 4.1 reports results. The most significant improvements come from sparsity, scene

bounds and architecture. As an oracle, the ground truth images associated with object-centric
COCO captions have high R-Precision. The NeRF representation converges poorly and introduces
aliasing and banding artifacts, in part from its use of axis-aligned positional encodings.

We instead combine mip-NeRF’s integrated positional encodings with random Fourier features,
which improves qualitative results and removes a bias toward axis-aligned structures. However,
the effect on precision is neutral or negative. The transmittance loss L𝑇 in combination with
background augmentations significantly improves retrieval precision +18% and +15.6%, while the
transmittance loss is not sufficient on its own. This is qualitatively shown in Figure 4.5. Our MLP
architecture with residual connections, normalization, bottleneck-style feature dimensions and
smooth nonlinearities further improves the R-Precision +8% and +2%. Bounding the scene to a
cube improves retrieval +13% and +11%. The additional bounds explicitly mask density 𝜎 and
concentrate samples along each ray.
We also scale up Dream Fields by optimizing with an image-text model trained on a larger

captioned dataset of 3.6B images from [191]. We use a ViT B/32 model with image and text
encoders trained from scratch. This corresponds to the uu configuration from [191], following
the CLIP training procedure to learn both encoders contrastively. The LiTuu ViT encoder used in
our experiments takes higher resolution 2882 images while CLIP is trained with 2242 inputs. Still,
LiTuu B/32 is more compute-efficient than CLIP B/16 due to the larger patch size in the first layer.

LiTuu does not significantly help R-Precision when optimizing Dream Fields with low resolution
renderings, perhaps because the CLIP B/32 model used for evaluation is trained on the same
dataset as the CLIP B/16 model in earlier rows. Optimizing for longer with higher resolution 2522

renderings closes the gap. LiTuu improves visual quality and sharpness (Appendix 10.1), suggesting
that improvements in multimodal image-text models transfer to 3D generation.
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Method R-Precision ↑
CLIP B/32 LiTuu B/32

Baseline COCO GT images 77.1±3.4 75.2±3.5
Simplified NeRF 31.4±2.7 10.8±1.8

Positional
encoding

+ mip-NeRF IPE 29.7±2.6 12.4±1.9
+ Higher freq.
Fourier features

24.2±2.5 10.5±1.8

Sparsity,
augmentation

+ random crops 25.8±2.5 10.5±1.8
+ transmittance loss 23.7±2.4 7.6±1.5
+ background aug. 44.1±2.8 26.1±2.5

Scene
parameterization

+ MLP architecture 52.0±2.9 27.8±2.6
+ scene bounds 65.4±2.7 38.9±2.8
+ track origin 59.8±2.8 34.6±2.7

Scaling
+ LiTuu ViT B/32 59.5±2.8 –
+ 20K iterations,
2522 renders

68.3±2.7 –

Table 4.1: When used together, geometric priors improve caption retrieval precision. We
start with a simplified version of the NeRF scene representation and add in one prior at
a time until all are used in conjunction. Captions are retrieved from rendered images
of the generated objects at held-out camera poses using CLIP’s ViT B/32. Objects are
generated with LCLIP guidance from the pre-trained CLIP ViT B/16 except in scaling
experiments where we experiment with the higher-resolution LiTuu B/32 model.
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Figure 4.6: Compositional object generation. Dream Fields allow users to express specific artistic
styles via detailed captions. Top two rows: Similar to text-to-image experiments
in [134], we generate objects with the caption “armchair in the shape of an avocado.
armchair imitating avocado.” Bottom: Generations vary the texture of a single snail.
Captions follow the template “a snail made of baguette. a snail with the texture of
baguette” Results are not cherry-picked.

4.5.3 Compositional generation

In Figure 4.6, we show non-cherrypicked generations that test the compositional generalization
of Dream Fields to fine-grained variations in captions taken from the website of [134]. We
independently vary the object generated and stylistic descriptors like shape and materials. DALL-
E [134] also had a remarkable ability to combine concepts in prompts out of distribution, but
was limited to 2D image synthesis. Dream Fields produces compositions of concepts in 3D, and
supports fine-grained variations in prompts across several categories of objects. Some geometric
details are not realistic, however. For example, generated snails have eye stalks attached to their
shell rather than body, and the generated green vase is blurry.

4.5.4 Model ablations

Ablating sparsity regularizers While we regularize the mean transmittance, other sparsity
losses are possible. We compare unregularized Dream Fields, perturbations to the density 𝜎 [100],
regularization with a beta prior on transmittance [92], multiplicative gating versions of L𝑇 and
our additive L𝑇 regularizer in Figure 4.5. On real-world scenes, NeRF added Gaussian noise to
network predictions of the density prior to rectification as a regularizer. This can encourage
sharper boundary definitions as small densities will often be zeroed by the perturbation. The
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Method Loss or parameterization R-Prec.

No regularizer LCLIP (4.7) 35.3
Perturb 𝜎 [100] 𝜎 = softplus(𝑓𝜃 (x) + 𝜖) 47.7
Beta prior [92] (4.10) 50.3
Gated 𝑇 [103] −mean(𝑇 (𝜃, p)) · LCLIP 34.6
Clipped gated 𝑇 −L𝑇 · LCLIP (4.11) 62.1
Clipped additive 𝑇 LCLIP + 𝜆L𝑇 (4.9) 62.1

Table 4.2: Ablating sparsity regularizers. Optimization is done for 10K iterations at 1682 resolution
with LiTuu ViT B/32 and background augmentation, and retrieval uses CLIP ViT B/32.
For the purposes of ablation, we run one seed per caption (153 runs).

beta prior from Neural Volumes [92] encourages rays to either pass through the volume or be
completely occluded:

Lbeta
total = LCLIP + 𝜆 ·mean(log𝑇 (𝜃, p) + log(1 −𝑇 (𝜃, p))) (4.10)

The multiplicative loss is inspired by the opacity scaling of [103] for feature visualization. We
scale the CLIP loss by a clipped mean transmittance:

Ltotal = min(𝜏, mean(𝑇 (𝜃, p))) · LCLIP (4.11)

Table 4.2 compares the regularizers, showing that density perturbations and the beta prior improve
R-Precision +12.4% and +15%, respectively. Scenes with clipped mean transmittance regularization
best align with their captions, +26.8% over the baseline. The beta prior can fill scenes with opaque
material evenwithout background augmentations as it encourages both high and low transmittance.
Multiplicative gating works well when clipped to a target and with background augmentations,
but is also non-convex and sensitive to hyperparameters. Figure 4.7 shows the effect of varying
the target transmittance 𝜏 with an additive loss.

Varying the image-text model We compare different image and text representations ℎ(·), 𝑔(·)
used in LCLIP (4.7) and for retrieval metrics. Table 4.3 shows the results. CLIP B/32, B/16 and LiTuu

B/32 all have high retrieval precision, indicating they can synthesize objects generally aligned with
the provided captions. CLIP B/32 performs the best, outperforming the more compute intensive
CLIP B/16 model. The architectures differ in the number of pixels encoded in each token supplied
to the Transformer backbone, i.e. the ViT patch size. A larger patch size may be sufficient due
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Figure 4.7: The target transmittance 𝜏 affects the size of generated objects. Inset panels depict
transmittance. Prompt from Object Centric COCO: “A cake toped [sic] with white
frosting flowers with chocolate centers.”

Retrieval model R-Precision
Optimized model CLIP B/32 CLIP B/16 LiTuu B/32

COCO GT 77.1±3.4 79.1±3.3 75.2±3.5
CLIP B/32 [130] (86.6±2.0) 74.2±2.5 42.8±2.8
CLIP B/16 [130] 59.8±2.8 (93.5±1.4) 35.6±2.7
LiTuu B/32 59.5±2.8 66.7±2.7 (88.9±1.8)

Table 4.3: The aligned image-text representation used to optimize Dream Fields influences their
quantitative validation R-Precision according to a held-out retrieval model. All con-
trastive models produce high retrieval precision, though qualitatively CLIP B/32 pro-
duced overly smooth and simplified objects. We optimize for 10K iterations at 1682
resolution. (Italicized) metrics use the optimized model at a held-out pose and indicate
Dream Fields overfit.

to the low resolution of renders: 1682 cropped to 1542, then upsampled to CLIP’s input size of
2242. Qualitatively, training with LiTuu B/32 produced the most detailed geometry and textures,
suggesting that open-set evaluation is challenging.

Varying optimized camera poses Each training iteration, Dream Fields samples a camera
pose p to render the scene. In experiments, we used a full 360◦ sampling range for the camera’s
azimuth, and fixed the elevation. Figure 4.8 shows multiple views of a bird when optimizing with
smaller azimuth ranges. In the left-most column, a view from the central azimuth (frontal) is
shown, and is realistic for all training configurations. Views from more extreme angles (right, left,
rear view columns) have artifacts when the Dream Field is optimized with narrow azimuth ranges.
Training with diverse cameras is important for viewpoint generalization.
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Frontal view Right view Left viewRear view

Figure 4.8: Training with diversely sampled camera poses improves generalization across views.
In the top row, we sample camera azimuth from a single viewpoint. The rendered view
from the same perspective (left column) is realistic, but the object structure is poor
as seen from other angles. Qualitative results improve with larger sampling intervals,
with the best results from 360◦ sampling.



CHAPTER 4. TEXT-GUIDED OBJECT GENERATION WITH DREAM FIELDS 58

4.6 Limitations

There are a number of limitations in Dream Fields. Generation requires iterative optimization,
which can be expensive. 2K-20K iterations are sufficient for most objects, but more detail emerges
when optimizing longer. Meta-learning [168] or amortization [119] could speed up synthesis.

We use the same prompt at all perspectives. This can lead to repeated patterns on multiple
sides of an object. The target caption could be varied across different camera poses. Many of the
prompts we tested involve multiple subjects, but we do not target complex scene generation [15,
17, 25, 28] partly because CLIP poorly encodes spatial relations [91, 165]. Scene layout could be
handled in a post-processing step.

The image-text models we use to score renderings are not perfect even on ground truth training
images, so improvements in image-text models may transfer to 3D generation. Our reliance on
pre-trained models inherits their harmful biases. Identifying methods that can detect and remove
these biases is an important direction if these methods are to be useful for larger-scale asset
generation.

4.7 Discussion

Our work has begun to tackle the difficult problem of object generation from text. By combining
scalable multi-modal image-text models and multi-view consistent differentiable neural rendering
with simple object priors, we are able to synthesize both geometry and color of 3D objects across
a large variety of real-world text prompts. The language interface allows users to control the style
and shape of the results, including materials and categories of objects, with easy-to-author prompts.
We hope these methods will enable rapid asset creation for artists and multimedia applications.
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Chapter 5

Learning more expressive priors and
transferring them to new modalities

As an interlude to contexualize Chapter 6, this chapter briefly summarizes our work on two
projects. The first, described in §5.1, builds a highly flexible, stable and scalable Denoising
Diffusion Probabilistic Model. Then, we propose a novel approach to transfer the knowledge in
these models in §5.2, achieving state-of-the-art results in text-to-3D generation.

