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Abstract

Lumbar intervertebral disc herniation, as a leading cause of low back pain, productiv-

ity loss, and disability, is a common musculoskeletal disorder that results in significant

socioeconomic burdens. Despite extensive clinical and basic scientific research

efforts, herniation etiopathogenesis, particularly its initiation and progression, is not

well understood. Understanding herniation etiopathogenesis is essential for develop-

ing effective preventive measures and therapeutic interventions. Thus, this review

seeks to provide a thorough overview of the advances in herniation-oriented

research, with a discussion on ongoing challenges and potential future directions for

clinical, translational, and basic scientific investigations to facilitate innovative inter-

disciplinary research aimed at understanding herniation etiopathogenesis. Specifi-

cally, risk factors for herniation are identified and summarized, including familial

predisposition, obesity, diabetes mellitus, smoking tobacco, selected cardiovascular

diseases, disc degeneration, and occupational risks. Basic scientific experimental and

computational research that aims to understand the link between excessive mechani-

cal load, catabolic tissue remodeling due to inflammation or insufficient nutrient sup-

ply, and herniation, are also reviewed. Potential future directions to address the

current challenges in herniation-oriented research are explored by combining known

progressive development in existing research techniques with ongoing technological

advances. More research on the relationship between occupational risk factors and

herniation, as well as the relationship between degeneration and herniation, is

needed to develop preventive measures for working-age individuals. Notably,

researchers should explore using or modifying existing degeneration animal models

to study herniation etiopathogenesis, as such models may allow for a better under-

standing of how to prevent mild-to-moderately degenerated discs from herniating.
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1 | INTRODUCTION

Lower back pain is a prevalent global health concern affecting nearly

80% of the adult population.1,2 In the United States, reported annual

costs related to low back pain have increased from �$100 billion in

2006 to $134+ billion in 2016.3–5 These costs, representing a 12%

increase after accounting for inflation, will likely increase further in

the upcoming decades due to an aging population and the obesity epi-

demic.6–8 Moreover, opioid-based medication for low back pain has

been a double-edged sword, partially contributing to the ongoing opi-

oid epidemic.9–11 Innovative clinical treatment strategies with

improved effectiveness are needed to address the significant socio-

economic burdens associated with lower back pain.

Lumbar intervertebral disc herniation is a common cause of lower

back pain, affecting up to 10% of the population in some regions.12,13

Herniation is also the principal diagnosis for working-age individuals

to undergo spinal surgery, making it one of the leading causes of pro-

ductivity loss, disability, and healthcare expenditures.1,2 Thus, hernia-

tion has been the focus of spine clinical research since its emergence

at the beginning of the 20th century. Despite significant advance-

ments, there remains a lack of understanding of herniation etiopatho-

genesis, particularly its initiation and progression mechanisms in the

clinical setting. Typically, herniation is evaluated based on cross-sec-

tional patient data and cannot be tracked over time in the clinical set-

ting. This inherent limitation highlights the need for parallel basic

scientific research, which has been developing reciprocally and syner-

gistically with clinical studies and has made significant progress over

the past 50 years.

The rapid development in herniation-oriented research has facili-

tated an improved understanding of herniation etiopathogenesis.

However, this rapid growth has also resulted in more complicated and

interdependent clinical, translational, experimental, and computational

research with a wide range of assumptions and approaches. The wide

range of frameworks developed and applied over the years has made

it difficult for researchers and clinicians to interpret and compare

results between studies. Thus, this work aims to facilitate a holistic

review of herniation etiopathogenesis by summarizing the develop-

ment and findings of clinical and basic scientific research and propos-

ing future directions for understanding herniation etiopathogenesis,

which can be used to direct more effective preventive measures and

therapeutic interventions.

2 | MATERIALS AND METHODS

The current narrative nonsystematic review was conducted using a

comprehensive search for peer-reviewed articles from the 1930 to

2022 using the PubMed online database. The MeSH terms primarily

centered around terms including “Intervertebral Disc,” “Intervertebral
Disc Displacement,” “Low Back Pain,” “Physiopathology,” and “Etiol-
ogy.” The complete list of MeSH terms is provided in the Supporting

Information. The reference lists of the identified articles were

searched for relevant publications not identified by the MeSH term

search strategy. Additionally, while this review includes both clinical

and basic scientific research, it will only discuss studies that present

hypotheses that have been evaluated through clinical or experimen-

tal studies. For example, cellular biology research suggests that

it is highly probable that mechanical overload can lead to hernia-

tion by inducing proinflammatory responses. However, as the rela-

tionship between mechanical overload, cellular inflammatory

responses, and herniation has yet to be directly assessed within a

single or a series of related studies, this and similar hypotheses will

not be systematically discussed in this review. Additionally, though

herniation is considered a degenerative disc disorder, it belongs to

its own separate clinical diagnostic category.14 While the overlap

between herniation and degeneration makes it nearly impossible

to fully separate the two, evidence has shown that herniation may

be due to mechanical overload without the presence of degenera-

tive changes, especially in younger patients.15,16 Thus, studies that

examined degeneration without directly investigating herniation

will only be discussed in this article when necessary. The sections

below discuss herniation pathophysiology, followed by a review of

relevant research and discussions on how these studies advanced

knowledge about herniation etiopathogenesis and their limitations.

