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Parametric and non-parametric measurement models provide means to more in-

sights when the amount of available data is limited. We focus on measurements from

multi-sensor systems in three applications of practical interest and provide inference tech-

niques to estimate underlying unknowns with higher accuracy than previous approaches

under limited resources. In this pursuit we adopt the maximum likelihood estimation

(MLE) framework to estimate the parameters from the measurements. The framework

is widely used with varying degrees of success. In certain applications, framing problems

under MLE leads to difficult non-convex optimization problems, and thus model selection
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becomes crucial. Other applications may even require one to design measurements upon

which the MLE framework may be applied.

In the first problem, we consider the initial beam alignment in millimeter wave

systems using phased arrays. For a single RF chain system, we propose a novel sensing

methodology inspired from synthetic aperture radar, that enables more informative mea-

surements in a structured manner. We also provide an inference technique that utilizes

the measurements under proposed sensing to efficiently compute a posterior density on

the unknown angle. The inference is carried without the knowledge of complex path gain,

and demonstrates significant improvement over competing techniques.

In the second problem, we study sparse signal recovery with the aim to bridge the

computational gap between the widely used Orthogonal Matching Pursuit algorithm and

methods derived from the MLE objective. We propose a novel Light-Weight Sequential

Sparse Bayesian Learning (LWS-SBL) algorithm and provide efficient recursive procedures

to update the internal variables of the algorithm. We demonstrate superior support recov-

ery performance using LWS-SBL over OMP and further elucidate the subtle differences

in the underlying mechanisms in the two algorithms.

Lastly, we delve into the Direction-of-Arrival (DoA) estimation problem for narrow-

band signals and propose a novel two-step algorithm. In the first step, we recover a

structured covariance matrix estimate for the received signal in the MLE sense. The

second step involves estimating DoAs using root-MUSIC from the recovered structured

covariance matrix. The first step draws inspiration from the SBL formulation, as it

provides the basic model which we fit to the measurements. The proposed approach

improves resolution, bias, identifiability, and can identify two or more sources with a

single snapshot, unlike the traditional subspace-based algorithms.
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Introduction

Many applications involve taking measurements using more than one sensor with

the hope to gain better insights about the environment or an object under examination.

The inherent geometry of the sensor placement and the characteristics of the sources under

study dictates the efficacy of combining measurements from these multiple sensors. Such

systems are ubiquitous such as biomagnetic imaging, underwater acoustics, echo cancella-

tions, and wireless systems. In this dissertation, we focus on three such applications and

develop methods that exploit available prior information about the sources.

Baseband

Processing

N antenna elements

M RF Chains, M < N

b-bit

ADC

b-bit

ADC

RF

Chain

RF

Chain

Figure 1. Millimeter wave receiver with fewer RF chains than antenna elements.

Millimeter wave (mmWave) technology is key to satisyfing the ever increasing wire-

less data demand, wherein numerous multimedia services require very high throughput.

The large spectrum available in the millimeter wave band can solve many of these is-

sues [1, 2] and has been a subject of active research and standardization efforts (3GPP).
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Channel modelling efforts have revealed some inherent attributes of the mmWave channel

that makes it unique [3]. Unlike the traditional cellular or Wi-Fi bands, mmWave channel

suffers from large propagation losses and incurs poor scattering. The latter issue lends

the mmWave channel to be sparse in nature which can be characterized in terms of angle

of departure, angle of arrival, and complex path gain of the multiple paths. As a re-

sult, array signal processing techniques for Direction of Arrival (DoA) estimation become

relevant for the mmWave channel estimation problem. Yet, there are unique challenges

while estimating the multipath DoAs. Unlike, the traditional setting in the array signal

processing problem where the signal from the multiple antenna elements is available for

inference in a digital form, since the mmWave systems typically have large number of

antenna elements, the signal at antennas is combined in analog domain first (see Fig. 1).

Depending on the number of radio-frequency (RF) chains available for A/D conversion,

only a low-dimensional projection of the high-dimensional antenna signal is available for

inference. Thus, a simple plug-and-play approach is not applicable. In Chapter 1, we con-

sider the beam alignment problem in millimeter wave systems using phased arrays (i.e.,

single RF chain systems). These systems are widely considered due to their low hardware

cost and battery power savings.

We focus on two fundamental tools in the remaining chapters, that are applicable

to mmWave systems, but can be applied more broadly. In Chapter 2, we consider the

Sparse Signal Recovery (SSR) problem. SSR is an important problem that has witnessed

numerous applications (e.g., biomagnetic imaging [4], functional approximation [5], and

echo cancellation [6]). Consequently, many algorithms have been proposed that offer

favourable tradeoffs between recovery performance, speed, and storage [7–14]. On the

computationally favourable paradigm, greedy algorithms (e.g. pursuit algorithms like

matching pursuit (MP) [7], orthogonal MP (OMP) [15–18], compressive sampling MP

(CoSaMP) [19] etc.) are well-studied algorithms that offer faster recovery at the cost of

slight degradation in performance. OMP is a widely employed [20,21] iterative technique
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in this category that models the unknown sparse vector as a deterministic variable, and

improves over MP by ensuring that the residual error is orthogonal to already selected

columns of the measurement matrix. In our work, we offer a stochastic alternative to the

OMP algorithm with a similar complexity while improving support recovery performance.

The proposed approach is based on maximum likelihood estimation (MLE) framework,

unlike OMP which is based on matching-criteria1.

In Chapter 3, we revisit the classical DoA estimation problem with an aim to

overcome the model complexities faced by MLE methods of the past. It is known that

parametric methods like MLE allow one to introduce meaningful parameters as a means

to incorporate information about antenna array geometry and prior. These parameters

can be estimated even with a single snapshot, unlike subspace-based methods. Other

recent techniques include [8,10,11,22–25], which utilize sparsity as an explicit regularizer.

Such methods are thus sensitive to setting the regularization parameter appropriately.

SBL [12,26,27] formulates the sparse recovery problem on-grid, under the MLE framework,

and recovers sparse solutions via implicit regularization [28]. We combine the classical

MLE framework and the modern SBL formulation to estimate the DoAs in a gridless

manner.

We defer further discussion to the respective chapters, and briefly explore the com-

mon theme of the dissertation in the remainder of this Chapter.

0.1 Measurement Model

We consider parametric as well as non-parametric measurement models in this

dissertation. Such models exploit information about the underlying physics of the ex-

periment, and thus can do away with fewer measurements than typically required for
1Note that OMP is MLE when the support size to be recovered is one.
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completely data-driven methods. One drawback of driving inference based on models is

that if the model assumptions do not hold true for the measurements, then the inference

and insights carried out under the model may be less useful. In this dissertation, we

assume that the models carry relevant information about the problem at-hand. We also

briefly discuss a case when the model assumptions do not hold perfectly, and study the

impact of this mismatch on the inference.

0.1.1 Parametric Measurement Model

Consider the following measurement model

yl = ΦΦΦθθθ xl +nl, 0≤ l < L, (1)

where yl ∈ CM denotes the measurements, and L denotes the total number of snapshots

available. The kth column of ΦΦΦθθθ ∈ CM×K is a vector function of the parameter θk i.e.,

[ΦΦΦθθθ ]k = ϕϕϕ(θk) for some known ϕϕϕ(.),k ∈ {1, . . . ,K}. θθθ = [θ1, . . . ,θK]
T and θk’s lie in some

known continuous domain. K denotes the number of sources. The sources’ signal xl ∈CK

and the zero mean noise nl ∈ CM are independent of each other, and i.i.d. over time.

The noise, nl, is distributed as C N (0,σ2
n I). In (1), the parameters (θθθ ,xl,σ2

n ) are the

unknowns. The model parameters affect the measurements in a non-linear manner, which

makes the inverse problem extremely difficult to solve, even in the absence of noise.

0.1.2 Non-Parametric Measurement Model

Given a measurement matrix ΦΦΦ ∈ CM×n(M < n) and measurement vector y ∈ CM

such that

y = ΦΦΦx+n, (2)

may be corrupted by noise vector n ∈ CM, the goal is to recover the vector x ∈ Cn which

is known to be sparse i.e., ∥x∥0 ≪ n. Similar assumptions on pdf of noise, as made in
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the parametric model case are considered here. Note that without sparsity the problem

is underdetermined and can have infinite number of solutions. The field of study of the

problem in (2) is known as Sparse Signal Recovery (SSR). The parametric problem in (1)

can be re-modeled as a SSR problem under suitable conditions (more on this is described

in later chapters), and thus SSR is an attractive modeling approach that is applicable

quite generally.

The problem in (2) can be extended to account for multiple measurements over

time as

yl = ΦΦΦxl +nl, 0≤ l < L, (3)

where it is known that X = [x0, . . . ,xL−1] is row-sparse i.e., most of the rows are zero.

The problem in (3) is known as the multiple measurement vector (MMV) problem when

L > 1 [29], compared to the single measurement vector or SMV problem when just a single

snapshot is available i.e., L = 1. The non-zero rows correspond to active sources, and one

of the key problems in SSR is to identify these non-zero rows.

Next we describe the Hierarchical Bayesian Framework and the Type-II estimation

procedure that is widely employed in this dissertation. We focus on the non-parametric

model for the remainder of this Chapter.

0.2 Hierarchical Bayesian Framework and Type-II Estimation

We model the unknown x as a stochastic variable, and invoke a parameterized

prior on x. We learn the parameters of the prior (also called as hyperparameters) along

with an estimate for x. One implication of this approach is that we estimate a posterior

density on the unknown, x, instead of just a point-estimate. We now describe the choice

of the parameterized prior and introduce the hyperparameters.

We impose a Gaussian paramaterized prior on x with mean zero and uncorrelated
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components. In other words,

x∼ C N (0,ΓΓΓ), (4)

where ΓΓΓ is a diagonal matrix, ΓΓΓ ∈ Rn×n and ΓΓΓ ⪰ 0; let diag(ΓΓΓ) = γγγ . Since the noise

is Gaussian distributed with pdf as discussed in previous subsections, we have that, y∼

C N (0,ΦΦΦΓΓΓΦΦΦH +λ I), where λ denotes the estimate for the noise variance. In Fig. 2 we plot

γ1 γn

xnx1

y1 ym m < n

Hyperparameter spaceSBL operates

in this space

OMP operates

in this space

Figure 2. Hierarchical Bayesian Framework (Credits: Adapted from ECE 285 by Prof. B.
D. Rao)

the probabilistic graphical model representing the relationship between the measurements

and the different unknown variables.

0.2.1 Type-II Estimation & Sparse Bayesian Learning (SBL)

The approach adopted in this work is to solve (2) in the hyperparameter γγγ-space,

post marginalization with respect to x. This approach is known as Type-II estimation

framework, compared to Type-I estimation where the problem is solved in x space after

marginalization with respect to γγγ [30] (e.g., Lasso algorithm [31]). The choice of the param-

eterized Gaussian prior, together with the Type-II estimation procedure for the problem

in (2) falls under the rubric-Sparse Bayesian Learning (SBL). The hyperparameter γγγ is

estimated by minimizing the negative marginal log-likelihood function [12, 26]

min
γγγ≥0,λ≥0

L (γγγ,λ ) := logdetΣΣΣy +yHΣΣΣ−1
y y. (5)
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where, ΣΣΣy = ΦΦΦΓΓΓΦΦΦH +λ I. (5) is a non-convex problem in (γγγ,λ ). The cost function con-

sists of two terms: the first term, logdetΣΣΣy, promotes sparsity [28], whereas the second

term, yHΣΣΣ−1
y y fits the model, ΣΣΣy, to the measurements, y. Sparsity in x is achieved as a

consequence of sparsity in recovered γγγ . More details about the SBL formulation will be

discussed in the later chapters.

0.3 Enforcing Model Order When Known

The formulation in (5) utilized the array geometry, (uncorrelated) source correla-

tion prior, and the noise distribution. In some applications, the number of sources to be

identified, K, may be known a priori. Such information can be incorporated in (5) as

min
∥γγγ∥0=K,γγγ≥0,λ≥0

L (γγγ,λ ) := logdetΣΣΣy +yHΣΣΣ−1
y y. (6)

The above formulation is combinatorial in nature, and thus not practical, in general. The

case when K = 1 is special, as the above optimization can be further simplified. This

will be elaborated in Chapter 1, where we discuss the millimeter wave beam alignment

problem, and assume line-of-sight (LoS). The general problem of K ≥ 1 is dealt with in

Chapter 2 and Chapter 3. In Chapter 2, (6) is solved in a greedy manner, and the solution

is compared with the widely used SSR technique known as Orthogonal Matching Pursuit

(OMP). Whereas in Chapter 3, the model order information is incorporated in the second

step of the proposed two-step algorithm for the DoA estimation problem.

0.4 Outline and Contributions of the Dissertation

We briefly outline and summarize the contributions discussed in this dissertation.

The first contribution is in sensing and beam alignment problem in millimeter wave

systems using phased arrays. Conventionally, sensing using a single Radio Frequency (RF)

chain involves taking multiple power-based measurements, each measurement focusing in
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different spatial regions. We propose a novel sensing methodology, named as Synthe-

sis of Virtual Array Manifold (SVAM), inspired from synthetic aperture radar systems,

that realizes a virtual array geometry over temporal measurements. Thus, with just two

snapshots, it is possible to estimate the dominant path angle-of-arrival (AoA), along with

the complex path gain. We demonstrate the benefits of SVAM using Cramér-Rao bound

(CRB) analysis over schemes that repeat beam pattern to boost signal-to-noise (SNR)

ratio. We also showcase versatile applicability of the proposed SVAM sensing by incorpo-

rating it within beam alignment procedures that assume perfect channel state information

(CSI). We further consider the practical scenario wherein we estimate the CSI and propose

a novel beam alignment procedure based on efficient computation of posterior density on

dominant path AoA. The performance of the proposed sensing and beam alignment is

empirically observed to approach the perfect CSI performance, even at low SNR. We also

provide numerical experiments to study the impact of parameters involved in estimating

the posterior. Finally, we briefly highlight other systems and scenarios in which proposed

SVAM sensing can be employed. This is fully discussed in Chapter 1.

The second contribution is the development of a low complexity algorithm for the

Sparse Signal Recovery (SSR) problem based on the sparse Bayesian learning (SBL) for-

mulation. The proposed algorithm, called as Light-Weight Sequential SBL (LWS-SBL), is

compared to the widely used iterative and greedy algorithm known as Orthogonal Match-

ing Pursuit (OMP). In contrast to OMP, which models the unknown sparse vector as

a deterministic variable, the same is modeled as a stochastic variable within LWS-SBL.

Specifically, the proposed algorithm is derived from the stochastic maximum likelihood

estimation framework, and it iteratively selects columns that maximally increase the like-

lihood. We derive efficient recursive procedure to update the internal parameters of the

algorithm, and maintain a similar asymptotic computational complexity as OMP. Addi-

tional perspectives to understand the underlying differences in the mechanisms of the two

algorithms are provided, that reveal avenues where LWS-SBL improves over OMP. These
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are verified thoroughly in the numerical section in terms of improved support recovery

performance. For SSR problems involving parametric dictionaries, the flexibility of the

proposed approach is demonstrated by extending LWS-SBL to recover multi-dimensional

parameters, and in a gridless manner. This is fully discussed in Chapter 2.

The third contribution is the development of a novel maximum likelihood-based

gridless DoA estimation algorithm. We focus on the stochastic maximum likelihood esti-

mation (MLE) framework and overcome the model complexities of the past by reparam-

eterization of the objective and exploiting the sparse Bayesian learning (SBL) approach.

SBL is shown to be a correlation-aware method and, for the underlying problem, a grid-

based technique for recovering a structured covariance matrix of the measurements. For

the case when measurements are spatial (or temporal) samples at regular intervals, the

structured matrix is expressible as a sampled Toeplitz matrix. In this case, additional

constraints and reparameterization of the SBL objective leads to the proposed structured

matrix recovery technique based on MLE. The optimization problem is non-convex and

a majorization-minimization based iterative procedure is proposed to estimate the struc-

tured matrix; each iteration solves a semidefinite program. We recover the parameter of

interest in a gridless manner by appealing to the Carathéodory-Féjer result on decomposi-

tion of positive semidefinite Toeplitz matrices. For the general case of irregularly spaced

samples, we propose an iterative SBL procedure that refines grid points to increase reso-

lution near potential source locations, while maintaining a low per iteration complexity.

We provide numerical results to compare the performance of the proposed techniques with

other gridless techniques, and the Cramér-Rao bound. The proposed correlation-aware

approach is more robust to issues such as fewer snapshots, correlated or closely separated

sources, and improves sources identifiability. This is fully discussed in Chapter 3.
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Chapter 1

Active Sensing & Beam Alignment Using
MmWave Single RF Chain Systems

1.1 Introduction

Millimeter wave (mmWave) technology is essential for expanding the existing ca-

pabilities of cellular networks [1, 2]. The availability of the large spectrum in the 30-300

GHz spectrum range, and the ability to place many more antennas in the same form

factor on a device are very promising avenues for the next generation wireless systems.

This has propelled the interest, both in the industry and academia. The envisioned

benefits include much higher throughput and low latency. The impact of this technol-

ogy can be gauged from the numerous use cases enabled by the mmWave technology,

which includes industrial-IoT, virtual/augmented reality, biomedical applications, and

non-terrestrial networks [32, 33].

MmWave technology also faces many challenges. The mmWave channel incurs

large propagation losses thereby restricting coverage per base station (BS), and requiring

additional infrastructure compared to legacy cellular networks. A second challenge is the

specular nature of mmWave channel rendering it to be sparse and requiring accurate beam

alignment. This challenge is only further exacerbated by the narrow beamwidths and

consequent large codebook size due to the large antenna array dimensions. Several options

are being considered for enhancing coverage at low-cost such as integrated access backhaul
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and intelligent reflective surfaces. On the other hand, reducing the beam alignment phase

duration is a critical and active area of research. Hardware cost also impacts the ability of

the transceivers to sense the mmWave channel. The large number of antenna elements are

typically supported by only a few Radio Frequency (RF) chains [34], and thus necessitates

for a low-dimensional projection of the received signal at the antennas. Beam alignment

using such a low-dimensional signal is a challenging problem, and it is the main focus of

this work.

There is a need to build a better sensing approach coupled with efficient inference

mechanisms that exploit the array geometry and channel characteristics under the hard-

ware constraints. An interesting direction adopted in [35] formulates the beam alignment

problem under the posterior matching framework, and actively learns the single path

Direction of Arrival (DoA). The work is shown to improve over the detection-based algo-

rithm in [36]. However, the authors in [35] assume that the small-scale fading coefficient

is perfectly known. Subsequent effort build upon this work, and estimate both the DoA

as well as the fading coefficient [37]. The Kalman filter-based posterior matching algo-

rithm in [37] still requires good prior density on the small-scale fading coefficient. Similar

assumptions on availability of good prior density was made in the variational hierarchical

posterior matching algorithm proposed in [38].

In this work, we reflect on the beam alignment problem from the perspective of

active sensing for improved estimation performance. We do so without relying on addi-

tional information such as good prior knowledge about the small-scale fading coefficient.

The contributions of this work are as follows:

• A novel sensing methodology, inspired from Synthetic Aperture Radar (SAR), is pro-

posed for the single RF chain mmWave systems. Under the proposed sensing approach,

a virtual Uniform Linear Array (ULA) manifold is synthesized over temporal measure-

ments. Extension to construct a virtual arbitrary array geometry such as Sparse Linear
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Array (SLA) is also discussed.

• Benefits of the proposed sensing are described, when the channel small-scale fading

coefficient is known, in terms of i. its impact on the Cramér-Rao lower Bound (CRB)

on the variance of estimation of the unknown dominant path angle, when compared

to a benchmark scheme, and ii. its ability to be incorporated within existing active

beam alignment procedures. The improvement in terms of lower training overhead is

demonstrated using numerical experiments.

• A novel beam alignment procedure is proposed which adapts the beamformer based on

the current estimate of the posterior on the unknown angle. The proposed algorithm

estimates a posterior on the small-scale fading along with the angular posterior. Both,

flexible and hierarchical codebook-based beam alignment procedures are presented.

• Finally, the proposed sensing and beam alignment procedures are empirically studied,

and compared with the performance using perfect knowledge of the channel state infor-

mation. Impact of the parameters involved in the estimation procedure is also studied,

which also reveal the ability of the adaptive beam alignment procedure to self-correct

in case of premature misalignment during the early phase of the training period.

1.1.1 Relevant Prior Work

A virtual array synthesis from spatial measurements under the reduced number

of RF chains constraint for mmWave systems was proposed in [39]. A similar sensing

scheme as in [39], was proposed in [40] for mmWave multipath angle estimation and

in [41] for the DoA estimation problem. In [40], the authors proposed using random

precoders and combiners that are submatrices of banded Toeplitz matrices. The work

focuses on mmWave systems with multiple RF chains, and the ideas are extended to the

single RF chain case. In [41], the authors investigated the applicability of root-MUSIC and

ESPRIT algorithms, as a consequence of preserving the Vandermonde structure and the
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shift-invariance under the virtual array synthesis procedure. These sensing methodologies

can be traced back to Silverstein [42] and Tkacenko [43]. The sensing scheme proposed

in this work synthesizes a virtual array over temporal measurements, and considers the

practical single phased array system. To the best of our knowledge, the presented adaptive

sensing methodology is the first of its kind.

Many non-adaptive and adaptive beamforming approaches have been proposed for

the mmWave beam alignment problem in the past. Random beamforming was proposed

in [44–46], wherein the inference was carried out using compressed sensing algorithms.

This approach does not exploit beamforming gain needed to combat large path loss in the

mmWave channels. An exhaustive beam steering approach proposed in IEEE 802.11ad

and 5G standards improves the beamforming gain, but can be slow in selecting the appro-

priate beam. The acquisition time is improved in literature by replacing the non-adaptive

linear search with an adaptive binary (or in general n-ary, n≥ 2) search within a hierarchi-

cal codebook [36, 47–49]. A comparison in terms of asymptotic misalignment probability

between the exhaustive search and the hierarchical search was studied in [50]. For adaptive

schemes using hierarchical codebook, the inference at each hierarchical level is typically

carried out by comparing power at the output of different beams within a hierarchical

node. The inference mechanism was improved in [35] by computing posterior on the dom-

inant path angle and selecting next beam based on the posterior within the hierarchical

codebook of [36]. The work assumes that the small-scale fading coefficient is perfectly

known. However, such assumption is difficult to satisfy in practice. The problem of esti-

mating small-scale fading coefficient (along with the unknown path angle) was considered

in later works [37, 38]. A grid-approach was also proposed in [37], but the relevant issue

on how to choose appropriate grid on the small-scale fading coefficient was not addressed.

An adaptive beam search algorithm scheme based on posterior computation to compare

beams was proposed in [51]. Many learning-based approaches have been proposed in

literature as well [52–54]. These include approaches that frame the beam alignment prob-
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lem as multi-armed bandit problem, or train an end-to-end neural network to design a

model-free or codebook-free architecture. In this work, we emphasize the model and pro-

pose novel sensing (for improved acquisition) and inference procedures to estimate the

unknown parameters. The paper builds on our previous work in [55].

1.1.2 Organization of the Chapter and Notations

We describe the problem tackled in this work, and introduce the new sensing

approach in Section 1.2. In Section 1.3, we investigate the impact of the proposed sensing

for the case when the fading coefficient is perfectly known, and only the unknown DoA

is to be recovered. The more practical case, when the fading coefficient needs to be

estimated along with the DoA is discussed in Section 1.4. We provide empirical results

in Section 1.5, and present our conclusions in Section 1.6.

Notations: We represent scalars, vectors, and matrices by lowercase, boldface-

lowercase, and boldface-uppercase letters, respectively. Sets are represented using black-

board bold letters. (.)T ,(.)H ,(.)c denotes transpose, Hermitian, and complex conjugate op-

eration respectively. ⊗ denotes matrix Kronecker product, and⊙ denotes Hadamard prod-

uct of two conformable matrices. ∗ denotes convolution operation. [M] = {0,1, . . . ,M−

1},M ∈ Z+.

1.2 Problem Statement & Proposed Novel Sensing

We consider a receiver (base station or user equipment) equipped with a Uniform

Linear antenna Array (ULA) of size N and a single RF chain. We assume a flat fading

channel, with a single dominant path between the transmitter and receiver. We further

assume that the channel remains coherent within the training duration due to low receiver

mobility.
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Figure 1.1. A (virtual) ULA segment of size Nv = 4 is created using 4 snapshots. The
beamformer, ft(l), is adapted once in every segment duration.

1.2.1 Problem Statement

The received signal at the antennas at instant l, xl ∈ CN , is given by

xl =
√

Psαϕϕϕ N(u)+ n̄l, l ∈ [L], (1.1)

where L denotes the total training duration. Ps ≥ 0 denotes the combined contribution

of transmitted power and the large-scale fading (path loss and shadowing), α ∈ C is the

unknown small-scale fading coefficient. Since the transmitted symbol is known, it can be

easily absorbed within the signal term of xl in (1.1). Thus, we assume the transmitted

symbol value to be 1 without loss of generality. ϕϕϕ N(u) is the array manifold or response

vector for an incoming narrowband signal along the angle u; u = sinθ ,u ∈ [−1,1), where

θ ∈ [−π
2 ,

π
2 ) denotes physical DoA. Noise, n̄l ∈CN , is distributed as C N (0,σ2

n I) and i.i.d.

over time. Since there is a single RF chain, the received signal is processed using an

analog combiner, wl ∈ CN . The output, yl ∈ C, available for inference is given by

yl = wH
l xl=

√
PsαwH

l ϕϕϕ N(u)+wH
l n̄l =

√
PsαwH

l ϕϕϕ N(u)+nl. (1.2)

The goal is to design wl and infer u; wl can be adapted over time to improve the inference.

For a ULA with λ/2 inter-element spacing1, where λ denotes the wavelength of the
1λ/2 inter-element spacing prevents ambiguity in angular estimation.
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received signal, we have

ϕϕϕ N(u) = [1 exp( jπu) · · · exp( jπ(N−1)u)]T . (1.3)

In this paper, we consider the ULA geometry for easier exposition of ideas. However,

these ideas can be extended to planar geometries as well, such as uniform rectangular

arrays [56]. Next, we describe a high-level structure that we impose when designing the

beamformer, wl.

