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Modeling Embodied Lexical Development

David Bailey, Jerome Feldman, Srini Narayanan and George Lakoff
{dbailey, jfeldman, snarayan, lakoff}Qicsi.berkeley.edu
International Computer Science Institute and University of California, Berkeley
1947 Center Street Suite 600, Berkeley CA 94704 USA

Abstract

This paper presents an implemented computational
model of lexical development for the case of action verbs.
A simulated agent is trained by an informant giving
labels to the agent’s actions (here hand motionss and
the system learns to both label and carry out similar
actions. Computationally, the system employs a novel
form of active representation and is explicitly intended
to be neurally plausible. The learning methodology is a
version of Bayesian model merging (Omohundro, 1992).
The verb learning model is placed in the broader context
of the Ly project on embﬂcﬁed natural language and its
acquisition.

Introduction

One of the central questions of cognitive science is how
concepts and language are embodied. This involves seek-
ing answers to the following kinds of questions about
the brain: How can a neural system represent concepts?
Learn concepts? Organize concepts lexically? Learn lex-
ical items?

One way of making progress at present on these ulti-
mate questions is to ask them of structured connectionist
systems, rather than the physical neural systems of the
brain, in the hope that the connectionist results will give
us computational insight to the how the brain captures
concepts and language. The Ly group at ICSI and UC
Berkeley has been pursuing this research strategy for al-
most a decade (Feldman et al., 1996). This paper is an
overview of our recent results and challenges.

From our perspective, modeling lexical development is
an ideal task for studying embodied cognition. We can
isolate linguistically and conceptually simple situations
and construct and test detailed models. Our first major
effort was the dissertation work of Regier (1996) which
used a simplified but realistic connectionist model of
the visual system plus a conventional back-propagation
learning scheme in a demonstration of how some lexical
items describing spatial relations might develop in dif-
ferent languages. Since languages differ radically in how
spatial relations are conceptualized, there was no obvi-
ous set of primitive features that could be built into the
program. The key to Regier’s success came directly from
embodiment: all people have the same visual system and
visual concepts must all arise from its capabilities. By
building in a simple but realistic visual system model,
Regier was able to have his program learn spatial terms
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from labeled example movies for a wide range of lan-
guages, using simple back-propagation techniques.

Lexical development is an active field with its own
methods and results. One critical empirical finding is
that the child’s first words label not only things, but also
relationships, actions and internal states (Tomasello,
1995). Only by addressing the broader lexical acquisition
problem can one appreciate the role of embodiment. In
this paper, we will focus on the learning of verbs describ-
ing simple hand motions such as push and yank. Bailey’s
dissertation work includes a computational model that
can learn to produce verb labels for actions and also
carry out actions specified by verbs that it has learned.!
This entails a methodological problem; to model a child
learning to label his own actions, the program must be
able to act. Bailey solves this by incorporating the Jack
(Badler et al., 1993) human simulation system as part of
his model.

A shortcoming of the standard view of lexical acquisi-
tion is that it provides no account of how a child learns
to make use of the concepts she learns and the words
that label them. This same weakness appears as a tech-
nical consequence of using back-propagation in Regier’s
work and in PDP models: even when the network learns
perfectly how to classify a domain, it has no mechanism
for inference or action. In our new work, there is a re-
quirement that learning algorithms produce usable rep-
resentations. Figure 1 outlines what this entails for Bai-
ley’s verb learning system. The conventional concept
learning task is depicted by the upward arrows. After
training, when the agent executes a motor action (bot-
tom) it tries to relate the features of the action and the
world state (middle layer) to a characterization of werd
meanings (top layer) to produce an appropriate lapel.
But we impose an additional constraint on the process:
what is learned as a verb meaning must also function as
a command interface for the agent as depicted by the
downward arrows of Figure 1. For example, if it learns
that shove labels pushing actions with high acceleration,
it must be able to carry out a shoving action when asked.
This is done by interpreting a verbal command as choos-
ing a motor action and its parameters in accordance with

!The project is reminiscent of Winograd’s (1973) SHRDLU,
although it differs in its focus on learning, its restriction to
verbs, and its attention to finer semantic distinctions. Siskind
(1992) has considered action verb learning but does not lever-
age internal state ‘(e.g. intentions, motor commands), relying
instead on visual features alone.
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Figure 1: Architecture of Bailey's verb learning system.

the world state, and then using them to guide execution.