3 | RESULTS

3.1 | Pathophysiology of lumbar intervertebral disc
herniation

3.1.1 | Structure, composition, and function of the
healthy disc

The intervertebral disc is a fibrocartilaginous joint located between

adjacent vertebrae in the spinal column, playing a critical biome-

chanical role in daily activities by supporting multiaxial spinal loads

and dissipating energy placed on the spine (Figure 1A).17 The disc is

a highly complex, heterogeneous, and hierarchical structure com-

prising a soft gel-like center (i.e., nucleus pulposus, NP) surrounded

by a tough, fiber-reinforced ring (i.e., annulus fibrosus, AF). Both

the inner AF (i.e., the portion of the AF lamellae adjacent to the NP)

and NP are sandwiched between two cartilage endplates (CEPs),

which function as a mechanical barrier and solute transport path-

way between the disc and the neighboring vertebral bodies

(Figure 1B).18 The AF is an angle-ply laminate composite with layers

of aligned unidirectional collagen fiber bundles embedded in a

hydrated proteoglycan-rich matrix, providing tensile strength to the

disc joint and maintaining multiaxial joint strength and stability. The

outer AF is mainly composed of organized concentric lamellae, pri-

marily containing fibroblast-like cells that produce type I collagen,

while the inner AF is more fibrocartilaginous and is composed of

both type I and II collagen (Figure 1B). The NP is a highly hydrated

proteoglycan-rich structure with randomly oriented collagen fibers

(primarily type II) and is populated with rounded nucleus pulposus

cells (Figure 1B). Due to its high water content, the NP with the
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enclosing inner AF functions as a biomechanical shock absorber,

allowing the disc to withstand substantial axial compression by dis-

tributing the load to the surrounding middle-to-outer AF, primarily

in the form of circumferential tensile stresses.19 The disc is gener-

ally considered avascular and aneural except for the limited vascu-

lar and nervous networks restricted to the outer AF region

(Figure 1B).18 Thus, nutrient transport and waste removal mainly

depend on passive diffusion and convection through the CEP and

AF (Figure 1B).18

3.1.2 | Pathology of lumbar disc herniation

Intervertebral disc herniation is broadly defined as a localized displace-

ment of disc tissue substance (i.e., NP, AF, CEP, or a combination of

them) beyond the limits of the normal disc space (Figure 1C).14 Clini-

cally, disc herniations are commonly diagnosed in the L4–S1 region of

the spine (L: lumbar; S: sacrum; Figure 1A).20 More particularly, hernia-

tions typically occur in the posterior/posterolateral region of the disc

and can be categorized into protrusion, extrusion, or sequestration

F IGURE 1 Schematic of (A) the lumbar spine and (B) a healthy intervertebral disc with adjacent vertebral bodies and surrounding vascular and
neural networks. For clarity, nutrient transport and waste removal pathways are only shown on one side of the disc, and the S1 vertebra in (A) is
not shown. Schematics of (C) intervertebral disc herniation with impinged nerve roots and (D) herniation types with increased severity from
protrusion to sequestration.
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based on the level of tissue continuity within the disc space

(Figure 1C,D).1,12,14,20–22 Symptomatic herniations mainly result from the

displaced tissue substance mechanically compressing or chemically irritat-

ing the lumbosacral nerve roots, causing radicular pain (e.g., sciatica),

nerve weakness, and/or lower-extremity sensory abnormalities

(Figure 1C,D).1 Given the significant tissue displacement and degenera-

tive biomarkers observed in herniated discs, mechanical overload, and

degeneration have been initially considered the leading causes of hernia-

tion.23,24 However, differential diagnosis over the years has linked hernia-

tion to a large variety of mechanical, metabolic, genetic, nutritional, and

age-related risk factors, which will be discussed in the following section.

3.2 | Progression of clinical observational research

Clinical data have associated various environmental and personal risk

factors with herniation, including familial predisposition, obesity, diabe-

tes, smoking tobacco, cardiovascular disease, and disc degeneration

(Figure 2A). Occupations involving heavy physical workloads and mental

or emotional distress have also been implicated as risk factors for herni-

ation (Figure 2A). It should be noted that although age and sex are

important factors when studying lower back pain, they have not been

strong predictors of herniation.25–28 Specifically, a sex-based bias has

not been observed in herniation populations. Additionally, it has been

shown that the average age of the herniation population (�40 years) is

15 years younger than that of other degenerative disorders (mean age

�65 years for spinal stenosis and degenerative spondylolisthesis),25

with herniation incidences reportedly decreasing after the age of 65.27

However, herniation does tend to occur at slightly higher rates in

working-age individuals.22,25

3.2.1 | Familial predisposition

There is a significant heritable contribution (i.e., with at least one first-

degree relatives diagnosed with herniation or sciatica) to herniation

F IGURE 2 Relationship between (A) clinical observational (orange box) and (B) basic scientific herniation-oriented research (blue box). (C) Risk
factors established in clinical studies help identify (orange arrows) key research topics (blue box) and hypotheses for basic scientific research (gray
box), which, in turn, provide mechanistic explanations (blue arrows) that can potentially inform clinical practice.
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etiopathogenesis, especially among younger populations. Two earlier

case-control studies (103 herniation patients vs. 183 sex- and age-

specific controls) showed that a positive family history of herniation

increased the risk of herniation in adolescents by approximately five

times.29,30 A retrospective study with 6933 patients showed that

almost 70% of herniation patients younger than 25 had at least one

first-degree relative diagnosed with sciatica.16 Similar findings were

reported by Zhang et al. (2010 hospitalized low back pain patients vs.