5.1 Denoising Diffusion Probabilistic Models

Autoregressive models like the PixelCNNs discussed in Chapter 2 are expressive, previously
achieving state-of-the-art likelihoods on image datasets, and stable, admitting large scale training
without many tricks. However, their sample quality is relatively poor. As autoregressive models
sample data one dimension at a time, they can be quite slow in high dimensions such as high-
resolution imagery. An underscaled model also suffers estimation error, which builds up over the
course of sampling and can lead to poor quality.

Motivated by the limitations of autoregressive models, we sought to find another class of models
that permitted parallel sampling across dimensions, yet retained the stability and scalability benefits
of likelihood-based models. Variational approaches are appealing for this task, though modern
forms typically estimate an amortized posterior jointly with a decoder and can be expensive or
somewhat unstable to train
Instead, we study diffusion probabilistic models, a family of generative models based on a

parametric Markov chain, another class of latent variable models inspired by considerations from
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Figure 5.1: The directed graphical model considered by diffusion models.

nonequilibrium thermodynamics. While the Markov chain requires iterative sampling, the number
of steps are a modeling choice independent of the number of dimensions in the data. We show
that diffusion probabilistic models generalize autoregressive models but can sample multiple data
dimensions in parallel, giving them more flexibility. This allows diffusion models to scale up to
high resolution images, with faster sampling than a corresponding autoregressive model.
We propose a variant called the Denoising Diffusion Probabilistic Model (DDPM). Our best

results are obtained by training on a weighted variational bound designed according to a novel
connection between diffusion probabilistic models and denoising score matching with Langevin
dynamics, and our models naturally admit a progressive lossy decompression scheme that can be
interpreted as a generalization of autoregressive decoding. We also develop a network architecture
that significantly improves sample quality. On the unconditional CIFAR10 dataset, we obtain
an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain
sample quality similar to ProgressiveGAN.
Our paper, Denoising Diffusion Probabilistic Models [57] is available at https://arxiv.org/

abs/2006.11239, and was a collaboration with Jonathan Ho and Pieter Abbeel.

5.2 DreamFusion: Text-to-3D using 2D Diffusion

Since the publication of DDPM, diffusion models have shown impressive results in text-to-image
synthesis. Using massive datasets of captioned images, diffusion models learn to generate raster
images of highly diverse objects and scenes. Recent breakthroughs in text-to-image synthesis
have been driven by scaling up denoising diffusion models to billions of image-text pairs. Other
subsequent works trained denoising diffusion probabilistic models directly on 3D data, such as
point clouds.
However, the same degree of scaling for text-to-3D synthesis with direct training of DDPMs

would require large-scale datasets of labeled 3D assets. It also needs new work to develop efficient
architectures for denoising 3D data, neither of which existed. In DreamFusion, we circumvent data
and architecture limitations by using a pretrained 2D text-to-image diffusion model to perform
text-to-3D synthesis.

https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
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Updates parameters with SGD:Updates sample in pixel space:

Score Distillation SamplingAncestral Sampling

Figure 5.2: Comparison of 2D sampling methods from a text-to-image diffusion model with text “a
photo of a tree frog wearing a sweater.” For score distillation sampling, as an example we
use an image generator that restricts images to be symmetric by having x = (flip(𝜃 ), 𝜃 ).

We introduce a loss based on probability density distillation that enables the use of a 2D diffusion
model as a prior for optimization of a parametric image generator. We refer to the loss as Score
Distillation Sampling, due to the connection between DDPM and denoising score matching [177],
and our derivation based on distillation. Score distillation offers an alternative way to sample
diffusion models. While DDPM was sampled with an ancestral sampler defined by the Markov
chain, score distillation sampling is based on a gradient-based optimization procedure. We illustrate
the difference between the two sampling methods in Figure 5.2.
Similar to DietNeRF and Dream Fields, gradient-based optimization allows the sample to be

in a hidden space connected to the observation via a differentiable rendering procedure, with an
unknown inverse mapping. Score distillation also permits constraints and regularizers.

Using this loss in a DepDream-like procedure, we optimize a randomly-initialized 3D model (a
Neural Radiance Field, or NeRF) via gradient descent such that its 2D renderings from random
angles achieve a low loss. The resulting 3D model of the given text can be viewed from any
angle, relit by arbitrary illumination, or composited into any 3D environment. Our approach
requires no 3D training data and no modifications to the image diffusion model, demonstrating
the effectiveness of pretrained image diffusion models as priors.

See https://dreamfusion3d.github.io for our paper [127] and qualitative results. This work
was a collaboration with Ben Poole, Jonathan T. Barron and Ben Mildenhall.

https://dreamfusion3d.github.io
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Chapter 6

VectorFusion: Text-to-SVG by
Abstracting Image Diffusion Models

Work by Ajay Jain, Amber Xie and Pieter Abbeel

Chapter 5 earmarked a transition in the quality and generality of visual synthesis methods.
DDPM catalyzed significant progress in text-guided synthesis across data richmodalities. The Score
Distillation Sampling loss allows scalable diffusion priors to be transfered to a new modality, 3D
radiance fields, in contrast to our past work, DietNeRF and Dream Fields that transfer discriminative
models.
In this chapter, we continue to explore the limits of transfer learning of diffusion models for

text-guided synthesis. We focus on vector graphics, a compact and abstract modality that is difficult
to model. Designers frequently use vector representations of images like Scalable Vector Graphics
(SVGs) for digital icons or art. Vector graphics can be scaled to any size, and are compact.

We show that a text-conditioned diffusion model trained on raster representations of images
can be used to generate SVG-exportable vector graphics. We do so without access to large
datasets of captioned SVGs. By optimizing a differentiable vector graphics rasterizer, our method,
VectorFusion, distills abstract semantic knowledge out of a pretrained diffusion model. We learn
an SVG consistent with a caption using Score Distillation Sampling. To accelerate generation and
improve fidelity, VectorFusion also initializes from an image sample. Experiments show greater
quality than prior work, and demonstrate a range of styles including pixel art and sketches.
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Figure 6.1: Text-to-SVGwith VectorFusion. When (a) raster graphics sampled from Stable Diffusion
are (b) auto-traced, they lose details that are hard to represent within the constraints of
the abstraction. (c-d) VectorFusion improves fidelity and consistency with the caption
by directly optimizing paths with a distillation-based diffusion loss. Find videos and
more results at https://ajayj.com/vectorfusion.

6.1 Introduction

Graphic designers and artists often express concepts in an abstract manner, such as composing a few
shapes and lines into a pattern that evokes the essence of a scene. Scalable Vector Graphics (SVGs)
provide a declarative format for expressing visual concepts as a collection of primitives. Primitives
include Bézier curves, polygons, circles, lines and background colors. SVGs are the defacto format
for exporting graphic designs since they can be rendered at arbitrarily high resolution on user
devices, yet are stored and transmitted with a compact size, often only tens of kilobytes. Still,
designing vector graphics is difficult, requiring knowledge of professional design tools.
Recently, large captioned datasets and breakthroughs in diffusion models have led to systems

capable of generating diverse images from text including DALL-E 2 [133], Imagen [145] and Latent
Diffusion [141]. However, the vast majority of images available in web-scale datasets are rasterized,
expressed at a finite resolution with no decomposition into primitive parts nor layers. For this
reason, existing diffusion models can only generate raster images. In theory, diffusion models could
be trained to directly model SVGs, but would need specialized architectures for variable-length
hierarchical sequences, and significant data collection work.

https://ajayj.com/vectorfusion
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a train* an owl standing on a wire* Underwater Submarine*

a boat* A photo of a Ming Dynasty
vase on a leather topped ta-
ble.*

A smiling sloth wearing a
leather jacket, a cowboy
hat and a kilt.*

a tuba with red flowers pro-
truding from its bell*

a blue poison dart frog
sitting on a water lily*

a crown* the silhouette of an ele-
phant*

an espresso machine* the Sydney Opera
House*

a baby penguin* a tree* a family vacation to
Walt Disney World*

a spaceship flying in a
starry night sky*

the Great Wall*

Electric guitar** A delicious ham-
burger**

Daft Punk** watercolor painting
of a fire-breathing
dragon†

a bottle of beer
next to an ashtray
with a half-smoked
cigarette†

a brightly colored
mushroom growing
on a log†

Figure 6.2: Given a caption, VectorFusion generates abstract vector graphics in an SVG format.
We use a pre-trained diffusion model trained only on rasterized images to guide a
differentiable vector renderer. VectorFusion supports diverse objects and styles. To
select a style such as flat polygonal vector icons, abstract line drawings or pixel art,
we constrain the vector representation to subset of possible primitive shapes and use
different prompt modifiers to encourage an appropriate style: * ...minimal flat 2d vector
icon. lineal color. on a white background. trending on artstation, ** ...pixel art. trending on artstation,
†...minimal 2d line drawing. trending on artstation. Please see videos of the optimization process
on our project webpage.

https://ajayj.com/vectorfusion
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How can we use diffusion models pretrained on pixels to generate high-quality vector graphics?
In this work, we provide a method for generating high quality abstract vector graphics from text
captions, shown in Fig. 6.1.
We start by evaluating a two phase text-to-image and image-to-vector baseline: generating

a raster image with a pretrained diffusion model, then vectorizing it. Traditionally, designers
manually convert simple rasterized images into a vector format by tracing shapes. Some ML-based
tools [95] can automatically approximate a raster image with an SVG. Unfortunately, we find that
text-to-image diffusion models frequently produce complex images that are hard to represent with
simple vectors, or are incoherent with the caption (Fig 6.1, Stable Diffusion + LIVE).
To improve quality of the SVG and coherence with the caption, we incorporate the pretrained

text-to-image diffusion model in an optimization loop. Our approach, VectorFusion, combines a
differentiable vector graphics renderer [87] and the score distillation sampling (SDS) loss that we
proposed in prior work [127] to iteratively refine shape parameters. Intuitively, score distillation
converts diffusion sampling into an optimization problem that allows the image to be represented
by an arbitrary differentiable function. In our case, the differentiable function is the forward
rasterization process, and the diffusion model provides a signal for improving the raster. To adapt
SDS to text-to-SVG synthesis, we make the following contributions:

• We extend score distillation sampling to open source latent space diffusion models,
• improve efficiency and quality by initializing near a raster image sample,
• propose SVG-specific regularization including path reinitialization,
• and evaluate different sets of shape primitives and their impact on style.

In experiments, VectorFusion generates iconography, pixel art and line drawings from diverse
captions. VectorFusion also achieves greater quality than CLIP-based approaches that transfer a
discriminative vision-language representation.

6.2 Related Work

A few works have used pretrained vision-language models to guide vector graphic generation.
VectorAscent [63] and CLIPDraw [38] optimize CLIP’s image-text similarity metric [130] to
generate vector graphics from text prompts, with a procedure similar to DeepDream [103] and
CLIP feature visualization [42]. StyleCLIPDraw [151] extends CLIPDraw to condition on images
with an auxiliary style loss with a pretrained VGG16 [154] model. Arnheim [36] parameterizes
SVG paths with a neural network, and CLIP-CLOP [101] uses an evolutionary approach to create
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image collages. Though we also use pretrained vision-language models, we use a generative model
rather than a discriminative model.

