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Discovering and Describing Category Differences:
What makes a discovered difference insightful?

Stephen D. Bay(sbay@ics.uci.edu)
Michael J. Pazzani(pazzani@ics.uci.edu)

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697, USA

Abstract

Many organizations have turned to computer analysis of their
data to deal with the explosion of available electronic data. The
goal of this analysis is to gain insight and new knowledge about
their core activities. A common query is comparing several dif-
ferent categories (e.g., customers who default on loans versus
those that don’t) to discover previously unknown differences
between them. Current mining algorithms can produce rules
which differentiate the groups with high accuracy, but often
human domain experts find these results neither insightful nor
useful. In this paper, we take a step toward understanding how
humans interpret discovered rules by presenting a case study:
we compare the responses of admissions officers (domain ex-
perts) on the output of two data mining algorithms which at-
tempt to find out why admitted students choose to enroll or
not enroll at UC Irvine. We analyze the responses and iden-
tify several factors that affect what makes the discovered rules
insightful.

Introduction
Data collection is a daily activity of many organizations in
business, science, education, and medicine. Large databases
are routinely collected and with the advent of computers to
process the information, these organizations want to analyze
the data to gain insight and knowledge about the underlying
process behind the data. The data usually represents infor-
mation on their core business, and an important task is un-
derstanding the differences between various client groups.
For example, bank loan officers may be interested in analyz-
ing historical loan data to understand the differences between
people who are good and poor credit risks. Admissions of-
ficers at UC Irvine (UCI) are interested in analyzing admis-
sions data to understand the factors which influence an admit-
ted student’s choice to enroll at UCI. It is important that the
discovered differences both be true and accurate descriptions
of the data as well as being acceptable andunderstandable by
the end users.

A common technique for discovering group differences
from data is to apply a data mining algorithm to automati-
cally find rules from the data. For example, after analyzing
loan data we might find that people with graduate degrees
are good loan risks (i.e. grad-degree! low-risk). There have
been many studies which investigate the accuracy of rules that
describe category differences, but very few which investigate
how humans interpret the results.

In this paper, we focus on two issues relating to the inter-
pretation of discovered rules by human domain experts: First,
algorithms for automatically finding group differences can be
categorized broadly into discriminative and characteristic (or

informative) approaches (Rubinstein & Hastie, 1997). In dis-
criminative approaches, the algorithms attempt to find differ-
ences that can be directly used to classify the instances of
the groups. In characteristic approaches, the algorithms at-
tempt to find differences in the class descriptions, some of
which may also be highly predictive but are not necessarily
so. We investigate if human domain experts have a prefer-
ence for either strategy. Second, there are many objective
measures of rule quality and typically mining algorithms seek
rules that optimize these measures. For example, with if-
then rules of the formA ! C (antecedent implies conse-
quent), many algorithms attempt to maximize the confidence
which is the conditional probability of the consequent be-
ing true given the antecedent (P (CjA)). The assumption is
that rules that score highly on the objective measure are use-
ful to domain experts. The problem is that while there are
many objectives measures of pattern quality, such as support
(Agrawal, Imielinski, & Swami, 1993), confidence (Agrawal
et al., 1993), lift (also known as interest) (Brin, Motwani, Ull-
man, & Tsur, 1997), conviction (Brin et al., 1997) and many
others, none of the measures truly correlate with what human
domain experts find interesting, useful, or acceptable. The
reality is that most mined results are not useful at all. For
example, Major and Mangano (1995) analyzed rules from a
hurricane database and reduced 161 rules to 10 “genuinely
interesting” rules. In a more extreme, but common case, Brin
et al. found over 20000 rules on a census database from which
they learned that “five year olds don’t work, unemployed resi-
dents don’t earn income from work, men don’t give birth” and
other uninteresting facts. Thus we investigate the relationship
between human subjective measures of rule usefulness to ob-
jective measures of rule quality.

We answer our research questions, “Is a discriminative or
characteristic approach more useful for describing group dif-
ferences?” and “How do subjective and objective measures
of rule interest relate to each other?” by reporting on an
analysis of discovered rules by human domain experts. We
analyzed UCI admissions data to understand the groups of
students that decide to enroll or not enroll at UCI given an
offer of admission. After discovering rules with two differ-
ent algorithms, we then showed the rules to human domain
experts and asked them to rate the rules according theirin-
sightfulness, i.e. did the rule expand their knowledge about
the admission process? After obtaining experts results, we
then analyzed the responses to compare and contrast discrim-
inative and characteristic approaches as well as objective and
subjective measures of rule quality.