2170 sex-, age-, and weight-specific controls), which found patients

under 30 with a family history of herniation were �14� more likely to

experience herniation. While this effect diminished with age, patients

between the age of 30 and 55 with a positive family history were still

�5� more likely to suffer from herniation.31 More recently, a

1254-patient dataset in the Utah Population Database showed that

having a first-degree relative with a history of disc degeneration or

herniation could triple the risk of herniation.32

3.2.2 | Obesity and diabetes mellitus

Clinicians and researchers have long suspected that obesity could ele-

vate the risk of herniation due to the associated increase in spinal load.

In an earlier case-control study comparing 332 herniation patients to

1205 sex- and age-specific controls, Heliövarra suggested that a high

body mass index was a strong predictor for herniation among men.33

Two subsequent cross-sectional studies featuring 3000+ patients sug-

gested that being overweight or obese significantly increased the likeli-

hood of herniation, especially the severe herniation cases that required

surgery.34,35 Similarly, a recent case-control study that compared

564 herniation patients to 901 population controls revealed a positive

association between weight and the risk of herniation.36 A meta-

analysis of 26 studies indicated that overweight and obesity increased

the risk of sciatica and surgery for herniation by�10%–90%, depending

on the severity of herniation symptoms.37

Obesity is a strong predictor of Type II diabetes,38–40 which can

also increase the risk of herniation.41 According to a 16-year prospec-

tive study on a 98 407 female-only cohort, diabetes increased the risk

of herniation by �50% after adjusting for age, body mass index, smok-

ing, level of exercise, employment status, medical records, and cardio-

vascular disease history.42 Sakellaridis et al. (prospective 200-patient

cohort) and Sun et al. (575 herniation patients vs. 219 age-specific

controls) also showed that diabetic patients had a greater risk for her-

niation and were significantly more likely to require surgery due to

herniation.43,44 However, a recent case-control study suggested that

diabetes was a risk factor for lumbar spinal stenosis, which is a likely

consequence of herniation, instead of herniation itself (220 hernia-

tion/stenosis patients vs. 110 sex- and age-specific controls).45

3.2.3 | Tobacco smoking

Tobacco smoking has been associated with disc herniation since the

1970s. An early case-control study comparing 223 herniation patients

to 494 age-specific controls reported no association between smoking

and herniation.46 However, another case-control study, also led by Kel-

sey but based on a different 325-patient cohort, suggested that smok-

ing more than 10 cigarettes/day increased the risk of herniation by

�20%.47 The different results might be due to the latter study account-

ing for the number of cigarettes consumed daily. The increased risk of

herniation with a smoking habit (�50% increase) was confirmed by a

subsequent case-control study that compared 163 herniation patients

to 205 sex- and age-specific controls.48 Additionally, Jhawar et al. found

a linear relationship between the risk of herniation and the number of

cigarettes consumed daily. Particularly, while smoking less than five cig-

arettes/day increased the risk of herniation by �20%, consuming 45+

cigarettes/day doubled the risk of herniation.42 Schumann et al. also

reported a 30%–70% increase in herniation risk with smoking, but a

dose-dependent response was not found.36 More recently, multiple

meta-analyses showed that smoking increased the risk of herniation by

15%–65%, with greater risks for current smokers.49,50

3.2.4 | Cardiovascular disease

Cardiovascular issues, especially atherosclerotic cardiovascular diseases,

have been linked to herniation.51,52 Specifically, Jhawar et al. reported

that after adjusting for body mass index, a high cholesterol level

increased the risk of herniation by �25%. The study also reported that

hypertension and a history of myocardial infarction increased the risk of

herniation by �13%–25%.42 More recently, two case-control studies

comparing a total of 565 herniation patients to 563 sex-, age-, and body

mass index-specific controls reported that patients with symptomatic

herniation had statistically significantly higher triglyceride (up to �20%

increase) and total cholesterol concentrations (up to �9% increase).53,54

3.2.5 | Occupational risk factors

Occupational risk factors have been examined extensively due to pro-

ductivity loss, disability, and healthcare expenditures associated with

herniation. The most notable occupational risk identified over the years

has been strenuous physical activities that place substantial loads on

the spine, including asymmetric heavy lifting (e.g., construction worker)

and extended exposures to whole-body vibration (e.g., professional

drivers).16,47,55–65 Psychosocial distress, such as long-term intense dead-

line pressure and mental/emotional stress, also increases the risk of her-

niation by up to �500%.63,66–68 However, due to significant data

heterogeneity between and within these studies (e.g., car model, road

condition, and workplace ergonomics), achieving sufficient statistical

power has been a great challenge.

