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Abstract: Molybdenum disulfide coatings, particularly Microseal 200-1, have been extensively used
as dry film lubricants for actuating mechanisms in space applications. Although Microseal 200-1 has
historically been a popular choice for space missions, recent assessments indicate a need for reexami-
nation. This study evaluates sliding friction in air and dry gaseous nitrogen atmospheres at ambient
temperatures with both linear reciprocating and rotary unidirectional tribo-tests. Measurements
are performed for Microseal 200-1 applied on substrates and surface treatments commonly used in
aerospace components, particularly stainless steel and a titanium alloy. Our findings indicate that the
friction of stainless steel balls sliding on Microseal 200-1-coated disks is significantly influenced by the
environment as well as the disk substrate material. The average friction coefficient ranges from 0.12
to 0.48 in air and from 0.04 to 0.41 in dry gaseous nitrogen, and the amount of friction is consistently
much higher for the Microseal 200-1 on the stainless steel than on the titanium alloy. Microscopy and
surface analyses, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, and
X-ray fluorescence, of the coatings on stainless steel substrates reveals that the coatings are sparse
and relatively thin, likely a key factor contributing to their high friction. This insight underscores
the substrate dependence of this widely used coating and highlights the importance of detailed
tribological testing in accurately assessing the tribological performance of commercial dry film lubri-
cants, a key step towards improving the reliability and effectiveness of actuating mechanisms for
space applications.

Keywords: MoS2; dry film lubricant; space tribology; Microseal 200-1; friction coefficient

1. Introduction

Actuating mechanisms that operate in extraterrestrial environments must withstand
extreme conditions, including high G-force vibrations, significant temperature fluctuations,
and low pressure and vacuum environments. These mechanisms also need to survive
periods of time (which can include either intended or unavoidable relative motion) in
ambient terrestrial environments. In such applications, traditional liquid and semi-solid
lubricants are often impractical or ineffective. Instead, dry film lubricants (DFLs) have
become the standard [1,2], with molybdenum disulfide (MoS2) being the most prevalent
choice for space applications due to its proven efficacy in satellites and spacecrafts [2–5].
Among the various MoS2-based coatings available, Microseal 200-1 (MS 200-1), produced
by E/M Coating Services, has gained prominence. This is an impinged coating made of
finely powdered MoS2 that contains a small amount of inorganic binder, corresponding to
SAE AMS2526 [6].
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Initially selected as “the safest compromise coating” for Mariner 69’s hydrazine expul-
sion bladders [7], its use by NASA has expanded to various sliding and rolling surfaces
for components including bearings, springs, and gears, due to its low coefficient of friction
(COF), which has been reported to be typically between 0.02 and 0.06 depending on the
load and the substrate material [8]. Microseal 200-1 has also been adopted by other space
agencies, including the European Space Agency’s Nanokhod Microrover, where it was
applied on all contact surfaces and bearings [9,10]. Microseal 200-1 has also been used as a
benchmark for assessing the friction performance of new coating materials [11,12]. Notably,
Microseal 200-1 was recently used in NASA’s Mars rover Perseverance, demonstrating
continued trust in Microseal 200-1 for high-stakes extraterrestrial missions.

Despite its widespread application, Microseal 200-1 is a MoS2-based coating and,
as such, has the limitations inherent to this material. Particularly, interactions with air
are known to adversely affect the tribological performance of MoS2 DFLs [3]. Chemical
reactions between MoS2 and oxygen can lead to the formation of MoO3 [13]. Humidity
is also problematic since water molecules can physically adsorb on the MoS2 surface [14].
Both chemical reactions with oxygen and the physical adsorption of water can disrupt the
easy shear ability of MoS2 DFLs which decreases their lubricity [3,15–19]. Specifically for
Microseal 200-1, a recent series of tribo-tests conducted on various space-relevant coatings
and surface treatments revealed inconsistencies in their performances [20]. In particular,
these tests, detailed in Vellore et al., raised concerns about Microseal 200-1’s sensitivity
to the substrate surface material and its inability to consistently achieve low levels of
friction. However, the measurements on Microseal 200-1 in the study by Vellore et al. were
performed in only select operating and environmental conditions, and the results were not
plotted or analyzed. As such, Microseal 200-1 continues to be a favored choice for space
mechanism components.