In the remainder of this paper, we first highlight the differ-
ences between discriminative and characteristic approaches
and describe the mining algorithms used. We then describe
the knowledge discovery task: analyzing admissions data to
improve the recruitment process at UCI. We examine domain
experts responses and compare them to quantitative measures
of rule quality. We conclude by discussing related work and
examining possible directions for future work.

Background: Discovering Category Differences
Mining algorithms for finding category or group differences
can be classified as discriminative or characteristic. Discrim-
inative miners attempt to find differences that are useful for
predictive classification with a high degree of accuracy. Char-
acteristic miners attempt to find significant differences in the
class descriptions. This can result in rules that are highly pre-
dictive as with discriminative mining, but predictiveness is
not a requirement of the mined rules. Discriminative miners
look for one key set of features that distinguish the categories
while characteristic miners look for all important differences
between the categories.

For example, a discriminative difference would be that stu-
dents who do not enroll at UCI are much more likely to have
a GPA greater than 4 and live more than 100 miles from UCI
than students who do enroll. Ninety eight percent of these
students (GPA greater than 4 and distance from UCI greater
than 100 miles) reject UCI’s admission offer and do not en-
roll. Knowing that a student has these characteristics allows
us to classify them with high accuracy.

A characteristic difference would be that 39.8% of students
that enroll at UCI are English native speakers compared with
47.9% of students who do not enroll. Clearly this difference
affects many students, but knowing that a student is an En-
glish native speaker does not give us much information about
whether the student will enroll or not. It contains information
that is not useful for prediction, but nevertheless may be im-
portant to an analyst attempting to understand the two groups.

Formally, we can describe the two approaches as follows:
Let X be the set of attributes and values with which we de-
scribe the differences.X can be a single attribute value pair
such asX = fnativelanguage = Englishg or it can be a con-
junction, e.g.X = fGPA > 4 ^ UCIdistance > 100 milesg.
Let y be the class or category. Then discriminative ap-
proaches attempt to findX such that the following equation
is maximized.1

jP (y = c1jX)� P (y = c2jX)j (1)

Characteristic approaches attempt to findX such that

jP (Xjy = c1)� P (Xjy = c2)j (2)

is maximized. Note that we can relate these two equations
with Bayes Rule:

P (yjX) =
P (Xjy)P (y)

P (X)
(3)

1The exact form of the equation that is maximized can vary
somewhat from this definition, but all discriminative approaches
concentrate on finding large differences inP (yjX).

Thus we can always convert from one to the other. Although
the forms can be made equivalent, the difference is that the
X that optimizes/maximizes Equation 1 is not necessarily the
same as theX that is best for Equation 2.

We now describe two algorithms representative of the ap-
proaches. C5 (Quinlan, 1993) which is a discriminative ap-
proach and STUCCO (Bay & Pazzani,1999) which is a char-
acteristic approach.

A Discriminative Approach: C5
A discriminative approach to distinguishing two or more
groups fromeach other is to use a rule learner or decision
tree to learn a classification strategy. In this paper, we use the
program C5 which is an updated version of C4.5 (Quinlan,
1993). It is a workhorse of the Machine Learning commu-
nity and is a gold standard to which many new algorithms are
compared.

Given two categoriesc1 and c2, C5 attempts to find sets
of variables such that Equation 1 is maximized and so that
as many examples in the database are covered by rules as
possible. C5 performs greedy heuristic search to develop a
decision tree. Starting at the root of the tree, C5 selects an
attribute-value test to partition the feature space. Each par-
tition is represented by a child node and is then recursively
divided with more tests. The tests are chosen to create child
nodes which tend to be mainly of one class.

After finding the tree, C5 can then convert it to rules and re-
move unnecessary terms imposed by the top down tree struc-
ture. It does this by following the path from the root to every
leaf and constructing one rule for each path. The rules con-
tain every term that appears in nodes along the path. C5 then
tests each term that appears in a rule and removes terms that
offer no predictive benefit.

A Characteristic Approach: STUCCO
Here we briefly review the STUCCO algorithm for mining
contrast sets. The reader is directed to (Bay & Pazzani,1999,
1999b) for a more detailed description.