Recent work has shown the success of text-to-image generation. DALL-E 2 [133] learns an image
diffusion model conditioned on CLIP’s text embeddings. Our work uses Stable Diffusion [141]
(SD), a text-to-image latent diffusion model. While these models produce high-fidelity images,
they cannot be directly transformed into vector graphics.

A number of works generate vector graphics from input images. We extend the work of Layer-
wise Image Vectorization (LIVE) [95], which iteratively optimizes closed Bézier paths with a
differentiable rasterizer, DiffVG [87].
We also take inspiration from inverse graphics with diffusion models. Diffusion models have

been used in zero-shot for image-to-image tasks like inpainting [94]. DDPM-PnP [45] uses diffusion
models as priors for conditional image generation, segmentation, and more. DreamFusion [127]
uses 2D diffusion as an image prior for text-to-3D synthesis with a more efficient loss than DDPM-
PnP, discussed in Section 6.3.3. Following [127], we use diffusion models as transferable priors for
vector graphics. Concurrent work [97] also adapts the SDS loss for latent-space diffusion models.

6.3 Background

6.3.1 Vector representation and rendering pipeline

Vector graphics are composed of primitives. For our work, we use paths of segments delineated by
control points. We configure the control point positions, shape fill color, stroke width and stroke
color. Most of our experiments use closed Bézier curves. Different artistic styles are accomplished
with other primitives, such as square shapes for pixel-art synthesis and unclosed Bézier curves for
line art.

To render to pixel-based formats, we rasterize the primitives. While many primitives would be
needed to express a realistic photogaph, even a few can be combined into recognizable, visually
pleasing objects. We use DiffVG [87], a differentiable rasterizer that can compute the gradient
of the rendered image with respect to the parameters of the SVG paths. Many works, such as
LIVE [95], use DiffVG to vectorize images, though such transformations are lossy.

6.3.2 Diffusion models

Chapter 5 introduced our work on Denoising Diffusion Probabilistic Models. To provide more
technical details relevant for VectorFusion, diffusion models are a flexible class of likelihood-based
generative models that learn a distribution by denoising. A diffusion model generates data by
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learning to gradually map samples from a known prior like a Gaussian toward the data distribution.
During training, a diffusion model optimizes a variational bound on the likelihood of real data
samples [160], similar to a variational autoencoder [82]. This bound reduces to a weighted mixture
of denoising objectives [58]:

LDDPM(𝜙, x) = E𝑡,𝜖
[
𝑤 (𝑡)∥𝜖𝜙 (𝛼𝑡x + 𝜎𝑡𝜖) − 𝜖

2
2] (6.1)

where x is a real data sample and 𝑡 ∈ {1, 2, . . .𝑇 } is a uniformly sampled timestep scalar that
indexes noise schedules 𝛼𝑡 , 𝜎𝑡 [78]. 𝜖 is noise of the same dimension as the image sampled from
the known Gaussian prior. Noise is added by interpolation to preserve variance. 𝜖𝜙 is a learned
denoising autoencoder that predicts the noise content of its input. For images, 𝜖𝜙 is commonly
a U-Net [58, 142], and the weighting function𝑤 (𝑡) = 1 [58]. Denoising diffusion models can be
trained to predict any linear combination of x and 𝜖 , such as the clean, denoised image x, though
an 𝜖 parameterization is simple and stable.

At test time, a sampler starts with a draw from the prior x𝑇 ∼ N(0, 1), then iteratively applies
the denoiser to update the sample while decaying the noise level 𝑡 to 0. For example, DDIM [161]
samples with the update:

x̂ = (x𝑡 − 𝜎𝑡𝜖𝜙 (x𝑡 ))/𝛼𝑡 , Predict clean image

x𝑡−1 = 𝛼𝑡−1x̂ + 𝜎𝑡−1𝜖𝜙 (x𝑡 ) Add back noise (6.2)

For text-to-image generation, the U-Net is conditioned on the caption 𝑦, 𝜖𝜙 (x, 𝑦), usually via
cross-attention layers and pooling of the features of a language model [106]. However, conditional
diffusion models can produce results incoherent with the caption since datasets are weakly labeled
and likelihood-based models try to explain all possible images. To increase the usage of a label or
caption, classifier-free guidance [59] superconditions the model by scaling up conditional model
outputs and guiding away from a generic unconditional prior that drops 𝑦:

𝜖𝜙 (x, 𝑦) = (1 + 𝜔) ∗ 𝜖𝜙 (x, 𝑦) − 𝜔 ∗ 𝜖𝜙 (x) (6.3)

CFG significantly improves coherence with a caption at the cost of an additional unconditional
forward pass per step.

High resolution image synthesis is expensive. Latent diffusion models [141] train on a reduced
spatial resolution by compressing 512 × 512 images into a relatively compact 64 × 64, 4-channel
latent space with a VQGAN-like autoencoder (𝐸, 𝐷) [34]. The diffusion model 𝜖𝜙 is trained to
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(b) Convert raster image to a vector (c) VectorFusion: Fine tune 
by latent score distillation

(a) Sample raster image

with Stable Diffusion

A panda rowing a boat in a pond.

Figure 6.3: VectorFusion generates SVGs in three stages. (a) First, we sample a rasterized image
from a text-to-image diffusion model like Stable Diffusion with prompt engineering for
iconographic aesthetics. (b) Since this image is finite resolution, we approximate it by
optimizing randomly initialized vector paths with an L2 loss. The loss is backpropagated
through DiffVG, a differentiable vector graphics renderer, to tune path coordinates and
color parameters. Paths are added in stages at areas of high loss following [95]. (c)
However, the diffusion sample often fails to express all the attributes of the caption,
or loses detail when vectorized. VectorFusion finetunes the SVG with a latent score
distillation sampling loss to improve quality and coherence.

model the latent space, and the decoder 𝐷 maps back to a high resolution raster image. We use
Stable Diffusion, a popular open-source text-to-image model based on latent diffusion.

6.3.3 Score distillation sampling

Diffusion models can be trained on arbitrary signals, but it is easier to train them in a space
where data is abundant. Standard diffusion samplers like (6.2) operate in the same space that
the diffusion model was trained. While samplers can be modified to solve many image-to-image
tasks in zero-shot such as colorization and inpainting [160, 164], until recently, pretrained image
diffusion models could only generate rasterized images.
In contrast, image encoders like VGG16 trained on ImageNet and CLIP (Contrastive Lan-

guage–Image Pre-training) [130] have been transferred to many modalities like mesh texture
generation [103], 3D neural fields [64, 65], and vector graphics [38, 63]. Even though encoders are
not generative, they can generate data with test time optimization: a loss function in the encoder’s
feature space is backpropagated to a learned image or function outputting images.
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Figure 6.4: Conceptual diagram motivating our approach. While vectorizing a rasterized diffusion
sample is lossy, VectorFusion can either finetune the best approximation or optimize a
random SVG from scratch to sample an SVG that is consistent with the caption.

DreamFusion [127] proposed an approach to use a pretrained pixel-space text-to-image diffusion
model as a loss function. Their proposed Score Distillation Sampling (SDS) loss provides a way to
assess the similarity between an image and a caption:

LSDS = E𝑡,𝜖
[
𝜎𝑡/𝛼𝑡𝑤 (𝑡)KL(𝑞(x𝑡 |𝑔(𝜃 );𝑦, 𝑡)∥𝑝𝜙 (x𝑡 ;𝑦, 𝑡))

]
.

𝑝𝜙 is the distribution learned by the frozen, pretrained diffusion model. 𝑞 is a unimodal Gaussian
distribution centered at a learned mean image 𝑔(𝜃 ). In this manner, SDS turned sampling into
an optimization problem: an image or a differentiable image parameterization (DIP) [103] can be
optimized with LSDS to bring it toward the conditional distribution of the teacher. This is inspired
by probability density distillation [116]. Critically, SDS only needs access to a pixel-space prior
𝑝𝜙 , parameterized with the denoising autoencoder 𝜖𝜙 . It does not require access to a prior over
the parameter space 𝜃 . DreamFusion [127] used SDS with the Imagen pixel space diffusion model
to learn the parameters of a 3D Neural Radiance Field [100]. In practice, SDS gives access to loss
gradients, not a scalar loss:

∇𝜃LSDS = E𝑡,𝜖

[
𝑤 (𝑡)

(
𝜖𝜙 (x𝑡 ;𝑦, 𝑡) − 𝜖

) 𝜕x
𝜕𝜃

]
(6.4)
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6.4 Method: VectorFusion

In this section, we outline two methods for generating abstract vector representations from
pretrained text-to-image diffusion models, including our full VectorFusion approach.

6.4.1 A baseline: text-to-image-to-vector

We start by developing a two stage pipeline: sampling an image from Stable Diffusion, then
vectorizing it automatically. Given text, we sample a raster image from Stable Diffusion with a
Runge-Kutta solver [90] in 50 sampling steps with guidance scale 𝜔 = 7.5 (the default settings
in the Diffusers library [126]). Naively, the diffusion model generates photographic styles and
details that are very difficult to express with a few constant color SVG paths. To encourage image
generations with an abstract, flat vector style, we append a suffix to the text: “minimal flat 2d

vector icon. lineal color. on a white background. trending on artstation”. This prompt was tuned
qualitatively.
Because samples can be inconsistent with captions, we sample K images and select the Stable

Diffusion sample that is most consistent with the caption according to CLIP ViT-B/16 [130]. CLIP
reranking was originally proposed by [134]. We choose K=4.
Next, we automatically trace the raster sample to convert it to an SVG using the off-the-shelf

Layer-wise Image Vectorization program (LIVE) [95]. LIVE produces relatively clean SVGs by
initializing paths in stages, localized to poorly recontructed, high loss regions. To encourage paths
to explain only a single feature of the image, LIVE weights an L2 reconstruction loss by distance
to the nearest path,

LUDF =
1
3

𝑤×ℎ∑︁
𝑖=1

𝑑 ′𝑖

3∑︁
𝑐=1
(𝐼𝑖,𝑐 − 𝐼𝑖,𝑐)2 (6.5)

where 𝐼 is the target image, 𝐼 is the rendering, 𝑐 indexes RGB channels in 𝐼 , 𝑑 ′𝑖 is the unsigned
distance between pixel 𝑖 , and the nearest path boundary, and 𝑤,ℎ are width and height of the
image. LIVE also optimizes a self-intersection regularizer LXing

LXing = 𝐷1(ReLU(−𝐷2)) + (1 − 𝐷1) (ReLU(𝐷2)), (6.6)

where 𝐷1 is the characteristic of the angle between two segments of a cubic Bézier path, and 𝐷2 is
the value of sin(𝛼) of that angle. For further clarifications of notation, please refer to LIVE [95].
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Figure 6.5: An overview of VectorFusion’s latent score distillation optimization procedure. We
adapt Score Distillation Sampling [127] to support a vector graphics renderer and
a latent-space diffusion prior for raster images. First, we rasterize the SVG given
path parameters. We apply data augmentations, encode into a latent space, compute
the Score Distillation loss on the latents, and backpropagate through the encoding,
augmentation and renderering procedure to update paths.