Professional athletes (e.g., weightlifters, rowers, and American

football players) also experience an increased risk of herniation, likely

due to repetitive motions with excessive biomechanical loadings.69–72

Though strength training might have a protective effect against herni-

ation, this protective effect has yet to be quantified.36 Additionally,

astronauts are more likely to experience herniation immediately after
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long-duration space missions (i.e., �3� higher prevalence in astro-

nauts), likely due to lumbar muscle atrophy and disc overhydration

associated with the microgravity environment.73–80

3.2.6 | Disc degeneration

Disc herniation is among the most common diagnoses among degen-

erative abnormalities of the lumbar spine.12 However, due to the

highly complex and interdependent relationship between degenera-

tion and herniation, their association remains unclear. Over the years,

researchers have observed that herniation and degeneration induced

comparable morphological, histological, and compositional changes in

the disc, including a decrease in proteoglycan and water content, neo-

vascularization, and an increase in AF innervation and fissures.81 Col-

lagen and matrix degradation and upregulation of degenerative

remodeling pathways (e.g., cell apoptosis and matrix metalloprotei-

nase expression) have also been identified in herniated disc tis-

sues.1,19,81–84 Thus, degeneration was considered a risk factor for

herniation within the context of this review.

3.2.7 | Summary of clinical observational research

Identifying and validating risk factors of herniation is challenging due

to significant heterogeneities in observational research, which can

stem from variations in study type (e.g., cross-sectional vs. cohort vs.

case-control study), case definitions, inclusion/exclusion criteria, sam-

ple sizes, and statistical analyses. Though most of the reviewed risk

factors are black boxes that offer little mechanistic explanation for

herniation etiopathogenesis, they provide insight into population sub-

groups at greatest risk for experiencing lower back pain due to hernia-

tion. However, more research is needed to clarify the link between

occupational risk factors and herniation (e.g., whether consecutive

driving or long-term sitting increases the risk of herniation). Such

information will help develop preventive measures that can be incor-

porated into work safety protocols to lower the rate of herniation in

working-age individuals.

It should also be noted that the low-socioeconomic status popula-

tion is predisposed to one or more of the reviewed risk factors, includ-

ing obesity, diabetes, smoking, and being employed at physically

demanding jobs.38,85,86 People with lower socioeconomic status are

also more prone to depression,38 which can increase pain sensitivity

and likelihood of recurring pain episodes, further complicating pain

treatment.85,87,88 Thus, reducing the socioeconomic burden of disc

herniation will likely require a multi-disciplinary approach that includes

thoughtful public policy, city planning (e.g., fewer food deserts for eas-

ier access to healthier food options to reduce the risk of diabetes),

and increased access to psychological services.89–91

To facilitate a more mechanistic understanding of the discussed

risk factors, researchers have used basic scientific research studies

that utilized surgically removed human disc tissues or animal disc/

tissue analogs to explore several key research topics involving a few

essential hypotheses (Figure 2B,C), including the relationship between

herniation and mechanical overload (Figure 2C-1), catabolic tissue

remodeling due to inflammation (Figure 2C-2), and insufficient nutri-

ent supply (Figure 2C-3). Over the years, these hypotheses have been

tested individually with different experimental and computational

approaches. The remaining sections summarize the findings and limi-

tations of such studies and propose future work to understand hernia-

tion etiopathogenesis.

3.3 | Progression and limitations of herniation-
oriented experimental testing research

Modern intervertebral disc experimental testing started in the early

20th century, with an emphasis on characterizing disc anatomical

structure and matrix composition.92,93 In the 1950s, researchers

began to characterize biochemical composition (e.g., water, proteogly-

can, and collagen content),94–99 as well as joint- and tissue-level sub-

failure and failure mechanical properties (e.g., stiffness, strength,

range of motion) of healthy and degenerated discs.100–105 Though

these studies did not directly investigate herniation, they laid the the-

oretical and experimental foundation for subsequent herniation-

oriented biomechanics projects.

Following the cornerstone research described above, researchers in

the 1980s evaluated the relationship between mechanical overload and

herniation etiopathogenesis through multiaxial mechanical testing

(Figure 2C-1). Particularly, combined loading conditions (e.g., compression

coupled with bending or rotation) were used to simulate physiologically

relevant mechanical overload to induce herniation in vitro.106–115 Mean-

while, a greater emphasis on systematically investigating disc tissue struc-

ture and composition led to studies that characterized the micro-

architecture and composition of healthy and herniated discs.83,116–118

Since the 21st century, significant technological advancement brought

about a new era of multiscale experimental testing, where many impor-

tant studies emerged and contributed to improved understanding of her-

niation etiopathogenesis. Notably, advanced testing setups (e.g., six-

degrees-of-freedom tester) helped researchers examine the relationship

between complex loading and disc failure behavior.119–122 Digital image

analysis algorithms and advanced morphological and histological charac-

terization helped researchers gain significant insights into tissue-level

structure–function relationships during failure.123–126 Development in rel-

evant studies and their major findings are summarized in Figure 3 and dis-

cussed in the following subsections.