Our study aims to further characterize the tribological performance of Microseal
200-1 under various conditions. We first analyzed existing data to confirm the influence
of substrate material on friction behavior. Then, we conducted new tests on two space
mechanism-relevant materials, 440C stainless steel and Ti-6Al-4V titanium alloy, comparing
the coating’s performance under different speed and loading conditions using both rotary
unidirectional and linear reciprocating sliding motion. Although post-test surface charac-
terization confirmed that the coating on the stainless steel substrate was not completely
removed during testing, the results indicated poorer friction performance than on the
titanium alloy. Utilizing microscopy and surface characterization, we analyzed differences
in the as-deposited coating’s morphology and composition between the two substrates,
which provided valuable insights for interpreting the results.

2. Methods

Friction was measured between 440C stainless steel balls of ¼ inch nominal diameter
and Microseal 200-1-coated disks. The disks were made of either 440C stainless steel or
a Ti-6Al-4V alloy. The Ti-6Al-4V samples underwent anodization by one of two vendors,
either Danco or Tiodize, which is known to enhance the DFL’s performance by improving
surface hardness, chemical stability, and substrate–coating adhesion [21,22]. The average
surface roughness of the disks prior to coating application ranged from 4 to 8 µin with
non-directional surface lay; this very smooth surface condition was chosen to minimize the
effect of substrate roughness on the results.

Microseal 200-1 was applied by Curtiss-Wright EM Coating Services using a propri-
etary approach involving projection of micro-size particles at fast speeds onto a sample
surface to create an impinged coating that is then cured at high temperature. The coated
disks were stored in bags purged with GN2 to minimize interactions with ambient envi-
ronmental conditions and were then tested immediately after opening. The roughness of
the samples after coating was measured using a profilometer (Mitutoyo AVNAT with a
12AAC731 stylus having a 2 µm tip radius) to be 40 µin ± 15 µin.
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Friction measurements were conducted using a ball-on-disk tribometer (Rtec Instru-
ments, San Jose, CA, USA, MFT-5000; accuracy and resolution of ±20 mN and 6 mN,
respectively) under ambient atmosphere and dry gaseous nitrogen (GN2) conditions, at am-
bient temperature. The ambient air tests mimicked the conditions in a space flight assembly
facility and the GN2 tests mimicked the low humidity conditions of space. The relative
humidity in the ambient air tests was not controlled and was measured to be between 30
and 45%. In the GN2 tests, the relative humidity was kept below 0.2% throughout the
experiments. In both ambient and GN2 conditions, the temperature was in the range of
23–26 ◦C.

Two types of sliding motions were used in the tests: rotary unidirectional and linear
reciprocating, mimicking the motion patterns in the target application. For rotary unidi-
rectional tests, various loading and sliding speed combinations were selected to mimic
the conditions in some of the Perseverance Mars rover’s mechanisms. These included
sliding speeds of 950 and 9.8 mm/s with maximum Hertzian contact pressures of 285 and
570 MPa for 440C, and sliding speeds of 980 and 10 mm/s with maximum Hertzian contact
pressures of 265 and 585 MPa for Ti-6Al-4V. The linear reciprocating tests were conducted
at 0.33 mm/s, with pressures set at 570 and 520 MPa for 440C and Ti-6Al-4V, respectively.
The test parameters and conditions for each substrate material are summarized in Table 1.

Table 1. Summary of test parameters used in the tests conducted on Microseal 200-1-coated 440C and
Ti-6Al-4V substrates. Cases identified with * were measurements performed in the previous study by
Vellore et al. but plotted and analyzed here.