This results in a set of paths 𝜃LIVE = {𝑝1, 𝑝2, . . . 𝑝𝑘 }. Figure 6.3(b) shows the process of optimizing
vector parameters in stages that add 8-16 paths at a time. Figure 6.1 shows more automatic
conversions. While simple, this pipeline often creates images unsuitable for vectorization.

6.4.2 Sampling vector graphics by optimization

The pipeline in 6.4.1 is flawed since samples may not be easily representable by a set of paths.
Figure 6.4 illustrates the problem. Conditioned on text, a diffusion model produces samples from
the distribution 𝑝𝜙 (x|𝑦). Vectorization with LIVE finds a SVG with a close L2 approximation to
that image without using the caption 𝑦. This can lose information, and the resulting SVG graphic
may no longer be coherent with the caption.

For VectorFusion, we adapt Score Distillation Sampling to support latent diffusion models (LDM)
like the open source Stable Diffusion. We initialize an SVG with a set of paths 𝜃 = {𝑝1, 𝑝2, . . . 𝑝𝑘 }.
Every iteration, DiffVG renders a 600 × 600 image x. Like CLIPDraw [38], we augment with
perspective transform and random crop to get a 512 × 512 image xaug. Then, we propose to
compute the SDS loss in latent space using the LDM encoder 𝐸𝜙 , predicting z = 𝐸𝜙 (xaug). For
each iteration of optimization, we diffuse the latents with random noise z𝑡 = 𝛼𝑡z + 𝜎𝑡𝜖 , denoise
with the teacher model 𝜖𝜙 (z𝑡 , 𝑦), and optimize the SDS loss using a latent-space modification of
Equation 6.4:

∇𝜃LLSDS = E𝑡,𝜖

[
𝑤 (𝑡)

(
𝜖𝜙 (𝛼𝑡z𝑡 + 𝜎𝑡𝜖,𝑦) − 𝜖

) 𝜕z
𝜕xaug

𝜕xaug
𝜕𝜃

]
(6.7)
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A teapot

A pumpkin

64 paths 128 paths16 paths

Figure 6.6: The number of Bézier paths controls the level of detail in generated vector graphics.

Since Stable Diffusion is a discrete time model with 𝑇 = 1000 timesteps, we sample 𝑡 ∼ U(50, 950)
For efficiency, we run the diffusion model 𝜖𝜃 in half-precision. We found it important to compute
the Jacobian of the encoder 𝜕z/𝜕xaug in full FP32 precision for numerical stability. The term
𝜕xaug/𝜕𝜃 is computed with autodifferentiation through the augmentations and differentiable vector
graphics rasterizer, DiffVG. LLSDS can be seen as an adaptation of LSDS where the rasterizer, data
augmentation and frozen LDM encoder are treated as a single image generator with optimizable
parameters 𝜃 for the paths. During optimization, we also regularize self-intersections with (6.6).

6.4.3 Reinitializing paths

In our most flexible setting, synthesizing flat iconographic vectors, we allow path control points,
fill colors and SVG background color to be optimized. During the course of optimization, many
paths learn low opacity or shrink to a small area and are unused. To encourage usage of paths
and therefore more diverse and detailed images, we periodically reinitialize paths with fill-color
opacity or area below a threshold. Reinitialized paths are removed from optimization and the SVG,
and recreated as a randomly located and colored circle on top of existing paths.

6.4.4 Stylizing by constraining vector representation

Users can control the style of art generated by VectorFusion by modifying the input text, or by
constraining the set of primitives and parameters that can be optimized. We explore three settings:
iconographic vector art with flat shapes, pixel art, and sketch-based line drawings.
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Iconography We use closed Bézier paths with trainable control points and fill colors. Our final
vectors have 64 paths, each with 4 segments. For VectorFusion from scratch, we initialize 64
paths randomly and simultaneously, while for SD + LIVE + SDS, we initialize them iteratively
during the LIVE autovectorization phase. We include details about initialization parameters in the
supplement. Figure 6.6 qualitatively compares generations using 16, 64 and 128 paths (SD + LIVE
initialization with K=20 rejection samples and SDS finetuning). Using fewer paths leads to simpler,
flatter icons, whereas details and more complex highlights appear with greater numbers of paths.

Pixel art Pixel art is a popular video-game inspired style, frequently used for character and
background art. While an image sample can be converted to pixel art by downsampling, this
results in blurry, bland, and unrecognizable images. Thus, pixel art tries to maximize use of the
available shapes to clearly convey a concept. Pixray [181] uses square SVG polygons to represent
pixels and uses a CLIP-based loss following [38, 63]. VectorFusion able to generate meaningful
and aesthetic pixel art from scratch and with a Stable Diffusion initialization, shown in Fig. 6.2
and Fig. 6.7. In addition to the SDS loss, we additionally penalize an L2 loss on the image scaled
between -1 and 1 to combat oversaturation, detailed in the supplement. We use 32 × 32 pixel grids.

Sketches Line drawings are perhaps the most abstract representation of visual concepts. Line
drawings such as Pablo Picasso’s animal sketches are immediately recognizable, but bear little
to no pixel-wise similarity to real subjects. Thus, it has been a long-standing question whether
learning systems can generate semantic sketch abstractions, or if they are fixated on low-level
textures. Past work includes directly training a model to output strokes like Sketch-RNN [50], or
optimizing sketches to match a reference image in CLIP feature space [178]. As a highly constrained
representation, we optimize only the control point coordinates of a set of fixed width, solid black
Bézier curves. We use 16 strokes, each 6 pixels wide with 5 segments, randomly initialized and
trained from scratch, since the diffusion model inconsistently generates minimal sketches.

6.5 Experiments

In this section, we quantitatively and qualitatively evaluate the text-to-SVG synthesis capabilities
of VectorFusion guided by the following questions. In Section 6.5.2, we ask (1) Are SVGs generated

by VectorFusion consistent with representative input captions? and (2) Does our diffusion optimization-

based approach help compared to simpler baselines? In Section 6.5.3, we qualitatively compare
VectorFusion’s diffusion-based results with past CLIP-based methods. Section 6.5.4 and 6.5.5
describe pixel and sketch art generations. Overall, VectorFusion performs competitively on
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Table 6.1: Evaluating the consistency of text-to-SVG generations using 64 primitives with input
captions. Consistency is measured with CLIP R-Precision and CLIP similarity score
(×100). Higher is better. We compare a CLIP-based approach, CLIPDraw, with diffusion
baselines: the best of K raster samples from Stable Diffusion (SD), converting the best of
K samples to vectors with LIVE [95], and VectorFusion from scratch or initialized with
the LIVE converted SVG. VectorFusion generations are significantly more consistent
with captions than Stable Diffusion samples and their automatic vector conversions.
CLIPDraw is trained to maximize CLIP score, so it has artificially high scores.

Caption consistency
CLIP L/14 OpenCLIP H/14

Method K R-Prec Sim R-Prec Sim

CLIPDraw (scratch) – 85.2 27.2 77.3 31.7

Stable Diff (raster) 1 67.2 23.0 69.5 26.7
+ rejection sampling 4 81.3 24.1 80.5 28.2

SD init + LIVE 1 57.0 21.7 59.4 25.8
+ rejection sampling 4 69.5 22.9 65.6 27.6

VectorFusion (scratch) – 76.6 24.3 69.5 28.5
+ SD init + LIVE 1 78.1 29.1 78.1 29.3
+ rejection sampling 4 81.3 24.5 78.9 29.4

quantitative caption consistency metrics, and qualitatively produces the most coherent and visually
pleasing vectors.

6.5.1 Experimental setup

It is challenging to evaluate text-to-SVG synthesis, since we do not have target, ground truth
SVGs to use as a reference. We collect a diverse dataset of captions and evaluate text-SVG
coherence with automated CLIP metrics. Our dataset consists of 128 captions from past work
and benchmarks for text-to-SVG and text-to-image generation: prompts from CLIPDraw [38] and
ES-CLIP [170], combined with captions from PartiPrompts [190], DrawBench [146], DALL-E [134],
and DreamFusion [127]. Like previous works, we calculate CLIP R-Precision and cosine similarity.
CLIP SimilarityWe calculate the average cosine similarity of CLIP embeddings of generated

images and the text captions used to generate them. Any prompt engineering is excluded from
the reference text. As CLIP Similarity increases, pairs will generally be more consistent with
each other. We note that CLIPDraw methods directly optimize CLIP similarity scores and have
impressive metrics, but rendered vector graphics are sketch-like and messy unlike the more
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Figure 6.7: VectorFusion generates coherent, pleasing pixel art. Stable Diffusion can generate
a pixel art style, but has no control over grid regularity and resolution (left). This
causes artifacts and blurring when pixelating the sample into a 32x32 grid, even with a
robust L1 loss (middle). By finetuning the L1 result, VectorFusion improves quality and
generates an abstration that works well despite the low resolution constraint.

cohesive VectorFusion samples. We provide examples in Figure 6.8. To mitigate this effect, we also
evaluate the open source Open CLIP ViT-H/14 model, which uses a different dataset for training
the representations.

CLIP R-Precision For a more interpretable metric, we also compute CLIP Retrieval Precision.
Given our dataset of captions, we calculate CLIP similarity scores for each caption and each
rendered image of generated SVGs. R-Precision is the percent of SVGs with maximal CLIP
Similarity with the correct input caption, among all 128.

6.5.2 Evaluating caption consistency

As a baseline, we generate an SVG for each caption in our benchmark using CLIPDraw [38] with
64 strokes and their default hyperparameters. We sample 4 raster graphics per prompt from Stable
Diffusion as an oracle. These are selected amongst with CLIP reranking (rejection sampling).
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Figure 6.8: VectorFusion produces more coherent vector art than baselines that optimize CLIP
score, even with fewer paths (64 shapes). On the right, the resulting SVG can be enlarged
to arbitrary scale. Individual paths are highlighted with blue dashed lines. The result
can be edited intuitively by the user in design software.

Stable Diffusion produces rasterized images, not SVGs, but can be evaluated as an oracle with the
same metrics. We then autotrace the samples into SVGs using LIVE with 64 strokes, incrementally
added in 5 stages of optimization. Finally, we generate with VectorFusion, trained from scratch on
64 random paths per prompt, or initialized with LIVE.

6.5.3 Comparison with CLIP-based approaches

Figure 6.8 qualitatively compares diffusion with CLIP-guided text-to-SVG synthesis. ES-CLIP [170]
is an evolutionary search algorithm that searches for triangle abstractions that maximize CLIP
score, whereas CLIPDraw uses gradient-based optimization. VectorFusion produces much clearer,
cleaner vector graphics than CLIP baselines, because we incorporate a generative prior for image
appearance. However, a generative prior is not enough. Optimizing paths with the latent SDS
loss LLSDS (right two columns) further improves vibrancy and clarity compared to tracing Stable
Diffusion samples with LIVE.