1.2.2 Synthesis of Virtual Array Manifold (SVAM) Sensing

The sensing methodology is inspired from SAR systems used in remote sensing

and automotive radar [57]. In typical SAR systems, the sensor motion allows synthesis of

larger aperture than physical antenna, which helps to improve resolution. In this work,

we mimic the sensor motion by designing wl appropriately. We exploit the coherence

interval to synthesize virtual apertures over time. An important consequence is that,

such measurements preserve phase information from the physical antenna, which captures

rich information about the DoA of the incoming signal. The proposed sensing can be

applied more broadly to multi-path angles. Moreover, leveraging the complex exponential

structure present at the combiner output yl, l ∈ [L], it is possible to apply an unlimited

number of digital filters on these measurements.

Constructing a Virtual ULA with λ/2 Inter-element Spacing: Let Nv denote the aperture

size of the virtual ULA we wish to create. We assume that the total training duration,

L, is divisible by Nv for simplicity. Let t(l) = floor(l/Nv) denote2 the (ULA) segment

index (see Fig. 1.1). We design a beamformer of size M = N−Nv + 1, ft(l) ∈ CM, such

that ∥ft(l)∥2 = 1, initially spanning the region of interest (RoI). As the system gathers

information about the unknown DoA, u, the design of the beamformer, ft(l), is adapted.
2floor(·) denotes the floor function.
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The analog combiner at instant l is given by

wl =

[
0T

mod(l,Nv)
fT
t(l) 0T

Nv−mod(l,Nv)−1

]T

. (1.4)

Thus, within a segment duration, the beamformer slides along the antenna aperture. In

contrast to the work in [39], here only a single RF chain is available and thus a virtual

ULA segment is synthesized over time. Let

βt(l)(u) = fH
t(l)ϕϕϕ M(u), (1.5)

denote the complex gain of the beamformer along the angle u. The signal yl post-

combining can be expressed as

yl = wH
l xl =

√
Psαβt(l)(u) · exp( jπumod(l,Nv))+nl. (1.6)

Note that the gain βt(l)(u) does not change within a segment, but ‘exp( jπumod(l,Nv))’

varies within the segment.

Remark 1. The beamforming gain, measured in terms of |βt(l)(u)|2, in the passband de-

pends primarily on the beamwidth of the beamformer, ft(l). For an ideal beamformer

design, the gain in the beamformer passband corresponding to a beamwidth of 2
R ,R≥ 1,

in u-space is given by |βt(l)(u)|2 =R. As the beamformer size, M, increases the beamformer

response approaches the ideal response.

We drop the notation for dependence of t on l for simplicity. We stack the measure-

ments within a segment duration to form yt =
[
ytNv ytNv+1 · · · y(t+1)Nv−1

]T ∈CNv , t ∈ [L/Nv],

yt=
√

Psαβt(u) [1 exp( jπu) · · ·exp( jπ(Nv−1)u)]T +nt

=
√

Psαβt(u)ϕϕϕ Nv
(u)+nt . (1.7)
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We identify the following design parameters: a) Nv ∈ {1,2, . . . ,N}, the virtual ULA size,

and b) beamformer, ft , design, which includes the beam direction and beamwidth. Nv = 1

reduces to the conventional beam design. Thus, the proposed sensing strategy includes the

methodology adopted for sensing in [35,36] as a special case. The hierarchical codebook in

[36] designed using a least squared error criterion imposes a constant amplitude and phase

in the passband. The inference is improved by relaxing the constant phase requirement

in the passband. Thus, in this work we design the beamformers as linear-phase Finite

Impulse Response (FIR) filter using the Parks-McClellan algorithm [58].

Let ỹt = [yT
0 , . . . ,y

T
t ]

T ∈ C(t+1)Nv denote the measurements until snapshot index,

l = (t +1)Nv−1. Then

ỹt =



y0

y1

...

yt


=
√

Psα



β0(u)ϕϕϕ Nv
(u)

β1(u)ϕϕϕ Nv
(u)

...

βt(u)ϕϕϕ Nv
(u)


+



n0

n1

...

nt


=
√

Psα
(

β̃ββ t(u)⊗ϕϕϕ Nv
(u)
)
+ ñt , (1.8)

where β̃ββ t(u) = [β0(u),β1(u), . . . ,βt(u)]
T and ñt = [nT

0 ,n
T
1 , . . . ,n

T
t ]

T . In Section 1.4 we discuss

how to estimate u along with α using ỹt , and how to adaptively design the beamformer

i.e., ft+1 for the next segment.

Remark 2. It is important to highlight the significance of the proposed sensing method-

ology. Given just two measurements, it is possible to construct a virtual ULA under the

proposed sensing with Nv = 2. This is equivalent to a contrived single snapshot measure-

ment from a physical array of size 2. Owing to the rich (array) geometrical information

preserved in the measurements, it is thus possible to estimate the dominant path DoA

in a gridless manner using existing techniques [59]. In contrast, the beam scan operation

using Nv = 1 requires as many measurements as the codebook size to detect the DoA.
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Constructing a Virtual Sparse Linear Array: The construction presented in the previous

subsection can be extended to form virtual ULAs with more than λ/2 spacing3. More

generally, a Sparse Linear Array (SLA) can also be realized as the virtual array geometry,

for example, minimum redundancy arrays [60], nested arrays [61] or co-prime arrays [62].

These can help to increase the virtual aperture and improve resolution for the same

segment duration. Let Nv denote the number of antenna elements in the virtual SLA

we wish to construct over time. Let P = {Pi : 0 ≤ Pi < N,Pi ∈ Z, i ∈ [Nv]} denote the set

of sensor positions in the SLA ordered in an increasing manner; P0 = 0, without loss of

generality. We design a beamformer, ft , of length M = N−PNv−1. The analog combiner

at time l, in the case of SLA, is given by

wl =

[
0T

Pmod(l,Nv)
fT
t 0T

N−M−Pmod(l,Nv)

]T

. (1.9)

Using identical notation to describe the complex gain, βt(u), as in (1.5), the signal yl

post-combining can be expressed as

yl = wH
l xl =

√
Psαβt(u) · exp

(
jπuPmod(l,Nv)

)
+nl. (1.10)

Note that (1.10) generalizes (1.6) for the SLA case. Finally, the measurements within the

t-th SLA segment can be stacked as

yt=
√

Psαβt(u)[1 exp( jπP1u) · · ·exp( jπPNv−1u)]T +nt

=
√

Psαβt(u)SPϕϕϕ N(u)+nt , (1.11)
3Any ambiguity in angular estimation can be resolved if the RoI is an appropriate fraction of the

spatial region.
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where SP ∈ RNv×N is a binary sampling matrix given by

[SP]m,n =

 1 if n = Pm

0 otherwise
,m ∈ [Nv],n ∈ [N]. (1.12)

In the remainder of the work, we focus on the virtual ULA with λ/2 spacing-based sensing

for ease of exposition, but the ideas presented can be easily extended to the virtual SLA

case.

We refer to the sensing methodology described in this section as Synthesis of Vir-

tual Array Manifold (SVAM). Furthermore, we describe the SVAM sensing in conjunction

with the virtual ULA size (with λ/2 spacing) by SVAM-Nv. For example, SVAM-2 indi-

cates the sensing methodology employed is as described in subsection 1.2.2 with Nv = 2.

1.3 Benefits of SVAM For Beam Alignment

We discuss some of the benefits of the proposed SVAM sensing for estimating the

DoA, u. We demonstrate the benefits in two settings: i. agnostic to the adaptive scheme

used, ii. when hierarchical posterior matching (hiePM) [35] scheme is used. In both

settings we assume that α is known. We also briefly discuss the role of virtual aperture

size Nv for improving the estimation performance. The more practical scenario, where α

is unknown, is discussed in the next section.

1.3.1 Adaptive Scheme-Agnostic Analysis

We begin by first deriving the CRB after L snapshots, assuming α is known. Let

W = [w0, . . . ,wL−1] ∈ CN×L,∥wl∥2 = 1 denote the matrix of beamformers used to gener-

ate measurements y = [y0, . . . ,yL−1]
T ∈ CL as in (1.2). Note that wl’s may be designed

generally, and not necessarily under SVAM for the following result to hold.

Theorem 1. The CRB(u) on the variance for estimating u using the beamformer matrix
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W = [w0, . . . ,wL−1],∥wl∥2 = 1 as in (1.2) over L snapshots when α is known is given by

CRB(u) =
σ2

n
2Ps|α|2

{(
∂

∂u
ϕϕϕ N(u)

)H

WWH ∂
∂u

ϕϕϕ N(u)

}−1

. (1.13)

Proof. The proof follows standard steps for deriving CRB and provided in Section 1.7.1

for completion.

In this subsection, we compare two sensing strategies - both deterministically mod-

ify the beamformer design after every Nv snapshots. The proposed sensing strategy in-

volves a shift in space as described in (1.4), and requires the beamformer to be fixed for

Nv snapshots by design. The alternative (benchmark) strategy designs the beamformer wl

of size N without inserting 0’s - used in SVAM to effect a linear time invariant operation.

The beamformer for the two strategies considered here are to be designed with identical

specifications except the length. The SVAM beamformer ft has a size of M(= N−Nv+1),

whereas the alternative strategy utilizes the total antenna aperture of size N. We expect

that for a large antenna size N, which is typical in mmWave systems, the slightly differ-

ent length of the beamformers will have negligible impact. The rest of the beamformer

specifications, which can change every Nv snapshots, may be chosen arbitrarily for the

discussion in this subsection. We defer the discussion that involves using the specific

adaptive scheme - HiePM [35] to the subsection 1.3.3. We specialize the CRB expression

in Theorem 1 for the benchmark strategy and the proposed sensing strategy. This ex-

ercise helps to understand: how informative are the measurements available post analog

combining about the unknown DoA using either of the two techniques for designing the

analog combiners? For both the cases, we treat as if the same ordered set of L received

signal snapshots xl ∈ CN , l ∈ [L] were available at the antenna.

CRB for the Benchmark Strategy: Let WB = [wB
0 ,w

B
1 , . . . ,w

B
L−1] ∈ CN×L be the L beam-
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formers used to generate the measurements as in (1.2); superscript B highlights the bench-

mark sensing strategy. Note that

wB
l = wB

Nv×floor(l/Nv)
, (1.14)

under the benchmark scheme. Let FB = [wB
0 ,w

B
Nv
, . . . ,wB

L−Nv
] ∈ CN× L

Nv denote the matrix

of unique beamformers from WB. We have the following result.

Corollary 1.1. The CRB(u) using measurements in (1.2) from the beamformer matrix WB

under the constraint in (1.14) over L snapshots when α is known is given by

CRB(u) =
1

Nv

σ2
n

2Ps|α|2

{(
∂
∂u

ϕϕϕ N(u)
)H

FB(FB)H ∂
∂u

ϕϕϕ N(u)

}−1

. (1.15)

Proof. The proof follows from simplifying (1.13) using (1.14), and is provided in Sec-

tion 1.1.

CRB for the Proposed Sensing Strategy: Let WP = [wP
0 ,w

P
1 , . . . ,w

P
L−1] ∈ CN×L be the L

beamformers designed under SVAM as described in (1.4); superscript P highlights the

proposed SVAM sensing. Let FP = [f0, f1, . . . , fL/Nv−1]∈CM× L
Nv denote the matrix of SVAM

beamformers. We first present a simple lemma which will be useful in simplifying the

CRB expression. Let [v]m:n denote the vector formed from a vector v ∈ CN , using the

components indexed from m to n≥ m and m,n ∈ [N].

Lemma 2. For ϕϕϕ N(u) denoting ULA manifold vector with N elements and half-wavelength

inter-element spacing:

[
∂
∂u

ϕϕϕ N(u)
]

m:n
= exp( jmπu)

(
∂
∂u

ϕϕϕ n−m+1(u)+ jmπϕϕϕ n−m+1(u)
)
, (1.16)

where n≥ m and m,n ∈ [N].

Proof. The proof follows from expanding the LHS, and identifying the two terms from
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the RHS.

We have the following result.

Corollary 2.1. The CRB(u) using measurements in (1.2) from the beamformer matrix WP

under the construction in (1.4) over L snapshots when α is known is given by

CRB(u)=
1

Nv

σ2
n

2Ps|α|2

{(
∂

∂u
ϕϕϕ M(u)

)H

FP(FP)H ∂
∂u

ϕϕϕ M(u) +G

}−1

, where (1.17)

G=
π2(Nv−1)(2Nv−1)

6
ϕϕϕ M(u)HFP(FP)Hϕϕϕ M(u)

−π(Nv−1)Im

{(
∂
∂u

ϕϕϕ M(u)
)H

FP(FP)Hϕϕϕ M(u)

}
(1.18)

Proof. The proof follows from simplifying (1.13) using (1.4), and is provided in Section 2.1.

The CRB expression in (1.17) differs from the expression in (1.15) in two ways. The

first term in (1.17) involves an array of dimension M = N−Nv +1 instead of N in (1.15).

For large array sizes, N, which are typical in mmWave systems, we expect this term to be

similar to that in (1.15). Secondly, the denominator in (1.17) has an additional second

term ‘+G’. We show that the conditions under which G≥ 0 is not difficult to satisfy, by

deriving a sufficient condition to ensure the same.

Theorem 3. G in (1.18) is non-negative if

ϕϕϕ H
M(u)FP(FP)Hϕϕϕ M(u)
∥ϕϕϕ M(u)∥2 ≥

λmax
(
(FP)HPu,⊥FP)

4
, (1.19)

where λmax(X) denotes the largest eigenvalue of the matrix X. Pu,⊥ = [ϕϕϕ M(u) ϕϕϕ⊥M(u)]

×

 ∥ϕϕϕ M(u)∥2 0

0 ∥ϕϕϕ⊥M(u)∥2


−1

[ϕϕϕ M(u) ϕϕϕ⊥M(u)]H denotes a projection onto the subspace of
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orthogonal vectors ϕϕϕ M(u) and ϕϕϕ⊥M(u) =
[
− (M−1)

2 (1− (M−1)
2 ) . . . (M−1)

2

]T

⊙ϕϕϕ M(u).

Proof. The proof is provided in Appendix section 1.7.4.

The following remark discusses the implication of Theorem 3.

Remark 3. If the left singular vectors of FP includes ϕϕϕ M(u) and ϕϕϕ⊥M(u) (post-normalization),

we can further simplify (1.19). If ϕϕϕ M(u) leads ϕϕϕ⊥M(u), then (1.19) is trivially satisfied. If

the opposite is true, in that, ϕϕϕ⊥M(u) leads ϕϕϕ M(u), then (1.19) describes the required gap

in the two corresponding singular values within FP. In practice, we expect an adaptive

scheme to choose beamformers close to the direction of the DoA. Also, it was found out

that G≥ 0 very often even when FP contained i.i.d. complex Gaussian random entries.

The above analysis evaluates the impact of the SVAM sensing when compared to

a benchmark scheme. The benchmark analysis can be extended to include more general

scenario, wherein it need not repeat the beamformer in Nv snapshots. Since the contribu-

tion from each snapshot appears independent of other snapshots, as a linear sum in the

denominator in the general CRB expression in (1.13), any time a beamformer is repeated

in a benchmark scheme, it can be replaced with the proposed scheme. A similar impact

and analysis can be carried out to reveal ensuing benefits.

1.3.2 Case Study: Combining SVAM with HiePM Framework

The hiePM algorithm [35] processes each new snapshot and updates the beam-

former based on the current estimate of the posterior density on the unknown DoA. To

incorporate the proposed sensing, one approach is to update the beamformer after every

Nv snapshots, where Nv denotes the size of the virtual ULA. Within each Nv interval, a

SVAM beamformer, ft , is designed; ft is simply a codeword from the hierarchical code-

book that satisfies the selection criteria within hiePM framework. The beamfomer (of

physical antenna aperture size, N) for Nv snapshots within this interval is constructed as
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in (1.4). The remainder steps in Algorithm 1 in [35] are compatible with the proposed

sensing. This modification also becomes crucial when α is unknown; this is discussed in

Section 1.4.

Remark 4. The impact of the modification can be understood in the following manner.

The hiePM strategy in [35] may repeat the same beamformer multiple times until the

posterior condition triggers a new beamformer. While it repeats the beamformer, it gains

only in terms of the Signal-to-Noise Ratio (SNR), which is also evident from the CRB

analysis for the benchmark scheme in (1.15)4. Instead of a repeated beamformer, the

proposed sensing aims to achieve both, a SNR boost and at the same time an (virtual)

aperture gain (‘+G’ term in the CRB analysis). Since the adaptive beamformer sequence

is unknown apriori, analysis of the proposed modification to hiePM in this subsection is

more involved. Instead, we provide empirical studies in the next subsection.

Remark 5. The proposed sensing can be incorporated in other beam alignment procedures

as well. The inference procedure and adaptive strategy may require suitable modifications,

or be left unaltered as demonstrated using the hiePM case study in this subsection.

1.3.3 Numerical Results

We numerically analyze the benefits of the proposed sensing when used with

the hiePM framework in [35], and when α is assumed to be known. We compare the

hiePM [35] approach with i. the proposed modified algorithm in Section 1.3.2, and ii. the

benchmark scheme where the beamformer is simply repeated, as described in Section 1.3.1.

We assume that the DoA, u, lies in between [0,1) i.e., RoI is 1
2 of the entire space. The

information about the RoI is incorporated into the posterior calculation. We set the fol-

lowing parameters as: Physical antenna size: N = 64, number of grid points uniformly

spaced in RoI: G = 64, number of random realizations for averaging: Q = 1000. The main

metric employed for comparison is the root mean squared error (RMSE) computed in
4Nv multiplied with Ps in (1.15) indicates a Nv-fold SNR boost.
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(a) Snapshots, L = 60 (b) SNR = −10 dB (c) SNR = −5 dB

Figure 1.2. (a) RMSE vs SNR: Proposed SVAM sensing with modified-hiePM improves
over hiePM [35] when Nv ∈ {2,5}. (b) RMSE vs number of snapshots at SNR=−10 dB:
Proposed sensing reduces the duration needed for beam alignment when Nv ∈ {2,5}. (c)
RMSE vs number of snapshots at SNR=−5 dB: At high SNR, the proposed scheme still
improves over the benchmark scheme, but takes slightly more time to converge.

u-space as RMSE =
√

1
Q ∑Q

q=1
(
ûq−uq

)2.

Performance as a function of SNR: In Fig. 1.2 (a) we plot the RMSE as a function of

SNR for the modified-hiePM under the proposed SVAM sensing using different virtual

ULA sizes. As observed in this plot, given L = 60 snapshots, the curves using Nv = 2 and

Nv = 5 improve over the hiePM in [35]. As the virtual aperture increases, the number

of beamformer updates, given by ‘L/Nv’, reduces. Beyond Nv = 5, the reduced number

of updates or longer acquisition time before a beamformer update, is seen to negatively

impact the performance. Studying the tradeoff between the virtual aperture size and the

frequency of update as they impact the beam alignment performance is an important

future direction.

Performance as a function of number of snapshots: In Fig. 1.2 (b) and (c), we plot the

RMSE as a function of number of snapshots at SNR=−10 dB and −5 dB, respectively.

As observed from the Fig. 1.2 (b), the performance of hiePM improves under the proposed

sensing when Nv is set to either 2 or 5. Setting it to a higher value degrades the perfor-

mance, for reasons similar to those discussed for Fig. 1.2 (a). In red dashed curve we plot

the performance for hiePM with benchmark sensing scheme (in Section 1.3.1). Although
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the benchmark scheme improves the beam alignment duration over hiePM (solid blue

curve), it still is much higher compared to setting Nv = 2 in the proposed sensing. This

indicates that the improvement under SVAM is not merely due to more reliable beam-

former adaptations caused by basing adaptations on more measurements. It is inherent to

the phase response characteristics of the beamformer under SVAM, as described in (1.6).

Note that as we increase SNR to −5 dB, the performance gains can be limited as seen

from Fig. 1.2(b). This highlights that SVAM is beneficial in reducing the training time

at low SNR. Also it is again observed that SVAM improves over the benchmark scheme.

Thus, a dynamic method to adapt the virtual ULA size is an interesting future direction.

1.4 Beam Alignment Algorithm with Unknown α

We begin with a wide RoI, u ∈ [ul,ur],ul < ur,ul,ur ∈ [−1,1), and presume that the

DoA lies within the RoI. Therefore, we initially set the SVAM beamformer to span this

region and suppress any interference coming from outside the RoI. This ensures that we

incorporate any prior information available about the DoA. The approach is also practical,

as base stations are typically deployed with dedicated antennas to serve a specific RoI. We

collect measurements over time and process them to compute an approximate posterior

on the unknown angle. We adapt SVAM beamformer once we accrue enough posterior

mass around the mode of the posterior. We now describe the methodology adopted in

this work to estimate the posterior and to adapt the SVAM beamformer over time.

1.4.1 Algorithm Preliminaries: Initializing Angular Grid and Stochastic
Modeling of both α and u

Since α is unknown but assumed to be fixed during the training phase, it can

be estimated along with the DoA given two or more measurements. We observe this

from the conditional CRB on variance for angle estimation when α is unknown. Let

W = [w0, . . . ,wL−1]∈CN×L denote the beamformer matrix used to generate measurements
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y = [y0, . . . ,yL−1]
T ∈CL as in (1.2). The beamformers may be designed generally, and not

necessarily under SVAM. The CRB(u) is given by

CRB(u)=
σ2

n
2Ps|α|2

{(
∂

∂u
ϕϕϕ N(u)

)H

W

×
(

I−WHϕϕϕ N(u)ϕϕϕ N(u)
HW

ϕϕϕ N(u)HWWHϕϕϕ N(u)

)
WH ∂

∂u
ϕϕϕ N(u)

}−1

, (1.20)

and can be derived from the conditional CRB expression (Theorem 4.1) in [63] by stack-

ing all L snapshots along a column and replacing ϕϕϕ N(u) and ∂
∂uϕϕϕ N(u) by WHϕϕϕ N(u) and

WH ∂
∂uϕϕϕ N(u), respectively. For L = 1, we can see that the CRB is infinite. Furthermore,

if the beamformer is kept fixed over time i.e., if wl = w0, l ∈ [L], or in general if W is

rank-one, even then the CRB is infinite. This exercise highlights a key requirement for

being able to estimate both DoA and α simultaneously. The magnitude or phase response

of the beamformer wl should have variation over time, and it must vary differently for

different angles. The requirement is not satisfied in the case of hiePM algorithm, if initial

measurements are all taken using a fixed codeword, which is possible, early on, within the

hiePM framework5. In the proposed sensing scheme this condition is naturally prevented,

as the phase response (over time) leads to the virtual array manifold, which is sufficient

to estimate both α and u when Nv > 1 and given at least two measurements.

The two basic pre-requisities for adapting the SVAM beamformer are the next

beam direction to steer towards, and the beamwidth. Since the problem-at-hand considers

the single path scenario, the beam direction can be estimated by matching-based criteria

which results in a maximum likelihood estimate (MLE), and it also yields a deterministic

estimate for α . However, for a good beamwidth selection we need to account for the

uncertainty in the estimation procedure. The bounds for the CRB analysis can be used.

In this work, we achieve this by modeling both α and the unknown DoA, u, as stochastic
5The CRB analysis is applicable when the unknowns (α,u) are estimated in the maximum likelihood

sense. The issues can be circumvented by imposing a grid or strong prior information on α [37].
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variables. For the latter, we impose a uniform prior distribution in the wide RoI. We

model α with a complex circular Gaussian distribution with a parameterized prior.

We introduce a uniform grid, ugrid, of size G within the RoI, [ul,ur]. Let ui, i ∈ [G],

denote the i-th grid point. The initial grid can be refined as we successively reduce un-

certainty of the estimate for u over snapshots. The grid refinement aspect is not focused

in this paper, and left as future work. For each candidate DoA, ui, we estimate a corre-

sponding value for the complex path gain; let us denote the same as αi. We impose the

following parameterized prior on αi

αi ∼ C N (0,γi). (1.21)

Remark 6. Assigning a different complex gain, αi, per candidate angle, ui, is a non-trivial

choice. By doing so, we allow each candidate ui to explain the measurements at its best.

Going forward, we explicitly utilize the presence of a single path by identifying suitable

value for hyperparameters, γi, separately, instead of jointly. A joint optimization is widely

adopted in the absence of knowledge of the model order [12].

A consequence of the prior imposed in (1.21) is that the marginalized pdf of the

measurements ỹt in (1.8) after (t+1)Nv snapshots, conditioned on angle u = ui is given by

f (ỹt | u = ui;γi) =
∫

f (ỹt | u = ui,αi) f (αi;γi)dαi

=
1

π(t+1)Nvdet(ΣΣΣi,t)
exp
(
−ỹH

t ΣΣΣ−1
i,t ỹt

)
, where (1.22)

ΣΣΣi,t= Psγi

(
β̃ββ t(ui)⊗ϕϕϕ Nv

(ui)
)(

β̃ββ t(ui)⊗ϕϕϕ Nv
(ui)
)H

+σ2
n I

= Psγi

(
β̃ββ t(ui)β̃ββ t(ui)

H
)
⊗
(
ϕϕϕ Nv

(ui)ϕϕϕ Nv
(ui)

H)+σ2
n I, (1.23)

where in the last line, we use the mixed product property of Kronecker product, namely
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if matrix products AC and BD are defined, then (A⊗B)(C⊗D) = AC⊗BD. Note that

σ2
n is assumed to be known6. In the absence of such knowledge, it can be included in the

estimation procedure (see [12]). We focus on the estimation of α in this work, and study

the impact of imperfect knowledge of σ2
n in the simulation section.