Substrate Motion Pressure
(MPa)

Speed
(mm/s) Atmosphere # Tests

440C * Rotary Unidirectional 300 1000 Air 2
Ti-6Al-4V * Linear Reciprocating 510 0.5 Air 2

440C Linear Reciprocating 570 0.33 Air 1
440C Linear Reciprocating 570 0.33 GN2 1

Ti-6Al-4V Linear Reciprocating 520 0.33 Air 1
Ti-6Al-4V Linear Reciprocating 520 0.33 GN2 2

440C Rotary Unidirectional 285 950 Air 3
440C Rotary Unidirectional 285 950 GN2 3
440C Rotary Unidirectional 570 9.8 Air 1
440C Rotary Unidirectional 570 9.8 GN2 1

Ti-6Al-4V Rotary Unidirectional 265 980 Air 3
Ti-6Al-4V Rotary Unidirectional 265 980 GN2 4
Ti-6Al-4V Rotary Unidirectional 585 10 Air 2
Ti-6Al-4V Rotary Unidirectional 585 10 GN2 1

Throughout these tests, the coefficient of friction (COF) was continuously recorded.
The unidirectional test data were processed using a moving mean with a stencil of 150 points,
while the linear reciprocating data required correction for friction force bias due to mis-
alignment between the force transducer and the sample surface [23], followed by averaging
using a moving mean with a stencil of 250 points.

Post-test, the coating morphology and chemical composition of both substrates were
examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spec-
troscopy (EDS). Detailed SEM and EDS analyses were performed on focused ion beam
(FIB)-cut samples. Additionally, X-ray fluorescence (XRF) analysis was conducted in the
worn region of the coating of a 440C sample to gain further insights.

3. Results

Initially, we reevaluated the results of tests on Microseal 200-1 presented in a previ-
ous study by Vellore et al., who reported the data only, i.e., they have not yet been fully
analyzed [20]. The processed data, shown in Figure 1, reveals distinct friction behaviors
between the two different substrate materials. Notably, the COF in the rotary unidirec-
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tional tests on Microseal 200-1 coated 440C was significantly higher than that in the linear
reciprocating tests on Microseal 200-1 coated anodized Ti-6Al-4V. Also, while the COF was
relatively stable during the Ti-6Al-4V tests, the friction started to increase after approx-
imately 7.5 m of sliding in the 440C tests. Further, the relative motion and load/speed
conditions differed between the tests on the two substrates, making a direct comparison of
the substrates difficult.
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Figure 1. Coefficient of friction as a function of sliding distance in an ambient atmosphere: (a) rotary
unidirectional tests on Microseal 200-1-coated 440C and (b) linear reciprocating tests on Microseal
200-1-coated anodized Ti-6Al-4V, as performed by Vellore et al. [20].

These findings prompted further comparative tests between 440C stainless steel and
anodized Ti-6Al-4V. The results from these linear reciprocating tests are displayed in
Figure 2. In Figure 3, repeated test data are combined into a single box plot, calculated
from the data in Figure 2 excluding the initial 0.2 m of run-in. These figures show that
environmental factors played a significant role, with a much lower COF observed in the
GN2 atmosphere compared to the ambient atmosphere, aligning with previous studies
reporting the degradation of MoS2’s performance in humid air due to the adsorption of
water [3,15,16]. Here, for 440C, the average friction coefficient was 39% lower in GN2 than
in air; it was 67% lower in GN2 for Ti-6Al-4V. Comparing the two substrates, the friction
coefficient on the titanium alloy was lower and more stable than that on the 440C steel,
with the average COF in air for 440C being over 0.3, compared to 0.12 for Ti-6Al-4V. In
GN2, these values were 0.22 for 440C and 0.04 for Ti-6Al-4V.

To ensure that our findings were not specific to linear reciprocating motion, we also
conducted rotary unidirectional sliding tests on the same Microseal 200-1-coated substrate
materials. The results from these rotary unidirectional tests are displayed in Figure 4.
Figure 5 consolidates the findings in a box plot format to facilitate comparison. Conducted
at two different contact pressure and speed conditions, the data indicate a minor pres-
sure/speed dependence within the tested range where the mean COF is slightly higher at
lower pressures and faster speeds. There is also more variation in the data at the lower
pressures and faster speeds, likely attributable to non-flatness of the disk samples (the
top and bottom of the disks not perfectly parallel) which affects friction more under those
conditions. Overall, the results mirrored the linear reciprocating data, showing a lower
COF in GN2 for both substrates and a more stable and lower COF for the titanium alloy
compared to the 440C substrate.
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Figure 2. Friction coefficient versus sliding distance in air (red) and dry GN2 (blue) atmospheres for
linear reciprocating tests on (a) Microseal 200-1 coated 440C stainless steel and (b) Microseal 200-1
coated anodized Ti-6Al-4V alloy.
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440C stainless steel and anodized Ti-6Al-4V alloy in air (red) and GN2 (blue). The box plots highlight
the relative performance across substrates and environments.
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Figure 4. Friction coefficients from rotary unidirectional sliding tests on (a,b) Microseal 200-1-coated
440C stainless steel and (c,d) Microseal 200-1-coated anodized Ti-6Al-4V alloy in air (red) and GN2

(blue). The left plots (a,c) correspond to tests run at lower peak contact pressures and higher speeds
than the tests shown in the right plots (b,d).