6.5.4 Pixel art generation

VectorFusion generates aesthetic and relevant pixel art. Figure 6.2 shows that VectorFusion from
scratch can generate striking and coherent samples. Figure 6.7 shows our improvements over
L1-pixelated Stable Diffusion samples, which are pixelated by minimizing an L1 loss with respect
to square colors.
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6.5.5 Sketches and line drawings

Figure 6.2 includes line drawing samples. VectorFusion produces recognizable and clear sketches
from scratch without any image reference, even complex scenes with multiple objects. In addition,
it is able to ignore distractor terms irrelevant to sketches, such as “watercolor” or “Brightly colored”
and capture the semantic information of the caption.

6.6 Discussion

We have presented VectorFusion, a novel text-to-vector generative model. Without access to
datasets of captioned SVGs, we use pretrained diffusion models to guide generation. The resulting
abstract SVG representations can be intuitively used in existing design workflows. Our method
shows the effectiveness of distilling generative models compared to using contrastive models like
CLIP. In general, we are enthusiastic about the potential of scalable generative models trained in
pixel space to transfer to new tasks, with interpretable, editable outputs. VectorFusion provides a
reference point for designing such systems.
VectorFusion faces certain limitations. For instance, forward passes through the generative

model are more computationally expensive than contrastive approaches due to its increased
capacity. VectorFusion is also inherently limited by Stable Diffusion in terms of dataset biases [10]
and quality, though we expect that as text-to-image models advance, VectorFusion will likewise
continue to improve.
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Chapter 7

Conclusion

The research in this thesis has focused on new machine learning models for improved distribution
estimation, and transfer learning techniques that allow those models to create new data types.

Chapter 2 introduced Locally Masked Convolutional Networks, an efficient method for training
autoregressive image models that support image generation and completion in arbitrary orderings.
Chapters 3 and 4 presented techniques to transfer knowledge from pretrained 2D image models to
challenging 3D tasks with limited data, enabling text-to-3D generation and novel view synthesis.
Using semantic consistency losses, we showed how to guide continuous volumetric representations
to match natural language prompts, enabling automatic 3D asset generation from text alone.
Chapter 5 reviewed stable and expressive continuous generative models through Denoising

Diffusion Probabilistic Models, which achieve high-quality image generation. The Score Distillation
Sampling loss extended these models to new data types in DreamFusion, transferring a 2D text-
to-image diffusion model into 3D. Building on these works, Chapter 6 explored text-to-vector
generation by finetuning and distilling a pretrained image diffusion model into abstract vector
graphics with control over style. VectorFusion achieved compelling results in the challenging
text-to-vector domain, demonstrating the potential of diffusion models as priors in new settings.

While generative models have a strong theoretical grounding, building them also has a degree
of art. Qualitative, aesthetic and application questions are crucial. Human elements remain
challenging, such as defining good tasks, evaluating models, and understanding impacts. I have
often been surprised and delighted, but sometimes concerned, by how the community extends and
applies our work. Beyond visual modalities, the techniques we discussed have found applications
in medicine, climate research, simulation, robotics and more domains of great impact. While there
are difficulties ahead in addressing the risks of generative models, I am excited to see how future
work will build upon these contributions to push the boundaries of creation.
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Chapter 8

Appendix: Locally Masked
Convolution for Autoregressive
Models

8.1 Order visualization

Figure 2.2 shows three image generation orders and corresponding local masks used by the
first VectorFusion layer in the autoregressive generator. On the left, we show the raster scan,
S-curve and Hilbert curve orders over the pixels of a small 8×8 image. On the right, we show the
corresponding, local 3×3 binary masks applied to image patches in the first layer. Masks applied
to zero-pad pixels are colored green as their value is arbitrary. The center pixel in each image
patch is masked out (set to 0), so that the network cannot include ground truth information in
the representation of its context. The raster scan masks are the same for all image patches, so
weights can be masked rather than image patches. However, other orders require diverse masks to
respect the autoregressive property of the model. Figure 8.1 shows the 8 variants of the S-curve
generation order used for order-agnostic training.

8.2 Mask conditioning

ConvNADE [173] is a convolutional neural autoregressive distribution estimator that can be
trained with different masks on the input image. ConvNADE concatenates the mask with the
image, allowing the model to distinguish between a zero-valued pixel and a zero-valued mask.
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Figure 8.1: Eight variants of the S-curve generation order.

Locally masked convolutions can also condition upon the mask in each layer. Algorithm 4 is an
adaptation of Algorithm 1 that supports mask conditioning, with modifications shown in green.
Algorithm 4 applies a learned weight matrixWM to the first 𝐶in rows of the mask matrix as the
mask is repeated 𝑘1 ∗ 𝑘2 times by Algorithm 2. Equivalently, the maskM1:𝐶in can be concatenated
with 𝑋 after masking.

We evaluate mask conditioning on the Binarized MNIST dataset with 8 S-curve orders. After
training for 60 epochs (not converged for the purposes of comparison), the model without mask
conditioning achieves a test NLL of 77.85 nats, while the mask conditioned model achieves a
comparable test NLL of 77.94 nats. However, mask conditioning could improve generalization to
novel orders.

8.3 Experimental setup

We tune hyperparameters such as the learning rate and batch size as well as the network ar-
chitecture (Section 2.5) on the Grayscale MNIST dataset, and train models with the exact same
architecture and hyperparameters on Binarized MNIST, CIFAR and CelebA-HQ. We used a batch
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Algorithm 4 LMConv with mask conditioning
1: Input: image 𝑥 , weightsW𝑋 ,WM , bias 𝑏, generation order 𝜋 . 𝑥 is 𝐵 ×𝐶in × 𝐻 ×𝑊 ,W𝑋 is
𝐶out ×𝐶in ∗ 𝑘1 ∗ 𝑘2, andWM is 𝐶out × 𝑘1 ∗ 𝑘2.

2: Create mask matrixM with Algorithm 2
3: Extract patches: 𝑋 = im2col(pad(𝑥), 𝑘1, 𝑘2)
4: Mask patches: 𝑋 =M ⊙ 𝑋
5: Perform convolution: 𝑌 =W𝑋𝑋+WMM1:𝐶in + 𝑏
6: Assemble patches: 𝑦 = col2im(𝑌 )
7: return 𝑦

size of 32 images, learning rate 2 × 10−4, and gradient clipping to norm 2 × 106. The exception
is that we use batch size 5 on CelebA-HQ to save memory and 2-way softmax output instead of
logistics for binary data. CelebA-HQ [74] contains 30,000 256 × 256 8-bit color celebrity photos.
For experiments, we use the same CelebA-HQ data splits as Glow [77], with 27,000 training images
and 3,000 validation images at reduced 5-bit color depth.

We trained the 1 stream baseline and our model for about the same number of epochs. Longer
training improves performance, perhaps because order-agnostic training and dropout regularize, so
epoch count was determined by time limitations. Most models are trained with 4 V100 or Quadro
RTX 6000 GPUs. We train our CIFAR10 model for 2.6M steps (1644 epochs) with order-agnostic
training over 8 precomputed S-curve variants, then average model parameters from the last 45
epochs of training. Early in our experimental process, we compared Hilbert curve generation
orders against the S-curve, visualized for small images in Figure 2.2, but did not see improved
results.

For qualitative results, we train the 184M parameter 64 × 64CelebA-HQmodel for 375K iterations
at batch size 32. Inspired by Progressive GAN [74], we train themodel at a reduced 32×32 resolution
for the first 242K iterations. As the architecture is fully convolutional, it is straightforward to
increase image resolution during training.

8.4 Additional samples

Figure 8.2 shows intermediate states of the forward sampling process for unconditional generation
of grayscale MNIST digits. We samples pixels along a Hilbert space-filling curve. As Hilbert
curves are defined recursively for power-of-two sized grids, we use a generalization of the Hilbert
curve [13] for 28 × 28 image generation. Our Locally Masked PixelCNN is optimized via order-
agnostic training with eight variants of the order. Two variants are used for sampling digits in
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Figure 8.2: Unconditionally generating MNIST digits with two Hilbert curve orders, starting at the
top or bottom left.

Fig. 8.2. The top two digits are sampled beginning at the top left of the image, and the bottom
two digits are sampled beginning at the bottom left of the image. Images are shown at intervals
of roughly 156 sampling steps. With the same parameters, the model is able to unconditionally
generate plausible digits in multiple orders.

Figure 8.3 shows uncurated image completions using the large CelebA-HQmodel. Initial network
input is shown to the left of two image completions sampled from our Locally Masked PixelCNN
with an S-curve variant that generates missing pixels last. The input images are taken from the
validation set. The rightmost column contains the original image, i.e. the ground truth image
completion. Two samples with the same context vary due to the stochasticity of the decoding
process, e.g. varying in terms of hairstyle, facial hair, attire and expression.

8.5 Implementation

Locally Masked Convolutions are simple to implement using the basic linear algebra subpro-
grams exposed in machine learning frameworks, including matrix multiplication. It also re-
quires an implementation of the im2col operation. We provide an abbreviated Python code
sample implementing VectorFusion using the PyTorch library in Figure 8.4. The full source in-
cluding gradient computation, parameter initialization and mask conditioning is available at
https://ajayjain.github.io/lmconv.

https://ajayjain.github.io/lmconv
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Figure 8.3: Uncurated CelebA-HQ 64x64 completions.
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import math

import torch
import torch.nn as nn
import torch.nn.functional as F

class _locally_masked_conv2d(torch.autograd.Function):
@staticmethod
def forward(ctx, x, mask, weight, bias=None, dilation=1, padding=1):

# Save values for backward pass
ctx.save_for_backward(x, mask, weight)
ctx.dilation, ctx.padding = dilation, padding
ctx.H, ctx.W = x.size(2), x.size(3)
ctx.output_shape = (x.shape[2], x.shape[3])
out_channels, in_channels, k1, k2 = weight.shape

# Step 1: Unfold (im2col)
x = F.unfold(x, (k1, k2), dilation=dilation, padding=padding)
# Step 2: Mask x. Avoid repeating mask in_channels times by reshaping x
x_channels_batched = x.view(x.size(0) * in_channels,

x.size(1) // in_channels, x.size(2))
x = torch.mul(x_channels_batched, mask).view(x.shape)
# Step 3: Perform convolution via matrix multiplication and addition
weight_matrix = weight.view(out_channels, -1)
x = weight_matrix.matmul(x)
if bias is not None:

x = x + bias.unsqueeze(0).unsqueeze(2)
# Step 4: Restore shape
return x.view(x.size(0), x.size(1), *ctx.output_shape)

@staticmethod
def backward(ctx, grad_output):

x, mask, weight, mask_weight = ctx.saved_tensors
...
if ctx.needs_input_grad[2]:

# Recompute unfold and masking to save memory
x_ = F.unfold(x, (k1, k2), dilation=ctx.dilation, padding=ctx.padding)
...

...

class locally_masked_conv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation, bias):

super(locally_masked_conv2d, self).__init__()
...
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels, *kernel_size))
self.bias = nn.Parameter(torch.Tensor(out_channels)) if bias else None
self.reset_parameters()

def reset_parameters(self):
...

def forward(self, x, mask):
return _locally_masked_conv2d.apply(x, mask, self.weight,

self.bias, self.dilation, self.padding)

Figure 8.4: A memory-efficient PyTorch v1.5.1 implementation of VectorFusion. Gradient calcula-
tion is omitted for brevity. See https://ajayjain.github.io/lmconv for full code.

https://ajayjain.github.io/lmconv


APPENDIX: PUTTING NERF ON A DIET 101

Chapter 9

Appendix: Putting NeRF on a Diet

9.1 Experimental details

View selection For most few-view Realistic Synthetic experiments, we randomly subsample 8
of the available 100 training renders. Views are not manually selected. However, to compare the
ability of NeRF and DietNeRF to extrapolate to unseen regions, we manually selected 14 of the 100
views mostly showing the right side of the Lego scene. For DTU experiments where we fine-tune
pixelNeRF [188], we use the same source view as [188]. This viewpoint was manually selected and
is shared across all 15 scenes.