3.3.1 | Tissue characterization: understanding
temporospatial herniation progression

Histological, morphological, and biochemical composition characteriza-

tion of herniated discs helped determine the origin and fate of herniated

tissues, proposing probable schematics regarding the temporospatial

progression of herniation (Figure 3). Based on histological examination

of herniated human disc tissues, Yasuma et al. proposed several
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mechanisms for herniation, including NP protrusion through pre-existed

AF fissures, AF protrusion due to AF collapse/buckling, and a mixed

herniation failure with both NP and AF protrusions.118 In the 1990s,

subtissue micro-architecture analysis of healthy and degenerated tissue

showed that the posterior and posterolateral AF contained 15%–25%

thinner and 25%–80% more incomplete lamellae compared to the ante-

rior AF.127,128 These differences likely contribute to the lower subfailure

and failure properties observed in the posterior AF,129,130 making the

posterior and posterolateral AF inherent weak spots for disc failure,

while partially explaining why herniations have been predominantly

characterized and found in the posterolateral AF by spine specialists,

surgeons, radiologists, and basic scientific researchers.12,131–136

Herniation mechanisms proposed by Yasuma et al. were partially

affirmed by Brock et al., which examined surgically removed human

herniated tissue specimens and found NP substance in 55% (55/100) of

the samples.116 The pivotal role of NP in herniation etiopathogenesis

was further corroborated by Moore et al., where NP was observed in

98% of the surgically removed herniated tissue specimens (118/120)

and was the principal tissue substance in 89% of them (107/120).83 By

contrast, AF was only found in 20% of the surgically removed tissue

samples in the two studies combined (42/220).83,116 In addition, these

studies also found CEP fragments in more than half of the examined

specimens (125/220). Taken together with a recent experimental study

that found cartilage fragments in approximately half (10/21) of the sur-

gically removed human herniated tissue specimens, these findings sug-

gest that the endplate junction could also be involved in herniation

development.83,116,137 The involvement of endplate junction in hernia-

tion development was recently demonstrated by a histopathological

F IGURE 3 Outline of herniation-oriented experimental research.
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study. Particularly, work by Rajasekaran et al. suggested that endplate

junction failure (117/185 cases) could be a more common pathway for

herniation than AF disruption (21/185 cases), due to the crosstalk

between the vertebral bodies and the CEPs.138 Altogether, these obser-

vations help outline a probable schematic for the temporospatial pro-

gression of herniation. Specifically, herniation could be a progressive

failure process initiated at the NP–AF interface or the endplate junction.

The displaced disc substance, consisting primarily of NP and CEP, could

traverse through the entire AF or the endplate junction in the postero-

lateral disc region and forms a complete herniation incidence.

3.3.2 | Mechanical testing: understanding the role
of mechanical overload in herniation

Mechanical testing has corroborated mechanisms for herniation as sug-

gested by the previously discussed characterization studies and pro-

duced mechanistic explanations for the relationship between

mechanical loading and herniation etiopathogenesis (Figures 2C-1 and

3). Specifically, there was a consensus that multi-modal loading

(e.g., axial compression combined with flexion) increased the risk of her-

niation when compared to single-modal loadings (e.g., axial compression

or axial rotation alone).107,109,114,139–146 Among the examined loading

conditions with different loading combinations and magnitudes,

researchers found that flexion increased the likelihood of NP displace-

ment and AF rupture the most, thus contributing the most to in vitro

herniation through the posterior or posterolateral AF,139,141,142,146–153

while excessive axial compression might contribute more to failure

through the endplate junction or the vertebrae.109,122,140 In comparison,

axial rotation, even when combined with other loading directions, was

not a significant risk factor, as the posterior structures were more likely

to experience failure before the disc.106,147,149,154

Mechanical testing has also shown that herniation was more likely

to occur under a faster loading rate (up to 40 mm/min or 4 MPa/s).

However, even at higher loading rates, the exact loading modalities

used can play an important role. For example, high-rate axial compres-

sion alone, if applied without flexion, was not able to induce in vitro

herniation.143,144,152 Mechanical testing also showed that extended

cyclic loading (5000–120 000 cycles) made the disc more prone to her-

niation than quasistatic loading of the same magnitude.114,148,150,155,156

Taken together, mechanical testing findings highlight the pivotal role of

multiaxial loading, which is heavily implicated in occupations with

demanding asymmetric loading (e.g., construction workers), in hernia-

tion progression. These studies also indicate a causal relationship

between fatigue loading and increased herniation risk, partially explain-

ing the injurious nature of occupations that expose employees to

extended vibrations or repeated motions (e.g., drivers, warehouse line

workers).

It should be noted that researchers have also attempted to under-

stand the link between diabetes and the increased risk of herniation

through mechanical testing; however, these studies consistently

reported an improved disc joint- and tissue-level stability and strength

with advanced glycation end-products (AGE) accumulation under

monotonic loading conditions,157–164 contradicting clinical observa-

tions.42–44 The discrepancies may be partially attributed to the lack of

fatigue testing for damage accumulation, as a high-AGE environment

has been shown to compromise tissue energy dissipation capabilities in

tendons.165,166

3.3.3 | Ongoing challenges in experimental testing
research

Development in experimental testing helped clarify the relationship

between mechanical overload and temporospatial herniation progres-

sion (Figures 2C-1 and 3). However, these studies were not without

limitations, mainly due to challenges in achieving physiologic rele-

vance and utilizing consistent testing protocols between studies.