Levels of Representation

The basic questions of neural and cognitive development
are receiving increasing attention from the connectionist
perspective. It is universally assumed that genetic and
environmental factors interact in elaborate ways in the
acquisition of lexical terms. Although there is a good
deal of theoretical and modeling work on the acquisition
of syntax (including the past-tense controversy), there
does not appear to be any detailed theory of lexical de-
velopment like the one presented here. We hope that we
have made some progress toward supplying a scientific
notation for expressing mechanisms of lexical acquisi-
tion.

Any such formalism needs to bridge the gap from em-
bodied experience to its expression as abstract symbols
in language. This inherently involves multiple levels of
description. Regier’s work combined three levels of scien-
tific discourse, the lowest of which (neural) was implicit.
For the more complicated domains discussed here, we
have added a “computational” level above the connec-
tionist level. This is analogous to Marr’s computational
level and comprises a mixture of familiar notions like
feature structures and a novel representation—executing
schemas. The four levels of discourse are:

cognitive: words, concepts

computational: f-structs, x-schemas (see below)
connectionist:  structured models, learning rules
neural: [still implicit]

The intermediate representation levels provide a
much-needed scientific language for specifying proposed
structures and mechanisms. We also require that inter-
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mediate representations be implementable as computa-
tional simulations to allow us to test the consequences
of our hypotheses. A third requirement is that the com-
putational mechanisms be reducible to structured con-
nectionist models so the embodiment can be realized.
There is also a fourth requirement: the representational
formalisms must also support computational learning al-
gorithms so that we can perform experiments on acqui-
sition.

Executing Schemas

The most novel aspect of our current effort is the ex-
tensive use of erecuting schemas (z-schemas for short)
to represent actions, so named to distinguish them from
other notions of schema and to remind us that they are
intended to really execute when invoked. One motiva-
tion for x-schemas comes from motor control. Simple
behaviors like grasping involve coordinated movement
of a range of muscles in a stereotyped yet parameterized
manner called a synergy (Bernstein, 1967). At a higher
level, motor control involves the coordination of such
synergies and the accompanying perception and control.
The concept of motor-schema, which pervades the liter-
ature on motor control, is a flow-chart like depiction of
such activity patterns (e.g. Arbib (1987)).

We currently represent x-schemas using a formalism
known as Petri nets in computer science (Murata, 1989).
Their most important features are clean ways to capture
concurrency and event-based asynchronous control in ad-
dition to the standard ideas of sequence, hierarchy and
parameterization. A Petri net is a bipartite graph con-
taining places (drawn as circles) and transitions (rectan-
gles). Places hold tokens and represent predicates about
the world state or internal state. Transitions are the ac-
tive component. When all of the places pointing into a
transition contain an adequate number of tokens (usu-
ally 1) the transition is enabled and may fire, removing
its input tokens and depositing a new set of tokens in its
output places. Generally, as a side effect a firing transi-
tion triggers an external action (e.g. a motor synergy)
although this is optional. From these simple constructs,
a wide variety of control structures can be built.

The bottom third of Figure 2 depicts an example x-
schema for sliding an object on a tabletop. The SLIDE
x-schema captures the fact that people shape the hand
while moving the arm to an object and that large and
small objects are handled differently. It includes a loop
that continues motion when not yet at the goal and a
separate little schema for tightening the grip if slip is
detected.

Feature Structures

To keep things minimal, our models use only one other
computational mechanism—feature structures (f-structs
for short, drawn a a row of double-boxes). F-structs
are used for static knowledge representation, parame-
ter setting, and binding. They have been chosen to be
compatible with what have been called “f-structures” in
the literature on unification grammars, and are similar
to well-known Al slot-filler mechanisms. Qur version is
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Figure 2: An elaboration of Figure 1 at the computational level, showing details of the SLIDE x-schema, the some
linking features, and two verbs: push (with two senses) and shove (with one sense).

simpler in that the structures are not nested, yet more
complex in that the values can be probabilistic.