Simplified NeRF baseline The published version of NeRF [100] can be unstable to train with
8 views, often converging to a degenerate solution. We found that NeRF is sensitive to MLP
parameter initialization, as well as hyperparameters that control the complexity of the learned
scene representation. For a fair comparison, we tuned the Simplified NeRF baseline on each Realistic
Synthetic scene by modifying hyperparameters until object geometry converged. Table 9.1 shows
the resulting hyperparameter settings for initial learning rate prior to decay, whether the MLP 𝑓𝜃
is viewpoint dependent, number of samples per ray queried from the fine and coarse networks,
and the maximum frequency sinusoidal encoding of spatial position (𝑥,𝑦, 𝑧). The fine and coarse
networks are used in [100] for hierarchical sampling. ✗ denotes that we do not use the fine network.

Implementation Our implementation is based on a PyTorch port [187] of NeRF’s original
Tensorflow code. We re-train and evaluate NeRF using this code. For memory efficiency, we use
400×400 images of the scenes as in [187] rather than full-resolution 800×800 images. NV is trained
with full-resolution 800 × 800 views. NV renderings are downsampled with a 2x2 box filter to
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Table 9.1: Simplified NeRF training details by scene in the Realistic Synthetic dataset. We
tune the initial learning rate, view dependence, number of samples from fine and coarse
networks for hierarchical sampling, and the maximum frequency of the (𝑥,𝑦, 𝑧) spatial
positional encoding.

Scene LR View dep. Fine Coarse Max freq.

Full NeRF 5 × 10−4 ✓ 128 64 29

Lego 5 × 10−5 ✓ ✗ 128 25
Chair 5 × 10−5 ✗ ✗ 128 25
Drums 5 × 10−5 ✗ ✗ 128 25
Ficus 5 × 10−5 ✗ ✗ 128 25
Mic 5 × 10−5 ✗ ✗ 128 25
Ship 5 × 10−5 ✗ ✗ 128 25
Materials 1 × 10−5 ✗ ✗ 128 25
Hotdog 1 × 10−5 ✗ ✗ 128 23

400 × 400 to compute metrics. We train all NeRF, Simplified NeRF and DietNeRF models with the
Adam optimizer [81] for 200k iterations.

Metrics Our PSNR, SSIM, and LPIPS metrics use the same implementation as [188] based on
the scikit-image Python package [179]. For the DTU dataset, [188] excluded some poses from the
validation set as ground truth photographs had excessive shadows due to the physical capture
setup. We use the same subset of validation views.
For both Realistic Synthetic and DTU scenes, we also included FID and KID perceptual image

quality metrics. While PSNR, SSIM and LPIPS are measured between pairs of pixel-aligned images,
FID and KID are measured between two sets of image samples. These metrics compare the
distribution of image features computed on one set of images to those computed on another set. As
distributions are compared rather than individual images, a sufficiently large sample size is needed.
For the Realistic Synthetic dataset, we compute the FID and KID between all 3200 ground-truth
images (across train, validation and testing splits and across scenes), and 200 rendered test images
at the same resolution (25 test views per scene). Aggregating across scenes allows us to have a
larger sample size. Due to the setup of the Neural Volumes code, we use additional samples for
rendered images for that baseline. For the DTU dataset, we compute FID and KID between 720
rendered images (48 per scene across 15 validation scenes, excluding the viewpoint of the source
image provided to pixelNeRF) and 6076 ground-truth images (49 images including the source
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Figure 9.1: CLIP ViT embeddings are more similar between views of the same scene than
across different scenes. We show a 2D histogram for each pair of Realistic Synthetic
scenes comparing ViT embedding similarity and the distance between views. The
dashed line shows mean cosine similarity, and green histograms have mean similarity
is greater than 0.6. On the diagonal, two views from the upper hemisphere of the same
scene are sampled. Embeddings of different views of the same scene are generally
highly similar. Nearby (distance 0) and diagonally opposing (distance 8) views are most
similar. In comparison, when sampling views from different scenes (lower triangle),
embeddings are dissimilar.

viewpoint across 124 training and validation scenes). FID and KID metrics are computed using the
torch-fidelity Python package [109].

9.2 Per-scene metrics

Embedding similarity In Figure 9.1, we compare the cosine similarity of two views with the
distance between their camera origins for each pair of scenes in the Realistic Synthetic dataset.
When sampling both views from the same scene, views have high cosine similarity (diagonal). For
6 of the 8 scenes, there is some dependence on the relative poses of the camera views, though
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Table 9.2: Quality metrics for each scene in the Realistic Synthetic dataset with 8 observed
views.

PSNR ↑ Lego Chair Drums Ficus Mic Ship Materials Hotdog

NeRF 9.726 21.049 17.472 13.728 26.287 12.929 7.837 10.446
NV [92] 17.652 20.515 16.271 19.448 18.323 14.457 16.846 19.361
Simplified NeRF 16.735 21.870 15.021 21.091 24.206 17.092 20.659 24.060
DietNeRF (ours) 23.897 24.633 20.034 20.744 26.321 23.043 21.254 25.250
DietNeRF, LMSE ft (ours) 24.311 25.595 20.029 20.940 26.794 22.536 21.621 26.626

NeRF, 100 views 31.618 34.073 25.530 29.163 33.197 29.407 29.340 36.899

SSIM ↑ Lego Chair Drums Ficus Mic Ship Materials Hotdog

NeRF 0.526 0.861 0.770 0.661 0.944 0.605 0.484 0.644
NV [92] 0.707 0.795 0.675 0.815 0.816 0.602 0.721 0.796
Simplified NeRF 0.775 0.859 0.727 0.872 0.930 0.694 0.823 0.894
DietNeRF (ours) 0.863 0.898 0.843 0.872 0.944 0.758 0.843 0.904
DietNeRF, LMSE ft (ours) 0.875 0.912 0.845 0.874 0.950 0.757 0.851 0.924

NeRF, 100 views 0.965 0.978 0.929 0.966 0.979 0.875 0.958 0.981

LPIPS ↓ Lego Chair Drums Ficus Mic Ship Materials Hotdog

NeRF 0.467 0.163 0.231 0.354 0.067 0.375 0.467 0.422
NV [92] 0.253 0.175 0.299 0.156 0.193 0.456 0.223 0.203
Simplified NeRF 0.218 0.152 0.280 0.132 0.080 0.283 0.151 0.139
DietNeRF (ours) 0.110 0.092 0.117 0.097 0.053 0.204 0.102 0.097
DietNeRF, LMSE ft (ours) 0.096 0.077 0.117 0.094 0.043 0.193 0.095 0.067

NeRF, 100 views 0.033 0.025 0.064 0.035 0.023 0.125 0.037 0.025
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similarity is high across all camera distances. For views sampled from different scenes, similarity
is low (cosine similarity around 0.5).

Quality metrics Table 9.2 shows PSNR, SSIM and LPIPS metrics on a per-scene basis for the
Realistic Synthetic dataset. FID and KID metrics are excluded as they need a larger sample size.
We bold the best method on each scene, and underline the second-best method. Across all scenes
in the few-shot setting, DietNeRF or DietNeRF fine-tuned for 50k iterations with LMSE performs
best or second-best.

9.3 Qualitative results and ground-truth

In this section, we provide additional qualitative results. Figure 9.2 shows the ground-truth training
views used for 8-shot Realistic Synthetic experiments. These views are sampled at random from
the training set of [100]. Random sampling models challenges with real-world data capture such
as uneven view sampling. It may be possible to improve results if views are carefully selected.

In Figure 9.3, we provide additional renderings of Realistic Synthetic scenes from testing poses
for baseline methods and DietNeRF. Neural Volumes generally converges to recover coarse object
geometry, but has wispy artifacts and distortions. On the Ship scene, Neural Volumes only recovers
very low-frequency detail. Simplified NeRF suffers from occluders that are not visible from the
8 training poses. DietNeRF has the highest quality reconstructions without these distortions or
occluders, but does miss some high-frequency detail. An interesting artifact is the leakage of green
coloration to the back of the chair.

Finally, in Figure 9.4, we show renderings from pixelNeRF and DietPixelNeRF on all DTU dataset
validation scenes not included in the main paper. Starting from the same checkpoint, pixelNeRF is
fine-tuned using LMSE for 20k iterations, whereas DietPixelNeRF is fine-tuned using LMSE + LSC

for 20k iterations. DietPixelNeRF has sharper renderings. On scenes with rectangular objects
like bricks and boxes, DietPixelNeRF performs especially well. However, the method struggles to
preserve accurate geometry in some cases. Note that the problem is under-determined as only a
single view is observed per scene.

9.4 Adversarial approaches

While NeRF is only supervised from observed poses, conceptually, a GAN [44] uses a discriminator
to compute a realism loss between real and generated images that need not align pixel-wise. Patch
GAN discriminators were introduced for image translation problems [61, 198] and can be useful
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Lego Chair Drums Ficus Mic Ship Materials Hotdog

Figure 9.2: Training views used for Realistic Synthetic scenes. These views are randomly
sampled from the available 100 views. This is a challenging setting for view synthesis
and 3D reconstruction applications as objects are not uniformly observed. Some views
are mostly redundant, like the top two Lego views. Other regions are sparsely observed,
such as a single side view of Hotdog.

for high-resolution image generation [34]. SinGAN [144] trains multiscale patch discriminators on
a single image, comparable to our single-scene few-view setting. In early experiments, we trained
patch-wise discriminators per-scene to supervise 𝑓𝜃 from novel poses in addition to LSC. However,
an auxiliary adversarial loss led to artifacts on Realistic Synthetic scenes, both in isolation and in
combination with our semantic consistency loss.
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Lego Chair Drums Ficus Mic Ship Materials Hotdog

Neural
Volumes

Simplified
NeRF

Ground
truth

DietNeRF,
fine-tuned

Figure 9.3: Additional renderings of Realistic Synthetic scenes.
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Input: 1 view Novel views from pixelNeRF, fine-tuned w/ MSE Novel views from DietPixelNeRF (ours) Ground truth (unseen)

Figure 9.4: One-shot novel view synthesis: Additional renderings of DTU scenes generated
from a single observed view (left). Ground truth views are shows for reference, but are
not provided to the model. pixelNeRF and DietPixelNeRF are pre-trained on the same
dataset of other scenes, then fine-tuned on the single input view for 20k iterations with
LMSE alone (pixelNeRF) or LMSE + LSC (DietPixelNeRF).
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Chapter 10

Appendix: Text-Guided Object
Generation with Dream Fields

10.1 Qualitative results and ablations

An explanatory video with more qualitative results, code, an interactive Colab notebook, and
object-centric prompts are available at https://ajayj.com/dreamfields. The video includes 360◦

renderings where the camera orbits the object, as well as associated depth maps.