1.4.2 Estimation of Hyperparameters under the MLE Framework

We find the hyperparameters of the imposed prior, namely γi, i ∈ [G], in the MLE

sense. The derivation is simple, and similar to the work in [13,64]. Since ΣΣΣi,t in (1.23) can

be expressed as a rank-one perturbation to the noise covariance matrix, the determinant

can be expressed in closed-form as

det(ΣΣΣi,t) = (Psγigt(ui)∥ϕϕϕ Nv
(ui)∥2

2 +σ2
n ) · (σ2

n )
(t+1)Nv−1, (1.24)

where gt(ui) = ∑t
t ′=0 |βt ′(ui)|2. Also, using matrix-inversion lemma, we can simplify ỹH

t ΣΣΣ−1
i,t

×ỹt as

ỹH
t ΣΣΣ−1

i,t ỹt= σ−2
n ∥ỹt∥2

2−
Psγi

σ2
n
×
|ϕϕϕ H

Nv
(ui)∑t

t ′=0 β c
t ′(ui)yt ′ |2

(Psγigt(ui)∥ϕϕϕ Nv
(ui)∥2

2 +σ2
n )

. (1.25)

Using (1.24) and (1.25), we maximize f (ỹt | u = ui;γi) over γi by setting the derivative

w.r.t. the same as zero. We get

γ̂i,t = max

0,
1

Psgt(ui)∥ϕϕϕ Nv
(ui)∥2

2
×


∣∣∣∣∣∣∣
(

β̃ββ t(ui)⊗ϕϕϕ Nv
(ui)
)H

∥β̃ββ t(ui)⊗ϕϕϕ Nv
(ui)∥2

ỹt

∣∣∣∣∣∣∣
2

−σ2
n


 . (1.26)

The above can be interpreted as normalized beamforming output power that is compen-

sated for the noise power. The beamformer in this case is the conventional beamformer [56]

and takes into account the complex gain, β̃ββ t(ui), from the SVAM beamformer ft ′ , t ′ ∈ [t+1].
6This assumption is also made in other works [35,37].
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The posterior density of αi is also complex circular Gaussian, and can be computed as

f (αi | ỹt ,ui; γ̂i,t) =
1

πσ̂2
αi,t

exp

(
−
|αi− µ̂αi,t |2

σ̂2
αi,t

)
, (1.27)

where µ̂αi,t =
√

Psγ̂i,t

(
β̃ββ t(ui)⊗ϕϕϕ Nv

(ui)
)H

ỹt

Psγ̂i,tgt(ui)∥ϕϕϕ Nv
(ui)∥2

2 +σ2
n

σ̂2
αi,t = γ̂i,t

σ2
n

Psγ̂i,tgt(ui)∥ϕϕϕ Nv
(ui)∥2

2 +σ2
n
.

(1.28)

1.4.3 Computing Posterior on u

We begin with describing the posterior probability, p(u = ui | ỹt), and identifying

the missing pieces for computing this posterior. Using Bayes’ rule, we can write

p(u = ui | ỹt)=
p(u = ui) f (ỹt | ui)

f (ỹt)

(a)
∝ f (ỹt | ui), (1.29)

where (a) follows from two facts: i. we rely on discrete uniform (prior) distribution on u,

ii. f (ỹt) does not depend on u. Consequently, the goal is to be able to compute f (ỹt | ui)

as accurately possible. We explore this direction next.

Using marginalization and Bayes’ rule we get

f (ỹt | ui)=
∫

f (ỹt ,α | ui)dα

=
∫

f (α | ui) f (ỹt | α,ui)dα. (1.30)

The integrand consists of two factors, of which, the second factor, f (ỹt | α,ui), is well-

defined, provided the distribution of noise. However, the first factor, f (α | ui), is unavail-

able.

In the absence of this knowledge, we approximate the unknown distribution with
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the best proxy available at-hand that uses all the available measurements i.e., we replace

f (α | ui) with f (αi | ỹt ,ui; γ̂i,t). The required quantity, f (αi | ỹt ,ui; γ̂i,t), was computed in

the previous subsection, and we update this proxy as we collect more measurements. In

other words, we compute the following approximate likelihood

f̂t(ỹt | ui)=
∫

f (αi | ỹt ,ui; γ̂i,t) f (ỹt | αi,ui)dαi

=
1

π(t+1)Nvdet(Σ̃ΣΣi,t)
exp
(
−ẽH

i,t Σ̃ΣΣ
−1
i,t ẽi,t

)
, (1.31)

where ẽi,t = ỹt− µ̃µµ i,t , µ̃µµ i,t =
√

Psµ̂αi,t

(
β̃ββ t(ui)⊗ϕϕϕ Nv

(ui)
)

and Σ̃ΣΣi,t = Psσ̂2
αi,t

(
β̃ββ t(ui)β̃ββ t(ui)

H
)
⊗(

ϕϕϕ Nv
(ui)ϕϕϕ Nv

(ui)
H) +σ2

n I. (µ̂αi,t , σ̂2
αi,t) were estimated in the previous subsection.

Next, we demonstrate the procedure to compute the required quantities in (1.31)

efficiently. We provide the final result below

det(Σ̃ΣΣi,t) = (Psσ2
αi,tgt(ui)∥ϕϕϕ Nv

(ui)∥2
2 +σ2

n )× (σ2
n )

(t+1)Nv−1 (1.32)

ẽH
i,t Σ̃ΣΣ
−1
i,t ẽi,t= σ−2

n ∥ẽi,t∥2
2−

Psσ2
αi,t

σ2
n
×

|ϕϕϕ H
Nv
(ui)∑t

t ′=0 β c
t ′(ui)ẽi,t ′ |2

(Psσ2
αi,tgt(ui)∥ϕϕϕ Nv

(ui)∥2
2 +σ2

n )
. (1.33)

Once the required quantities in (1.31) are computed, we compute the likelihood estimate,

f̂t(ỹt | ui), for all grid points ui, i ∈ [G], in the RoI. We get the estimate for the posterior

as

p̂t(u = ui | ỹt) =
f̂t(ỹt | ui)

∑i′ f̂t(ỹt | ui′)
. (1.34)

Let p̂t = [ p̂t(u0 | ỹt), p̂t(u1 | ỹt), . . . , p̂t(uG−1 | ỹt)]
T . We adapt the SVAM beamformer, ft+1,

for the next snapshot based on the computed posterior in (1.34). We discuss this step

next.

1.4.4 Proposed Adaptive SVAM Beamforming Algorithm

The aim is to ensure that the DoA lies within the passband of the SVAM beam-

former, ft , so that effective received SNR for inference is high. A high effective SNR helps

32



Algorithm 1: Proposed Adaptive SVAM Beamforming
Result: Beam direction: u∗

Input: L,Nv,Ps,σ2
n ,beam_dir,BWf := BWinitial, pthresh

1 Initialize: beam_spec_initial := {beam_dir,BWf}, f0 :=
beamformer_design(beam_spec_initial)

2 for l := 0 to L−1 do
3 yl = wH

l xl (New measurement, wl as in (1.4))
4 if mod(l +1,Nv) = 0 then
5 t := (l +1)/Nv−1
6 Form yt , then ỹt as in (1.7) and (1.8) respectively
7 (α Prior): Compute γ̂i,t as in (1.26), i ∈ [G]

8 (α Posterior): Compute µ̂αi,t , σ̂2
αi,t as in (1.28)

9 (Likelihood | ui): Compute likelihood in (1.31)
10 (ui Posterior): p̂t :=Compute pmf in (1.34)
11 BWcheck := 0.5×BWf
12 [peak_prob,beam_spec] := cumul_peak(p̂t ,BWcheck) (Algorithm 2)
13 while peak_prob < pthresh do
14 BWcheck := 2×BWcheck
15 [peak_prob,beam_spec] := cumul_peak(p̂t ,BWcheck) (Algorithm 2)
16 end
17 BWf := BWcheck
18 ft+1:=beamformer_design(beam_spec)
19 end
20 end
21 i∗ := argmaxi p̂L/Nv−1(ui | ỹL/Nv−1),u∗ := ui∗

further to ensure a successful beam alignment. The presented approach still may not en-

sure that the DoA always stays in the passband. We circumvent this issue by evaluating

the posterior p̂t(ui | ỹt) over the entire RoI. This allows the posterior mass to move freely

and helps to recover when the SVAM beamformer adapted prematurely in the incorrect

region. In other words, even if we adapt the SVAM beamformer, the RoI is kept fixed.

Proposed Algorithm: We initially set the beam direction of the SVAM beamformer, f0,

to the centre of the RoI, and the beamwidth to BWf = BWinitial < 2 in u-space; BWinitial

chosen to cover the RoI. We adapt the SVAM beamformer only if there is a sufficient

posterior mass concentrated around the posterior mode. More specifically, we adapt

the beamformer if the peak of the posterior mass in any contiguous span of a specific
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Algorithm 2: Cumulative Posterior Peak
Result: peak_prob,beam_spec := {BD_sel,BW′}
Input: p,BW′

1 Initialize: 1BW′ (vector of 1’s of size ≡ BW′)
2 mode := argmax j p( j)
3 cumul_prob := p∗1BW′ (‘∗’: convolution operation)
4 [peak_prob,k] := max(cumul_prob(mode : mode+ size(1BW′)−1)
5 BD_sel := ugrid(mode+ k)−BW′/2

beamwidth, that includes the posterior mode, exceeds a fixed threshold pthresh. We begin

with setting the beamwidth for this search to BWcheck = 0.5×BWf i.e., half of the current

beamwidth for the SVAM sensing. If the threshold condition is not satisfied, BWcheck

is doubled. This continues until the posterior threshold condition is met. Note that in

the default scenario, the next beam resorts to the initial beam specifications. When the

posterior threshold condition is met, the corresponding contiguous span of angular grid

points is selected, and the next SVAM beamformer, ft+1, is designed to cover the selected

region. The threshold parameter pthresh may be set to a fixed value or chosen dynamically.

A lower value for pthresh allows the SVAM beamformer to adapt often, whereas a higher

value makes the adaptations more cautious. We discuss the role of this crucial parameter

in detail in Section 1.5. Algorithm 1 summarizes the overall approach.

Remark 7. The proposed adaptive beam search mechanism has the ability to both refine,

as well as correct erroneous adaptations. In the case when the beam is adapted in the

wrong portion of the spatial region, the posterior mass along with the mode is expected to

either shift or widen as more measurements are collected. The beam gets rectified within

the proposed scheme as the search is carried out around the updated posterior mode, and

it has the ability to widen the beamwidth beyond the BWf presently in use for the sensing.

The presented approach to adapt the beamformer has an equivalent representation

within the compact hierarchical codebook, and is discussed next.

Using Hierarchical Codebook: The proposed scheme in Algorithm 1 adopts a flexible
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Algorithm 3: Beam Search In Hierarchical Codebook
Result: lh

final ∈ [log2 G],kh
final ∈ [2lh

final−1]
Input: lh

init (current level in hierarchy), p (posterior pmf), G, pthresh

1 Initialize: lh := lh
init +1,Glh := 2lh

2 mode := argmax j p( j)

3 (node at level lh): kh := floor
(

mode× Glh
G

)
4 for l̄h := lh to 0 (descending) do
5 node_k_ind := G

Glh
kh : G

Glh
(kh +1)−1

6 if sum(p(node_k_ind))≥ pthresh then
7 break
8 else
9 kh := floor(kh/2)

10 Glh := Glh/2
11 end
12 end
13 lh

final := lh,kh
final := kh

beam design which requires beam direction and beamwidth to design the SVAM beam-

former. In some cases, such flexible beam designs may not be possible due to complexity,

and a smaller codebook may be desired. We take an example of the (binary) hierarchical

codebook [36] and demonstrate the procedure to select a codeword based on the posterior

computed in (1.34). The procedure closely mimics the approach taken in Algorithm 1,

while constraining the beam to belong to the hierarchical codebook.

The basic idea is to begin at one level below in hierarchy compared to the cur-

rent level used for SVAM sensing, and traverse up the hierarchy to satisfy the posterior

condition. At one-level below current, we begin with that node which contains the pos-

terior mode. The principle in doing so, is to try and ensure that the DoA is included in

the next beam. We summarize this beam search in Algorithm 3 which can replace line

11−18 in Algorithm 1. We also study the impact of using a hierarchical codebook on the

performance of the proposed adaptive scheme in simulation Section 1.5.6.

Remark 8. A variation on the beam search Algorithm 3 is to initialize the search at a
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deeper hierarchical level, which can be favourable to converge early at high SNRs, but

may lead to premature beam focusing at low SNRs. Similar idea can be incorporated

with Algorithm 1 as well. This is not explored further in this paper, but left as future

work.

On HiePM-based Beam Alignment: The posterior computed in (1.31) involves approxi-

mating the posterior on α , f (α | ui), using a Gaussian density, f (αi | ỹt ,ui; γ̂i,t). This

allows to bypass a grid approach on α , which was explored in [37] under Algorithm 1.

Although the grid approach can be more accurate, it is computationally expensive. Also

initializing an appropriate grid on α is a non-trivial problem.

Although the adopted prior on α in this work and within Alg. 2 in [37], both are

Gaussian distributed, there is an important distinction. The presented approach utilizes

a parameterized Gaussian prior unlike the fixed Gaussian prior in [37]. This has a couple

of implications: a) We allow the framework to learn the relevant parameters directly

from the measurements without relying on any additional information such as prior mean

or variance, b) The choice of prior here allows the framework to fit the best Gaussian

posterior on α using the measurements, in contrast to the fixed prior case where only the

posterior mean is learned from measurements and the variance in the passband depends

only on the prior and the noise variance level. It is known that the inference is less

sensitive to the values of higher-level hyperparameters than the values for the α-prior

distribution (see [30] and references therein). This leads to more robust learning.

Most importantly, the proposed approach processes measurements jointly for com-

puting the posterior on u (see (1.29)). In contrast, in [37] the u-posterior is updated

sequentially. Since α is considered static in time, both in this work and within Algorithm

2 in [37], and because the posteriors are approximate, it was observed that processing mea-

surements jointly instead of sequentially performs better. In other words, the u-posterior

at previous snapshot is not a sufficient statistic when computed approximately. The
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impact is studied in Section 1.5.1.

1.5 Numerical Results

In this section we perform numerical experiments to study the performance of the

proposed sensing and beam alignment Algorithm 1 under different scenarios, and the

impact of the parameters involved. The parameters that are central to the performance

include i. Size of the virtual ULA, Nv, ii. noise variance parameter σ2
n , iii. posterior

threshold, pthresh. In Section 1.3.3, we studied the role of Nv; we focus on the parameters

σ2
n and pthresh in this section. We assume that the DoA lies in between [0,1) i.e., RoI is

1
2 of the entire space. The information about the RoI is incorporated into the posterior

calculation. Note that the RoI can be arbitrary, and one may choose a wider or narrower

RoI depending on the use case specifications. The virtual ULA constructed here has the

same inter-element spacing as the physical antenna. Depending on the RoI, a wider virtual

inter-element spacing can be realized7, but in the following simulation we do not exploit it

further. We set the following parameters, unless otherwise specified as: Physical antenna

size: N = 64, number of grid points uniformly spaced in RoI: G = 64, virtual ULA size:

Nv = 4, total number of snapshots: L = 120, number of random realizations for averaging:

Q = 100. The SVAM beamformer is designed using the Parks-McClellan algorithm [58]

with the passband edge set to realize the desired beamwidth, and the transition width set

as a fraction of the desired beamwidth.

1.5.1 Performance of Algorithm 1 as a function of SNR

In Fig. 1.3, we study the RMSE in u-space as a function of SNR in dB. The red

curve (with pentagram markers) plots the performance of hiePM with the SVAM sensing

scheme (Section 1.3.2). It is seen to improve over the hiePM algorithm in blue curve
7For e.g., here a λ -spacing instead of λ/2 may be realized without causing ambiguity in angular

estimation, since the DoA lies in 1
2 of the spatial region.
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Figure 1.3. RMSE as a function of SNR. Performance of Algorithm 1 is observed to be
close to the performance of algorithms using true α .
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with hexagram markers, at SNR={−15,−12.5} dB. These two curves assume that α is

known. At high SNR, the schemes incur zero error in this experiment as the DoA is

on-grid. The green curves plots the performance of the proposed approach when α is

unknown. The different curves correspond to different posterior threshold, pthresh, levels

for adapting the beamformer. At lower thresholds, the algorithm has the ability to adapt

often. This may lead to slightly unstable performance, especially at low SNR, which is

observed in the green-dashed curve with ◦ markers where pthresh = 0.5 is used. Setting

a high pthresh requires a higher posterior mass to be accumulated for the beamformer

to adapt. This adds more stability to the algorithm, but may incur slow beamformer

adaptations, especially at high SNR. This is seen in green-dashed curve with x markers

where pthresh = 0.8 is set. Note that all the green curves are already close to the blue

and red curves, without assuming any knowledge of α . The curve for the Algorithm 2

in [37] is plotted in purple with ∆ markers. The algorithm is provided with the true value

of α as mean along with variance set to 1 for the Gaussian α-prior. It is competitive

at low SNR as it hinges on the already good prior information, whereas at high SNR it

disregards the provided prior. Another important reason behind the large gap between

this curve, and the blue curve with hexagram markers is the fact that the static α-case

considered in [37] is not exploited8. The proposed beam alignment procedure exploits

the same, and thus demonstrates a drastic improvement as the resulting posterior on

angle is more accurate. We plot the (conditional) CRB on variance of angular estimation

for two schemes i. using a non-adaptive SVAM beamformer with beam direction as 0.5

and beamwidth as 1 ii. using adaptive SVAM beamformers chosen during runtime of

Algorithm 1 with pthresh = 0.6. As seen in Fig. 1.3, the curves using proposed approach

attains (& surpasses) the CRBs as SNR increases. Note that since the DoA is on grid

which is also employed by the algorithms, they are biased. Thus, CRB is not a valid lower
8Posterior on α at current snapshot is used to compute likelihood of current measurement, but not

utilized to update likelihoods of previous measurements.
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Figure 1.4. Beamforming gain over time (SNR=−10 dB).

bound. Still it provides useful insight about the performance of the proposed inference

procedure.

1.5.2 Beamforming gain over time using Algorithm 1

In Fig. 1.4, we study the beamforming gain experienced by the DoA using Algo-

rithm 1 at SNR of −10 dB. We plot the mean, maximum and the minimum beamforming

gain over time (in terms of the virtual ULA segment index t) over 100 random realizations.

In Fig. 1.4 (a) and (b) we plot the results when pthresh is set to 0.6 and 0.7, respectively.

As expected, at a lower posterior threshold the algorithm is more flexible, and thus the

maximum beamforming gain is achieved earlier than compared to the case when a higher

posterior threshold is set. In contrast, the minimum beamforming gain may be less stable

when the beamformer is adapted frequently at such low SNR. This is seen in plot (a) where

the minimum gain fluctuates even after 25 virtual ULA segments i.e., 25×4 = 100 snap-

shots. The solid curve representing the mean beamforming gain indicates how the gain

improves over time as the beamwidth adaptively narrows. We also plot the beamforming

gain achieved by an ideal beamformer. A hierarchical level lh ∈ {1,2, . . . ,5} indicates a

beam focused in 2/2lh+1 of the spatial region and consequently achieves a beamforming
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gain of 2lh+1/2, in absolute scale. As observed in both the plots, beginning with a beam-

former focusing on 1
2 of the space (equivalently 10log10(2)≈ 3 dB gain), the beamformer is

able to adapt to 1/32-fraction, garnering a beamforming gain of around 10log10(32)≈ 15

dB. Thus, the proposed algorithm adds around 12 dB gain at −10 dB SNR.

1.5.3 Impact of Posterior Thresholds on the amount of Adaptation

In Fig. 1.5, we study the average number of BF adaptations made as a function

of SNR. We study using bar plots for the proposed algorithm under different settings of

the posterior thresholds = {0.5,0.6,0.7,0.8}. At high SNR, we expect less impact of the

different settings as the posterior mass is expected to concentrate quickly around the true

angle. This is seen in the Fig. 1.5, as all settings result in 6−7 beam adaptations. At low

SNR, setting a high threshold results in the algorithm using the widest beam for longer

time. This is observed in the purple bars at low SNR, where the number of adaptations
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is lower compared to other posterior threshold settings. It can be seen that the number

of adaptations in this case (i.e., posterior threshold set to 0.8) initially increases as SNR

increases, then peaks at SNR=−7.5 dB, and then drops as SNR increases further. This

trend shifts to the right as the posterior threshold is reduced. This is expected, as the

BF adapts more aggressively. With the posterior threshold set to 0.5, the BF is observed

to adapt almost for every virtual ULA measurement i.e., L/Nv = 120/4 = 30 times at

SNR=−20 dB.

1.5.4 Performance as a function of number of snapshots

In Fig. 1.6 we plot the RMSE over time (in terms of the number of virtual ULA

measurements t). We plot the hiePM algorithms with α perfectly known for compari-

son. In Fig. 1.6 (a) and (b), we plot curves corresponding to SNR= −10 dB and 0 dB,

respectively. We study two curves corresponding to the proposed scheme i. pthresh = 0.6

(yellow curve with x markers) ii. pthresh = 0.8 (purple curve with ⋄ markers). The for-

mer setting allows the beamformer to aggressively adapt, which can be rewarding at high

SNR, but can lead to poor beamforming gain in the low SNR regime as it adapts to

incorrect regions. This is seen in the two plots, at high SNR the curve corresponding to

pthresh = 0.6 converges quickly, whereas at low SNR it leads to larger error and variance

initially, compared to setting pthresh = 0.8. Note that even at low SNR and low threshold

setting (Fig. 1.6 (a)), the yellow curve manages to adapt back to the correct spatial region,

which is indicated by a drop in RMSE around t = 25 and is able to retain the improvement

over time. Overall, it is observed that a high pthresh leads to stable yet slow convergence,

which is useful when the SNR is low and if the training duration is short. At high SNR

or if the training duration is longer, a low pthresh pays off, as the algorithm is robust to

recover from its mistakes!

One may dynamically select pthresh such that it is set to higher value initially during

the training phase, but it may be reduced over time as the beamformer narrows further
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(a) SNR =−10 dB (a) SNR = 0 dB

Figure 1.6. RMSE over time. Shaded region covers the RMSE ± root standard deviation
of squared error over time at every time index along x-axis.

and enjoys a high beamforming gain. This is left for future work.

1.5.5 Studying Impact of Noise Variance Parameter

We plot the RMSE as a function of different settings for the noise variance param-

eter in Fig. 1.7. The optimal value is observed to be around the true noise variance value.

We also plot curves corresponding to different posterior thresholds. For a low posterior

threshold, the optimal value of the noise variance parameter is observed to be slightly

higher (×2) than or equal to the true value. This is due to the aggressive nature of the

algorithm to adapt, which can be compensated by setting a slightly higher noise variance

parameter. On the other hand, a high posterior threshold already imparts more stable

adaptations, and consequently does not need setting a higher noise variance parameter.

In fact, at such large thresholds, the algorithm benefits from lower noise variance param-

eter setting, which intuitively offsets the conservative posterior threshold setting. This

is observed by the curve corresponding to pthresh = 0.9, where setting noise variance to

0.5×σ2
n leads to much better performance than setting it to the true value.
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Figure 1.7. RMSE vs. x×σ2
n ,x ∈ {0.1,1/8,1/4,1/2,1,2,4,8,10}. SNR=−10 dB, L = 200.

As the posterior threshold increases, the optimal value for the noise variance parameter
is observed to be lower than the true value.
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Figure 1.8. RMSE as a function of SNR. A hierarchical codebook is used, which results
in little to no performance loss, indicating that the overall performance gain is unaffected
by the compact hierarchical codebook.

44



-20 -15 -10 -5 0 5 10

SNR in dB

10-3

10-2

10-1

100
R

M
S

E
 i

n
 u

-s
p

a
c

e

Prop. Sensing & Inference

(post. thresh=0.6)

hiePM-  known

Prop. Sensing-hiePM

-  known

Kalman Filt.-PM

 Prior: CN( ,1)

 static posterior

learn  prior,

posterior

+SVAM sensing

+Proposed feedback

Figure 1.9. Studying the impact of each component in Proposed Initial Alignment algo-
rithm

1.5.6 Impact of compact hierarchical codebook (Algorithm 3)

In Fig. 1.8, we plot the curve corresponding to using a hierarchical codebook

(see purple curve with ⋄ markers). The approach is described in Algorithm 3. We set

pthresh = 0.6 and compare the performance with using the flexible codebook (see green

curve with ◦ markers). As observed in Fig. 1.8, the two implementations have very similar

performance. This suggests that the superior performance is due to other ingredients,

namely i. improved sensing (and filter design), ii. good posterior estimate, and iii. good

adaptive strategy. A large codebook size helps, but is not the key to the performance

improvement demonstrated in this paper.
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1.5.7 From Kalman Filtering-based HiePM algorithm to Proposed
SVAM sensing and Inference: Step-By-Step Analysis

In Fig. 1.9, we study the impact of each component within proposed algorithm

beginning from the purple curve (with triangle pointed up) corresponding to Kalman-

Filtering-based HiePM algorithm, through a step-by-step modification. First, a static

alpha over time is imposed in the reference algorithm, and it uses the common statistics to

compute angular posterior. This leads to the light-blue curve (with triangle pointed down).

This marks significant improvement overall. Then, with the aim to relax the known alpha

prior mean assumption, the prior and posterior on alpha is learned from measurements.

This leads to slight degradation of performance at low SNR but improvement at high

SNR (as expected), as shown in the brown curve (with triangle pointed right). SVAM

sensing is then included, which again leads to significant performance improvement, as

seen in red curve (with triangle pointed left). Finally, hiePM’s feedback is replaced with

proposed feedback including filter design with Parks-McClellan algorithm. This leads to

the best performance presented in this work, as shown in the yellow curve (with diamond

markers). It was observed that if the filter design is replaced with LS-based filter design

in [36], the performance is bad. This highlights the importance of having a linear phase

filter as used throughout in this work.

1.6 Conclusion

We proposed a novel Synthesis of Virtual Array Manifold (SVAM) sensing ap-

proach for the mmWave single RF chain systems and discussed the ensuing benefits. More

specifically, the proposed sensing is demonstrated to lead to faster and more robust beam

alignment. We believe this contribution will have significant impact on the traditional

paradigm for sensing in mmWave systems. We also proposed a novel inference scheme

that estimates a posterior density on the small-scale fading coefficient and the unknown
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dominant path angle. Based on the proposed inference procedure, an adaptive beam-

forming scheme is provided that aims to collect high SNR measurements. Finally, the

performance of the proposed active sensing scheme is evaluated under different scenarios,

and a significant improvement over various benchmarks is demonstrated. The empirical

study also reveals the impact of the different design parameters on the beam alignment

performance.

Chapter 1, in part is currently submitted for publication of the material, and in

part, is a reprint of the material as it appears in R. R. Pote and B. D. Rao, “Novel Sensing

Methodology for Initial Alignment Using MmWave Phased Arrays,” 2023 57th Asilomar

Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2023. The

dissertation author was the primary investigator and author of this material.

1.7 Appendix

1.7.1 Proof of Theorem 1

Proof. Given that α is known, the likelihood of the measurements y = [y0, . . . ,yL−1]
T as a

function of u is given by

f (y;u) =
1

πLdet(σ2
n I)

exp−
(y−µµµy(u))

H(y−µµµy(u))
σ2

n
, (1.35)
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where µµµy(u) =
√

PsαWHϕϕϕ N(u). We can compute the required second derivative w.r.t. u

of the negative log-likelihood and the expectation as

− ∂ 2

∂u2 ln f (y;u)=
Ps|α|2

σ2
n

2Re

{(
∂ 2

∂u2 ϕϕϕ N(u)
)H

WWHϕϕϕ N(u)

}

+
Ps|α|2

σ2
n

2
(

∂
∂u

ϕϕϕ N(u)
)H

WWH ∂
∂u

ϕϕϕ N(u)

−
√

Psα
σ2

n
2Re

{
yHWH ∂ 2

∂u2 ϕϕϕ N(u)
}

(1.36)

E
[
− ∂ 2

∂u2 ln f (y;u)
]
=

Ps|α|2

σ2
n

2
(

∂
∂u

ϕϕϕ N(u)
)H

WWH ∂
∂u

ϕϕϕ N(u).