STUCCO is a complete mining algorithm that searches
for contrast sets, conjunctions of attribute-value pairs, that
have substantially different probabilities across several dis-
tributions or groups. The goal is to find contrast sets where
the value of Equation 2 is greater than a threshold�.

STUCCO takes a two stage approach to mining. In the first
stage, STUCCO searches for all possible contrast sets that
meet the criteria. In the second stage, STUCCO summarizes
the mined results to present only a small set of rules.

STUCCO organizes the search for contrast sets using
set-enumeration trees (Rymon, 1992) to ensure that every
node is visited only once or not at all if it can be pruned.
Figure 1 shows an example set-enumeration tree for four
attribute-value pairs. STUCCO searches this tree using
breadth-first search; it starts with the most general terms
first, i.e. those contrast sets with a single attribute-value
pair such assex = female or UCISchool = Engineering.
These sets are the easiest to understand and will have
the largest support. It then progresses to more compli-
cated sets that involve conjunctions of terms, for example,
sex = female ^ UCISchool = Engineering.

During search, STUCCO scans the database to count the
support of all nodes foreach group. It examines the counts



{1}

{1,2}

{1,2,3}

{4}

{1,2,4}

{1,3}

{1,3,4}

{1,4}

{2}

{2,3}

{2,3,4}

{2,4}

{3}

{3,4}

{1,2,3,4}

{}

Figure 1: Example search tree for four attribute-values pairs
f1,2,3,4g.

to determine which nodes meet the criteria and which nodes
should be pruned. STUCCO also explicitly controls the
search error to limit false discoveries by keeping careful track
of the number of statistical tests made to verify Equation 2
and adjusting the� level for individual tests to control the
overall Type I error rate.

In the second stage, STUCCO summarizes the mined
results by showing the user the most general contrast sets
first, those involving a single term, and then only show-
ing more complicated conjunctions if they are surprising
based on the previously shown sets. For example, we
might start by showing the contrast setssex = female,
UCISchool = Engineering, and GPA > 4. STUCCO
would then move on to showing more complicated
sets such as sex = female ^ UCISchool = Engineering
or UCISchool = Engineering ^ GPA > 4, and finally
sex = female ^UCISchool = Engineering ^ GPA > 4. The
conjunctions are only shown if their frequencies could not
be predicted from the subsets using a log-linear model
(Everitt, 1992). This hierarchical approach eliminates many
uninteresting results and can reduce the number of mined
results by more than an order of magnitude leaving a small
set of rules for a user to view.

Analysis of UCI Admissions Data
At UCI, the admissions office collects data on all under-
graduate applicants. The second author serves on a cam-
puswide committee whose goal is to analyze this data to iden-
tify changes that could be made to admissions policies that
would improve the quality, quantity, and diversity of students
that enroll at UCI. Currently the admissions officers typically
analyze the data by manipulating spreadsheets and thus they
can only form simple summaries and do not perform detailed
multivariate analyses that would be provided by a data mining
algorithm.

Here, we report on an analysis of the 1999-2000 enroll-
ment data to identify differences between students who chose
to enroll and those who did not for all students accepted at
UCI. There were a total of 13344 students given admission
offers, of which 3871accepted and enrolled at UCI and9473
who did not. For each student, the data contains information
on variables such as ethnicity, UCI School (e.g. Arts, Engi-
neering, etc.), sex, home location, first language, GPA, SAT
scores, Selection Index Number (SIN) which is a composite

score formed from GPA and SAT scores, statement of intent
to enroll, etc. We joined the data with a zipcode database and
added fields for the distance to UCI and to other UC schools.
Numeric variables, such as SAT scores and distances were
manually converted into nominal variables at thresholds that
are meaningful for the admissions office.

We ran STUCCO and C5 on the data to obtain contrast
sets. For STUCCO we used the following parameter settings:
� = 1% and global� = 1. For C5 we used the default pa-
rameter settings except we set the misclassification costs to
balance the different group sizes (typically only 30% of ad-
mitted students will enroll). This was necessary as without
cost balancing C5 would fail to find any rules distinguishing
the two groups and would resort to a default strategy of al-
ways predicting that the students would not enroll (the more
common class).