Changing the image-text model Figure 10.1 qualitatively compares generations using guid-
ance from three different contrastive image-text models. Dream Fields generated with LiTuu B/32
are generally sharper than those with CLIP models, but all three can produce objects reflecting
some aspects of the prompts.

Diversity of synthesized objects In creative applications, users often want to select between
multiple synthesized results. Dream Fields can synthesize multiple objects from the same prompt
by changing the random seed before optimization. The seed changes the initialization of the
NeRF weights, the camera pose sampled each iteration and the random background and crop
augmentations. Figure 10.2 shows the effect of changing the seed for four object-centric COCO
prompts. Changing the seed changes scene shape and layout. For example, the bus on the left is
compressed into a cubical shape, while the bus on the right is elongated. Colors and textures are
often similar across the seeds, though can also vary. Changing the seed is another dimension of
control in addition to prompt engineering.

https://ajayj.com/dreamfields
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a bouguet of wilted
red roses on a

table.

CLIP B/32 CLIP B/16 LiT B/32

a cluster of pine
trees are in a
barren area.

a blue jug in
a garden filled with

mud.

Figure 10.1: Varying the image-text model used for Dream Field optimization.

a zebra is eating grass on the ground.a bus covered with assorted 
colorful graffiti on the side of it.

a plate of oranges sliced
on top of a table.

fruit growing on the side
of a tree in a jungle.

Figure 10.2: Object diversity: Objects vary with different seeds, effecting NeRF’s weight initial-
ization, camera sampling and augmentations.
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Figure 10.3: Total loss with different sparsity regularizers and constant LCLIP ∈ [0.1,−0.3]. Upper
and lower bounds of LCLIP are shown with dashed lines. The additive loss is convex,
and is always minimized by increasing transmittance.

10.2 Object Centric COCO captions dataset

Our Object Centric COCO dataset includes 153 test set prompts and 74 development set prompts.
Several additional prompts are used for qualitative results, and are included in the main paper
alongside figures. Captions are included along with code on the project website.

10.3 Hyperparameters and training setup

Positional encoding Our Fourier feature positional encodings use 𝐿 = 8 frequency levels,
while novel view synthesis applications with image supervision commonly use 𝐿 = 10 to fit
high-frequency details in photographs. Low-frequency ablations in Table 1 use 𝐿 = 6, which can
improve convergence in the absence of our other geometric priors.

Rendering Scenes are bounded to a cube with side length 2. The camera is sampled at a fixed
radius of 4 units from the center of the cubical scene bounds and an elevation of 30◦ above the
equator. Near and far planes are set at 4 ± √3 units from the camera based on the minimum and
maximum possible distance to the corners of the cube. During training, we sample 192 points along
each ray, spaced uniformly and jittered with uniform noise. Rendered 1682 views are cropped to
1542 and upsampled to CLIP’s input resolution for scenes where we compute qualitative metrics
or 2522 views are cropped to 2242 for certain higher-quality visualizations. Crop sizes are selected
to cover about 80% of the image area. At test time, we sample 512 points along the rays and render
at a higher resolution equal to CLIP’s input size of 2242 or LiT’s input size of 2882 for computing
R-Precision and 4002 for visualizations.

https://ajayj.com/dreamfields
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1283 RGBα voxels
8M parameters

+ transmittance loss

a small green vase displays some small yellow blooms.

NeRF (ours)
0.5M parameters

+ transmittance loss

Pixel optimization
+ transmittance loss,

+ TV loss

Figure 10.4: Optimizing a Neural Radiance Field scene representation (bottom) leads to
fewer artifacts than optimizing an explicit single-view 2D image (top) or 3D voxel
grid (middle), even when the explicit representations are regularized. Our MLP has
16× fewer parameters than the voxel grid, which may contribute to smoother, less
noisy objects. We use CLIP B/16 for this experiment.

Optimization MLP parameters are initialized with the Flax [53] defaults: LeCun normal weights
and zero bias for linear layers, and unit scaling and zero bias for layer normalization. The MLP is
optimized with Adam with 𝜖 = 10−5. Learning rate warms up exponentially from 10−5 to 10−4 over
1500 iterations, then is held constant. The camera origin is separately tracked with an exponential
moving average with decay rate 0.999 of the center of mass of rendered density. Figure 10.3
visualizes different forms of the transmittance loss.

Hyperparameter selection Hyperparameters are manually tuned for visual quality on a devel-
opment set of 74 object-centric COCO captions distinct from the test set reported in the paper.
Most tuning is done on a smaller subset of 20 of the 74 captions, and hyperparameters are shared
across all scenes.

Hardware Optimization is done on 8 preemptible TPU cores, and 10K iterations takes approxi-
mately 1 hour 12 minutes. This means each Dream Field costs approximately $3-4 to generate on
Google Cloud, which is economical for applications. Training is bottlenecked by MLP inference
and backpropagation during volumetric rendering, not CLIP.



APPENDIX: TEXT-GUIDED OBJECT GENERATION WITH DREAM FIELDS 113

10.4 Pixel and voxel baselines

We implemented 2D image optimization with a total variation loss and generative prior (CLIP
Guided Diffusion), as well as a 3D voxel baselines to replace NeRF in Fig. 10.4. All results for this
ablation optimize CLIP ViT B/16.

The 2D image is an RGB𝛼 pixel grid, composited with random backgrounds during optimization
similar to Dream Fields. Optimizing a single 2D RGB𝛼 image does not produce a multi-view
consistent 3D object, so other viewpoints cannot be rendered. Even with transmittance and TV
regularization, the resulting image is noisy.
The voxel grid stores 1283 RGB and alpha values, interpolated trilinearly at ray sample points

and composited without a neural network using the PyTorch3D library. Despite the transmittance
loss, data augmentations and scene bounds, the voxel grid also has significant low-density artifacts.
The voxel baseline has CLIP B/32 R-Precision 37.0%±3.9, while NeRF has 59.8%±2.8 (Tables 4.1, 4.3)
with 16× fewer parameters, showing that the neural representation improves consistency with the
input caption in a generalizable way. Using a hybrid representation with an explicit voxel grid
followed by a smaller MLP head might improve computational efficiency of Dream Fields without
degrading quality.

10.5 Signed distance field parameterization

In early experiments, we learned scene density 𝜎 with the VolSDF parameterization [186] 𝜎 (x) =
𝛼Φ𝛽 (−𝑑Ω (x)) where𝑑Ω (x) is a signed distance function implicitly defining the object surface andΦ
is the CDF of the Laplace distribution. This allows normal vector predictionwith autodifferentiation
and could improve the quality of the surface extracted from the radiance field. Dream Fields
successfully train with this alternate parameterization and produce visually compelling objects.
The SDF Eikonal loss introduces an additional loss weight hyperparameter, which benefits from
some tuning. Alternate 3D representations are an interesting avenue for future work.

10.6 Impact of optimization time

Dream Fields can overfit to the aligned image-text representation used for optimization. Figure 10.5
shows the training losses, LCLIP and mean transmittance mean(𝑇 (𝜃, p)), as well as the validation
R-Precision. Objects are generated with LiTuu ViT B/32 guidance, and R-Precision is computed
with a different contrastive image-text model, CLIP ViT B/32. Validation renderings are also
done at a held-out elevation angle. Training loss continues to improve over long optimization
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Figure 10.5: Long-run training and validation curves averaged over 79 hand-written prompts.
Transmittance remains close to the target 𝜏 throughout training. Dream Fields overfit
to the image-text representations used for optimization, so in quantitative experiments,
we stop training at 10K iterations. The standard error of the mean is shaded.

trajectories, up to 10× longer than reported in the main paper. However, validation retrieval
accuracy declines after 5-10K iterations. The metrics are averaged over 79 different hand-written
captions that test fine-grained variations in wording and prompt engineering.
Qualitatively, additional details and hyper-realistic effects are added over the course of long

runs, shown in our supplementary video. Some details are not realistic, like floating text related to
the typographic attacks identified in [42].

More augmentations may help further regularize the optimization. These include more aggres-
sive 2D image augmentations such as smaller random crops, and more 3D data augmentations
including varying focal length, varying distance from the subject and varying elevation. 3D data
augmentations are supported by our approach.
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Chapter 11

Appendix: VectorFusion

11.1 Website with results, videos, and benchmark

Our project website at https://ajayj.com/vectorfusion includes videos of the optimization process
and many more qualitative results in SVG format.
See https://ajayj.com/vectorfusion/svg_bench_prompts.txt for the benchmark used for evalua-

tion, consisting of 128 diverse prompts sourced from prior work.

11.2 Ablation: Reinitializing paths

We reinitialize paths below an opacity threshold or area threshold periodically, every 50 iterations.
The purpose of reinitializing small, faint paths is to encourage the usage of all paths. Path are not
reinitialized for the final 200-500 iterations of optimization, so reinitialized paths have enough
time to converge. Reinitialization is only applied during image-text loss computation stages. Note
that for SD + LIVE + SDS, we only reinitialize for SDS finetuning, not LIVE image vectorization.
For CLIPDraw, we only reinitialize paths for our closed Bézier path version, not for the original
CLIPDraw version, which consists of open Bézier paths where it is difficult to measure area.
Table 11.1 includes hyperparameters for the threshold, frequency, and number of iterations of
reinitialization.

Table 11.2 ablates the use of reinitialization. When optimizing random paths with SDS, reinitial-
ization gives an absolute +3.0% increase in R-Precision according to OpenCLIP H/14 evaluation.
When initialized from a LIVE traced sample, reinitialization is quite helpful (+12.5% R-Prec).

https://ajayj.com/vectorfusion
https://ajayj.com/vectorfusion/svg_bench_prompts.txt
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Table 11.1: Path reinitialization hyperparameters

Method Opacity
Thresh.

Area
Thresh. Freq. Iters

SDS (from scratch) 0.05 0 50 1.5/2K SDS steps
SD + LIVE + SDS 0.05 64 px2 50 0.8/1K SDS steps
CLIPDraw (icon.) 0.05 64 px2 50 1.8/2K CLIP steps

Table 11.2: Evaluating path reinitialization with 64 closed, colored Bézier curves, our iconographic
setting. VectorFusion reinitializes paths during optimization to maximize their usage.
This improves caption consistency both when training randomly initialized paths with
SDS (SDS w/ reinit), and when initializing with a LIVE traced Stable Diffusion sample
(SD + LIVE + SDS w/ reinit).

Caption consistency
CLIP L/14 OpenCLIP H/14

Method K R-Prec Sim R-Prec Sim

SDS 0 75.0 24.0 75.0 28.8
w/ reinit 0 78.1 24.1 78.1 29.3

SD + LIVE + SDS 4 64.8 22.6 68.8 26.7
w/ reinit 4 78.9 29.4 81.3 24.5
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11.3 Ablation: Saturation Penalty

We proposed a saturation penalty for pixel art 6.4.4. We did not use it for icongraphy, but it greatly
reduces saturation, as shown below.