The Cramér-Rao lower bound is given by, CRB(u) = E
[
− ∂ 2

∂u2 ln f (y;u)
]−1

. This completes

the proof.

1.7.2 Proof of Corollary 1.1

Proof. We need to simplify the quadratic term in the CRB(u) expression from Theorem 1

using the property of the beamformer in (1.14).

(
WB)H ∂

∂u
ϕϕϕ N(u)=

((
FB)H⊗1Nv

) ∂
∂u

ϕϕϕ N(u)

=

((
FB)H ∂

∂u
ϕϕϕ N(u)

)
⊗1Nv . (1.37)

And,

(
∂

∂u
ϕϕϕ N(u)

)H

WB (WB)H ∂
∂u

ϕϕϕ N(u)=
(((

FB)H ∂
∂u

ϕϕϕ N(u)
)
⊗1Nv

)H

×
(((

FB)H ∂
∂u

ϕϕϕ N(u)
)
⊗1Nv

)
= Nv

(
∂
∂u

ϕϕϕ N(u)
)H

FB(FB)H ∂
∂u

ϕϕϕ N(u). (1.38)

This completes the proof.
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1.7.3 Proof of Corollary 2.1

Proof. Using Lemma 2, we can express

(
WP)H ∂

∂u
ϕϕϕ N(u)=

((
FP)H⊗ϕϕϕ Nv

(u)
) ∂

∂u
ϕϕϕ M(u)+

((
FP)H⊗ ∂

∂u
ϕϕϕ Nv

(u)
)

ϕϕϕ M(u)

(a)
=

((
FP)H ∂

∂u
ϕϕϕ M(u)

)
⊗ϕϕϕ Nv

(u)+
((

FP)H ϕϕϕ M(u)
)
⊗ ∂

∂u
ϕϕϕ Nv

(u). (1.39)

where in (a) we use the following result on Kronecker product: (A⊗B)(C⊗D) = AC⊗BD,

provided the matrix products AC and BD are conformable. Then, the required quadratic

term can be simplified as

(
∂

∂u
ϕϕϕ N(u)

)H

WP (WP)H ∂
∂u

ϕϕϕ N(u)

(a)
= Nv

(
∂

∂u
ϕϕϕ M(u)

)H

FP (FP)H ∂
∂u

ϕϕϕ M(u)

+
π2(Nv−1)Nv(2Nv−1)

6
ϕϕϕ H

M(u)FP (FP)H ϕϕϕ M(u)

−π(Nv−1)NvIm

{(
∂
∂u

ϕϕϕ M(u)
)H

FP (FP)H ϕϕϕ M(u)

}
(1.40)

1.7.4 Proof of Theorem 3

Proof. We first note that the following holds

∂
∂u

ϕϕϕ M(u) = jπ
{
(M−1)

2
ϕϕϕ m(u)+ϕϕϕ⊥M(u)

}
, (1.41)
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where ϕϕϕ⊥M(u) =
[
− (M−1)

2 (1− (M−1)
2 ) . . . (M−1)

2

]T

⊙ ϕϕϕ M(u), ‘⊙’ denotes Hadamard

product. Using the result in (1.41) we simplify the second term in G as

−π(Nv−1)Im

{(
∂

∂u
ϕϕϕ M(u)

)H

FP(FP)Hϕϕϕ M(u)

}
= π2(Nv−1)Re

{(
(M−1)

2
ϕϕϕ H

M(u)+
(

ϕϕϕ⊥M(u)
)H
)

FP(FP)Hϕϕϕ M(u)
}

= π2(Nv−1)
{
(M−1)

2
ϕϕϕ H

M(u)FP(FP)Hϕϕϕ M(u)+Re
{((

ϕϕϕ⊥M(u)
)H
)

FP(FP)Hϕϕϕ M(u)
}}

≥ π2(Nv−1)
{
(M−1)

2
ϕϕϕ H

M(u)FP(FP)Hϕϕϕ M(u)−
∣∣∣ϕϕϕ H

M(u)FP(FP)Hϕϕϕ⊥M(u)
∣∣∣}

= π2(Nv−1)ϕϕϕ H
M(u)FP(FP)Hϕϕϕ M(u)

{
(M−1)

2
−

∣∣∣ϕϕϕ H
M(u)FP(FP)Hϕϕϕ⊥M(u)

∣∣∣
ϕϕϕ H

M(u)FP(FP)Hϕϕϕ M(u)

}
. (1.42)

Thus to ensure

G ≥ 0

=⇒ c

{
(2Nv−1)

6
+

(M−1)
2

−

∣∣∣ϕϕϕ H
M(u)FP(FP)Hϕϕϕ⊥M(u)

∣∣∣
ϕϕϕ H

M(u)FP(FP)Hϕϕϕ M(u)

}
≥ 0 (1.43)

where c = π2(Nv−1)ϕϕϕ H
M(u)FP(FP)Hϕϕϕ M(u). The above implies

∣∣∣ϕϕϕ H
M(u)FP(FP)Hϕϕϕ⊥M(u)

∣∣∣
ϕϕϕ H

M(u)FP(FP)Hϕϕϕ M(u)
≤
{
(3M+2Nv−4)

6

}
∣∣∣ϕϕϕ H

M(u)FP(FP)Hϕϕϕ⊥M(u)∥ϕϕϕ M(u)∥
∥ϕϕϕ⊥M(u)∥

∣∣∣
ϕϕϕ H

M(u)FP(FP)Hϕϕϕ M(u)
≤C(N,Nv), (1.44)

where C(N,Nv) =
∥ϕϕϕ M(u)∥
∥ϕϕϕ⊥M(u)∥

{
(3M+2Nv−4)

6

}
,∥ϕϕϕ M(u)∥=

√
M,∥ϕϕϕ⊥M(u)∥=

√
M(M2−1)

2
√

3
. Note that

C(N,Nv) ≥
√

3 when Nv > 1. Let ϕϕϕ⊥M,n(u) = ϕϕϕ⊥M(u)∥ϕϕϕ M(u)∥
∥ϕϕϕ⊥M(u)∥

. The LHS can be further sim-
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plified to get∣∣∣ϕϕϕ H
M(u)FP(FP)Hϕϕϕ⊥M(u)∥ϕϕϕ M(u)∥

∥ϕϕϕ⊥M(u)∥

∣∣∣
ϕϕϕ H

M(u)FP(FP)Hϕϕϕ M(u)
=

√
ϕϕϕ H

M(u)FP(FP)Hϕϕϕ⊥M,n(u)(ϕϕϕ
⊥
M,n(u))HFP(FP)Hϕϕϕ M(u)

ϕϕϕ H
M(u)FP(FP)Hϕϕϕ M(u)

(a)
=

√
∥ϕϕϕ M(u)∥2ϕϕϕ H

M(u)FP(FP)HPu,⊥FP(FP)Hϕϕϕ M(u)

(ϕϕϕ H
M(u)FP(FP)Hϕϕϕ M(u))2

−1

(b)
≤

√
∥ϕϕϕ M(u)∥2λmax

(
(FP)HPu,⊥FP

)
ϕϕϕ H

M(u)FP(FP)Hϕϕϕ M(u)
−1. (1.45)

where in (a) we express ϕϕϕ⊥M,n(u)(ϕϕϕ
⊥
M,n(u))

H

∥ϕϕϕ⊥M,n(u)∥2 = Pu,⊥−
ϕϕϕ M(u)ϕϕϕ M(u)H

∥ϕϕϕ M(u)∥2 . Pu,⊥ = [ϕϕϕ M(u) ϕϕϕ⊥M(u)]

×

 ∥ϕϕϕ M(u)∥2 0

0 ∥ϕϕϕ⊥M(u)∥2


−1

[ϕϕϕ M(u) ϕϕϕ⊥M(u)]. In (b) we upper bound the quadratic term

using the largest eigenvalue, λmax
(
(FP)HPu,⊥FP), of the Hermitian-symmetric matrix

(FP)HPu,⊥FP. Thus a more stricter condition that satisfies the inequality in (1.44) is

given by

√
∥ϕϕϕ M(u)∥2λmax

(
(FP)HPu,⊥FP

)
ϕϕϕ H

M(u)FP(FP)Hϕϕϕ M(u)
−1≤C(N,Ns) (1.46)

which implies

ϕϕϕ H
M(u)FP(FP)Hϕϕϕ M(u)
∥ϕϕϕ M(u)∥2 ≥

λmax
(
(FP)HPu,⊥FP)

C2(N,Ns)+1
. (1.47)

Since C2(N,Ns)≥ 3, an even stricter but simplified condition than (1.47) is

ϕϕϕ H
M(u)FP(FP)Hϕϕϕ M(u)
∥ϕϕϕ M(u)∥2 ≥

λmax
(
(FP)HPu,⊥FP)

4
. (1.48)

This concludes the proof.
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Chapter 2

Light Weight Sequential SBL:
An Alternative to OMP

2.1 Introduction

Sparse signal recovery (SSR) has been recognized as an important signal processing

problem with numerous applications. Applications include biomedical imaging [4, 65, 66],

functional approximation [5], echo cancellation [6] and wireless communications [67–69].

The underlying problem in SSR can be stated as follows: Given a measurement matrix

ΦΦΦ ∈ Cm×n(m < n) and measurement vector y ∈ Cm such that

y = ΦΦΦx+n, (2.1)

may be corrupted by noise vector n ∈ Cm, the goal is to recover the vector x ∈ Cn which

is known to be sparse i.e., ∥x∥0≪ n. The noise, n, is distributed as C N (0,σ2
n I). x and

n are independent of each other.

Realizing the vibrant need for approaches, many algorithms have been proposed

that offer favourable tradeoffs between recovery performance, speed, and storage [7–14].

If the support size of x is known i.e., |x∥0 = k, where ∥·∥0 indicates the ℓ0 quasi-norm,
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then the problem in (2.1) may be written as

arg min
x∈Cn
∥y−ΦΦΦx∥2 s.t. ∥x∥0 = k. (2.2)

The problem in (2.2) is non-convex and involves a combinatorial search over the columns

of ΦΦΦ. Furthermore, in many problems of interest the support size is not explicitly provided,

and it must be estimated along with the non-zero entries in x. The approach in (2.2) can

be relaxed to the more amenable convex formulations such as LASSO, Basis Pursuit, etc.

Bayesian methods have also been investigated in the past, and they provide an alternative

perspective wherein the presumed deterministic nature of x is replaced with a stochastic

modeling. Such methods may lead to non-convex formulation. The use of Laplacian

prior is a well-known Bayesian method for enforcing sparsity. Another sub-class within

Bayesian methods is the Hierarchical Bayes framework. This will be subject of enquiry

in this work. In brief, the framework involves introducing hyperparameters that shape

the prior and a search for the right (empirical) prior in the hyperparameter space. The

hierarchical Bayes framework will be discussed more in the next section.

On the computationally favourable paradigm, greedy algorithms (e.g. pursuit al-

gorithms like matching pursuit (MP) [7], orthogonal MP (OMP) [15–18], compressive

sampling MP (CoSaMP) [19] etc.) are well-studied algorithms that offer faster recovery

at the cost of slight degradation in performance. OMP is a widely employed [20, 21] iter-

ative technique in this category that recovers x deterministically. Each iteration freezes

the past recovered support and optimizes (2.2) with respect to one additional column.

The non-zero entries in x of the past recovered support is also fixed during this step.

OMP improves over MP, in that in the second step, it ensures that the residual error is

orthogonal to all the selected columns of ΦΦΦ.

In this work, an alternative to OMP is provided wherein x is modeled as a stochas-

tic variable. Like OMP, the proposed algorithm is a greedy iterative algorithm. The
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contributions made in this work are identified below:

• Light weight sequential sparse Bayesian learning (LWS-SBL) algorithm is proposed as

an alternative to OMP. In contrast to OMP, it is derived from the Type-II estimation

framework and the stochastic maximum likelihood objective

• Computationally efficient steps based on recursive implementations are developed to

maintain a complexity similar to that of OMP

• Two perspectives are provided to comprehend LWS-SBL in comparison to OMP. These

perspectives highlight key differences between the two algorithms. The analysis also

highlights avenues where LWS-SBL improves over the OMP algorithm; more theoretical

justifications in this regard are provided

• For parametric dictionaries, the underlying goal of estimating parameter in a gridless

manner is identified and a gridless extension of proposed LWS-SBL algorithm is pro-

vided. In comparison to the work in [64], the computational step uses Newton updates

and thus is more economical

• Flexibility of the proposed approach to the multi-dimensional harmonic retrieval prob-

lem is demonstrated by describing the corresponding LWS-SBL extension and its grid-

less counterpart

The ideas presented in this work are empirically analyzed in the Section 2.7.

2.1.1 Organization of the Chapter and Notations

In Section 2.2 the proposed low complexity sparse signal recovery algorithm is de-

veloped and its computational complexity is compared with OMP. Two novel perspectives

to understand the operating mechanisms for the proposed algorithm is discussed under

Section 2.3 and Section 2.4 by focusing on global and local characteristics, respectively,

of the two algorithms. Extension of proposed algorithm to single dimension parametric
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problems for gridless sparse signal recovery is presented in Section 2.5. More extensions

to two dimensional harmonic retrieval problem is discussed in Section 2.6. Numerical

results for the algorithms proposed in this work are presented in Section 2.7. Section 2.8

concludes this work.

Notations: We represent scalars, vectors, and matrices by lowercase, boldface-

lowercase, and boldface-uppercase letters, respectively. Sets are represented using black-

board bold letters. (.)T ,(.)H ,(.)c denotes transpose, Hermitian, and complex conjugate op-

eration respectively. ⊗ denotes matrix Kronecker product, and⊙ denotes Hadamard prod-

uct of two conformable matrices. ∗ denotes convolution operation. [M] = {0,1, . . . ,M−

1},M ∈ Z+.

2.2 Proposed Light-Weight Sequential SBL Algorithm

In this work, we focus on iterative approach to find sparse solutions to (2.1) while

maintaining a low computational complexity. Within an iterative scheme the goal is to

identify the support over iterations. Greed-based iterative approaches optimize a certain

objective function, L (.) at every iteration with respect to candidate support elements.

We focus on the greedy-iterative paradigm and develop algorithms that add one column

of ΦΦΦ at every iteration. As a benchmark we consider the widely used OMP algorithm

which sequentially solves a least squares objective. Next, we discuss the SBL formulation

which motivates the objective function adopted in the proposed algorithm. Without loss

of generality, we assume that the columns of ΦΦΦ are normalized throughout in this paper

i.e., ∥ϕ j∥2 = 1, where ϕ j denotes the j-th column of ΦΦΦ.

2.2.1 On Sparse Bayesian Learning

SBL is a Bayesian technique to compute a sparse decomposition of measurements y.

SBL models x as a random variable, in contrast to the OMP algorithm [14,15] where x is

modeled as a deterministic unknown. More specifically, a parameterized Gaussian prior is
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imposed on x with mean zero and uncorrelated components. In other words, x∼C N (0,ΓΓΓ)

where ΓΓΓ is a diagonal matrix; let diag(ΓΓΓ) = γγγ . Under the zero mean Gaussian noise

assumption, y∼ C N (0,ΦΦΦΓΓΓΦΦΦH +λ I), where λ denotes the noise variance estimate. The

SBL approach is to solve (2.1) in the hyperparameter γγγ-space, post marginalization with

respect to x. This approach is known as Type-II estimation framework, compared to

Type-I where the problem is solved in x space after marginalization with respect to γ [30]

(e.g., Lasso algorithm [31]). Note that the Gaussian density imposition on x is not a

limitation, and the method generalizes well to the case when x was in fact drawn from a

non-Gaussian density (e.g., see Section VI.A. in [12]). The hyperparameter γγγ is estimated

by minimizing the negative marginal log-likelihood function [12, 26]

min
γγγ≥0,λ≥0

L (γγγ,λ ) := logdetΣΣΣy +yHΣΣΣ−1
y y. (2.3)

where, ΣΣΣy =ΦΦΦΓΓΓΦΦΦH +λ I. (2.3) is a non-convex problem in (γγγ,λ ). In this work, we initialize

with γ j = 0,∀ j ∈ {1, . . . ,n}, and add a column l that minimizes the negative log-likelihood,

the most. Thus, similar to OMP, the proposed algorithm [13] selects one column per

iteration. However, in contrast to OMP, each iteration in the proposed scheme optimizes

the maximum likelihood based cost function in (2.3). The following remark is in order.

Remark 9. The sequential SBL approach in [13] is a framework and does not provide a

specific algorithm, but rather suggestions (see Section 4 in [13]) for developing variants

with different options, e.g. adding/deleting selected columns, modifying the variances of

the columns already selected, etc. To ensure a computational complexity comparable to

OMP, we develop a specific algorithm, which like OMP, runs the sequential steps for K

iterations only; K denotes the desired support size.

Next we derive steps to iterative optimize (2.3).
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2.2.2 Proposed Light Weight Sequential-SBL Algorithm

We focus on estimating γγγ for a fixed λ . The latter may be estimated [13] but is not

discussed in this paper. We begin by separating out the contribution of the j-th column

to the cost function, L (γγγ), in (2.3). Let T ⊂ {1, . . . ,n} denote the set of column indices

of ΦΦΦ already selected and C = ΦΦΦTΓΓΓTΦΦΦH
T +λ I, where ΓΓΓT denotes the diagonal matrix with

rows and columns in T. For j /∈ T, we can write

L (γγγT∪{ j}) = L (γγγT)+L(γ j,C), (2.4)

where L(γ j,C) = log(1+γ jΦΦΦH
j C−1ΦΦΦ j)−|ΦΦΦH

j C−1y|2/(γ−1
j +ΦΦΦH

j C−1ΦΦΦ j) (see eq. (18) in [13]

for detailed derivation of (2.4)). Let us introduce the following quantities for ease of

presentation:

s j = ΦΦΦH
j C−1ΦΦΦ j and q j = ΦΦΦH

j C−1y. (2.5)

Since γ j is initialized with zero i.e., γprev, j = 0, we have ∀ j /∈ T

∆LC(γ j,γprev, j) = L(γ j,C)−L(γprev, j,C) = L(γ j,C). (2.6)

In other words, the change in negative log-likelihood due to updating γ j is simply its

contribution to the cost function. This helps to simplify the objective further. The

column to be added is given by

l = argmin
j/∈T

min
γ j≥0

L(γ j,C)
(
= ∆LC(γ j,γprev, j)

)
. (2.7)

Minimization with respect to γ j can be obtained in closed-form as

γopt
j = max

{
|q j|2− s j

s2
j

,0

}
(2.8)
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At the optimal value γopt
j we have

L(γopt
j ,C) =

 log |q j|2
s j
− |q j|2

s j
+1 if |q j|2 > s j

0 otherwise.
(2.9)

Note that log |q j|2
s j
− |q j|2

s j
+1 ≤ 0 with equality if and only if q j = s j. Since L(γopt

j ,C) is a

monotonic non-increasing function of |q j|2
s j

with L(γopt
j ,C) = 0 if |q j|2 ≤ s j we can simplify

the underlying problem in (2.7) as

l = argmax
j/∈T

RC( j) := max
{
|q j|2

s j
,1
}
. (2.10)

Algorithm 4 summarizes the proposed steps.

Remark 10. An important characteristic of the sequential SBL [13] and the proposed

LWS-SBL Algorithm is that they may be run for more than m iterations if needed, unlike

OMP [70]. This flexibility is achieved by avoiding the orthogonal residue computation

step as in OMP. Such a flexibility may be useful to correct erroneous support that is

possible in initial iterations.

Efficient updating of q j and s j: To lower the complexity of the steps in Algorithm 4, we

exploit the fact that one column of ΦΦΦ is added per iteration and update C−1 using matrix

inversion lemma. We highlight the value at iteration i with superscript (·)[i]. More

specifically, let
(

C[i]
)−1

denote the value used to compute (q j,s j) as per (2.5), and l[i]

denote the column index to be added at iteration i (Step 3 & 4 of Algorithm 4). Then

(C[i+1])−1 = (C[i]+ γ̂l[i]ΦΦΦl[i]ΦΦΦ
H
l[i])
−1 = (C[i])−1− w[i](w[i])H

1/γ̂l[i] + s[i]
l[i]

where w[i] =
(

C[i]
)−1

ΦΦΦl[i] and s[i]
l[i]

= ΦΦΦH
l[i]

(
C[i]
)−1

ΦΦΦl[i] . Then we can update
(

q[i]j ,s
[i]
j

)
to
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Algorithm 4: Light-Weight Sequential SBL Algorithm
Result: γ̂γγ , Posterior mean µ̂µµx = x̂, covariance Σ̂ΣΣx
Input: y,ΦΦΦ,K

1 Initialize: γ̂γγ = 0,λ = some sensible value (e.g., 0.1var(y)), C−1 = λ−1I,T= /0
2 for i := 1 to K do
3 Compute q j and s j,∀ j /∈ T as in (2.5) (efficient recursive implementation

in (2.11))
4 l = argmax j/∈T RC( j) := max

{
|q j|2

s j
,1
}

5 γ̂l = max
{
|ql |2−sl

s2
l

,0
}

; rank-one update of C−1

6 T= T∪ l (unless γ̂l = 0, rare)
7 end
8 Compute posterior mean, µ̂µµx, and covariance, Σ̂ΣΣx

get
(

q[i+1]
j ,s[i+1]

j

)
as

q[i+1]
j = ΦΦΦH

j

(
C[i+1]

)−1
y = q[i]j −

ΦΦΦH
j w[i]

1/γ̂l[i] + s[i]
l[i]

q[i]
l[i]
,

s[i+1]
j = ΦΦΦH

j

(
C[i+1]

)−1
ΦΦΦ j = s[i]j −

|ΦΦΦH
j w[i]|2

1/γ̂l[i] + s[i]
l[i]

.

(2.11)

Computing posterior mean, µ̂µµx, and covariance, Σ̂ΣΣx: The posterior on x is a complex

Gaussian distribution [12, 26]. We report x̂ = µ̂µµx as a point estimate after K iterations

using

µ̂µµx = Γ̂ΓΓΦΦΦH
(

ΦΦΦΓ̂ΓΓΦΦΦH +λ I
)−1

y = Γ̂ΓΓq[K+1], (2.12)

where q[K+1] =
[
q[K+1]

1 , . . . ,q[K+1]
n

]T
. Note that γ̂ j ̸= 0 only for j ∈ T, and thus the above

equation provides a sparse solution. Also, the diagonal entries of Σ̂ΣΣx can be easily obtained

as following

[Σ̂ΣΣx] j, j = γ̂γγ j− γ̂γγ2
jΦΦΦ

H
j

(
ΦΦΦΓ̂ΓΓΦΦΦH +λ I

)−1
ΦΦΦ j = γ̂γγ j− γ̂γγ2

js
[K+1]
j , (2.13)

which is similarly non-zero only for j ∈ T.
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2.2.3 Computational Complexity of Algorithm 4

We analyze the computational complexity for the proposed LWS-SBL algorithm

and compare with OMP.

Efficient computation of w[i]: The update equations in (2.11) require the vector w[i] =(
C[i]
)−1

ΦΦΦl[i] which can be computed by first computing
(

C[i]
)−1

from
(

C[i−1]
)−1

using

a rank-one update, followed by multiplying ΦΦΦl[i] . These steps need O(m2) computations.

Instead we propose the following steps

w[i]= (C[i])−1ΦΦΦl[i] = (C[i−1])−1ΦΦΦl[i]−
w[i−1](w[i−1])HΦΦΦl[i]

1/γl[i−1] + s[i−1]
l[i−1]

= (C[1])−1ΦΦΦl[i]−
i−1

∑̃
i=1

w[ĩ](w[ĩ])HΦΦΦl[i]

1/γl[ĩ] + s[ĩ]
l[ĩ]

, (2.14)

where
(

C[1]
)−1

= λ−1I.
(

C[1]
)−1

may be pre-computed; the rest requires O(m(i− 1))

computations, an improvement over O(m2). In this manner, we avoid computing C−1 in

Step 5 of Algorithm 4.

Computational Complexity: Analyzing and comparing two algorithms based on computa-

tional complexity is challenging because it depends on the metric employed, i.e. number

and type of operations, parallel1 versus sequential computations, storage, etc. For this

work, we track the number of arithmetic operations, in particular, multiplications and di-

visions as they are more computationally demanding than additions or subtractions. We

further assume that multiplication and division have similar complexity and do not distin-

guish them in this aspect, but highlight them by mentioning ‘div’ for divisions explicitly

(e.g., n divisions represented as n ‘div’). We summarize the computational complexity for

LWS-SBL and compare with OMP in Table 2.1.

Remark 11. The extra 2(n− i)+ (n− i) ‘div’ for LWS-SBL (than OMP) corresponds to
1Note that updating q j’s and s j’s may be parallelized.
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Table 2.1. LWS-SBL vs. OMP: Computational Complexity (p = i−1)

LWS-SBL OMP (QR) [14, 71]

Iteration i+1
mn+2mp+n+m

+2(n− i)+(n− i) ‘div’ mn+2mp+n+m

Solution x̂ m(3K−1)+2K (K−1)K/2+K ‘div’

updating s j and dividing |q j|2 and s j,∀ j /∈ T.

During the first iteration s j does not depend on j as
(

C[1]
)−1

= λ−1I and thus the divisions

may be avoided. Note that both the algorithms have O(mn) per iteration computational

complexity.

2.3 Global Analysis of OMP and LWS-SBL

In this section we compare the two algorithms from an operational perspective. The

aim is to explore a standard framework that will help to benchmark different algorithms

for sparse signal recovery beyond just the two focused in this work. Thus, it is envisioned

that the framework may be applicable more generally.

2.3.1 On OMP Algorithm

The first iteration in OMP (and LWS-SBL) begins with comparing the absolute

value of inner product of the dictionary columns with the received measurement vector y.