Both C5 and STUCCO produce results in their own partic-
ular format. To make interpretation easier and to eliminate
any bias from the presentation format, we converted the re-
sults into an equivalent set of English sentences describing
the differences using an identical sentence structure for both
C5 and STUCCO. We translated the numeric results associ-
ated with the outputs of STUCCO and C5 intoyield andgain
which are meaningful quantities for the admissions officers.
Yield is the percentage of students that enroll; gain is the dif-
ference in the number of students that would enroll if the yield
was identical to the average yield. The results can be ordered
by gain to highlight the differences that have the largest ef-
fect. Rule 1 shows a sample result converted automatically to
English text. The full set of results are too big to be shown
in this paper, but Appendix A presents a small subset and all
examples used in this paper are actual findings.

Rule 1. Students who are Korean and have a Selection
Index Number between 6000 and 6500 are more likely
to enroll with a 30% higher yield than average. This
represents a gain of 66 students.

We expressed yield relative to the average. In this example,
the yield was 30% higher than average yield (25.6%) which
is the percentage of all students who accepted UCI’s offer.
Thus the yield for this category is 55.6% = 30% + 25.6%. The
gain of 66 students is a measure of theeffect sizeof the rule,
i.e. how many students does it affect? In general, we believe
the effect size is a domain independent factor that contibutes
to how insightful a rule is. For example, in a loan default
problem the effect size would indicate how many additional
loans that default can be attributed to customers that meet the
conditions of the discovered rule.

The discriminative and characteristic approaches resulted
in two very different rules sets describing the differences be-
tween students who enroll and do not enroll. Table 1 shows
the size (as measured by the number of terms in the con-
junction) and number of rules mined by C5 and STUCCO.
It shows the results for all of the mined rules and the best
30 as measured by gain (we used only the best 30 rules for
our experiment in the next section). Examining the table we
see that C5 returned far more results than STUCCO and that
the individual sets tended to be larger and more complicated.
While more complex results are undesirable, by itself, it is not
an indication that one method is better than another. Table 2



summarizes the average gain (magnitude only) of the results
and in Figure 2 we plot the discovered rules according to their
yield difference (with respect to the average yield) and gain.
We summarize the differences as follows:

� C5 tends to produce longer rules than STUCCO. The av-
erage number of terms in a C5 rule was 3 whereas for
STUCCO the average is 1.7.

� Compared with STUCCO, C5 produced rules with higher
yield differences but smaller effect sizes.

� C5 produces many rules that are clearly uninteresting be-
cause their effect size is very small. For example, on the
full set of returned rules the median effect size was only 5
for C5. In contrast, STUCCO’s median was 132.

Table 1: Summary of Results for C5 and STUCCO (S).

All Best 30
Size C5 S C5 S

1 25 42 6 17
2 46 24 16 11
3 62 10 6 2
4 35 1 2
5 21 1
6 5

total 194 78 30 30

Table 2: Summary of Effect Size Results for C5 and
STUCCO (S). Values were calculated based on magnitude
only.

All Best 30
C5 S C5 S

median 5 132 125 273
mean 32 175 173 306

min 0 28 34 165
max 495 683 495 683
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Figure 2: Comparing discriminative and characteristic rule
sets.

Experimental Evaluation
In this experiment, we showed the results from data mining
to admissions officers at UCI and asked them to rate the rules
according to the insight they provide.

To give an example of an insightful rule, consider Rule 2.
Admissions officers at UCI have been uncertain of the effect
that the proximity to UCI and other UC campuses plays in
student’s college choice. Students who live at home with their
parents substantially reduce the cost of higher education. It
was well known that students who live close to UCI are more
likely to accept offers, butlittle was understood about how
this interacts with other variables. Rule 2 provides insight
into this: it suggests that UCI competes fairly well for stu-
dents with UCLA, UCSD and UC Riverside.

Rule 2. Students who live within 30 miles of UCI and
live within 30 miles of another UC school are more
likely to enroll with a 10% higher yield than average.
This represents a gain of 329 students.

As another example of what an admissions officer would
find insightful, consider Rule 3. It suggests that UCI does
an extremely poor job of recruiting bright students who have
not yet declared a major. This is probably because recruiters
treated non-declared majors as confused students who needed
help rather than as bright students who wanted to explore their
options. Due to this discovery, UCI is changing the way it
approaches recruiting undeclared students, particularly those
with high GPAs.

Rule 3.Students who have a GPA greater than 4, and are
undeclared majors are less likely to enroll with a 15%
lower yield than average. This represents a loss of 123
students.

Subjects. The subjects were 4 faculty and staff at the Uni-
versity of California, Irvine who are actively involved in the
admissions process and expressed an interest in viewing the
results of a computer analysis of admissions data to find fac-
tors relating to student recruitment. The subjects did not re-
ceive any compensation.