Despite advances in mechanical testing setups, replicating herniation

in vitro remains a significant challenge. As a result, many studies inevi-

tably resorted to hyper-physiologic loading conditions (i.e., excessive

range of motion or loading magnitude), which could lead to disc herni-

ation failure modes that did not mimic clinical observations,109,140,167

especially regarding the biochemical composition of the herniated tis-

sues (e.g., no NP leakage vs. heavy NP involvement observed in surgi-

cally removed herniated tissues).150

Difficulties in replicating physiologically and clinically relevant

herniation incidences in vitro might also be in part due to the design

of universal testing machines.167 Specifically, most current mechanical

testers confine the instantaneous axis of rotation for torsion and

bending to the center of the disc; however, the axis of rotation is

likely some distance away from the disc and can shift with the rota-

tion or bending motion in vivo.17 While several studies attempted to

replicate herniation through nuclear pressurization, herniation pro-

duced by the setup has had little physiologic relevance.168–171 Chal-

lenges in achieving physiologic relevance also result from difficulties

integrating cellular mechanobiology into mechanical testing systems

(Figure 2C). Although bioreactors can be used to study cellular

mechanobiology, they are currently limited in replicating multiaxial

testing conditions and are low throughput testing devices.172–174

Similarities between herniated and degenerated discs suggest a

link between herniation and degeneration, but inherent variations in

human cadaveric disc tissues and challenges in inducing controlled

biochemical variations in animal models make it difficult to produce

controlled stages of degeneration. Thus, despite great interest in

understanding the relationship between degeneration and herniation,

such studies are limited, while the few relevant studies reported con-

flicting results. For example, Adams and Hutton found that degener-

ated human cadaveric discs with pre-existing ruptures were stable

and did not leak NP substance under combined axial compression

and flexion.109 However, Thompson et al. and Wade et al. reported

rim lesions and pre-existing degenerative defects in ovine discs

reduced the discs' ability to resist motion and made them more

prone to in vitro herniation.153,175 Similarly, the role of hydration on

herniation has yet to be systematically investigated, despite the

increased awareness of hydration variations with diurnal loading and
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microgravity.73–75,143,144,176 It should be noted that many animal

discs (e.g., ovine discs) are excellent human disc analogs due to simi-

lar geometric, mechanical, and biochemical properties.177–180 Thus,

it may be advantageous to combine commonly used degeneration

animal models (e.g., needle-puncture/stress profilometry animal

model) with ex vivo mechanical testing to study disc failure and her-

niation. Future research directions that might help address these

challenges are discussed in Section 4.2.

3.4 | Progression and limitations of finite element
modeling herniation research

Challenges in experimental research preclude direct and simulta-

neous measurements of multiscale stress-sharing mechanisms

between tissue- and subtissue-level structures, which are essential

for understanding disc failure behavior. This limitation highlights the

need for complementary computational models.181 Accurately

modeling disc failure behavior requires robust model predictive

power over spatial-, geometry-, and time-dependent properties.182–184

Since the 1970s, finite element models have been widely used in

disc biomechanics research due to their capability to integrate con-

stitutive frameworks with 3D disc geometry, providing a powerful

tool for investigating herniation etiopathogenesis and thus will be

the focus of this section of the review. Over the years, finite element

models that examine herniation etiopathogenesis could be mainly

categorized as models that focus on the relationship between load-

ing and disc failure (Figure 2C-1; Table 1), and nutrient transport

models (Figures 2C-2 and 3). Since nutrient transport models do not

directly examine herniation etiopathogenesis, they are not discussed

in this review, but the reader is directed to Volz et al. of such models

for disc pathophysiology.198

Predictions from computational models agree well with both clini-

cal and experimental observations by predicting the increased risk of

herniation due to multiaxial loading and fatigue loading, which was

typically in the form of greatly elevated local stresses or strains in the

posterolateral AF region.167,188,191–197 Results from these models sug-

gested that single-loading modalities (e.g., axial compression alone)

were not likely to induce herniation,185,195,199 while flexion and lateral

bending, especially when in combination with compression, had the

greatest contribution to herniation.167,186,187,191–194,197 Computa-

tional models further complemented the current experimental body of

work by demonstrating the increased risk of herniation with impact

loading,189,190 lumbar muscle atrophy/dysfunction,200 and disc degen-

eration (i.e., reduced disc height, NP depressurization/dehydration,

and osteophyte formation) due to elevated predicted annulus stres-

ses.192,193,196,201–204 Additionally, multiphasic disc models helped clar-

ify the pivotal role of water in load-bearing capability and behavior,

highlighting the detrimental role of degeneration on herniation due to

its dehydrating effect.205,206

It should be noted that computational models have consistently

predicted that herniation occurs in the posterior or the posterolat-

eral disc region, likely caused by greater AF interlamellar shear stres-

ses in that region due to the kidney-shaped disc geometry, agreeing

with clinical observations.167,186,188,191–193,195–197,207 Theoretically,

model predictions (predicted stress/strain magnitude and failure

location) largely depend on model development decisions

(e.g., geometry, loading and boundary conditions, etc.). However,

unlike experimental studies that produced a wide range of locations

for failure (i.e., herniation) initiation, models of different failure

criteria, constitutive material models, and disc geometry consistently

predicted that herniation would initiate in the inner AF, or

the inner AF near the endplate junction, if the CEP was

included.167,186,188,191–193,195–197 These findings corroborated

TABLE 1 Progression and major findings from mechanics finite element models for disc herniation.