The NASA Lubrication Handbook (1985) [8] reported Microseal 200-1 sliding friction
coefficients of 0.02 to 0.06 in air and “limited or low” coefficients in a vacuum, and that
the reported values vary “depending on load and substrate surface”. This substrate
dependence was evident in our study as well, with the average unidirectional COF (Table 1)
in air being above 0.47 for 440C and 0.23 for Ti-6Al-4V; in GN2, these values were 0.41 for
440C and 0.06 for Ti-6Al-4V. For reciprocating tests, the average COF in air was 0.38 for
440C and 0.12 for Ti-6Al-4V; in GN2, these values were 0.22 for 440C and 0.04 for Ti-6Al-4V.
The friction was consistently higher on the 440C than on the Ti-6Al-4V and the difference
between the two substrates was more significant in GN2 than in air.
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Figure 5. Comparative frictional analysis from unidirectional tests at (a) lower pressure and higher
speed or (b) higher pressure and lower speed on Microseal 200-1-coated 440C stainless steel and
Microseal 200-1-coated anodized Ti-6Al-4V alloy in air (red) and GN2 (blue). The data are consistent
with results from the linear reciprocating tests, confirming the difference in frictional performance
between substrates and environmental conditions.

An XRF analysis was conducted on one of the wear tracks after a cumulative sliding
distance of approximately 691 m to verify the coating’s persistence throughout the test. This
test was performed on a DFL-coated 440C coupon, which underwent unidirectional testing
in a GN2 atmosphere at a 285 MPa load and a 950 mm/s sliding speed. The upper left inset
of Figure 6 is an optical microscope image of the wear track suggesting partial wear-off
of the coating during testing. This observation aligns with the high friction coefficient
exhibited by the corresponding friction trace in the upper left panel of Figure 4, implying
DFL failure. XRF was performed in the area marked by a yellow star in the wear track
image in the inset of Figure 6. The XRF data confirm the presence of MoS2 in the wear
track for the entirety of the test. Additionally, the XRF analysis indicates elevated levels of
chromium and iron, which are attributable to wear of either the ball or the 440C substrate
following DFL failure; the latter explanation is supported by the patchy appearance of the
wear scar in the inset in Figure 6.
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Figure 6. X-ray Fluorescence (XRF) analysis carried out on the wear track area marked by the yellow
star in the upper left inset. The inset displays an optical microscope image of the region where the
XRF measurement took place identified by a star. The analysis followed a ball-on-disk tribometer
test on a Microseal 200-1 coated 440C substrate, conducted in GN2 atmosphere with a peak contact
pressure of 285 MPa and a sliding speed of 950 mm/s. The friction coefficient for this test is shown in
the upper left panel of Figure 4.
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Further microscopy on untested coatings was performed to understand the substrate-
dependent performance of Microseal 200-1. SEM and EDS images of the untested coatings,
presented in Figure 7, were acquired to characterize the morphology and chemical compo-
sition of the DFL-coated surfaces. The EDS map shown in Figure 7 reveals the presence
of sulfur (from the MoS2), along with aluminum and silicon. The presence of aluminum
is attributed to residual alumina impurities from grit blasting performed on the substrate
prior to DFL application. The presence of silicon may be due to the silicate in the inorganic
binder used in the Microseal 200-1 deposition. In the case of the Ti-6Al-4V alloy, the notable
presence of silicon in the bottom right panel of Figure 7 (in pink) may also be attributable
to the anodizing process, which forms a layer composed of Ti oxides and Si oxides.
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Figure 7. Surface morphology and chemical composition of Microseal 200-1 DFL coatings on 440C
(top panels) and Ti-6Al-4V (bottom panels) substrates. SEM image (left) and EDS overlay (right)
reveal the surface compositions before testing.