This leads to

LOMP := |ϕϕϕ H
j y|2 (2.15)

during the first iteration for both OMP and LWS-SBL. The column corresponding to

the largest absolute value gets selected. The following iterations proceed in a similar

manner, simply replacing the measurement vector by a residual vector. Thus, columns

get selected in a greedy manner. The residual, yres, is computed as orthogonal to columns

already selected (let’s say C = [ϕϕϕ l1 , . . . ,ϕϕϕ lk ]) and is given by yres = P⊥Cy, where P⊥C denotes
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the projection matrix on to the subspace orthogonal to the range space of C. Note that

ϕϕϕ H
j yres = (ϕϕϕ H

j P⊥C)y, (2.16)

can be thought of as the output of a beamformer wOMP, j = P⊥Cϕϕϕ j in the direction ϕϕϕ j while

simultaneously placing nulls at columns within C. The above beamformer can be realized

as the solution to the following optimization problem

wOMP, j = argmin
w
∥w−ϕϕϕ j∥2

2 subject to CHw = 0, (2.17)

which implies that the OMP beamformer at column j minimizes the ℓ2 distance to ϕϕϕ j

while placing an absolute null at columns in C. The metric for selecting a column in OMP

is simply the output power of the beamformer.

Remark 12. The OMP beamformer has couple of issues associated with it. Firstly, the

absolute null constraint, much like zero-forcing equalizer, is prone to amplify noise. Sec-

ondly, the OMP metric only accounts for the output power without accounting for the

resulting interference and noise power.

Note, that the second issue raised here is handled better in Order-Recursive MP

(ORMP) [71] as it enforces that the beamformer is appropriately normalized at every

direction. Next we describe the two aspect of interest i. beamformer design ii. metric for

selecting a column, for the LWS-SBL algorithm.

2.3.2 On LWS-SBL

At each iteration, LWS-SBL computes |q j|2
s j

for each column j /∈ T. The metric can

be equivalently expressed as

|q j|2

s j
=
|q j|2/s2

j

1/s j
=
|ΦΦΦH

j S−1y|2/(ΦΦΦH
j S−1ΦΦΦ j)

2

1/ΦΦΦH
j S−1ΦΦΦ j

, (2.18)
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which is the ratio of the well-known minimum variance distortionless response (MVDR)

total beamforming output power [56] and the expected interference and noise beamforming

output power. The MVDR beamformer above is given by wLWS−SBL, j =
S−1ϕϕϕ j

ΦΦΦH
j S−1ΦΦΦ j

and is

obtained as the solution to the following optimization problem

wLWS−SBL, j = argmin
w

wHSw subject to wHϕϕϕ j = 1. (2.19)

Using S = ΦΦΦTΓΓΓTΦΦΦH
T + λ I and the constraint wHΦΦΦ j = ΦΦΦH

j w = 1, we simplify the cost

function above as

wHSw= wH(λ I+ΦΦΦTΓΓΓTΦΦΦH
T )w

= λwHw+(wHΦΦΦT)ΓΓΓT(ΦΦΦH
Tw)

= λ∥w−ΦΦΦ j∥2
2 +(wHΦΦΦT)ΓΓΓT(ΦΦΦH

Tw)− c, (2.20)

where c= (2λ +λ∥ΦΦΦ j∥2
2). The above exploration helps to highlight the soft null constraint

imposed within the BF design in LWS-SBL by virtue of the regularizing second term above.

It further helps to contrast with the absolute null constraint in the BF design in OMP.

Thus, the LWS-SBL algorithm departs from the OMP algorithm in terms of both i.

the underlying beamformer design ii. the criterion adopted for selecting the next column

to be added to the model, in that it accounts for the beamforming output interference

and noise power and chooses the Signal-to-Interference and Noise Ratio (SINR) as the

metric. This framework provides unique perspective into the operational mechanisms of

the two algorithms. This framework can be extended to other SSR algorithms as well.

We explore one connection of OMP with CLEAN algorithm in the following remark.

Remark 13. The OMP algorithm can be considered as a special case of the CLEAN algo-

rithm [72–74] wherein a ‘clean’ spectrum is obtained from a ‘dirty’ spectrum over multiple

iterations. In CLEAN algorithm, the direction corresponding to the peak of a (residual)
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power spectral density estimate is found, and a new residual is computed by subtracting

a (scaled) contribution along the recovered direction. A similar analysis presented in this

section can be carried out to identify the beamformer design and corresponding metric

that is operational within CLEAN algorithm. This is not discussed ahead but forms an

interesting future research direction.

Next, we extend the perspective presented in this section to analyze the case when

sources can be closely separated. We highlight the usefulness of the beamformer design

and metric employed under LWS-SBL in such cases.

2.4 Local Analysis for the Closely Separated Sources’ case

In this section we consider a noiseless scenario and study the case when two sources

are closely separated. The impact of the beamformer and the metric employed for select-

ing columns in OMP and LWS-SBL is highlighted. In particular, we show that owing

to the metric within OMP, the algorithm fails deterministically when two sources are

sufficiently close and the grid size is sufficiently large. We begin by first describing the

exact conditions.

Let S denote the true support set. We provide the algorithms with the cardinality

of the support set and let them run for the same number of iterations as support set size.

An algorithm fails to recover the true support exactly if at any iteration it recovers an

element not in the true support set. Thus, let Srec denote the recovered support set, and

let us assume that Srec ⊆ S. Let P⊥Srec
denote the projection matrix into the orthogonal

subspace of the recovered support. Then the residual vector is given by

P⊥Srec
y= ∑

j∈S
P⊥Srec

ΦΦΦ jx j = ∑
j∈S\Srec

P⊥Srec
ΦΦΦ jx j. (2.21)
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The next iteration within OMP algorithm is unsuccessful if

max
l∈S
|ΦΦΦH

l P⊥Srec
y|= max

l∈S\Srec
|ΦΦΦH

l P⊥Srec
y|< max

k∈Sc
|ΦΦΦH

k P⊥Srec
y|. (2.22)

The approach we follow next is to find stricter yet simplified conditions that satisfy (2.22).

Based on triangle inequality and operating the projection matrix on y, we get

|ΦΦΦH
l P⊥Srec

y|≤ |ΦΦΦH
l P⊥Srec

ΦΦΦl||xl|+ |ΦΦΦH
l P⊥Srec

ΦΦΦS\Srec\lxS\Srec\l|

=
(
1−ΦΦΦH

l PSrecΦΦΦl
)
|xl|+ |ΦΦΦH

l P⊥Srec
ΦΦΦS\Srec\lxS\Srec\l| (2.23)

|ΦΦΦH
k P⊥Srec

y|≥
∣∣∣|ΦΦΦH

k P⊥Srec
ΦΦΦl||xl|− |ΦΦΦH

k P⊥Srec
ΦΦΦS\Srec\lxS\Srec\l|

∣∣∣
=
∣∣|ΦΦΦH

k ΦΦΦl−ΦΦΦH
k PSrecΦΦΦl||xl|

−|ΦΦΦH
k P⊥Srec

ΦΦΦS\Srec\lxS\Srec\l|
∣∣∣ (2.24)

We consider the last iteration and assume all the previous iterations successfully recovered

elements from true support. In this case, S = Srec∪{l}, and both the bounds are tight.

Then, the condition for failure in OMP can be written as

(
1−ΦΦΦH

l PSrecΦΦΦl
)
≤ |ΦΦΦH

k ΦΦΦl−ΦΦΦH
k PSrecΦΦΦl| (2.25)

Qualitatively, the condition implies that the last support element needs to have high

correlation with the recovered support set, compared to the confusing column in k. The

latter should have high correlation with the unrecovered support element. This intuitive

condition stems from OMP’s metric for selecting next column wherein it ignores the

impact of underlying beamformer on interference and noise.

We continue our treatment to get stricter yet intuitive bounds for the case when
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Figure 2.1. OMP analysis to identify scenarios with deterministic misdetection

OMP fails. Let p = maxi∈Srec |ΦΦΦ
H
l ΦΦΦi| ≤ 1. Then we have

ΦΦΦH
l PSrecΦΦΦl ≥ p2. (2.26)

This implies

1−ΦΦΦH
l PSrecΦΦΦl ≤ 1− p2. (2.27)

Thus we can pose a stricter condition as

1− p2 ≤ |ΦΦΦH
k ΦΦΦl−ΦΦΦH

k PSrecΦΦΦl|. (2.28)

We further use triangle inequality to lower bound RHS as

|ΦΦΦH
k ΦΦΦl−ΦΦΦH

k PSrecΦΦΦl|≥
∣∣|ΦΦΦH

k ΦΦΦl|− |ΦΦΦH
k PSrecΦΦΦl|

∣∣ . (2.29)

Thus a stricter condition than (2.22) for unsuccessful recovery at the last OMP iteration,

provided all the previous iterations have been successful, can be written as

1− p2 ≤
∣∣|ΦΦΦH

k ΦΦΦl|− |ΦΦΦH
k PSrecΦΦΦl|

∣∣ . (2.30)
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|ΦΦΦH
k ΦΦΦl−ΦΦΦH

k PSrecΦΦΦl|≥max{|ΦΦΦH
k ΦΦΦl|− |ΦΦΦH

k PSrecΦΦΦl|,

|ΦΦΦH
k PSrecΦΦΦl|− |ΦΦΦH

k ΦΦΦl|}. (2.31)

Next we simplify one of the lower bound from above. Similar ideas can be applied for

simplifying the second argument within max. We write

|ΦΦΦH
k ΦΦΦl−ΦΦΦH

k PSrecΦΦΦl|≥ |ΦΦΦH
k ΦΦΦl|− |ΦΦΦH

k PSrecΦΦΦl|

≥ |ΦΦΦH
k ΦΦΦl|−∥PSrecΦΦΦk∥∥PSrecΦΦΦl∥

≥ |ΦΦΦH
k ΦΦΦl|−∥PSrecΦΦΦk∥

(a)
≥ |ΦΦΦH

k ΦΦΦl|−λ−0.5
min ∥ΦΦΦ

H
Srec

ΦΦΦk∥
(b)
≥ |ΦΦΦH

k ΦΦΦl|−λ−0.5
min

√
s−1q(k). (2.32)

In (a), λmin denotes the minimum eigenvalue of the matrix ΦΦΦH
Srec

ΦΦΦSrec . In (b), s denotes

the support size including the column vector l, and q(k) = maxi |ΦΦΦH
k ΦΦΦSrec,i |. The strict

condition can be written as

1− p2 ≤ |ΦΦΦH
k ΦΦΦl|−λ−0.5

min

√
s−1q(k). (2.33)

We now consider the special case when there are two sources to be recovered. For this

case, when one source has already been recovered successfully, (2.30) simplifies to

1−|ΦΦΦH
l ΦΦΦSrec |

2 ≤
∣∣|ΦΦΦH

k ΦΦΦl|− |ΦΦΦH
k ΦΦΦSrec ||ΦΦΦ

H
l ΦΦΦSrec |

∣∣ . (2.34)

We numerically show that this strict condition is non-trivial in Fig. 2.1. Figure plots

RHS-LHS from (2.34) with condition 1 referring to using the operand of modulus in RHS

as is, and condition 2 referring to using the negative of the operand of modulus in RHS.

As evident from the plot, when the second source is just one grid point away from first
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source with n = 200, there are other grid points which are better under OMP’s objective,

and thus it will fail. This failure condition is satisfied as long as source 2 is sufficiently

close and the grid is sufficiently fine. Such resolution for OMP is not explored ahead,

instead this aspect is delved into further in the numerical section.

2.5 Gridless LWS-SBL Algorithm

We now discuss the case when ΦΦΦ has a parametric representation, and extend

LWS-SBL to perform gridless parameter estimation. Consider the following parametric

data model

y = ΦΦΦθθθ x+n, (2.35)

where the kth column of ΦΦΦθθθ ∈Cm×K is a vector function of the parameter θk i.e., [ΦΦΦθθθ ]k =

ϕϕϕ(θk) for some known ϕϕϕ(.),k ∈ {1, . . . ,K}. θθθ = [θ1, . . . ,θK]
T and θk’s lie in some known

continuous domain. K denotes the number of active sources. Model assumptions made

in (2.1) are also applicable in (2.35). The above problem is ubiquitous, with applications

such as line spectral estimation [73] and direction-of-arrival (DoA) estimation [75] for

narrowband signals; we emphasize the latter as means for exposition.

2.5.1 Grid-based Remodeling of (2.35)

The proposed Algorithm 4 in its present form is not amenable to the parametric

problem in (2.35). Mathematically, the approach can be readily developed by modifying

equation (2.7) to reflect optimization over the continuous parameter space rather than

the index set. However, this step when implemented will require a grid search though the

grid is not predetermined. As a practical implementation of this concept, we adopt a two-

step approach where in step-1 we recover an on-grid support set using Algorithm 4. This

is followed by step-2 where we locally optimize the recovered grid points over a smaller

parameter space. This step is inspired by a previous work by the authors [76] on batch
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EM-SBL where all components of γγγ are simultaneously updated. In contrast to [76], this

paper proposes a fixed iterations strategy to identify a sparse solution, with an emphasis

on computational complexity reduction.

Assuming a grid size n, we introduce a dictionary ΦΦΦ with array manifold vectors as columns

Algorithm 5: Gridless LWS-SBL Algorithm
Result: θ̃θθ = [θ̃1, . . . , θ̃K]

T , γ̃γγ, µ̃µµx = x̃, Σ̃ΣΣx
Input: y,ΦΦΦ,K; (γ̂γγ,C−1,λ ) from Algorithm 4; ñ, ITER

1 Initialize: γ̃γγ = γ̂γγ
2 for iter := 1 to ITER do
3 for i := 1 to K do
4 Rank-one update of C−1 to get C−1

−li
5 uopt := Newton steps (with backtracking)
6 Compute γopt as in (2.40); update (γ̃li ,uli) := (γopt,uopt)

7 Rank-one update of C−1
−li

to get C−1

8 end
9 end

10 Compute µ̃µµx, Σ̃ΣΣx; θ̃i = arcsinuli , i ∈ {1, . . . ,K}

i.e., [ΦΦΦ] j = ϕϕϕ(θ j),θ j ∈ [−π
2 , π

2 ), j ∈ {1, . . . ,n}. For example, consider a uniform linear array

(ULA) with m sensors and d = λ̄/2 distance between adjacent sensors to prevent ambiguity

in DoA estimation; λ̄ denotes the wavelength of the incoming narrowband source signals.

Then [ΦΦΦ] j = ϕϕϕ(θ j) = [1,exp(iπu j), . . . ,exp(i(m−1)πu j)]
T ,u j = sinθ j.

2.5.2 Gridless LWS-SBL Algorithm Development

The goal is to further maximize the likelihood after the initial K iterations by

locally optimizing the selected grid points. This enables to go beyond the limitations of

the initial grid. We begin by separating out the li-th dictionary component, i∈ {1, . . . ,K},

selected previously as part of Algorithm 4 and optimize its contribution to the likelihood

not only with respect to (w.r.t.) the corresponding γli , but also w.r.t. the grid point
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uli = sinθli . Thus, we write

L (γγγT) = L (γγγT\{li})+ L̃(γli ,uli ,C−li), (2.36)

where C−li = ΦΦΦT\{li}ΓΓΓT\{li}ΦΦΦ
H
T\{li}+λ I, L̃(γ,u,C−li) = log(1+γs(u))−|q(u)|2/(γ−1+ s(u)),

and

s(u) = ϕϕϕ(u)HC−1
−liϕϕϕ(u), q(u) = ϕϕϕ(u)HC−1

−liy. (2.37)

For ease of exposition, we represent a grid point with the notation Ψ = (γ,u). We lo-

cally maximize the likelihood in the neighbourhood of Ψprev = (γ̂li ,uli) by equivalently

minimizing

∆L̃C−li
(Ψ,Ψprev) = L̃(γ,u,C−li)− L̃(γ̂li ,uli ,C−li). (2.38)

Note that unlike in the previous section, the second term above is non-zero. However, it

does not depend on Ψ and is therefore fixed. Another perspective to understand this is

that we are replacing the same grid point Ψprev with any other point in its neighbourhood,

and thus in order to maximize likelihood we only need to minimize the first term on RHS

in (2.38). The underlying problem reduces to

Ψopt = (γopt,uopt) = argmin
u∈[uli−δ ,uli+δ )

min
γ≥0

L̃(γ,u,C−li), (2.39)

for some δ 2. Similar steps as in previous section can be followed to simplify the objective

and we get

uopt = argmax
u∈[uli−δ ,uli+δ )

R̃C−li
(u) := max

{
|q(u)|2

s(u)
,1
}
,

γopt = max
{
|q(uopt)|2− s(uopt)

s(uopt)2 ,0
}
.

(2.40)

2We set δ = 1/n during the first iteration to avoid any grid point overlap. Future iterations may
involve non-uniform grid, and a similar asymmetric δ in either directions is used to avoid the same issue.
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The optimization for u in the neighbourhood of Ψprev can be implemented by a fine grid

of size ñ. This approach was presented in [64]. In this work, we propose an alterna-

tive strategy that is more computationally favourable, and we discuss this in the next

subsection.

2.5.3 Newtonized Gridless LWS-SBL

The optimization in some neighbourhood of uli in (2.40) can be carried out in a

completely gridless manner by using a quadratic approximation of the objective function

in (2.40). We implement this using Newton steps and the update equation is given by

uopt[t] = uopt[t−1]−
R̃′C−li

(u = uopt[t−1])

R̃′′C−li
(u = uopt[t−1])

, (2.41)

where R̃′C−li
(u) = 1

s(u)

{
2Re

(
q′(u)q(u)H)− |q(u)|2s(u) s′(u)

}
and R̃′′C−li

(u) = 1
s(u)

{
2Re

(
q′′(u)q(u)H)+2q′(u)q′(u)H− |q(u)|2

s(u) s′′(u)
}
− 2 s′(u)

s(u) R̃′C−li
(u). The

additional required quantities can be computed as follows:

q′(u) =
(

∂ϕϕϕ(u)
∂u

)H

C−1
−liy (2.42)

s′(u) = 2Re

((
∂ϕϕϕ(u)

∂u

)H

C−1
−liϕϕϕ(u)

)
(2.43)

q′′(u)=
(

∂ 2ϕϕϕ(u)
∂u2

)H

C−1
−liy (2.44)

s′′(u)= 2Re

((
∂ 2ϕϕϕ(u)

∂u2

)H

C−1
−liϕϕϕ(u)

)

+2
(

∂ϕϕϕ(u)
∂u

)H

C−1
−li

(
∂ϕϕϕ(u)

∂u

)
. (2.45)

The Newton update is carried out only if R̃′′C−li
(uopt[t−1])< 0 as the underlying optimiza-

tion is a maximization problem. Furthermore, the updated point is accepted only if it

increases the objective function i.e., R̃C−li
(uopt[t])> R̃C−li

(uopt[t−1]).
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Newton Algorithm with backtracking line search: The Newton steps provided in the pre-

vious subsection are effective if the recovered grid point is in the close vicinity of the

ground truth solution. The proximity is governed by the measurement size, m, as for

larger values of m the recovered point must be closer to the ground truth source location,

for Newton updates to perform reliably. This is not always the case, and the updates

may qualitatively be too slow or too fast. In the former case, running more iterations of

Newton update suffices. This case can be identified by checking if the relative change in

uopt[t] is above certain threshold to continue, and setting the threshold appropriately. If

the Newton step is too large, one may need to employ a backtracking strategy to ensure

effectiveness of the Newton steps. This case occurs when the updated point decreases the

objective function i.e., R̃C−li
(uopt[t]) < R̃C−li

(uopt[t− 1]). We employ the following simple

backtracking strategy to overcome this problem.

2.6 Extension to Two Dimensional Harmonic Retrieval Problem

The proposed algorithms can be readily extended to the multi-dimensional Har-

monic Retrieval (HR) problem. In this section, we discuss the two dimensional HR case,

and demonstrate the application of proposed ideas. We provide empirical analysis in Sec-

tion 2.7.3. In the 2D HR problem, the goal is to recover frequency tuples (uk,vk) of 2D

complex exponential signals from linear measurements given by

Y[px, py]=
K

∑
k=1

xk exp(iπ (pxuk + pyvk))+N[nx,ny], (2.46)

where uk,vk ∈ [−1,1) and u2
k +v2

k ≤ 1, xk denotes the complex amplitude for the k-th source.

mx and my denote the size of the measurements along x and y dimension, respectively;

0 ≤ px < mx and 0 ≤ py < my, px, py ∈ Z. K denotes the number of active sources. The
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equation in (2.46) can be expressed in a compact form as

Y =
K

∑
k=1

xkΦΦΦuΦΦΦT
v +N, Y ∈ Cmx×my , (2.47)

where u = [u1,u2, . . . ,uK]
T and v = [v1,v2, . . . ,vK]

T , and the k-th column of ΦΦΦu ∈ Cmx×K

and ΦΦΦv ∈ Cmy×K are given by

[ΦΦΦu]k = [1,exp(iπuk), . . . ,exp(iπ(mx−1)uk)]
T

[ΦΦΦv]k = [1,exp(iπvk), . . . ,exp(iπ(my−1)vk)]
T .

(2.48)

The 2D HR problem has many applications including MIMO radar [77], MIMO

wireless channel sounding [78], and nuclear magnetic resonance spectroscopy [79]. One

issue that may arise in 2D HR, and multi-dimensional HR in general, is that even thought

the parameter pairs are distinct for different sources, the harmonics may have the same

frequencies in one dimension, for example (u,v1) and (u,v2).

2.6.1 Grid-based remodeling of (2.47)

The problem in (2.47) can be modeled as a sparse signal recovery problem on

grid, as discussed in the previous section for one-dimensional parametric problems. We

introduce a grid of size nu and nv evaluated in u- and v-space, respectively. Let the

corresponding measurement matrices be represented by ΦΦΦu ∈ Cmx×nu and ΦΦΦv ∈ Cmy×nv .

Then, (2.47) can be reformulated as

Y = ΦΦΦuXΦΦΦT
v +N. (2.49)

X∈Cnu×nv denotes the matrix of complex amplitudes; each matrix entry in X corresponds

to the amplitude associated with the corresponding harmonic. Since the number of active

sources is limited to K, the number of non-zero entries in X is K as well. Next, we
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transform (2.49) to a form that is readily amenable to algorithms presented in this work.

We begin by vectorizing the measurements in Y.

y = vec(YT )= (ΦΦΦu⊗ΦΦΦv)vec(XT )+vec(NT )

= (ΦΦΦu⊗ΦΦΦv)x+n, (2.50)

where ⊗ denotes Kronecker product, x = vec(XT ) ∈ Cnunv is the sparse unknown vector,

and n = vec(NT ) ∈ Cmxmy denotes the noise corrupting the measurement. The proposed

LWS-SBL algorithm can be applied to the problem in (2.50) with the combined measure-

ment matrix ΦΦΦu⊗ΦΦΦv. The issue where two harmonics (or distinct parameter pairs) share

the same frequency along a dimension is automatically handled here, as the Kronecker

product of two 1-D measurement matrices ensures that such pairs are included in the

search space. The corresponding grid points are independently evaluated and selected

based on the LWS-SBL cost function.

Next, we discuss steps to update the grid points recovered by applying LWS-SBL to (2.50),

and recover the frequency tuples (u,v) in a gridless manner. The algorithm development

is similar to the 1D case, and thus we discuss the algorithm in brief.

2.6.2 Gridless LWS-SBL Algorithm for 2D HR problem

The aim here is to further maximize the likelihood after the K iterations of LWS-

SBL algorithm, K denotes the recovered support size. This is executed by locally optimiz-

ing the selected grid points. We begin by separating out the li-th dictionary component,

i ∈ {1, . . . ,K} and optimize its contribution w.r.t. the parameters γli and (uli ,vli). Similar
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steps as in the 1D case can be followed which leads to the following optimization problem

(uopt,vopt)

= argmax
u∈[uli−δ ,uli+δ )
v∈[vli−δ ,vli+δ )

R̃C−li
(u,v) := max

{
|q(u,v)|2

s(u,v)
,1
}
,

γopt = max
{
|q(uopt,vopt)|2− s(uopt,vopt)

s(uopt,vopt)2 ,0
}
.

(2.51)

A fine grid in 2D may be implemented locally to (uli ,vli) in order to perform the optimiza-

tion in (2.51). Alternatively, we propose the following Newton update steps, and they are

implemented along with backtracking steps similar to that in Section 2.5.3

 uopt[t]

vopt[t]

=
 uopt[t−1]

vopt[t−1]

−(∇2
u,vR̃C−li

(uopt[t−1],vopt[t−1])
)−1

·∇u,vR̃C−li
(uopt[t−1],vopt[t−1]), (2.52)

where

∇u,vR̃C−li
(u,v)=

 ∂ R̃C−li
(u,v)

∂u
∂ R̃C−li

(u,v)

∂v


=

1
s(u,v)

 ∂ |q(u,v)|2
∂u

∂ |q(u,v)|2
∂v

− |q(u,v)|2s(u,v)2

 ∂ s(u,v)
∂u

∂ s(u,v)
∂v

 , and (2.53)

∇2
u,vR̃C−li

(u,v)=

 ∂ 2R̃C−li
(u,v)

∂u2

∂ 2R̃C−li
(u,v)

∂u∂v
∂ 2R̃C−li

(u,v)

∂v∂u

∂ 2R̃C−li
(u,v)

∂v2


=

1
s(u,v)

 ∂ 2|q(u,v)|2
∂u2

∂ 2|q(u,v)|2
∂u∂v

∂ 2|q(u,v)|2
∂v∂u

∂ 2|q(u,v)|2
∂v2

− |q(u,v)|2
s(u,v)2

 ∂ 2s(u,v)
∂u2

∂ 2s(u,v)
∂u∂v

∂ 2s(u,v)
∂v∂u

∂ 2s(u,v)
∂v2


− 1

s(u,v)

(
∇u,vR̃C−li

(u,v)

 ∂ s(u,v)
∂u

∂ s(u,v)
∂v


T

+

 ∂ s(u,v)
∂u

∂ s(u,v)
∂v

∇u,vR̃C−li
(u,v)T

)
.(2.54)
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The required single and double (partial) derivatives of |q(u,v)|2 and s(u,v) can be com-

puted in a manner similar to the 1D case; we skip the details for brevity.

2.7 Numerical Results

In this section we study the empirical performance of the algorithms presented in

this work, and compare them with OMP. For the 1D parametric measurement models

we compare gridless LWS-SBL with Newtonized OMP algorithm [80]. We present results

for the grid-based, 1D gridless, and 2D HR problems in subsections 2.7.1,2.7.1 ,and 2.7.3,

respectively. For the grid-based scenario, we consider two types of measurement matrices,

namely i. matrices with Gaussian random entries ii. parametric matrices. Parametric

matrices allows to study the impact of coherence among columns of support in the mea-

surement matrix on the sparse signal recovery performance. For grid-based algorithms,

the metric employed for performance comparison is the probability of successful recovery

of the true support. Let S and Srec denote the true and recovered support sets, respectively.