Study Simulated loadingsa Failure criterion

Most “dangerous”
loading Predicted herniation locations

185 Axial compression Stress-based N/A N/A

186 Bending Strain-based Flexion Posterolateral inner AF

187 Axial compression, axial rotation, and bending Strain-based Flexion Posterolateral inner AF

188 Axial compression (varying loading rates) and bending Stress-based Lateral bending Posterior inner AF near the

endplate

189 Compressive impact loading (with different durations) Stress-based N/A Endplate region

190 Axial compression and bending (varying loading rates) Stress-based Flexion Posterolateral inner AF

191–193 Axial compression, axial rotation, and bending Strain-based Lateral bending and

flexion

Posterolateral AF

194 Axial compression, axial rotation, and bending Stress-based Lateral bending Posterior/posterolateral AF or

the endplate

195,196 Axial compression and bending (cyclic) Stress-based Lateral bending Posterior AF

197 Axial compression, axial rotation, and bending Stress-based Flexion Posterolateral inner AF

167 Axial compression and bending Strain-based Flexion Posterior inner AF

aBending includes flexion/extension and lateral bending.
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clinical observations of herniation locations at individual disc levels

and highlighted the robustness of such model predictions.

3.4.1 | Ongoing challenges in finite element
modeling herniation research

Over the years, finite element models continue to advance with

evolving theoretical frameworks, improving computational power,

and progression in imaging and experimental techniques. However,

existing models are not without limitations, which mainly stem

from limited accessible computational resources and translatability

concerns. Accessible computational resources determine the level

of model complexity (e.g., disc geometry, material descriptions

applied, or spatial information about tissue composition), which

are essential for accurately and robustly predicting tissue mechani-

cal responses. However, most current models rely heavily on

homogenization theory, which is computationally efficient but can-

not accurately represent the heterogeneous native tissue architec-

ture, especially in the AF.208 Additionally, many models use single-

phasic material descriptions that cannot account for the load-

bearing contribution of the disc water content. As a result, though

these models provide valuable insight into joint-level bulk mechan-

ics, they cannot fully capture tissue failure initiation and propaga-

tion behaviors, which are crucial for accurately simulating

herniation. To help address these issues, our group has developed

a novel multiscale multiphasic structure-based finite element

modeling framework for the disc, which has demonstrated excel-

lent model accuracy and robustness (i.e., model predictions were

within one standard deviation of the corresponding reported

experimental mean values across different specimen geometries,

applied boundary and loading conditions, and length scales). How-

ever, this framework is more computationally expensive than most

existing models, making it difficult to incorporate damage or

growth/remodeling descriptions into the system.209,210

Model translatability concerns refer to the challenges in trans-

lating model predictions to general experimental or clinical obser-

vations, which mainly arise from the wide range of assumptions

used for model development, the large variations in constitutive

descriptions used to simulate tissue behavior, and the lack of a

standardized process for model validation.181,211,212 Specifically,

mathematics-based constitutive relationships can lead to model

parameters without physical meanings or interpretations. Nonphy-

sical model parameters are difficult to systematically calibrate to

represent variations in tissue structure and function associated

with different pathophysiologic processes (e.g., reduced swelling

capabilities with degeneration). Variations in material models

selected by different research groups further complicate this issue

by making it difficult to compare model parameters and, thus,

model predictions between studies. Additionally, the lack of stan-

dardization in model validation can compromise the model predic-

tive power over alternate deformation states not included in the

initial validation process, further weakening model's translatability

and clinical relevance.181,213 In recent years, issues centered

around model translatability has become a growing concern, as a

greater number of implant companies use data from finite element

models for regulatory clearance purposes.211

4 | DISCUSSION: FUTURE DIRECTIONS

Decades of herniation-oriented research resulted in many important

and insightful studies that identified risk factors for herniation, charac-

terized the structure–composition–function relationship in healthy,

degenerated, and herniated disc tissues, and examined mechanisms of

disc failure. This substantial body of work improved our understanding

of herniation etiopathogenesis. However, herniation is a complex patho-

physiologic process involving a convoluted interplay between various

mechanical, biochemical, and metabolic elements. One current major

challenge is establishing a direct relationship between mechanical load-

ing, a necessary factor for herniation, and catabolic remodeling within

the context of herniation (Table 2). Experimental testing can replicate

herniation in vitro but lacks the capability to incorporate simultaneous

cellular investigations into the testing system. Animal models and cellu-

lar biology approaches can integrate different factors of interest, such as

abnormal mechanical load,172–174,214–217 diabetes,218–223 smoking,224–226

obesity,227,228 or insufficient nutrient supply,229,230 into one system. How-

ever, these systems rely heavily on inducing in vivo or in vitro degenera-

tion to make inferences about herniation and do not directly report or

discuss herniation, even though herniation evidence might be present.