In the verb learning model a special f-struct called the
linking f-struct (center of Figure 2) plays an important
role as the sole interface between language and action.
It maintains bidirectional connections to the x-schemas:
an x-schema receives bindings from f-structs and pro-
duces additional bindings during its execution. In this
way, actions may be translated to and from semantic
features. More generally, we will want to claim that the
requirements of parameterizing x-schemas are the princi-
pal determiner of which semantic features get encoded in
a language. The features are chosen with the intention of
allowing the model to learn the relevant verbs from any
language. One critical linking feature is the name of the
x-schema generating the action. Others include motor
parameters such as force, elbow joint motion, and hand
posture. Some world state features are also relevant such
as object shape.

Verb Representation

Each sense of a verb is represented in the model by an
f-struct whose values for each feature are probability dis-
tributions. Features are presumed independent and the
representation is conjunctive or gestalt-like in nature.
With this scheme it is necessary to allow multiple senses
for each verb, since capturing the meaning in a single
sense would in some cases require overly broad distri-
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butions which obscure details needed to carry out the
corresponding action.

The word sense representation is compatible with
Rosch’s (1977) prototype theory of categorization and
stands in contrast to the necessary and sufficient con-
ditions structure found in logical formalisms. It has a
central case which yields the highest response but also
gives a graded response when some feature values differ
from the central case.

The top third of Figure 2 shows several word senses
for the verbs push and shove. The upper left ellipse gives
f-structs for two senses of push. The top sense is a hand
motion that invokes the SLIDE x-schema. It also codes
somewhat for open-palm hand posture and codes more
strongly for elbow joint extension. The bottom sense
corresponds to depressing a button with one’s finger and
invokes a different x-schema not illustrated here. The
ellipse on the upper right shows that shove also codes
for the SLIDE x-schema but specifies high acceleration.

In execution mode, a verbal command is interpreted
by choosing the sense which best matches the current
world state. This sense in turn is used to set the linking
f-struct, thus determining which x-schema is to execute
and with what parameters. For example, shove speci-
fies both a SLIDE x-schema and high acceleration, but
the actual amount of force required depends (at least)
on the weight of the object involved and that is not
specified in the utterance. Our model has a additional



f-struct—the world-state f-struct—that encodes things
like weights and positions of objects.

Learning

Recall that the central question of our work is lexical
development: how children learn to label what they ex-
perience. For the verb learning task we assume that the
child has already acquired various x-schemas for the ac-
tions of one hand manipulating an object on a table. We
further assume that the agent hears an informant label-
ing actions that the agent is performing. As in Regier’s
work, we avoild some hard but, we feel, separable prob-
lems by assuming that the informant supplies just the
verb. The learning mechanism assumes that the infor-
mant will usually provide at least partially appropriate
labels. The problem faced by the model (and the child)
is to learn how the verbs relate to its actions and goals.

Several principles from the literature are incorporated
into the learning model. One such principle is children’s
tendency to learn action verbs corresponding to their
own actions before extending the meanings to others’
actions (Huttenlocher et al., 1983)—thus the focus on
motor schemas. Another principle is that learning oc-
curs without explicit negative evidence. Third, the prin-
ciple of fast mapping (Carey, 1978) notes that children
often learn to use a word sensibly after as little as one
observation of its use.

Our solution relies on the intimate relation between x-
schemas and the passive linking f-struct. Since x-schema
executions can be translated into f-structs and vice versa,
the action-labeling task is reduced to manageable pro-
portions. The system needs only to correlate informant
labeling with sets of feature bindings. This involves de-
termining (1) the correct number of senses for each verb;
(2) the relevant features in each sense; and (3) the prob-
ability distributions on each included feature. There are
many ways of doing this in the computational learning
literature. One way that won’t suffice is the standard
back-propagation used by Regier and the PDP model-
ers, since we require that the learning technique produce
invertible solutions.

Qur current experiments use a version of Bayesian
model-merging (Omohundro, 1992). As applied to the
verb learning task, model merging proceeds by first as-
suming that each execution example is a separate word
sense (or model) and then merging senses (models) when
this provides a “better” description of the training set.
“Better” is formalized in a Bayesian framework: We aim
to maximize the posterior probability P(L | T) where
where L is the lexicon—or collection of word senses—and
T is the training set. This is accomplished by applying
Bayes’ Law to yield P(L)P(T | L) and maximizing this
product. The first term, P(L), is a prior which assigns
higher probability to preferred (usually more compact)
lexicons; in our case we use a prior which is an exponen-
tially decreasing function of the total number of word
senses. The second term, P(T | L), is the likelihood
and assigns higher probability to lexicons which would
be more likely to generate the training data.