The SEM images in Figure 7 show rough surfaces for both 440C and Ti-6Al-4V sub-
strates, with undulations on the order of tens of microns. FIB-cut cross-sections of the
coatings provided additional information about the distribution of Microseal 200-1 coating
thickness and composition on both substrates, with SEM and SEM/EDS overlays. The
results are shown in Figures 8 and 9, for 440C and anodized Ti-6Al-4V substrates, respec-
tively. Comparison of the SEM images in the left panels in Figures 8 and 9 indicates that
440C has a more irregular surface than Ti-6Al-4V. This surface roughness could partly
explain Microseal 200-1’s overall higher than expected friction and, particularly, its poorer
performance on 440C compared to Ti-6Al-4V.

The SEM/EDS overlays in the right images of Figures 8 and 9 enable a comparison
of the compositions of the coatings on the two different substrates. Notably, aluminum is
present in both coatings, highlighted in red and pink in Figure 8 and green in Figure 9, with
a significant amount of silicon detected in the coating on the Ti-6Al-4V substrate (shown in
blue in Figure 9) attributed to the anodized layer and/or silicate binder. On both substrates,
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Microseal 200-1 appears as pockets of sulfur, depicted in yellow in the SEM/EDS overlays
of the FIB-cut sections.
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Figure 9. SEM and EDS images of FIB-cut cross-sections from the DFL-coated anodized Ti-6Al-4V
alloy samples. The left figure is the SEM image, and the right figure is a close-up SEM image with an
EDS overlay from one location on the FIB-cut section.

However, there are also differences between the two substrates. Notably, the coating
material on the titanium alloy, including both the Microseal 200-1 and the anodizing layer, is
approximately 2.5 µm thick. As seen in Figure 9, the coating is not uniform, and the majority
is the anodizing layer. However, Figure 9 also suggests the presence of a continuous thin
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layer of Microseal 200-1 on the topmost surface, in addition to the thicker patches. On the
440C substrate, the coating is even less uniform with no continuous layer of Microseal
200-1, as shown in Figure 8. Further, the coating on 440C is very thin, ranging from 0 to
only about 1 µm. This thin and uneven application of Microseal 200-1 on the 440C may
explain the poor DFL performance observed on this substrate.

These differences between the Microseal 200-1 on the 440C vs. the anodized Ti-
6Al-4V substrates seen in the microscopy reflect the drastic difference in the tribological
performance of the DFL on these two substrates. However, the origins of the differences
cannot be inferred directly from our results. The fact that no binder species were detected
on the 440C could point to poor adherence of the coating to that substrate. However, the
same determination could not be made on the Ti-6Al-4V because the binder elements are
also found in the anodize layer and so their presence in the coating could not be isolated.

4. Conclusions

Our evaluation of Microseal 200-1, an MoS2 dry film lubricant, reveals critical insights
into its tribological performance under conditions relevant to space applications. This
study underscores the significant influence of substrate material and surface treatment
on DFL effectiveness, with notable differences between 440C stainless steel and Ti-6Al-4V
titanium alloy substrates.

The friction performance of Microseal 200-1 varied dramatically with the substrate
material. The coatings on the titanium alloy substrates consistently demonstrated lower and
more stable coefficients of friction compared to the coatings on the stainless steel substrates.
Additionally, the significant difference in friction in tests run in ambient air compared to
those run in GN2 confirms the coating’s vulnerability to humid air environments.

Microscopy and XRF characterization, coupled with FIB cross-sectional analysis, re-
vealed uneven and thinner coating application on stainless steel substrates, along with
irregular surface topography. These factors correlate with the suboptimal performance of
the Microseal 200-1 on the 440C. In contrast, the thicker, more continuous Microseal 200-1
on the titanium alloy resulted in a better frictional behavior.

In summary, our study shows that, while Microseal 200-1 remains a viable DFL,
its overall performance depends on operating and environmental conditions as well as
substrate material. Understanding these dependencies is crucial for the selection and
application of MoS2-based DFLs. Finally, the results encourage future work aimed at
comprehensively characterizing and then controlling the substrate dependence to produce
DFLs that deliver reliable and durable performances in space applications.
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