0.0
0

0.0
1

0.0
5

0.1
0

11.4 Ablation: Number of paths

VectorFusion optimizes path coordinates and colors, but the number of primitive paths is a non-
differentiable hyperparameter. Vector graphics with fewer paths will be more abstract, whereas
photorealism and details can be improved with many paths. In this ablation, we experiment with
different number of paths. We evaluate caption consistency across path counts. For methods that
use LIVE, this ablation uses a path schedule that incrementally adds 2, 4, and 10 for a total of
16 paths, and a path schedule of 8, 16, 32, and 72 for 128 total paths. We set K=4 for rejection
sampling. Figure 11.1 and Table 11.3 show results. Consistency improves with more paths, but
there are diminishing returns.

11.5 Ablation: Number of rejection samples

In this section, we ablate on the number of Stable Diffusion samples used for rejection sampling.
We include results in Figure 11.2 and Table 11.4. Rejection sampling greatly improves coherence
of Stable Diffusion raster samples with the caption, since rejection explicitly maximizes a CLIP
image-text similarity score. After converting the best raster sample to a vector graphic with LIVE
(SD+LIVE), coherence is reduced 10-15% in terms of OpenCLIP H/14 R-Precision. However, using
more rejection samples generally improves the SD+LIVE baseline. In contrast, VectorFusion is
robust to the number of rejection samples. Initializing with the vectorized result after 1-4 Stable
Diffusion samples is sufficient for high SVG-caption coherence.
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Figure 11.1: Increasing the number of paths generally improves our caption consistency metrics.
We find that 64 paths are sufficient to express and optimize SVGs that are coherent
with the caption.

11.6 Ablation: Classifier-Free Guidance

We compare guidance scales in Table 11.5 and Figure 11.3. This hyperparameter seems fairly robust.
While high guidance (>50) can lead to cartoonish generations, it is important for coherence.

11.7 Ablation: SDS + CLIP Hybrid Losses

We investigate combining the SDS and CLIP losses. Adding an additional CLIP loss improves our
CLIP-based metrics in Table 11.6. Qualitatively, the additional CLIP loss leads to very different
generations in Figure 11.3. While generated SVGs are less saturated, there are many artifacts
characteristic of optimizing the CLIP loss.

11.8 Pixel Art Results

We ablate saturation penalties and different loss objectives in Figure 11.7. We use K=4 rejection
samples for the initial Stable Diffusion raster image. Simply pixelating the best of K Stable Diffusion
samples (SD+L1) is a straightforward way of generating pixel art, but results are often unrealistic
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Table 11.3: Caption Consistency vs. # Paths. Increasing the number of paths allows for greater
expressivity and caption coherency. However, it also increases memory and time com-
plexity, and we opt for 64 paths to balance between performance and time constraints.
We use rejection sampling K=4 for SD+LIVE and SD+LIVE+SDS, and we optimize open
Bézier paths for CLIPDraw.

Caption consistency
CLIP L/14 OpenCLIP H/14

Method # Paths R-Prec Sim R-Prec Sim

SDS (scratch) 16 68.0 23.4 64.1 27.4
SD+LIVE 16 33.6 19.7 35.9 22.9
SD+LIVE+SDS 16 63.3 22.9 63.3 27.3
CLIPDraw 16 58.6 23.9 47.7 27.4

SDS (scratch) 64 76.6 24.3 69.5 28.5
SD+LIVE 64 57.0 21.7 59.4 25.8
SD+LIVE+SDS 64 78.9 29.4 81.3 24.5
CLIPDraw 64 85.2 27.2 77.3 31.7

SDS (scratch) 128 83.6 24.8 82.0 29.7
SD+LIVE 128 77.3 23.7 77.34 28.7
SD+LIVE+SDS 128 78.1 24.8 79.7 29.7
CLIPDraw 128 73.4 25.7 67.2 30.4

and not as characteristic of pixel art. For example, pixelation results in blurry results since the SD
sample does not use completely regular pixel grids.
Finetuning the result of pixelation with an SDS loss, and an additional L2 saturation penalty,

improves OpenCLIP’s R-Precision +10.2%. Direct CLIP optimization achieves high performance
on CLIP R-Precision and CLIP Similarity, but we note that like our iconographic results, CLIP
optimization often yields suboptimal samples.

11.9 Experimental hyperparameters

In this section, we document experimental settings to foster reproducibility. In general, we find
that VectorFusion is robust to the choice of hyperparameters. Different settings can be used to
control generation style.
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Figure 11.2: Coherence with the caption improves with additional rejection samples. Even with
20 rejection samples, the vectorized Stable Diffusion image baseline (SD+LIVE) still
underperforms VectorFusion with no rejection. VectorFusion also slightly benefits
from a better initialization, using 4 rejection samples of the SD initialized image.

11.9.1 Path initialization

Iconographic Art We initialize our closed Bézier paths with radius 20, random fill color, and
opacity uniformly sampled between 0.7 and 1. Paths have 4 segments.

Pixel Art Pixel art is represented with a 32×32 grid of square polygons. The coordinates of
square vertices are not optimized. We initialize each square in the grid with a random RGB fill
color and an opacity uniformly sampled between 0.7 and 1.

Sketches Paths are open Bézier curves with 5 segments each. In contrast to iconography and
pixel art, which have borderless paths, sketch paths have a fixed stroke width of 6 pixels and a
fixed black color. Only control point coordinates can be optimized.

11.9.2 Data Augmentation

We do not use data augmentations for SD + LIVE + SDS. We only use data augmentations for SDS
trained from scratch, and CLIP baselines following [38]. For SDS trained from scratch, we apply a
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Table 11.4: Caption Consistency vs. K. By increasing rejection sampling, we improve Stable
Diffusion outputs. This improves both SD and SD+LIVE caption consistency. However,
we find that VectorFusion matches Stable Diffusion consistency for K=4 and retains
performance for K=20. This suggests that VectorFusion improves upon Stable Diffusion
outputs and is robust to different initializations.

Caption consistency
CLIP L/14 OpenCLIP H/14

Method K R-Prec Sim R-Prec Sim

SD (Raster) 1 67.2 23.0 69.5 26.7
SD+LIVE 1 57.0 21.7 59.4 24.8
SD+LIVE+SDS 1 78.1 24.1 78.1 29.3

SD (Raster) 4 81.3 24.1 80.5 28.2
SD+LIVE 4 69.5 22.9 65.6 27.6
SD+LIVE+SDS 4 78.9 29.4 81.3 24.5

SD (Raster) 20 89.1 25.4 89.8 30.1
SD+LIVE 20 71.5 23.6 73.1 28.5
SD+LIVE+SDS 20 79.8 25.0 80.6 30.3

perspective and crop augmentation. Our rasterizer renders images at a 600x600 resolution, and
with 0.7 probability, we apply a perspective transform with distortion scale 0.5. Then, we apply a
random 512x512 crop. All other hyperparameters are default for Kornia [139].

11.9.3 Optimization

We optimize with a batch size of 1, allowing VectorFusion to run on a single low-end GPU with at
least 10 GB of memory. VectorFusion uses the Adam optimizer with 𝛽1 = 0.9, 𝛽2 = 0.9, 𝜖 = 10−6.
On an NVIDIA RTX 2080ti GPU, VectorFusion (SD + LIVE + SDS) takes 25 minutes per SVG.
For sketches and iconography, the learning rate is linearly warmed from 0.02 to 0.2 over 500

steps, then decayed with a cosine schedule to 0.05 at the end of optimization for control point
coordinates. Fill colors use a 20× lower learning rate than control points, and the solid background
color has a 200× lower learning rate. A higher learning rate for coordiantes can allow more
structural changes.

For pixel art, we use a lower learning rate, warming from 0.00001 to 0.0001 over 1000 iterations.
We also add a weighted L2 saturation penalty on the image scaled between [-1, 1], with a loss
weight of 0.05:

1/3 ∗mean(𝐼 2𝑟 + 𝐼 2𝑏 + 𝐼
2
𝑔 )
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Figure 11.3: SDS Guidance Scale and CLIP + SDS loss. Our default guidance is 100. A hybrid
CLIP + SDS loss produces samples that are more cohesive than using the CLIP loss
only, and samples that are less saturated than using the SDS loss only.

Table 11.5: SDS Guidance Scale. We use SDS + rejection sampling (K=4) and LIVE with 64 paths.
Our default guidance is 100, and a guidance scale of 50 leads to the best quantitative
evaluation metrics.

CLIP L/14 OpenCLIP H/14
Guidance R-Prec Sim R-Prec Sim

5 21.1 18.0 14.8 16.5
50 80.5 25.0 85.2 30.0
100 78.9 29.4 81.3 24.5
150 75.8 24.5 81.3 29.7

Table 11.6: SDS + CLIP. SD + rejection (K=4), LIVE, and 64 paths.
CLIP CLIP L/14 OpenCLIP H/14

Method Weight R-Prec Sim R-Prec Sim

SDS 0 78.9 29.4 81.3 24.5
CLIP 1 70.1 23.3 74.0 28.4
SDS+CLIP 0.1 89.1 25.3 90.6 32.0
SDS+CLIP 1 90.6 25.3 87.5 31.8



APPENDIX: VECTORFUSION 123

Table 11.7: Pixel Art. We compare CLIP-based optimization and SDS-based optimizations. In
addition, we ablate the saturation penalty, which makes pixel art more visually pleasing.

Caption consistency
Sat CLIP L/14 OpenCLIP H/14

Method Penalty R-Prec Sim R-Prec Sim

SDS (scratch) 0 57.9 21.3 43.8 23.1
SDS (scratch) 0.05 53.9 21.6 42.2 22.7
SD+L1 - 60.9 22.8 52.3 24.5
SD+L1+SDS 0 61.8 23.0 51.6 24.6
SD+L1+SDS 0.05 61.7 21.8 62.5 24.2
CLIP - 80.5 26.6 73.4 27.5

Both the lower learning rate and the L2 penalty reduced oversaturation artifacts.

11.10 PerceptualQuality Metric

We measure aesthetic scores in Table 11.8 using the LAION aesthetics classifier, trained on frozen
CLIP features of 250k images with human quality labels from 1-10 (Schuhmann et al 2022). Vector-
Fusion with our latent SDS loss has the most aesthetic results, comparable to raster samples.

Table 11.8: VectorFusion from scratch produces the most aesthetic samples, even outperforming
Stable Diffusion images.

Method K Aesthetic

CLIPDraw (scratch) – 4.10 ± 0.81

Stable Diff (raster) 1 5.39 ± 0.93
+ rejection sampling 4 5.37 ± 0.84

SD init + LIVE 1 4.90 ± 0.91
+ rejection sampling 4 4.93 ± 0.89
VectorFusion (scratch) – 5.50 ± 0.79
+ SD init + LIVE 1 5.45 ± 0.75
+ rejection sampling 4 5.35 ± 0.73
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