Stimuli. The stimuli consisted of two sets of statements
corresponding to the outputs of C5 and STUCCO. Each
set consisted of 30 rules, 15 describing students with in-
creased yield and 15 describing students with decreased yield.
Appendix A shows the 15 increasing yield statements for
STUCCO. Within the group of increasing or decreasing yield
statements the rules were sorted by gain (largest first). The
yield and gain values were rounded to the nearest integer. The
subjects were not aware of the algorithm that generated each
set of rules.

Procedures. Each subject was shown the two sets of rules
and were asked to “consider the statements in the context
of being an admissions officer whose goal is to improve the
quality, quantity, and diversity of students that enroll.” We
then asked the subjects to rate each statement on its insight-
fulness using a scale from -3 to +3, with -3 corresponding
to not insightful and +3 corresponding to insightful. After
viewing both sets of statements, the subjects were asked to
indicate which set they preferred overall.



Results & Discussion. Table 3 shows the mean ratings of
the experts for both STUCCO and C5. It is clear from the
values that the experts are using different scales and that the
rules were not equally insightful to all. Experts 1, 2, and 4
rated STUCCO higher than C5. Using a groupt test, the
differences were significant for E2 and E4 at the 0.001 level.
The difference in ratings were not significant for Experts 1
and 3.

Expert 1 indicated no preference for STUCCO or C5, but
the remainder all stated that they preferred the rules which
were learned by STUCCO.

Table 3: Mean Ratings for C5 and STUCCO

Expert
E1 E2 E3 E4

STUCCO 0.7 -0.1 1.57 1.23
C5 0.43 -0.87 1.87 0.23

t(58) 0.69 3.48 -1.38 4.87

We pooled the STUCCO and C5 ratings foreach expert
and then calculated the correlation of the experts ratings with
the objective measures of rule quality: yield difference, gain
(effect size), and rule size (number of conjuncts). For our
calculations we used the magnitude of the yield difference
and gain. The results are shown in Table 4. For yield dif-
ference and rule size there were no significant correlations
with insightfulness. For gain, we found a significant relation
for Experts 1 and 2. With at test of a correlation coefficient
(H0: � = 0), the results are significant at the 0.01 level or
better. This suggests that the effect size is a factor in deter-
mining how insightful domain experts find the discovered dif-
ferences. Since STUCCO finds many rules with large effect
sizes, experts seem to prefer the STUCCO rules.

Table 4: Correlation of Ratings to Objective Rule Measures

Expert
E1 E2 E3 E4

Yield Diff. 0.1406 -0.0827 0.1664 -0.1139
Gain 0.5598 0.4316 0.2469 0.0848

Rule Size -0.2449 -0.2224 0.0787 -0.2620

We believe there are other factors that influence the ratings
of insight given to a rule. In particular, some rules are already
well known to the admissions officers. In addition, some ad-
mission officers have a particular focus (e.g., minority stu-
dents) and would be more interested in rules of that type. We
tabulated the inter-correlation of the experts in Table 5 using
the pooled C5 and STUCCO responses. The results are sur-
prisingly in that the correlation between experts is very low.
Figure 3 plots the ratings of E2 and E4, the experts with the
highest correlation. This suggests that insight is very subjec-
tive and there are important individual differences, possibly
relating to the prior knowledge of the task.

Table 5: Correlation of Ratings Between Experts

Expert
E2 E3 E4

E1 0.2748 0.1028 -0.1329
E2 0.1894 0.2778
E3 -0.1613
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Figure 3: Expert 2 versus Expert 4.2

Related Work

Insightfulness is an extremely difficult notion to capture, and
this work has only begun to investigate this concept. Blake
and Pazzani (2000) have taken an orthogonal approach to un-
derstanding when a rule is insightful. They examined how
background knowledge encoded in an electronic knowledge
base could be used to remove uninteresting rules from a set.
In contrast this work examines how the discovery strategy
(discriminative or characteristic) affects the insight of rules
found and how insightfulness correlates with objective mea-
sures of rule quality.