A successful event is characterized by S= Srec i.e., the algorithm recovers all the support

elements present in ground truth and nothing more. For figures involving gridless algo-

rithms, root mean squared error is computed in u-space as RMSE =
√

1
T ∑T

t=1 (ût−ut)
2,

where T denotes the total number of random trials.

2.7.1 Grid-Based Sparse Signal Recovery

The following parameters are used for the experiments in this subsection, unless

stated otherwise. The grid size is n = 256, the results are summarized over T = 200

random realizations. The support set is generated uniformly at random. The entries of

the measurement matrix and the non-zero entries in x are generated from the standard

normal distribution. The noise follows real normal distribution, and the per measurement

and per source SNR is 30 dB.
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Probability of success as function of measurement size: In Fig. 2.2 (a), we study the prob-
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Figure 2.2. (a) Probability of successful support recovery as a function of measurement
size, for different support sizes. (b) Probability of successful support recovery as a function
of support size, for different measurement sizes.

ability of successful support recovery as a function of measurement size. As expected and

seen in the plot, the probability of success increases as the measurement size increases.

For cases with high support size to be recovered, a larger number of measurements are

required to ensure the same probability of success. For the case with a single support

element, both the proposed LWS-SBL and OMP have identical performance. This is

expected as OMP exactly solves the maximum likelihood problem, and both OMP and

LWS-SBL have identical underlying cost function. The proposed LWS-SBL algorithm

improves over OMP when there are multiple sources to be handled. This is evident from

the plot, as the blue curves (for LWS-SBL) are to the left of red curves (for OMP), which

indicates that fewer measurements are required for LWS-SBL to ensure the same level of

success probability as OMP.

Probability of success as function of support size: In Fig. 2.2 (b), we study the recovery

performance in terms of probability of successful recovery as a function of support size.

We plot three different measurement sizes m = {30,50,100}, and plot one curve corre-

sponding to each case. As expected, the probability of success decreases as the support
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size increases. Also, the recovery performance improves as the measurement size increases.

The proposed algorithm can be seen to improve over OMP, in these different settings.

It is observed that the gap between the two algorithms is small when support set

is selected uniformly at random. The gap is observed to widen when the support set is

selected so as to gradually increase coherence among selected columns. This is studied

next.

Parametric measurement matrices: Success probability as a function of separation

between two sources: We consider 1D-parametric measurement models. In contrast to

the random measurement matrix setting, a more controlled study is possible when para-

metric dictionaries are involved. One perspective to see this is consider the (on-grid) DoA

estimation problem. There exists additional structure to the coherence between columns

of the measurement matrix. It is high locally and decreases as the (wrap around) distance

between grid points increases. The study is however more general, in that it also helps to

reflect on random measurement matrix settings, as such high coherent columns are also

likely there. The only difference is that the coherence is more localized in parametric

model.
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Figure 2.3. Probability of success as function of separation between sources
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In this experiment we consider a measurement size of m = 20 and select a grid

of size n = 200 and fix one source at u = 0. We place the second source at a spacing

given by the x-axis. In Fig. 2.3 we study the recovery performance of LWS-SBL and

OMP as a function of separation between the two sources. The SNR is 30 dB and we

summarize the results over T = 500 random realizations. As observed in the plot, the two

algorithms have similar performance except when the two sources are close. In contrast to

OMP, the proposed LWS-SBL algorithm has a non-zero success probability in this regime

(separation < 8). This is also a regime where the mutual coherence of the measurement

matrix computed over those columns that ensure a higher (wrap around) distance than

mentioned along x-axis is high (green curve marked as restricted mutual coherence). As

discussed in Section 2.3, the proposed LWS-SBL algorithm employs SINR as the metric,

whereas OMP ignores the impact of the beamformer on the interference and noise. This

issue within OMP impacts the second and higher iterations, and biases the support away

from the true support (see (2.25) and the following discussion therein). We study this

behaviour more thoroughly next. The characteristic variation of performance over the

separation between sources is due to the sidelobes of the underlying beamformer within

OMP and LWS-SBL. Note that the separtion between nulls for coherent beamformer is

2/m = 0.1 which is equal to 10 grid points. The separation between performance peaks

in Fig. 2.3 is also around 10 grid points which helps explain the nature of the curves.

We consider the separation of one grid point between the two sources in Fig. 2.4.

The true source location is the grid point number 101 and 102 (marked by black-dashed

curve). We had observed in Fig. 2.3, that for this case the LWS-SBL is able to recover

the true support with probability≈ 0.65. On the other hand, the OMP algorithm failed

completely. In Fig. 2.4, we plot the histogram of the recovered support. As can be ob-

served from the first row corresponding to LWS-SBL, the histogram peaks around the

true source location. The histogram for OMP is plotted along second row and reveals the

multi-modal distribution of the support recovered. Such a behaviour comes from the fact
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Figure 2.4. Histogram of recovered support elements for LWS-SBL (top row) and OMP
(bottom row)

that even though a true grid point may be recovered in the first iteration of OMP, the

second iteration drives away the peak of the OMP cost function. This was observed by

tracking the separation between the grid points recovered by the two algorithms.

How many measurements are needed? An Empirical Study: In this experiment, we em-

pirically analyze the probability of success as a function of both measurement size and

the separation between two sources. The grid size is set to n = 200, SNR is 30 db. We

summarize the results over T = 500 realizations in Fig. 2.5. As evident from the plot, the

success probability increases for both algorithms as the measurement size or separation

between sources increases. For separation greater than ≈ 7 grid points i.e., 0.07 in u-space,

both OMP and LWS-SBL have similar performance. However, in the lower separation
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Figure 2.5. Probability of success as function of measurement size and separation between
sources

regime, the proposed LWS-SBL algorithm can be seen to outperform OMP. It requires

fewer measurements to achieve similar performance as OMP. The difference is even more

clear when the separation between sources is one grid point, as the OMP is observed to

fail completely, but LWS-SBL is able to recover the sparse support with high probability

of success and uses few measurements.

2.7.2 Gridless Sparse Signal Recovery

Performance as a function of SNR: In this experiment we compare the proposed gridless

LWS-SBL algorithm to the Newtonized OMP (NOMP) algorithm and the Cramér-Rao

bound. We also plot the curve for the grid refinement based gridless LWS-SBL proposed

in [64]. In Fig. 2.6 we plot the root mean squared error in u-space as a function of

SNR. The measurement size m = 50 and the grid size for recovering the initial support

is n = 200. A total of K = 10 sources are considered. Their locations are simulated by

first considering grid points that are 10 points apart. These locations are then randomly

perturbed (maximum perturbation = 2/n). The algorithms are provided with L = 500

snapshots, and they are adapted so as to handle more than one snapshot. As evident

from the Fig. 2.6, all the algorithms have similar performance in this setting, and they
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Figure 2.6. Performance of gridless LWS-SBL: RMSE as a function of SNR

approach CRB as SNR increases.

Performance as a function of measurement size: In Fig. 2.7 (a), we consider K = 2 sources

placed roughly 10 grid points apart with n = 500. The Newton steps are allowed to run

for three iterations for the proposed algorithm. We also set Rs = 1 and Rc = 3 for NOMP

algorithm that ensures that all recovered support elements at least run Rs +Rc = 4 steps.

As is evident from the figure, the proposed algorithm performs better than NOMP except

at m = 45. The performance degradation as m increases can be explained using the

fact that the underlying beamwidths become narrower as m increases. For m ≈ 45, the

beamwidths are such that the grid-based algorithm recovers a support set between the

two sources, adding to the difficulty of Newton steps. The difficulty manifests itself in

two ways - a) Newton steps are too fast, which is addressed by backtracking line search,

and b) Newton steps are too slow, which is addressed by running more steps. The latter

is demonstrated in Fig. 2.7b. For completion we plot the separation between two sources

and the half power beamwidth as a function of measurement size m for a Rectangular

window in Fig. 2.8. As evident from the plot, the difficulty of the problem increases

when the separation between the two sources is close to the half power beamwidth, which

82



0 10 20 30 40 50 60 70 80 90 100

Measurement size, m

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
M

S
E

 i
n
 u

-s
p
a
c
e

Gridless LWS-SBL

NOMP

Newtonized Gridless LWS-SBL

CRB

with-Backtracking

0 10 20 30 40 50 60 70 80 90 100

Measurement size, m

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

R
M

S
E

 i
n
 u

-s
p
a
c
e

Gridless LWS-SBL

NOMP

Newtonized Gridless LWS-SBL

CRB

with-Backtracking

(a) Three Newton iterations (b) 10 Newton iterations

Figure 2.7. RMSE as a function of measurement size, m. Other parameters: n = 500,
L = 500,T = 100, SNR= 30 dB

explains the performance degradation around m = 40 in Fig.2.7a.
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Figure 2.8. Half power beamwidth as a function of measurement size, m, for a Rectangular
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2.7.3 Two-dimensional Harmonic Retrieval Problem

In this experiment, we evaluate the performance of the proposed algorithm to

2DHR problem. In Fig. 2.9, we study the performance in terms of RMSE as a function
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Figure 2.9. Root mean squared error in (u,v)-space as a function of SNR

of SNR. We compare the performance with the Cramér-Rao lower bound and the 2D-

MNOMP algorithm in [81]. As evident from the plot, the algorithms are able to improve

as SNR increases, unlike the grid-based algorithm which saturates to the grid resolution.

The Newton steps proposed in this paper converges to the grid-refinement based gridless

algorithm in [64], and thus is able to offer a similar performance with lower complexity

than the algorithm in [64]. Note that the CRB is observed to be slightly worse than

the performance achieved by the proposed algorithm. This may be explained by the

bias introduced by the grid selected. As the source locations are fixed over the random

realizations, the selected positions seem to be favourable for the grid adopted. This benign

bias is thus a result of the experimental setting, and it can be eradicated by randomizing

the true source locations as well. We skip this as the additional settings provides only a

limited insight.

2.8 Conclusion

A novel low complexity algorithm for the sparse signal recovery problem is pro-

posed based on the Sparse Bayesian Learning (SBL) formulation, named as Light-Weight
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Sequential SBL algorithm. The proposed algorithm recovers support over iterations, simi-

lar to OMP, but unlike OMP it is based on the stochastic maximum likelihood estimation

framework. Support vectors are added to the recovery set that gradually increases the like-

lihood over iterations. Efficient recursive iterations are developed with the computational

complexity similar to OMP. A beamformer and metric-based perspective is developed

that can provide a fundamental framework to classify and understand different sparse

signal recovery algorithms. Under this framework, LWS-SBL and OMP are analyzed to

understand their subtle differences. Numerical results are provided that both verify the

theory and demonstrate the improvement achieved using LWS-SBL. Gridless extensions

of the proposed algorithm are provided with applications to both 1D parametric model

and multi-dimensional harmonic retrieval problem.

Chapter 2, in part is currently being prepared for submission for publication of

the material, and in part, is a reprint of the material as it appears in R. R. Pote and

B. D. Rao, “Light-Weight Sequential SBL Algorithm: An Alternative to OMP,” ICASSP

2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Rhodes Island, Greece, 2023, pp. 1-5. The dissertation author was the primary

investigator and author of this material.
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Chapter 3

Maximum Likelihood-based Gridless DoA
Estimation

3.1 Introduction

Consider the following parametric data model

yl = ΦΦΦθθθ xl +nl, 0≤ l < L, (3.1)

where yl ∈ CM denotes the measurements, and L denotes the total number of snapshots

available. The kth column of ΦΦΦθθθ ∈ CM×K is a vector function of the parameter θk i.e.,

[ΦΦΦθθθ ]k = ϕϕϕ(θk) for some known ϕϕϕ(.),k ∈ {1, . . . ,K}. θθθ = [θ1, . . . ,θK]
T and θk’s lie in some

known continuous domain. K denotes the number of sources. The sources’ signal xl ∈CK

and noise nl ∈ CM are independent of each other, and i.i.d. over time. The noise, nl, is

distributed as C N (0,σ2
n I). In (3.1), the parameters (θθθ ,xl,σ2

n ) are the unknowns. The

model parameters affect the measurements in a non-linear manner, which makes the in-

verse problem extremely difficult to solve, even in the absence of noise. The above problem

is ubiquitous, with applications including biomagnetic imaging [4], functional approxima-

tions [5], and echo cancellation [6]. In this work we are concerned with problems such as in

line spectral estimation [73] and direction-of-arrival (DoA) estimation [75] for narrowband

signals; we emphasize the latter as means for exposition. Approaches to solve (3.1) have
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Table 3.1. Summary of traditional algorithms for DoA estimation: (a) Spectral based
methods (b) Parametric methods

Methods Primary Bottleneck [75]

(a) i. Spatial filtering (beamforming)
ii. Subspace based methods

Aperture/ degrees of freedom
Number of snapshots

(b) Deterministic/ Stochastic MLE Model & computational complexity
a rich history and can broadly be classified as traditional vs. modern, both significant in

insights and contributions.

On traditional approaches: They can be further classified into spectral based [82–84]

and parametric methods [75]. The typical ingredients to solve (3.1) include geometrical

properties (e.g., subspace orthogonality in MUltiple SIgnal Classification (MUSIC) [83]

or Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [84])

and statistical properties of the model in (3.1). A common thread that unites these

methods is the usage of the second order statistics of the data. A second order statistic

offers benefits such as a) compact representation of the data when1 L ≥M (also, sample

covariance matrix serves as a sufficient statistic when data is Gaussian distributed) b)

model based interpretation of data with much fewer parameters. Parametric methods are

particularly attractive as they do not suffer from the bottlenecks faced by beamforming

and subspace based methods (summary in Table 3.1). Parametric methods like maximum

likelihood estimation (MLE) allow one to introduce meaningful parameters as a means

to incorporate information about geometry and prior, which may be inferred even with

a single snapshot. The main issues with MLE methods are the model complexity, as the

resulting cost function may be highly non-linear in the parameters to solve, and often the

model order is unknown.

On modern approaches: These techniques, under the rubric of sparse signal recovery

(SSR), involve a) reparameterization of the original problem in (3.1) b) explicit or im-

plicit sparsity regularization and corresponding optimization problem. They recover the
1This condition was rightfully pointed out by a reviewer.

87



parameter of interest in either grid-based or grid-less manner, and most often explicitly

impose sparsity. Under the grid-based reparameterization [7–12], the methods first dis-

cretize the possible values of θ and introduce the measurement matrix ΦΦΦ ∈ CM×G, G

denotes the grid size. The i-th column [ΦΦΦ]i = ϕϕϕ(θi), i = 1, . . . ,G, and M≪G. The original

problem in (3.1) can be re-written as

yl = ΦΦΦx̄l + n̄l, 0≤ l < L, (3.2)

where it is known that X̄ = [x̄0, . . . , x̄L−1] is row-sparse i.e., most of the rows are zero. The

problem in (3.2) is known as the multiple measurement vector or MMV problem when

L > 1 [29], compared to the single measurement vector or SMV problem when just a

single snapshot is available i.e., L = 1. The non-zero rows correspond to active sources,

and one of the key problems in SSR is to identify these non-zero rows. For the gridless

approach [22–25] the reparameterization involves Toeplitz matrix fitting of appropriate

size. Note that modern techniques are applicable more generally even when there is no

underlying parametric model, for example Gaussian random entries in ΦΦΦ. Sparsity can

be explicitly enforced by adding suitable p-pseudo-mixed norm2 (p ∈ (0,1]), ∥X̄∥2,p, regu-

larizer for the grid case or atomic norm for the gridless formulations. The core emphasis

in these approaches is on optimizing an appropriate fit to the measurements with an ad-

ditional (sparsity) regularizer [8, 10, 11, 22–25]. Such methods are therefore sensitive to

setting the regularization parameter properly. An exception to the explicit regularization

based methods includes sparse Bayesian learning (SBL) [12, 26, 27] which recovers sparse

solutions for (3.2) via implicit regularization [28]. SBL formulates the recovery problem

under the MLE framework and therefore demonstrates superior performance.

The question we seek to answer is: how can we enhance the SBL formulation to overcome

the model complexities faced by MLE methods of the past, and solve (3.1) i.e., perform
2Note that for p = 1 we get a norm, as it satisfies all the required axioms.
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gridless estimation of θθθ? We identify the following contributions:

• It was shown in [85] that correlation-aware techniques effectively utilize available ge-

ometry and prior information and thus, can recover support as high as O(M2). In [86],

it was shown that SBL can indeed identify O(M2) sources in the noiseless case under

certain sufficient conditions on the dictionary and sources, and was shown empirically

in the noisy case. In this work we reexamine the SBL formulation and show that it

places a similar emphasis on available structure i.e., geometry and prior information,

and thus is a correlation-aware technique!

• We reformulate the SBL problem as a novel structured matrix recovery (SMR) problem

under the MLE framework. We will also show that the cost function employed by the

proposed method can be derived using the Kullback-Leibler (KL) divergence between

the true (data) distribution and the one assumed in this work. This insight provides

a new perspective for understanding the underlying strategy to handle the case when

sources may be arbitrarily correlated, extending the benefits of correlation-aware meth-

ods.

• A majorization-minimization (MM) procedure [87] to minimize the negative

log-likelihood function is provided. One of the advantages of such an approach over

other algorithms like sequential quadratic programming (SQP) is that more informa-

tion is retained as we only majorize the concave terms in the cost. Thus, all infor-

mation about third order and higher, of the convex terms is retained, unlike in SQP.

Also, unlike SQPs where trust regions are required which limit progress per iteration,

such conservative measures are prevented using convex-concave procedure (CCP) [88].

Thus, the linear MM procedure allows for more progress per iteration. We further

discuss how array geometry can play an important role in identifying more sources

than sensors. We also provide perspectives to understand the proposed approach and

connect with the traditional MLE framework and the modern SBL formulation.

89



Table 3.2. Summary of Gridless Sparse Signal Recovery Algorithms

Methods Applicable Array
Geometries Sparsity Regularizer Iterative Optimization

Tool∗
Noise variance

(σ 2
n )

ANM [22] ULA† Atomic Norm (AN) No SDP known
RAM [24] ULA† Reweighted AN Yes SDP known
Gridless
SPARROW [23,90] ULA† ℓ2,1 mixed norm No SDP known
Gridless
SPICE [25] ULA† Implicit (trace norm) No SDP unknown

Proposed Non-uniform
linear array Implicit (logdet) Yes SDP known∗∗

ULA† includes ULA with missing sensors’ case. Non-uniform linear array includes ULA† as a special case.
∗First-order methods have been proposed for some of the above algorithms, although they were primarily derived as SDPs.
∗∗σ 2

n can be assumed unknown and estimated as part of the procedure.

• Finally, we consider arbitrary geometries where it is difficult to identify simplifying

structures, that are otherwise possible for array geometries such as uniform linear

arrays (ULA) with potential missing sensors. For this case, we propose adaptive grid-

based strategies to extend SBL to alleviate the initial grid limitation.

The proposed techniques set us apart from other family of approaches in the literature that

albeit put together a cost function with a similar essence (i.e. Simple Model+Data Fitting),

but lack a (MLE) principled approach and hence the associated insights, performance

guarantees and rich options. We provide numerical results to further elucidate the impact

of the proposed techniques and compare them with other gridless approaches and the

Cramér-Rao bound (CRB). Some of the work presented here was also discussed in [89] by

the authors. We will now review some relevant prior work in this field.

3.1.1 Relevant Prior Work

Early works, primarily in the field of DoA estimation using the MLE based cost function

include [91–96]. In [91], the authors proposed an iterative algorithm to solve the neces-

sary gradient equations for moderate sized problems. An expectation-maximization (EM)

based approach was proposed in [93] wherein the incomplete observed data is assumed to

have a Toeplitz structured covariance, and where it is shown that it is possible to embed

the incomplete data into a larger size periodic data series. A separable solution, consisting

of an optimization problem for recovering support and a closed form expression for esti-

mating the source covariance matrix was proposed in [94], which was further extended to
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the case when noise variance is unknown in [97]. The problem was later considered in the

presence of spatially correlated noise fields in [98]. A closed-form formula for estimating

Hermitian Toeplitz covariance matrices using the extended invariance principle was sug-

gested in [96]. A covariance matching based estimation to bypass the model complexity

associated with the MLE based cost function was proposed in [99]. The approach devel-

oped in this paper can be viewed as a natural progression of this line of work, benefiting

from the developments in the field and in optimization tools.

In [22], authors proposed a gridless scheme for estimating the frequency components of

a mixture of complex sinusoids based on the concept of atomic norm [100]. They formu-

lated a semidefinite program (SDP) which recovered a low rank Toeplitz matrix. Such

a Toeplitz matrix can be further decomposed to identify the DoAs. In our work we sim-

ilarly break the task into two steps. First, we recover a structured covariance matrix

approximation for the sample covariance matrix (SCM). This recovery is based on the

MLE cost function, unlike the work in [22]. The second step is similar to that in [22].

At each step we process the SCM, and do not process the received samples directly. As

a result, the problem dimension is bounded, and results into a compact formulation. A

similar compact reformulation, called SPARse ROW-norm reconstruction (SPARROW),

for the atomic norm minimization problem was proposed in [23]. The atomic-norm mini-

mization (ANM) technique in [22] builds on the mathematical theory of super-resolution

developed by Candés et al. [101], in that it extends to the cases of partial/compressive

samples and/or multiple measurement vectors. ANM, however, requires sources to be

adequately separated, prohibiting true super-resolution. A re-weighted ANM (RAM)

strategy that potentially overcomes the shortfalls of ANM was proposed in [24]. SParse

Iterative Covariance-based Estimation (SPICE) was proposed in [102] as a grid-based

sparse parameter estimation technique based on covariance matching, as opposed to the

MLE formulation, and was later extended to the gridless case in [25]. It was shown in [25]

that gridless SPICE and atomic norm-based techniques are equivalent, under varied as-
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sumptions of noise. LIKelihood-based Estimation of Sparse parameters (LIKES) [103] was

proposed as a grid-based method following the MLE principle, with the same application

as SPICE. Table 3.2 summarizes recent gridless SSR approaches.

3.1.2 Organization of the Chapter and Notations

In Section 3.2 we begin with a simple insight into SBL formulation, and demonstrate

that SBL is a correlation-aware technique. We further compare SBL with another line of

correlation-aware algorithms based on minimizing diversity measures. We take this insight

further and present the structured matrix recovery (SMR) reformulation and highlight

benefits of the proposed approach when sources may be arbitrarily correlated. In Sec-

tion 3.3, we propose an iterative algorithm to solve the SMR problem. We consider both

ULA without missing sensors and ULA wherein some sensors may be missing, in this sec-

tion. We also connect the proposed SMR approach with the traditional MLE framework

and the modern SBL formulation. In Section 3.4, we discuss the general case where sen-

sors may be placed arbitrarily, and may not lie on a uniform grid. We present numerical

results in Section 3.5 and conclude the work in Section 3.6.

We represent scalars, vectors, and matrices by lowercase, boldface-lowercase, and boldface-

uppercase letters, respectively. Sets are represented using blackboard bold letters. (.)T

denotes transpose and (.)H denotes Hermitian of the operand matrix, and (.)c denotes

element-wise complex conjugate. ⊙ denotes Khatri-Rao product between two matrices of

appropriate sizes.
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3.2 SBL Revisited: Correlation Aware Interpretation, Robust-
ness, and Structured Matrix Reformulation

A correlation-aware technique [85,104] satisfies the following three general requirements3:

a) it depends on the measurements only through its second order statistics b) it assumes

a source correlation prior, usually that sources are uncorrelated, and fits a resulting struc-

tured received signal covariance matrix to the second order statistics of the measurements

c) any further inference is carried using the recovered parameters characterizing the esti-

mated structured covariance matrix. In this work we assume that the sources are uncorre-

lated. This assumption may not always hold, and some sources may in fact be correlated.

The impact of this mismatch between assumed model and true model is discussed at the

end of this section. The discussion highlights another aspect of the MLE framework, as

it provides interpretable and superior results even in the mismatched model case.

For the purpose of simplicity, we focus on the ULA geometry in this section, and postpone

the general case of ULAs with missing sensors until next section. However, the insights

presented here are applicable to the general case as well.

3.2.1 On the SBL Algorithm

SBL is a Bayesian technique to find a row-sparse decomposition of the received measure-

ments, Y = [y0, . . . ,yL−1], (i.e., to solve the MMV problem in (3.2)) using an overcomplete

dictionary ΦΦΦ ∈ CM×G consisting of G suitably chosen vectors (may be non-parametric

in general). In the DoA estimation problem, these vectors are array manifold vectors

evaluated on a grid of angular space representing potential DoAs i.e., θ ∈ [−π
2 ,

π
2 ) or

u ∈ [−1,1) in u-space. Note that there is a bijective mapping u = sinθ in the domains

of interest [56] and thus we use the two notations interchangeably. Consider a ULA
3To our knowledge, a formal set of requirements to be a ‘correlation-aware’ technique is missing in

literature. Thus, we propose these requirements based on the conditions for superior source identifiability
reported in [85,86,104].
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with M sensors and d = λ̄/2 distance between adjacent sensors to prevent ambiguity in

DoA estimation; λ̄ denotes the wavelength of the incoming narrowband source signals.

The array manifold vector for a source signal incoming at angle u ∈ [−1,1), is given by

ϕϕϕ(u) = [1,exp(− jπu), . . . ,exp(− j(M−1)πu)]T .

SBL imposes a parameterized Gaussian prior on the source signal x̄l ∈ CG as x̄l ∼

C N (0,ΓΓΓ). Note that SBL explicitly imposes an uncorrelated sources prior, and thus

ΓΓΓ is a diagonal matrix; let diag(ΓΓΓ) = γγγ . Thus we have yl ∼ C N (0,ΦΦΦΓΓΓΦΦΦH +λ I), λ de-

notes the estimate for noise variance. In the case with uninformative prior for γγγ , the

hyperparameter ΓΓΓ and λ can be estimated under the MLE framework [27] as

min
ΓΓΓ⪰0,λ≥0

logdet
(
ΦΦΦΓΓΓΦΦΦH +λ I

)
+ tr

((
ΦΦΦΓΓΓΦΦΦH +λ I

)−1 R̂y

)
, (3.3)

where R̂y = 1
L ∑L−1

l=0 ylyH
l denotes the SCM. Choices for solving the problem in (3.3) in-

clude the Tipping iterations [26], EM iterations [12], sequential SBL [13], and generalized

approximate message passing (GAMP) implementations [105, 106]. A MM approach for

solving (3.3) was introduced in [107].

