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PHYSICAL REVIEW 8 VOLUME 17, NUMBER 3 1 FEBRUARY 197&

n-spin correlation functions for the tvvo-dimensional Ising model*

John L. Richardson and Myron Bander
Department of Physics, University of California, Irvine, California 927I7

(Received 12 September 1977)

It is noted that expressions for the T = T,. n-spin correlation functions of a two-dimensional Is-

ing system obtained by continuum methods do agree with exact results for restricted geometries.
This leads to the conjecture that the continuum result is true for all n and all geometries. Specula-

tion regarding the behavior of these functions away from T = T,. are made.

I. INTROOU. CTION

Although the two-spin correlation function for the
two-dimensional Ising model has been known for
some time, "such a knowledge of n-spin correlation
functions is not available. A formal expression for
such functions away from the critical point has been
obtained by McCoy, Tracy, and Wu. ' It is not im-

mediately obvious how to apply their results to T = T,

At T = T,. exact results are known for restrictive
geometries. Kadanoff and Ceva' and Pink4 found the
n-point function for the collinear points along one of
the lattice directions. This result has been extended
by Au-Yang' to collinear points along a diagonal. For
spin separations larger than the lattice constant the
above results are

Il

(o(r~) a(r„))r=r =(const) g ( r, —r, (' "

not agree. Equation (2) looks much more symmetric.
We wish to point out the embarrassingly simple fact
that they do agree. For n =4 it is a matter of trivial
algebra. The proof for n & 4 will be given in Sec. II.

Finally, we have compared Eq. (2} for the case
n =4 to the results for a parallel set of points present-
ed in Ref. 6. The two expressions agree to the order
the results are stated in Ref. 6. These agreements
lend strong support to the conjecture that Eq. (2) for
the square of the correlation function is valid for all n

and all geometric configurations.
The continuum techniques, " likewise, provide an

expression for the n point function away from T, . We
conjecture that in the critical region

(tr(r)) a(r„)) ',
II

= (const) (0( g:sinW~p(r, ):)0), (3)
I=l

Recently, Au- Yang6 obtained an expression for the
T = T,. correlation function for two noncollinear but
parallel pairs.

An alternate approach has been to work directly in

the continuum limit using the analogy of the Ising
problem to a two dimensional fermion field theory. ' "
Luther and Peschels gave the result for an arbitrary
set of n spins located at r, :

(a(r, ) . a(r„))'r=r

=(const) X
' g ) r, —r, (""' . (2)

+.
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I

The prime in the summation indicates that the
configurations of the q, 's are restricted to the ones
satisfying gg, =0. Note that Eq. (2) is for the

square of the correlation function, The same expres-
sion was obtained in Ref. 9 for collinear points and
using similar techniques for noncollinear points. "

At first glance it appears that Eqs. (I) and (2) do

where the expectation of the right-hand side is taken
in the vacuum of a sine-Gordon field theory with a
Lagrangian

L = —, ((ig}' —m/rr: cos2 Jvr p: (4)

with m = —(T —T,.). The above may serve as a basis
1

for a mass perturbation away from T = T,

II. PROOF

(cr(x)) rr(xt)
II

a.(x„))' = (const) g (x; —x,)' "'"

We wish to show that Eq. (2) and the square of Eq.
(1) are the same for the geometric situation ~here all
the r, 's are collinear. As noted above, the observation
for n =4 requires the trivial algebra of bringing Eq.
(2) to a common denominator. For n & 4, " the argu-
ment we found is somewhat baroque.

We study the fourth power of the correlation func-
tion. From Eq. {1)we find
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X| —X2 X3 —X4

~ ~ ~ (6)

The square of Eq. (2) is likewise a sum of such terms.
The proof of the equality of the two expressions
proceeds by induction. %'e note that both Eqs. (1)
and (2) are invariant under separate permutations of

where the x, 's are placed in increasing order. This is,
ho~ever, the expression for the vacuum expectation
value of a product of free fermion fields" and thus
can be expressed as a sum of products of two-body
propagators:

{a.(x,}a (x,} a (x„)}'
=l(oil{xi)0 (x&) p{x&) pt(x„) lol

the x, 's with odd or even i' s. At this stage we use fac-
torization. Take any product of fermion propagators
that appears in the decomposition of the square of Eq.
(2). First, we would like to rule out terms with propa-
gators 1/{x, —x,), with both i and j simultaneously
even, or odd, as such terms do not occur in Eq. (6).
Should such a term occur we could permute it to in-
volve x, 's for i ~4. If we now separate the first four
x's from the rest, factorization would imply that such
a term would by present for correlation functions in-

volving 4 or n —4 spins. Similarly the presence of the
allowed terms can be checked using factorization and
induction.

%'e wish to thank Dr. A. Luther for many valuable
d&scussions.
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