Computational models complement experimental research but require

improved translatability to robustly replicate and predict clinical and exper-

imental observations. Future directions proposed in the following subsec-

tions combine known developments in existing research techniques with

ongoing technological advances to provide feasible pathways for addres-

sing the abovementioned challenges.

4.1 | Experimental research: filling the gap of
experimental testing studies

Comprehensive literature research highlights many ways that in vitro

experimental testing has been used to advance knowledge about disc

failure; however, there still exists many unknowns that warrant fur-

ther research. Specifically, assessing disc mechanics using mechanical

testers that create an instantaneous axis of rotation at some distance

away from the disc during torsion- and bending-driven testing may

help create disc failure that better mimics clinical observations.231,232

Previous work from our group also showed that the location of the

instantaneous axis of rotation had a considerable impact on disc her-

niation location under combined axial compression and flexion

(i.e., herniation through the posterior/posterolateral inner AF with the

axis located anterior to the disc versus herniation through the end-

plate junction with the axis located on the disc).167 It should be noted

that computational models have highlighted lateral bending, a com-

mon loading condition in physically demanding jobs, as an important
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factor for inducing herniation.188,191–195,197 However, lateral bending

has yet to be widely featured in experiments and should be assessed

more by mechanical testing.

Additionally, clinical evidence presented by Rajasekaran et al. sug-

gests that the research community could gain valuable insight into

herniation etiopathogenesis by examining in vitro herniation at or near

the endplate junction,138 which might offer a more comprehensive

understanding of risk factors specific to endplate-based herniation

with respective preventive measures. Therefore, it may be important

to direct more attention to endplate-driven herniation, as well as the

crosstalk between vertebral bodies and CEPs, to gather additional

clinical evidence and experimental data. Moreover, further research is

needed to understand the relationship between degeneration and

herniation, particularly factors that lead early-degeneration-stage

discs to herniation. Such understanding may assist clinicians in decid-

ing between conservative and operative treatment strategies.

4.2 | Animal models for disc herniation

Animal models have been used extensively to study disc degenera-

tion etiology and treatment233–237; however, few of these models

explicitly replicate or examine disc herniation. While animal models

designed to study degeneration may present evidence of hernia-

tion, studies typically do not describe such observations due to

their specific scope. For the few herniation-oriented animal

models, in vivo herniation is primarily induced through anterior or

anterolateral AF incision or NP removal, which has little clinical rel-

evance, as disc failure is commonly observed in the posterior/

posterolateral AF with a NP extrusion.238,239

Research is needed to develop and validate animal models for

studying herniation etiopathogenesis. For example, existing degenera-

tion animal models may already present herniation evidence and can

provide researchers with in vitro or in vivo data to investigate hernia-

tion etiopathogenesis. In vivo herniation might also be induced by

applying abnormal mechanical loads to the discs from genetically

modified animal models.236,240,241 Such models allow researchers to

connect known mechanical loads or biochemical biomarkers to varia-

tions in disc structure–function relationships and cellular mechanobio-

logical responses at different stages of herniation development, which

can provide invaluable insight into herniation etiopathogenesis. For

example, Halanski et al. developed a kyphotic porcine model using a

vitamin D-deficient maternal diet,242 suggesting that spontaneous disc

herniation models, even in large animals, may be possible. Such

models might provide a pathway for researchers and clinicians to track

herniation initiation and progression with time, which is extremely dif-

ficult to conduct in the current clinical setting.

4.3 | Combined experimental and computational
study designs

The interplay between experimental and computational techniques

has significantly advanced spine biomechanics. Mainly, computational

models look to experimental measurements to define model inputs,

while experimental work resorts to model predictions for insights

about difficult-to-measure tissue properties, which, in turn, inspires

novel experimental investigations, completing this virtuous cycle. For

example, combining experimental and computational frameworks has

furthered the understanding of herniation etiopathogenesis by clarify-

ing nutrient transport kinetics under dynamic loading, which is essen-

tial for predicting tissue catabolic remodeling.243–247

Recent technological advancements have provided researchers

with greater access to experimental testing and computational model-

ing platforms, which will encourage further synergetic development

between experimental and computational frameworks within or

between research groups.248,249 Moreover, improved computational

resources have facilitated structural finite element models capable of

simultaneously investigating multiscale disc mechanics and cellular

regulation mechanisms.250 Integrating mechanics and cellular biologi-

cal experimental data, such models hold the potential to establish

direct relationships between mechanical, biochemical, and metabolic

factors within the context of herniation.
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TABLE 2 Summary of basic scientific research methods to study herniation etiopathogenesis.

Mechanical testing

Animal

models

Cellular

biology Finite element models

Capability to create herniation to

directly investigate herniation

etiopathogenesis?

Yes, by mechanical

overload in vitro

No No Yes, by mechanical

overload in silico

Capability to simultaneously examine

mechanical overload and catabolic

remodeling/cellular response in

relation to herniation?

No, mechanical

overload only

Yes Yes No, mechanical overload only
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