Remark 14. Note that if the number of sources K is known exactly in (3.1), such model

order information is not used in the SBL formulation. Instead, the logdet penalty in (3.3)

helps to promote sparsity and to deal with small but unknown number of sources. If

there is prior knowledge on K, then ∥γγγ∥0 = K would have to be imposed on the objective

function.

We now present the following useful insight.

Proposition 1. ∀γγγ ≥ 0 such that (ΦΦΦ⊙ΦΦΦc)γγγ = w, for some fixed w ∈ CM2 , the SBL cost is

a constant i.e.,

logdet
(
ΦΦΦΓΓΓΦΦΦH +λ I

)
+ tr

((
ΦΦΦΓΓΓΦΦΦH +λ I

)−1 R̂y

)
=C(λ ),
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where C(λ ) is some constant.

Proof. The proof follows simply by observing that (ΦΦΦ⊙ΦΦΦc)γγγ = w implies ΦΦΦΓΓΓΦΦΦH is a fixed

structured matrix with entries dictated by components of w.

The above result demonstrates that, the hyperparameter γγγ affects the SBL cost function

only through the entries of the structured covariance matrix of the measurements. The

sources are localized by peaks in the output γγγ pseudospectrum. This procedure satisfies

the general requirements for correlation-aware algorithms. Thus, we conclude that SBL is

indeed a correlation-aware technique. The procedure also marks some key requirements

for superior sources’ identifiability (see Theorem 1 and following remarks in [86]).

3.2.2 Connecting to Correlation-Aware SSR Techniques based on
Minimizing Diversity Measures

Consider the class of problems given by

min
z≥0

f (z) (3.4)

subject to ∥r̂y−ΦΦΦKRz∥2 ≤ ε,

where, r̂y = vec(R̂y) and ΦΦΦKR = ΦΦΦc⊙ΦΦΦ denotes the Khatri-Rao product of ΦΦΦ with its

conjugate. f (z) is a sparsity promoting objective function and choices include ℓ1 norm,

ℓ0 or ℓ1/2 as considered in [108]. The above problem satisfies the requirements for being

correlation-aware, namely a) it matches the model to the second order statistics of the

data b) uses uncorrelated sources’ correlation prior to fit a structured matrix to the mea-

surements c) further performs inference using the parameters of this estimated structured

matrix. Next, we reformulate SBL as a constrained optimization problem to highlight the

data-fitting term and to compare with (3.4).

The MLE optimization problem in (3.3) can be reformulated as a constrained optimization
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problem as follows:

min
ΓΓΓ⪰0,λ≥0

logdet
(
ΦΦΦΓΓΓΦΦΦH +λ I

)
(3.5)

subject to tr
((

ΦΦΦΓΓΓΦΦΦH +λ I
)−1 R̂y

)
≤ ε.

Note that the constraint imposes a Mahalanobis distance-based bound on the optimiza-

tion variables. Another perspective to understand the data-fitting term above based on

regularized least-squares fit to measurements can be found in [107].

Proposition 2. Let (ΓΓΓ∗,λ ∗) be a global minimizer of the optimization problem in (3.3)

such that λ ∗ > 0. (ΓΓΓ∗,λ ∗) globally minimizes problem in (3.5) as well, if and only if ε =

tr
((

ΦΦΦΓΓΓ∗ΦΦΦH +λ ∗I
)−1 R̂y

)
.

Proof. Proof in Appendix section 3.7.1.

The constraint in the formulation of (3.5) allows to match the model to the observation

(through the sample covariance matrix) and the objective function promotes a simpler

model to be picked. Note that the constrained optimization problem in (3.5) is exactly

MLE only when ε is set appropriately. The proposition indicates the difficulty in trans-

forming the MLE to a constrained problem, although the latter can be explored as a viable

option with ε set heuristically. This is not discussed further and left as future work. The

above outlook only tries to highlight the two components of the SBL objective and allows

one to compare the constrained formulation in (3.5) to the other correlation-aware tech-

nique in (3.4). The data fitting term in (3.4) lacks the MLE framework for data fitting

used in (3.5). This insight highlights one of the key difference between our approach and

that used in many other works in the literature.

An alternative treatment of the SBL cost function that also reveals connections to

reweighted ℓ1 and ℓ2 methods for finding sparse solutions to (3.2) can be found in [28,107,

109].
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3.2.3 Proposed SMR Approach: ULA with No Missing Sensors

The structure for ΦΦΦΓΓΓΦΦΦH in the case of ULA is a Toeplitz matrix, and is informed by

the array geometry and the uncorrelated sources prior. In other words, SBL attempts to

find the ‘best’ positive semidefinite (PSD) Toeplitz matrix approximation to the SCM R̂y.

The grid-based formulation restricts the solution to lie in the union of PSD cones. We

use this insight and reparameterize the SBL cost function to directly estimate the entries

of the Toeplitz covariance matrix. Let v denote the first row of such a Toeplitz matrix,

denoted by Toep(v). We reformulate the SBL optimization problem as

min
v∈CM s.t.

Toep(v)⪰0,λ≥0

logdet(Toep(v)+λ I)+ tr
(
(Toep(v)+λ I)−1R̂y

)
. (3.6)

Once the solution v∗ is obtained, we estimate the DoAs by decomposing the Toeplitz

matrix, Toep(v∗). In our simulations we use root-MUSIC to estimate the DoAs [110].

Remark 15. It is known that a low rank (D < M) PSD Toeplitz matrix such as Toep(v∗)

can be uniquely decomposed as Toep(v∗) = ∑D
i=1 piϕϕϕ(θi)ϕϕϕ(θi)

H , pi > 0, and θi’s are distinct

[111]. In (3.6), a low-rank solution is encouraged by the logdet term [112], while its effect

is being moderated by the additional noise variance term, ‘+λ I’.

The SBL formulation in (3.3) not only finds a structured matrix fit to the measurements,

it also factorizes it. The same is true with the classical MLE approach, and is briefly

discussed in Section 3.3.3. The structured matrix factorization is a crucial step. In the

proposed approach, we find a structured matrix in the MLE sense. We therefore refer to

the proposed approach as ‘StructCovMLE’. The problem in (3.6) is non-convex and we

discuss an iterative algorithm to solve it, along with an extension to allow ULAs with

missing sensors, in Section 3.3.

Next, we briefly discuss an important aspect of the chosen approach in (3.6) to solve the

original problem in (3.1).
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3.2.4 Performance under a Correlation Prior Mismatch

We discuss the case when there is a prior misfit, between the assumed model and the

actual (data) model. This insight is another feature resulting from the MLE formulation

used by SBL as opposed to a regularization framework. In particular, we discuss the case

when the sources may be arbitrarily correlated. As briefly mentioned before, in the case of

a ULA, the structure SBL imposes by virtue of the array geometry and the (uncorrelated)

source correlation prior is a Toeplitz matrix. If some of the sources are correlated, the

approach fits Toeplitz structured covariance to a non-Toeplitz structure obeyed by the

data. Our aim is not to correct but to quantify the model misfit. In particular, we show

that the recovered Toeplitz fit to the SCM minimizes the KL divergence between the

assumed and the true distribution.

Let py and fy|ΨΨΨ denote the true probability density function (pdf) and the pdf for the

mismatched model, respectively, where ΨΨΨ= (v,λ ) s.t. Toep(v)⪰ 0,λ ≥ 0. Since the source

and noise vectors are uncorrelated with each other, py is a zero mean Gaussian pdf with

covariance matrix Ry = ΦΦΦθθθ RxΦΦΦH
θθθ +σ2

n I, where Rx denotes the source covariance matrix.

Similarly fy|ΨΨΨ is zero mean Gaussian pdf with covariance ΣΣΣyyy = Toep(v)+ λ I. The KL

divergence between these two normal distributions is well known and is given by

D(py∥ fy|ΨΨΨ)= logdetΣΣΣyyy− logdetRy−M+ tr(ΣΣΣ−1
yyy Ry). (3.7)

The effective optimization problem to minimize the KL divergence between the two dis-

tributions is given by

ΨΨΨ∗ = argmin
ΨΨΨ s.t. Toep(v)⪰0,λ≥0

logdet
(
ΣΣΣyyy
)
+ tr
(
ΣΣΣ−1

yyy Ry
)
. (3.8)

Note that this optimization problem is similar to (3.6) for the proposed approach (or (3.3)

used within SBL), where instead of the actual received signal covariance matrix, Ry, we
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used the SCM. Note that the SCM is the unconstrained/unstructured MLE estimate of

the received signal covariance matrix. In [113] it was shown for SBL using the two sources

example and when the DoAs were known that, when sources are far apart, the estimate

for the source powers under the uncorrelated model matches the true source power using

the problem in (3.8). Such a mismatched model was also used in [114] to propose more

robust beamformers that can resist source correlation.

3.3 Maximum Likelihood Structured Covariance Matrix Recov-
ery

We focus on ULA, first on the case with no missing sensors, and then on the case of ULA

with missing sensors. We assume that the noise variance is known and set λ = σ2
n in (3.6),

but it can be estimated as well, similar to v in this section.

3.3.1 Uniform Linear Array Geometry

Based on the concavity of the logdet term, we majorize the logdet term in (3.6) and

replace it with a linear term using its Taylor expansion [87]

logdet(Toep(v)+λ I)≤logdet
(

Toep(v(k))+λ I
)

+tr
(
(Toep(v(k))+λ I)−1Toep(v−v(k))

)
, (3.9)

where v(k) denotes the iterate value at the kth iteration. Note that the linear term

from Taylor expansion provides a supporting hyperplane to the hypograph {(v, t) : t <=

logdet(Toep(v)+λ I))} [115]. We ignore the constant terms above and get the following

majorized objective function

tr
(
(Toep(v(k))+λ I)−1Toep(v)

)
+ tr

(
(Toep(v)+λ I)−1R̂y

)
.
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Rewriting second term above using Schur complement lemma:

tr
(
(Toep(v)+λ I)−1R̂y

)
= min

U∈CM×M
tr
(
U R̂y

)
s.t.

 U IM

IM Toep(v)+λ I

⪰ 0, (3.10)

which is a SDP. The overall optimization problem is convex and can be formulated as a

SDP as follows

min
v∈CM ,U∈CM×M

tr
(
(Toep(v(k))+λ I)−1Toep(v)

)
+ tr

(
U R̂y

)
subject to

 U IM

IM Toep(v)+λ I

⪰ 0,Toep(v)⪰ 0, (3.11)

and can be solved using any standard solvers (e.g. CVX solvers such as SDPT3, SeDuMi

[116]). It can be solved iteratively and we summarize the proposed steps in Algorithm 6.

The following remark briefly discusses the choice of initialization.

Algorithm 6: Proposed ‘StructCovMLE’ Algorithm
Result: v∗
Input: Measurements: Y ∈ CM×L,λ = σ2

n , ITER
1 Initialize: R̂y = YYH/L,v∗ = e1 = [1,0, . . . ,0]T

2 for k := 1 to ITER do
3 v(k)← v∗
4 v∗← Solve the problem in (3.11)
5 end

Remark 16. We initialize the proposed algorithm with the unit vector v0 = e1, following

the suggestion in [112] for effective rank minimization. This initialization reduces the

majorized term to a trace function in the first iteration. It is known that trace function is

a convex envelope for the rank function for matrices with spectral norm less than one [117].

Furthermore, the iterative weighted trace minimization in the following iterations helps
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to preserve relevant signal components.

A criterion such as stopping when the relative change (∥v(k)−v(k−1)∥2/∥v(k−1)∥2) is small

may be considered in Algorithm 6, instead of a fixed number of iterations. The fixed num-

ber of iterations approach is used to compare different iterative algorithms in Section 3.5.

3.3.2 ULA with Missing Sensors

We begin by identifying the relevant structure for the general case of ULAs with missing

sensors. Consider a linear array with M sensors on a grid with minimum inter-element

spacing d = λ̄/2. Let P = {pi | pi ∈ Z,0 ≤ i < M} denote the set of normalized (w.r.t.

d) sensor positions. We assume p0 = 0 without loss of generality. The array manifold

vector is given by ϕϕϕ(u) = [1,exp(− jp1πu), . . . ,exp(− jpM−1πu)]T ,u = sinθ . The differ-

ence coarray is given by D = {z | z = r− s, r,s ∈ P}. The concept of difference coarray

influences the structure we seek to identify, and also arises naturally when computing

the received signal covariance matrix. It represents the set of unique lags experienced

by the physical array. The received signal covariance matrix under the SBL formula-

tion is given by ΦΦΦΓΓΓΦΦΦH + λ I, as discussed previously. The (m,n) entry in ΦΦΦΓΓΓΦΦΦH is

given by [ΦΦΦΓΓΓΦΦΦH ]m,n = ∑G
i=1 γi exp(− j(pm− pn)πui), and [ΦΦΦΓΓΓΦΦΦH ]m,n = [ΦΦΦΓΓΓΦΦΦH ]cn,m. Thus,

[ΦΦΦΓΓΓΦΦΦH ]m,n = [ΦΦΦΓΓΓΦΦΦH ]m′,n′ ,∀ tuples (m,n) and (m′,n′) such that pm− pn = pm′ − pn′ . In

other words, the entries in ΦΦΦΓΓΓΦΦΦH can be distinct only corresponding to distinct elements

in D. ΦΦΦΓΓΓΦΦΦH is Hermitian symmetric, which further restricts the number of distinct

entries. This reveals the underlying structure that the model ΦΦΦΓΓΓΦΦΦH satisfies, and we

formalize it below.

Let Mapt denote the aperture of the array, Mapt =maxd∈D d+1. We define a linear mapping

T(v) : CMapt → CM×M as

[T(v)]i, j=

 v|pi−p j| j ≥ i

vc
|pi−p j| otherwise

,0≤ i, j < M. (3.12)
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Figure 3.1. Structured Covariance Matrix T(v)
The mapping T(v) in general is many-to-one. It is only when the difference coarray has

no holes, the mapping is one-to-one. For such cases we define T−1(R) : CM×M→CMapt as a

function that extracts the entries of a given structured matrix R, formed using (3.12), to

form a column vector. For the ULA with no missing sensors’ case, we have T(v) =Toep(v).

Example 1: Consider P= {0,1,3}. This leads to D= {−3,−2,−1,0,1,2,3} and Mapt = 4.

We therefore define v ∈ C4, and the structured coavariance matrix as in Fig. 3.1(a). The

mapping T(v) is one-to-one here and consequently T−1 is defined and we have T−1(T(v))=

[v0,v1,v2,v3]
T .

Example 2: Consider P= {0,1,4}. This leads to D= {−4,−3,−1,0,1,3,4} and Mapt = 5.

We therefore define v ∈ C5, and the structured coavariance matrix as in Fig. 3.1(b). The

mapping T(v) is many-to-one here, as the component v2 is missing in T(v). Consequently

T−1 is not defined.

Thus, for the general case, (3.3) can be reformulated as:

min
v∈CMapt s.t.

Toep(v)⪰0,λ≥0

logdet(T(v)+λ I)+ tr
(
(T(v)+λ I)−1R̂y

)
. (3.13)

Remark 17. We would like to highlight a non-trivial choice made above of imposing

Toep(v)⪰ 0, instead of only requiring T(v)⪰ 0. Note that the former constraint ensures

that the latter is satisfied. The choice imposes a relevant constraint and is an important

aspect of the model we wish to fit to the data in MLE sense. It also helps to connect the

proposed reformulation to the traditional and modern MLE approaches, and is discussed

in Section 3.3.3.
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Remark 18. As in the case for SBL, if the number of sources, K, is known, a rank constraint

rank(Toep(v)) = K should be imposed. Since imposing a rank constraint is difficult, surro-

gate measures like in compressed sensing may be used, such as ‘+β logdet(Toep(v)+ εI)’

as a regularizer in (3.13) to further promote sparse solutions. In this work, we do not

exploit knowledge of K to solve (3.13).

Like in the previous case of ULA with no missing sensors, we majorize the cost function

in (3.13) to get a convex function and rewrite it as a SDP, assuming knowledge of noise

variance and setting λ = σ2
n . The majorized objective is given by

tr
(
(T(v(k))+λ I)−1T(v)

)
+ tr

(
(T(v)+λ I)−1R̂y

)
. (3.14)

The resulting SDP is given below

min
v∈CMapt ,U∈CM×M

tr
(
(T(v(k))+λ I)−1T(v)

)
+ tr

(
U R̂y

)
(3.15)

subject to

 U IM

IM T(v)+λ I

⪰ 0,Toep(v)⪰ 0,

where v(k) denotes the value at the kth iteration. Steps similar to Algorithm 6 can be

followed to find the optimal point v∗. To estimate the DoAs we perform root-MUSIC on

T(v∗).

Remark 19. It was shown in [118] that sparse arrays with a larger number of consecutive

lags than the number of sensors, M, can identify more sources than M. Under the proposed

approach, a similar higher identifiability can be achieved by instead performing root-

MUSIC on Toep(v∗), and we numerically verify this in Section 3.5.2.
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3.3.3 On Proposed Method: From MLE to SBL

We connect the proposed technique with the classical MLE framework and the grid SBL

formulation. We hope to answer the following question: how has the reparameterization

affected the original problem in (3.1) of solving for θθθ?

1) Connection with the classical MLE formulation: We begin by first stating the tradi-

tional MLE formulation. In this approach, we impose a parametrized Gaussian prior on

xl i.e., xl ∼ C N (0,P). Note that an explicit knowledge of model order information is

a requisite here. We further assume that the sources are uncorrelated, and thus P is a

diagonal matrix. The resulting optimization problem is given by

min
θθθ∈[− π

2 ,
π
2 )

K ,P≻0,λ≥0
logdet

(
ΦΦΦθθθ PΦΦΦH

θθθ +λ I
)
+ tr

(
(ΦΦΦθθθ PΦΦΦH

θθθ +λ I)−1R̂y
)
. (3.16)

The model is also referred to as the unconditional model in the DoA literature [119],

compared to the conditional model where xl is assumed deterministic. Consider the

following updated MLE optimization problem:

min
K∈Z+

0<K<Mapt

min
θθθ∈[− π

2 ,
π
2 )

K ,P≻0,λ≥0
logdet

(
ΦΦΦθθθ PΦΦΦH

θθθ +λ I
)
+ tr

(
(ΦΦΦθθθ PΦΦΦH

θθθ +λ I)−1R̂y
)
. (3.17)

The difference with the traditional MLE formulation is that, in the above we consider all

model orders, 0 < K < Mapt, to optimize the cost function. We then have the following

result.

Theorem 4. The problem in (3.13) and in (3.17) are equivalent, in that they achieve the

same globally minimum cost.

Proof. Proof is provided in the Appendix section 3.7.2.

2) Connection with SBL in (3.3): Consider the following updated SBL optimization prob-
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lem:

min
ΦΦΦ

min
ΓΓΓ⪰0,λ≥0

logdet
(
ΦΦΦΓΓΓΦΦΦH +λ I

)
+ tr

((
ΦΦΦΓΓΓΦΦΦH +λ I

)−1 R̂y

)
, (3.18)

where we also allow all possible dictionaries ΦΦΦ with array manifold vectors as columns, to

optimize the cost function. The following result follows similarly.

Theorem 5. The problem in (3.13) and in (3.18) are equivalent, in that they achieve the

same globally minimum cost.

Proof. The proof follows similarly as for Theorem 4, and we present it it Appendix sec-

tion 3.7.3 for completion.

The above results help to understand the proposed approach in (3.13): (3.13) estimates

a structured covariance matrix fit to the measurements in the MLE sense over all model

orders for classical MLE or all appropriate dictionaries for SBL.

The entries of a structured matrix and noise variance may be combined as presented

in [120]. However, the choice of explicitly involving λ parameter has two important

consequences: a) If σ2
n is known, the proposed approach allows a mechanism to feed this

information, which is absent in [120] b) If σ2
n is unknown, a better learning strategy to

estimate the noise variance and then feeding it as part of the model may result in better

DoA estimates than jointly estimating θθθ and σ2
n . Finally, although the optimization

problem in [120] and the proposed are similar, an algorithm for solving it is missing

in [120]. During the preparation of this manuscript we came across another recent work

in [121] which derives from the classical MLE formulation. Consequently, it involves the

non-linear rank constraint which is implemented by a truncated eigen-decomposition step.

In contrast, the presented algorithm builds on the success of SBL algorithm and relaxes

the rank constraint, similar to SBL. The presented approach also guarantees that the

likelihood increases over the iterations. K is utilized for root-MUSIC. [121] focuses on

sparse linear arrays i.e., sensors on grid. We, however, consider the general non-uniform
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linear array case as well, and is discussed next.

3.4 Gridless SBL with Likelihood-based Grid Refinement

In this section, we consider the case when sensors may be placed arbitrarily on a linear

aperture. The presented ideas can be extended to other shapes or higher dimensional

(2D, 3D, etc.) geometries. Note in both the sections we assume that the sensor positions

are known. Issues concerning calibration errors is not the focus here, and we request

interested readers to check the relevant literature for tackling such issues [56].

Consider an array with sensor positions P = {0,1,2.1,3.5 ,4.7,10}. The difference coar-

ray for this geometry is given by D= {0,1,1.1,1.2,1.4,2.1,2.5,2.6,3.5,3.7,4.7,5.3 ,6.5,7.9

,9,10}. The structured received signal covariance matrix is neither Toeplitz, nor is sam-

pled from a higher order Toeplitz matrix. This implies that (3.13), where we enforced a

Toeplitz PSD constraint, is not applicable. Similarly, the second step wherein we estimate

DoAs in a gridless manner using root-MUSIC is not applicable. Finally, the number of

distinct lags is |D|= M(M+1)/2− (M−1) = 16 which essentially enforces structure only

on the diagonal entries, in that, they be equal. This indicates poor availability of struc-

tural constraints on the received signal covariance, compared to the geometries where

sensors are present on a uniform grid. Note that the SBL formulation in (3.3) is devoid

of such limitations. Using the recovered ΓΓΓ∗ one can construct a Toeplitz matrix of order

⌊Mapt⌋, where ⌊·⌋ indicates the floor function, and beyond although the accuracy may

not be reliable as the measurements lack information about larger lags. This highlights

the versatility with which SBL can handle arbitrary array geometries. However, as we

already know that SBL does not quite solve (3.1) that we ventured out to solve in the

first place, because the DoAs may not lie on the chosen grid. One can employ a very

fine grid, but the per iteration computational complexity increases linearly with the grid

size. We extend the SBL procedure to progressively refine the initial uniform coarse grid
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by adding more points near potential source locations. We achieve this in two steps: (a)

Grid point adjustment around peaks, in the solution γγγ∗ of (3.3) using sequential SBL [13]

to simultaneously update both grid point and power estimate (b) Multi-resolution grid re-

finement. Note that the latter builds on the former step by re-running SBL after the local

step (a), pruning, and increasing grid resolution near top peaks in the γγγ pseudospectrum.

As will be shown next, the grid point adjustment around peaks in γγγ pseudospectrum is a

computationally simpler procedure to further increase the likelihood after SBL iterations

on a coarse grid.

3.4.1 Grid Point Adjustment around Peaks in Solution

We begin by rewriting the SBL objective function to separate out the i-th grid component

characterized by the tuple (γi,ui); u = sinθ is used here. Let C = ΦΦΦΓΓΓΦΦΦH +λ I and C−i =

ΦΦΦ−iΓΓΓ−iΦΦΦH
−i + λ I, where ΦΦΦ−i denotes the dictionary without the i-th column in ΦΦΦ, and

ΓΓΓ−i denotes the matrix without the the i-th row and the i-th column in ΓΓΓ. Then

L (γγγ) = logdetC+ tr
(
C−1R̂y

)
= L (γγγ−i)+L(γi,ui), (3.19)

where L (γγγ−i) = logdetC−i + tr
(
C−1
−i R̂y

)
is devoid of (γi,ui),

and L(γi,ui) = log(1+ γiΦΦΦH
i C−1
−i ΦΦΦi)−

ΦΦΦH
i C−1
−i R̂yC−1

−i ΦΦΦi

γ−1
i +ΦΦΦH

i C−1
−i ΦΦΦi

(see eq. (18) in [13] for detailed deriva-

tion of (3.19)). Let i(0)k ,k ∈ {1, . . . ,K} denote the indices for the K top peaks in the γγγ

pseudospectrum. The index superscript (.) in i(0)k indicates the iteration number of the

overall two step procedure, and will be discussed more in the next subsection. The idea

is to fix the first term in RHS of (3.19) and minimize the objective L(γ,u) with respect to
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Figure 3.2. Proposed SBL with likelihood-based grid refinement procedure. At r = 0, SBL
is run with a uniform grid.
(γ,u),u ∈ [u

i(0)k
−δ ,u

i(0)k
+δ ],k = {1, . . . ,K}, one peak at a time4; the bound5 δ < 1/G is to

avoid grid point overlap. In other words, the aim is to solve

min
u∈[u

i(0)k
−δ ,u

i(0)k
+δ ]

min
γ≥0

L(γ,u) = log(1+ γs(u))− q(u)
γ−1 + s(u)

(3.20)

where q(u) = ϕϕϕ(u)HC−1
−i R̂yC−1

−i ϕϕϕ(u) and s(u) = ϕϕϕ(u)HC−1
−i ϕϕϕ(u). The minimization with

respect to γ for a fixed u can be obtained in closed-form as

γopt(u) =


q(u)−s(u)

s(u)2 q(u)> s(u)

0 q(u)≤ s(u)
. (3.21)

And thus we have

L(γopt(u),u) =

 log
(

q(u)
s(u)

)
− q(u)

s(u) +1 q(u)> s(u)

0 q(u)≤ s(u)
. (3.22)

Note that log
(

q(u)
s(u)

)
− q(u)

s(u) +1≤ 0,∀u, and is equal to zero only when q(u) = s(u) for some

u. Consequently, we are interested in u∈ [u
i(0)k
−δ ,u

i(0)k
+δ ] such that q(u)> s(u). For such

4In general, solving for one grid point at a time (as done here) may lead to a different solution compared
to solving for all grid points simultaneously. This is because the underlying cost function is non-convex.
Since the objective is to perform local grid refinement where new grid points in the neighborhood of a
support element are considered, a sequential SBL strategy of optimizing one grid point at a time is more
suited, as it leads to simple yet efficient updates.

5Note that future iterations may involve non-uniform grid, and a similar bound on either directions
is used to avoid grid point overlap.
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points L(γopt(u),u) is a monotonic non-increasing function of ‘q(u)
s(u) ’, and thus the problem

in (3.20) reduces to the following problem

u∗ = argmax
u∈[u

i(0)k
−δ ,u

i(0)k
+δ ] s.t. q(u)>s(u)

R(u) =
q(u)
s(u)

. (3.23)

We provide the following perspective to understand the objective we wish to locally max-

imize.