Clearly, before a rule can be insightful to a person, it must
be understood and considered valid. In the past, researchers
have considered understandable as synonymous with “short”
and thus designed mining algorithms with a strong bias to-
wards rules that are short and accurateunder this assumption
(Karalic, 1996; Craven, 1996). While this makes intuitive
sense, there have been no studies which quantitatively con-
firm this. There have been two studies which indicate that
perceived validity of the mined rules affects the credibility
and willingness to use mined results: Pazzani, Mani, and
Shankle (1997) examined the effect of monotonicity relation-
ships on rule acceptance in diagnosing potential Alzheimer
patients. They found that regardless of ruleaccuracy neu-
rologists were unwilling to use rules which violated the in-
tent of the diagnostic test. Pazzani and Bay (1999) looked at
the effect of incorrect signs on the credibility of regression
equations and likewise found that equations where the sign
of a variable differed from subjects expectations were rated
poorly. An interesting result of their study was that longer re-
gression equations were more credible than shorter equations.

Silberschatz and Tuzhilin (1996) suggested that interest-
ingness is a subjective quality that depends on the individual.
However, they did not test this theory quantitatively with hu-
man subjects. Our results with inter-expert agreement support
their theory.

2A small amount of randomjitter has been added to the points.



Conclusions and Future Work
We asked the following two questions in our paper: “Is a
discriminative or characteristic approach more useful for de-
scribing group differences?” and “How do subjective and ob-
jective measures of rule interest relate to each other?”

We answered these questions by conducting a study of ad-
missions officers and their responses to the outputs of the data
mining algorithms C5 and STUCCO. Our main findings are
that (1) characteristic differences are more useful to domain
experts than purely discriminative differences. (2) Many ob-
jective measures of rule quality correlate poorly with expert
opinions on what is insightful, but there is some evidence that
effect size is important. (3) Rule insightfulness is highly sub-
jective as even experts examining the rules for the same task
do not correlate well with each other.

This paper presented an initial study of how experts with
a particular task in mind evaluated data mining discoveries.
It is important to use experts because they represent the in-
tended users of the mining programs and will have a distinct
purpose in mind when evaluating results. However, the lim-
itation is that experts are inherently rare and thus we were
only able to obtain the responses from four people. We plan
on conducting a larger study on a less specialized domain so
that we can involve more subjects.
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Appendix A
We show here the 15 positive yield rules with the largest gain
found by STUCCO.

1. Students who live within 30 miles of UCI are more likely to enroll
with a 11% higher yield than average. This represents a gain of
455 students.

2. Students who have a Selection Index Number between 6000 and
6500 are more likely to enroll with a 15% higher yield than aver-
age. This represents a gain of 443 students.

3. Students who have a GPA between 2.75 and 3.5 are more likely
to enroll with a 16% higher yield than average. This represents a
gain of 415 students.

4. Students who live within 30 miles of UCI and live within 30 miles
of another UC school are more likely to enroll with a 10% higher
yield than average. This represents a gain of 361 students.

5. Students who are from Orange County are more likely to enroll
with a 13% higher yield than average. This represents a gain of
323 students.

6. Students who are from Orange County and live within 30 miles
of UCI are more likely to enroll with a 13% higher yield than
average. This represents a gain of 319 students.

7. Students who scored less than 500 on their SAT Verbal are more
likely to enroll with a 17% higher yield than average. This repre-
sents a gain of 310 students.

8. Students who scored between 500 and 600 on their SAT Math are
more likely to enroll with a 8% higher yield than average. This
represents a gain of 291 students.

9. Students who have a Selection Index Number between 6000 and
6500 and scored between 500 and 600 on their SAT Verbal are
more likely to enroll with a 14% higher yield than average. This
represents a gain of 235 students.

10. Students who have a Selection Index Number between 6000 and
6500 and scored between 500 and 600 on their SAT Math are
more likely to enroll with a 14% higher yield than average. This
represents a gain of 216 students.

11. Students who scored between 500 and 600 on their SAT Verbal
are more likely to enroll with a 4% higher yield than average.
This represents a gain of 200 students.

12. Students who have a GPA between 2.75 and 3.5 and have a Se-
lection Index Number between 6000 and 6500 are more likely to
enroll with a 16% higher yield than average. This represents a
gain of 186 students.

13. Students who have a Selection Index Number between 5000 and
6000 are more likely to enroll with a 19% higher yield than aver-
age. This represents a gain of 173 students.

14. Students who live within 30 miles of another UC school are more
likely to enroll with a 2% higher yield than average. This repre-
sents a gain of 166 students.

15. Students who have a GPA between 2.75 and 3.5 and scored be-
tween 500 and 600 on their SAT Math are more likely to enroll
with a 18% higher yield than average. This represents a gain of
165 students.
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