R(u) =
q(u)
s(u)

=
ϕϕϕ(u)HC−1

−i R̂yC−1
−i ϕϕϕ(u)

ϕϕϕ(u)HC−1
−i ϕϕϕ(u)

=
ϕϕϕ(u)HC−1

−i R̂yC−1
−i ϕϕϕ(u)/

(
ϕϕϕ(u)HC−1

−i ϕϕϕ(u)
)2

1/
(
ϕϕϕ(u)HC−1

−i ϕϕϕ(u)
) , (3.24)

which is the ratio of (numerator) actual beamforming total output power and (denom-

inator) expected beamforming interference plus noise output power, where the model

interference plus noise signal covariance is given by C−i. The expression utilizes the beam-

former w =
C−1
−i ϕϕϕ(u)

(ϕϕϕ(u)HC−1
−i ϕϕϕ(u))

, which represents a minimum variance distortionless response

(MVDR) beamformer with C−i as the model interference plus noise signal covariance ma-

trix [56,122]. Thus the criterion R(u) in (3.23) picks a u in the neighbourhood of u
i(0)k

that

most exceeds the expected beamforming interference plus noise output power, guided by

C−i. At the true location, which is likely to be in the search region, the model C−i expects

low power but hopefully the measurements indicate higher power than expected.

We solve (3.23) by implementing a fine grid of size G′ around the peak and evaluating the

criterion R(u). Once we find the maximum point we replace the grid point (γ
i(0)k

,u
i(0)k

) with

(γopt(u∗),u∗). Note that by including the previous grid point in the search region we ensure

that the likelihood is steadily increasing. We then repeat this procedure for the next peak,

corresponding to another source, and so on. This procedure around a peak assumes that

other peaks were reliably estimated, which may hold only approximately. Therefore, we

iterate over the K peaks until convergence. In practice, the procedure converges quickly

over 20−30 iterations.
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The above procedure is quite different from that in [11], in that it offers a means to

improve the DoA estimate without requiring to re-run the primary procedure (here: SBL,

in [11]: ℓ1-SVD) on all grid points. As will be shown numerically in Section 3.5.6, this

step alone improves the solution significantly.

3.4.2 Multi-resolution Grid Refinement

In this subsection, we take the local grid point adjustment step further by introducing a

finer grid around the new peak locations and by re-running the SBL procedure. Let r = 0

and j(r)k ,k ∈ {1, . . . ,K}, denote the indices for the K top peaks in the solution γγγest after

grid point adjustment around the peaks, and G(0) = G denotes the current grid size. We

run the following procedure to further refine the solution:

1. Prune the grid points i for {i : γγγest(i) < γthresh} for some γthresh. In the simulations we

set γthresh = 10−3.

2. Introduce new grid points in the region [u
j(0)k
− 4

G(0) ,u j(0)k
+ 4

G(0) ] with finer resolution
1
g

2
G(0) ,g > 1. The region includes two neighbouring grid points on each side. ‘g’ is

chosen such that the total number of grid points does not exceed G(0). This choice

ensures that per iteration complexity is contained. In the simulations, we choose g = 3;

in general the procedure adds (4g+1) new points per peak of interest.

3. Increment r : r+1, and update the grid size G(r). Run SBL from scratch, get new set

of indices for K top peaks i(r)k ,k ∈ {1, . . . ,K}; perform grid point adjustment at these

peaks to get j(r)k ,k ∈ {1, . . . ,K}, as updated peak locations. Go to step 1).

This procedure is similar to that in [11]. We run these steps a few times and report the

peak points as DoA estimates in the simulation section. A natural question that arises is:

why is the local grid point adjustment not enough for improved resolution and separating

two closely spaced sources? In other words, is a SBL re-run necessary?
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Figure 3.3. Single snapshot scenario
A re-run improves both, the SBL with coarse grid and the grid point adjustment around

peaks. For the SBL procedure, a re-run in this manner provides a much more informed

sampling of the spatial coordinates with closely-spaced grid points around locations of

interest. For the grid point adjustment step where the MVDR beamformer is employed, a

finer grid helps to further ensure that only a single source is present in the search region of

(3.23). This is important because the beamformer w =
C−1
−i ϕϕϕ(u)

(ϕϕϕ(u)HC−1
−i ϕϕϕ(u))

engages its degrees

of freedom and attempts to null interference outside of this search region, and the criterion

R(u) works best only if a single source is present in the search region. A block diagram

summarizing the high level steps suggested in this section for the general case of sensors

being placed arbitrarily is shown in Fig. 3.2.

3.5 Simulation Results

We present numerical results to evaluate the performance of the proposed algorithms

in Section 3.3 and 3.4 in different scenarios. We also compare the proposed ‘Struct-

CovMLE’ algorithm with MUSIC using SCM, MUSIC using forward-backward (FB) av-

eraged SCM [56], reweighted ANM (RAM), GridLess (GL)-SPICE, GL-SPARROW and

Cramér-Rao bound (CRB) [123]. We initialize all the iterative techniques (i.e. the pro-

posed Algorithm 6 and RAM) with the unit vector v0 = e1 for reasons stated in remark 16,

and run 20 iterations unless otherwise specified. We provide the number of sources, K,

to identify to all the algorithms. We set λ = σ2
n for the proposed algorithm. The RAM
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(a) StructCovMLE
(RMSE = 0.005)

(b) RAM
(RMSE = 0.106)
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(c) GL-SPARROW
(RMSE = 0.050)

(d) GL-SPICE
(RMSE = 0.072)

Figure 3.4. More sources than sensors’ case
implementation follows its description in [24], and we also adopt the dimension reduction

mechanism suggested in the paper. We set η = σn

√
ML+2

√
ML as suggested for DoA

estimation in [24]. For GL-SPARROW, we set λ = σn
√

M logM as suggested in [23, 90].

GL-SPICE does not require or utilize the knowledge of the noise variance, σ2
n . We com-

pute root mean squared error (RMSE) in u-space (u = sinθ ) as

RMSE =

√√√√ 1
T

1
K

T

∑
t=1

K

∑
k=1

(
ûk,t−uk

)2
, (3.25)

where T denotes the total number of random trials.
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3.5.1 Performance in Single Snapshot Case i.e., L = 1

We consider a ULA with M = 10 sensors, and two sources at angles {−1/Mapt,1/Mapt}

,Mapt = 10, in u-space. The sources have signal-to-noise ratio (SNR) = 20 dB. In Fig. 3.3

we plot the normalized (with respect to maximum value) MUSIC pseudospectrum for

different estimates of the structured covariance matrix, for 10 random realizations. The

true DoAs are marked in vertical red dashed curve. As expected, the SCM provides the

worst performance as it does not satisfy the rank requirement to identify two sources.

It is observed that the forward-backward averaging helps to improve the performance by

ensuring the rank requirement is satisfied. Still the overall performance is poor, as evident

from the high noise floor compared to that for ‘StructCovMLE’ in Fig. 3.3 (c), and from

its inability to resolve the two sources for some realizations. The proposed method is able

to resolve both the sources. This is also true for RAM, GL-SPARROW, and GL-SPICE

methods although we skip the plots in the interest of space.

3.5.2 More Sources than Sensors’ Case

We consider a nested array [61] with M = 6 sensors at locations {0,1,2,3,7,11}, and

K = 8 sources at angles uniformly in u-space. Their locations in MATLAB notation are

{−1+1/K : 2/K : 1−1/K}. The SNR for each source is 20 dB and L = 4. In Fig. 3.4, we

plot 20 random realizations of the normalized MUSIC pseudospectrum for the different

estimates of the structured covariance matrix. As seen in Fig. 3.4 (a), the proposed

algorithm is able to localize all the 8 sources, whereas the rest of the algorithms suffer

from poor identifiability for some realizations. The superior performance is also evident

from the lower RMSE value (in u-space) for the proposed algorithm, as compared to the

other techniques.
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(b) Source 2 (d) Correlated sources, |ρ|= 0.9 (f) RAM

Figure 3.5. (a) & (b): Effect of correlation (ρ/|ρ|= 0.5010+ j0.8654) on empirical bias.
(c) & (d): RMSE as a function of SNR. (e) & (f): Nested array with sensor locations,
P= {0,1,2,3,4,5,11,17,23,29}.
3.5.3 Effect of Correlation: An Empirical Bias Study

We consider a ULA with M = 6 sensors and two sources incoming at angles {−1/4,1/4}.

The SNR is 20 dB and L = 500. In Fig. 3.5 (a) and (b) we plot the empirical bias

for the two sources, respectively i.e., 1
T ∑T

t=1
(
ûk,t−u∗k

)
,k = {1,2}, as a function of the

absolute value of correlation coefficient, |ρ|. For computing the bias, we average over

T = 50 realizations. As observed in the plots, there is an increasing empirical bias in the

angular estimates for the RAM and the GL-SPARROW techniques. This is evident as

the curves drift away from the x-axis as |ρ| increases. The proposed approach (shown in

green curve with circular markers) has low empirical bias even when |ρ| is as high as 0.99.

This demonstrates the superiority of the MLE based proposed approach over the other

algorithms when there may be sources that are arbitrarily correlated.

Next, we provide RMSE vs. SNR curves for uncorrelated and correlated sources’ case,

and compare the performance with CRB. Note that in certain scenarios the algorithms

may be biased, for example in extremely low SNR regime, or as evident in Fig. 3.5 (a)
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and (b) for RAM and GL SPARROW even in the high SNR scenario when the sources

are correlated. We provide the curves for completion, but note that the CRB may not be

a valid bound for such extreme cases.

3.5.4 Performance as a Function of SNR

We consider ULA with M = 6 sensors and two sources at angles {−1/2,1/2}. L = 500 and

we run 30 iterations for RAM and the proposed ‘StructCovMLE’ algorithm. In Fig. 3.5

(c) and (d) we plot the RMSE (averaged over T = 50 realizations) for the uncorrelated

sources and correlated sources’ cases, respectively, as a function of SNR. As observed in

Fig. 3.5 (c), when the sources are uncorrelated, all the algorithms approach CRB as the

SNR increases. When the sources are highly correlated and the SNR is high, |ρ|= 0.9 in

Fig. 3.5 (d), we observed that the performance curve for the proposed algorithm is the

closest to CRB, followed by GL-SPICE. The performance curves are worse for RAM and

GL-SPARROW indicating the effect of empirical bias present in the estimates.

3.5.5 Resolution Study and Regularization-free Proposed Approach vs
RAM Study

We evaluate the performance of the proposed technique for resolution and compare it

with RAM. We also compare the two algorithms for the case when sources have different

SNRs. We consider a nested array with M = 10 sensors, and allow K = 4 sources incoming

at angles {−0.5,−1/2Mapt,1/2Mapt,0.6} in u-space, where Mapt = 30. The corresponding

SNR for sources is {5,20,20,10} dB and only a single snapshot (L = 1) is available. The

two sources near broadside are 1/Mapt apart, or equivalently 0.5/Mapt apart in normalized

frequencies, which is a challenging scenario. As seen in Fig. 3.5 (e) and (f) for the proposed

algorithm and RAM, respectively, both are able to resolve the two sources. The proposed

algorithm is able to identify all 4 sources, but RAM misses the weakest source. This

behavior for RAM comes from the fact that the model is matched to an estimate of
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Figure 3.6. Non-uniform linear array: Performance of the proposed SBL with likelihood-
based grid refinement procedure
noiseless data. In an attempt to construct such a noiseless estimate of measurement, the

algorithm effectively suppressed the weakest source. It was observed that setting η = 0

helped to identify all sources for RAM here. This indicates that RAM is sensitive to setting

the parameter η appropriately. Note also that the noise floor for the proposed algorithm

is higher than that for RAM. This is expected because for the case of K = 4 sources

and M = 10 sensors i.e., fewer sources than sensors, MUSIC is applied on the smaller

T(v∗) ∈ C10×10 in the proposed algorithm, compared to MUSIC on Toep(v∗) ∈ C30×30 in

RAM.

3.5.6 Performance of the Proposed SBL with Likelihood-based Grid
Refinement Procedure

We consider the array geometry mentioned in Section 3.4 with M = 6 sensors at positions

P= {0,1,2.1,3.5,4.7,10}, two sources at approximately {−0.5400,0.4802} in u-space, and

L = 500. In Fig. 3.6 (a) and (b), we analyse the performance of the proposed algorithm

at SNR=20 dB, while in (c) we consider a range of SNRs. We run 5000 SBL iterations

each time SBL is called, and the initial grid size is G = 150. We plot the average results

of T = 50 random realizations in Fig. 3.6 (a) and (b) and T = 25 random realizations in

Fig. 3.6 (c).
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In Fig. 3.6 (a), we plot the RMSE over the iterations (r = 0,1, . . .) described in Fig. 3.2 for

the proposed algorithm. As observed here the RMSE decreases over iterations. Within

each iteration (compare dashed vs. solid curve), it can be seen that the grid point adjust-

ment step at peaks helps to reduce the error further, and thus establishes a simple way

to further increase the likelihood. After 5 iterations, it can be seen the error is very close

to the CRB. In Fig. 3.6 (b), we plot the grid size (in solid blue curve) for running SBL at

every iteration of the proposed procedure. In dashed blue curve, we plot a simple upper

bound on the grid size by only counting the number of new grid points added around

top peaks. This helps to compute the number of points pruned at every iteration. For

reaching CRB at SNR=20 dB with a single SBL run and a uniform grid, we need a grid

size of G = 7632. In comparison, the proposed procedure only requires a maximum grid

size of G = 150. Note that the grid resolution around the top peaks, after 5 iterations, is

comparable to an initial grid size of G×g(5−1) = 150×34 = 12150, which is more than

enough to achieve CRB. In Fig. 3.6 (c), we plot the RMSE as a function of SNR. We set

the maximum iterations (< 7) of the proposed procedure so as to allow for sufficiently

small grid spacing at high SNR as required to reach CRB. As seen in the plot, the RMSE

approaches CRB as the SNR increases. Note that for a fixed grid size i.e., for a standard

SBL procedure the RMSE is expected to saturate beyond a certain SNR.

3.6 Conclusion

In this work we revisited the problem of gridless sparse signal recovery using MLE frame-

work. We showed that SBL performs a structured covariance matrix estimation, where

the structure is governed by the geometry of the measurement collection system (e.g. an-

tenna array) and the (uncorrelated) source correlation prior. We further established that

SBL is a correlation-aware technique and compared it with another class of correlation-

aware techniques. Both are able to identify O(M2) sources given sparse linear array with
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M sensors, like minimum-redundancy linear array [56, 60, 118] and nested array. The

noteworthy aspect about SBL is the underlying objective it uses, which is MLE. In the

event that some of the sources are correlated, the model misfit is characterized in terms of

the KL divergence between the distribution SBL assumes and the true data distribution.

We reparametrized the SBL cost function to enable gridless support recovery when the

sensors are placed on uniform grid and some sensors may be switched off. We provided an

iterative algorithm based on linear MM to minimize the cost function and to estimate the

structured covariance matrix of measurements. The DoAs can be recovered by using any

off-the-shelf root-finding technique such as root-MUSIC. In this work, we also consider

geometries when the sensors may be placed off the grid, and extend the SBL procedure

to include a peak adjustment and grid refinement steps. Finally we compared the pro-

posed algorithms numerically with other state-of-the-art algorithms from the literature

and demonstrated the superior performance showcased by the cost function motivated by

first principles, that is maximum likelihood estimation.

Several directions are open for future work. This includes, for all sensors on grid case,

developing faster methods to solve the proposed ‘StructCovMLE’ optimization problem.

For the arbitrarily placed sensors’ case, we feel the grid refinement based iterative SBL

procedure is an important first step and opens up many interesting avenues of inquiry. For

dictionaries parameterized by a few parameters, there is hope that discretization (grid)

may not be necessary upfront except as a practical computational method as in Equation

(3.23).

Chapter 3, in part, is a reprint of the material as it appears in R. R. Pote and B.

D. Rao, “Maximum Likelihood-Based Gridless DoA Estimation Using Structured Covari-

ance Matrix Recovery and SBL With Grid Refinement,” in IEEE Transactions on Signal

Processing, vol. 71, pp. 802-815, 2023, R. R. Pote and B. D. Rao, “Maximum Likelihood

Structured Covariance Matrix Estimation and connections to SBL: A Path to Gridless

DoA Estimation,” 2022 56th Asilomar Conference on Signals, Systems, and Computers,
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Pacific Grove, CA, USA, 2022, pp. 970-974. The dissertation author was the primary

investigator and author of this paper.

3.7 Appendix

3.7.1 Proof of Proposition 2

Proof. The ‘if’ part can be proved simply using contradiction and follows by noting that

if (ΓΓΓ∗,λ ∗) is not the global minimizer of (3.5), then the solution for (3.3) can be fur-

ther improved. We now prove the ‘only if’ part. If ε < tr
((

ΦΦΦΓΓΓ∗ΦΦΦH +λ ∗I
)−1 R̂y

)
, then

(ΓΓΓ∗,λ ∗) is infeasible, and the assertion holds trivially. If ε > tr
((

ΦΦΦΓΓΓ∗ΦΦΦH +λ ∗I
)−1 R̂y

)
,

then (ΓΓΓ∗,λ ∗) lies in the feasible region. We prove that the point (ΓΓΓ∗,λ ∗) can be further

improved. For any two matrices B,C≻ 0 such that B≻ C, the following holds

tr
(
(B−C)−1R̂y

)
≥ tr

(
B−1R̂y

)
(3.26)

logdetB > logdet(B−C). (3.27)

Inserting B = ΦΦΦΓΓΓ∗ΦΦΦH +λ ∗I and C = αI, for some α ∈ (0,λ ∗) in the above ensures that

the conditions B,C ≻ 0 such that B ≻ C are satisfied. We choose α sufficiently small to

ensure that the constraint tr
(
(B−C)−1R̂y

)
≤ ε is satisfied and consequently (ΓΓΓ∗,λ ∗+α) is

feasible. Such an α exists because tr
(
(B−C)−1R̂y

)
is a) continuous w.r.t. α in (0,λ ∗) and

b) right continuous at α = 0 with tr
(
B−1R̂y

)
< ε as assumed. For such an α , as evident

from (3.27), (ΓΓΓ∗,λ ∗+α) further improves the solution, and thus (ΓΓΓ∗,λ ∗) does not globally

minimize (3.5) if ε > tr
((

ΦΦΦΓΓΓ∗ΦΦΦH +λ ∗I
)−1 R̂y

)
. This concludes the proof.

3.7.2 Proof of Theorem 4

Proof. The cost functions in (3.13) and (3.17) are identical, except for the received sig-

nal covariance matrix model. The optimization variables affect their cost only through

the covariance matrix. Thus, the two problems are equivalent if the effective matrix
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search domains, up to an additional ‘+λ̃ I’ (λ̃ ≥ 0) term, are same. Let D1 denote

the matrix search region spanned by T(K,θθθ ,P) = ΦΦΦθθθ PΦΦΦH
θθθ in (3.17), and D2 for T(v)

in (3.13), where the domain for the parameters are indicated in the respective prob-

lems. To prove D1 ⊆ D2: Let T(K′,θθθ ′,P′) ∈ D1 for some (K′,θθθ ′,P′), then the construc-

tion v′ = T−1(ΦΦΦθθθ ′,ULAP′ΦΦΦH
θθθ ′,ULA)

6 ensures that Toep(v′)⪰ 0 and T(v′) = T(K′,θθθ ′,P′), i.e.,

T(K′,θθθ ′,P′) ∈D2. This concludes D1 ⊆D2. To prove D2 ⊆D1: Let T(v′′) ∈D2 for some

v′′, then we have Toep(v′′)⪰ 0. We skip the case when Toep(v′′) is low rank as it follows

simply from unique Vandermonde decomposition. If Toep(v′′) is full rank, then it uniquely

decomposes as ΦΦΦθθθ ′′,ULAP′′ΦΦΦH
θθθ ′′,ULA+λ ′′I, for some (θθθ ′′,P′′,λ ′′ > 0), where the correspond-

ing K′′ < Mapt [73]. This ensures that ΦΦΦθθθ ′′P
′′ΦΦΦH

θθθ ′′+λ ′′I = T(v′′), which are equal up to the

additional ‘+λ ′′I’ term. This concludes that D2 ⊆D1.

3.7.3 Proof of Theorem 5

Proof. Similar to the proof for Theorem 4, we conclude that the two problems in (3.13)

and (3.18) are equivalent if the effective matrix search domains, up to an additional ‘+λ̃ I’

(λ̃ ≥ 0) term, are same. Let D1 denote the matrix search region spanned by T(ΦΦΦ,ΓΓΓ) =

ΦΦΦΓΓΓΦΦΦH in (3.18), and D2 for T(v) in (3.13), where the domain for the parameters are

indicated in the respective problems. To prove D1 ⊆ D2: Let T(ΦΦΦ′,ΓΓΓ′) ∈ D1 for some

(ΦΦΦ′,ΓΓΓ′), then the construction v′ = T−1(ΦΦΦ′ULAΓΓΓ′ΦΦΦ′HULA)
7 ensures that Toep(v′) ⪰ 0 and

T(v′) = T(ΦΦΦ′,ΓΓΓ′), i.e., T(ΦΦΦ′,ΓΓΓ′) ∈ D2. This concludes D1 ⊆ D2. To prove D2 ⊆ D1: Let

T(v′′) ∈ D2 for some v′′, then we have Toep(v′′) ⪰ 0. Using Vandermonde decomposition

we get Toep(v′′) = ΦΦΦθθθ ′′,ULAP′′ΦΦΦH
θθθ ′′,ULA for some (θθθ ′′,P′′ ≻ 0) which may not be unique.

This decomposition leads to a valid dictionary ΦΦΦ′′ = ΦΦΦθθθ ′′ and diagonal source covariance

matrix ΓΓΓ′′ = P′′. This concludes that D2 ⊆D1.

6ΦΦΦθθθ ′,ULA denotes the array manifold matrix for a ULA of size Mapt.
7ΦΦΦULA denotes the overcomplete dictionary for a ULA of size Mapt, evaluated at same grid points as

ΦΦΦ.
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Chapter 4

Conclusions

In this dissertation we consider three problems of practical relevance in today’s

times. These problems seem different yet are inherently connected through their respective

measurement models and parameters of interest.

The first problem focused on the millimeter wave initial alignment problem where

high training overhead is of prime concern. Large propagation losses and specular char-

acteristics of the channel are some of the challenges tackled in this work. A novel sensing

scheme is proposed which synthesizes a virtual array manifold over time while achieving

beamforming gain to overcome the propagation losses. Benefits of replacing conventional

beamformers with proposed Synthesis of Virtual Array Manifold (SVAM) sensing is dis-

cussed in detail, and wide applicability of proposed sensing within existing beam alignment

algorithms is elaborated. A novel inference algorithm is developed that exploits coherence

within channel and outperforms benchmark algorithms. Future work includes methods

to adapt the virtual array geometry and aperture size over time as more measurements

are collected, dynamically selecting posterior threshold, and extensions to time-varying

channels. The proposed SVAM sensing (and initial alignment procedure) is especially

relevant for future technologies such as Integrated Sensing and Communication (ISAC)

wherein sensing and communication services coexist to enhance overall performance. Con-

sequently, such applications of the proposed SVAM sensing is an exciting future research
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direction.

The second problem considered the Sparse Signal Recovery (SSR) problem, and a

novel low complexity algorithm, named as the Light-Weight Sequential Sparse Bayesian

Learning (LWS-SBL), is proposed. The proposed algorithm is compared with the widely

used Orthogonal Matching Pursuit (OMP) algorithm in terms of support recovery perfor-

mance and computational complexity. Both algorithms have identical asymptotic compu-

tational complexity but have different foundational principles. OMP solves a sequential

least squares problem whereas LWS-SBL optimizes the stochastic maximum likelihood

estimation formulation. In this regard, the latter increases (or maintains) the likelihood

over iteration as more support is added to the model. A fundamental framework is pro-

posed to compare OMP and LWS-SBL (which can be applied more generally to other

SSR algorithms) in terms of the underlying beamformer and metric employed to select

columns from the measurement matrix. The proposed framework helps to understand the

superior performance of LWS-SBL compared to OMP when sources are closely located

as evident from the empirical results. Extensions of the proposed algorithm to single

and two-dimensional gridless parameter estimation problem is discussed and empirically

studied. This contribution transforms a Bayesian algorithm for SSR into an efficient

greedy approach and provides associated and additional insights. An interesting future

research direction is to extend the framework proposed in this work, to compare OMP and

LWS-SBL i.e., the underlying beamformer and metric to select columns, to classify other

SSR algorithms. Another research direction is the inherent connection between LWS-SBL

and Order Recursive MP, wherein the former derives from a stochastic formulation and

the latter is derived from a deterministic one. However, the two seem more related and

exploring this connection is an interesting research problem.

Finally the third problem considers the maximum likelihood estimation framework

for the Direction of Arrival (DoA) estimation problem. The proposed approach helps to

overcome the model complexities associated with the traditional MLE formulation by
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reformulating the SBL formulation as a novel structured matrix recovery problem. It re-

covers a structured covariance matrix estimate using the maximum likelihood estimation

framework, and is named as StructCovMLE. The resulting approach is correlation-aware

and thus enjoys the rich properties of such procedures, for instance, the proposed algo-

rithm can identify more sources than sensors in suitable scenarios. Moreover by virtue

of the MLE formulation, the proposed algorithm is demonstrated to outperform existing

modern and traditional DoA estimation algorithms in low number of snapshots, correlated

sources, and low SNR scenarios. The proposed algorithm requires to solve a semi-definite

program at every iteration. Developing first-order methods and application on field ex-

periments where practical requirements render classical algorithms less useful such as low

snapshots or SNR are interesting directions. For the arbitrarily placed sensors’ case, the

grid refinement based iterative SBL procedure is an important first step and opens up

many interesting avenues of inquiry. For dictionaries parameterized by a few parameters,

a discretization (grid) may not be necessary upfront except as a practical computational

method as in Equation (3.23).

In this dissertation, accurate modeling and exploitation of array geometry and

correlation prior information is emphasized. In practice, such accurate prior knowledge

or high-quality measurements may not always be available. For instance, there may be

perturbation in the sensor locations, the sources may be arbitrarily correlated or only

highly quantized measurements such as few bits may be available. Even when the avail-

able information may be reliable, the complexity of the proposed algorithms may be an

impediment for certain real-time applications. In such scenarios data-driven techniques

may be suited as refinement to the solutions from the model-based algorithms. Such

research enquiries form an exciting research direction, as well.
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