As stated, the model-merging algorithm collects all
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training data before performing its series of merges.
However it is easy to convert the algorithm to work on-
line—that is, to develop and refine the lexicon as train-
ing examples arrive. In this case the algorithm performs
the merge phase every time k new examples have accu-
mulated. One can set k£ = 1 but since model-merging is
a greedy algorithm performance can often be improved
by setting k to around 10.

A simplified version of the algorithm for handling each
new training example follows:

incorporate example(f-struct f, verb v, lexicon L)
create new sense for f and add it to L
when (k such senses have been created) loop:
§1, 82 «— best candidate merge
[most similar pair of senses of v in L]
old_post «— compute L's posterior
replace s; and s, in L with merge(s;, s3)
[which sums counts on all feature values]
new_post «— compute L's posterior
if (new_post < old_post) then terminate loop
endloop
end

Note that the merging step inevitably leads to a more
compact lexicon, but lowers the likelihood of the train-
ing set. We stop when the combined effect is detrimen-
tal. This algorithm has two key advantages. First the
prior function P(L) is an explicit, tunable mechanism
for striking a balance between generating too many, very
specific senses of a word, and generating too few, exces-
sively general senses. Second, the online version pro-
duces sensible results emerge after just one training ex-
ample, unlike back-propagation style algorithms.

Figure 3 gives a graphical overview of an idealized
learning run by the system with k = 1. Shown in the left
column are linking f-structs summarizing four successive
example executions that have been labeled push by the
teacher. After the first training example, the system
assumes that the word push labels just that example,
involving a SLIDE with the elbow joint undergoing ex-
tension, a palmar posture and an acceleration level of
about 6 out of 10. A second use of the same word to
label a similar action results in the system broadening
the range of accelerations it believes can be denoted as
a push. The third example is quite different and might
arise from pushing a doorbell or keypad. The MDL-
like evaluation function in the model merging algorithm
prefers a second word sense to widening all the slots of
its existing model. It has now learned approximately the
two different senses of push shown in the upper left el-
lipse in Figure 2. The final example most closely matches
the first sense and merges with it. Because this example
used a different posture, the posture slot is broadened to
allow both possibilities with probabilities approximating
the frequencies observed. Also, because the acceleration
in this example was so low, the algorithm concludes that
acceleration isn’t criterial for this verb.

Of course, this is all just a cartoon version of a com-
plex system’s operation, but it should convey the flavor
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Figure 3: Illustration of model merging for learning the verb push.

of the mechanisms. Full training results cannot be re-
ported in this space; instead, we briefly review a training
run on a simplified version of the model. Fifty random
executions of SLIDE were generated and labeled as push,
pull and slide (for sideways motions). Half were chosen
as a training set. The merging algorithm collapsed the
12 instances of push into a single sense, and did likewise
for the 9 instances of pull. However the 4 instances of
shde were collapsed down to two senses; the use of Gaus-
sians for the direction feature’s probability distribution
prevented merging of the leftward- and rightward-motion
instances since the direction feature would become over-
generalized. The resulting lexicon correctly recognized
22 out of 25 similarly generated test cases. All 3 errors
involved mislabeling slides as pushes when the direction
was between the prototypical values for the two verbs;
push was chosen due to its greater frequency in the train-
ing set. All three verbs were executed correctly in several
randomly generated initial world configurations involv-
ing varied hand postures, hand positions and object po-
sitions.

When training with a set of 5 x-schemas like SLIDE,
push converged on two senses, one for SLIDEs with ex-
tending elbow and another for DEPRESSing with the in-
dex finger. Pull convgerged on a single sense encoding
SLIDEs with flexing elbow and medium force. yank was
similar but encoded high force and additionally its ex-
amples involved the “grasp” posture often enough to be
included in the word sense.

The model’s algorithms involve a number of tunable
parameters. The most sensitive of these has been the
parameter for deciding when a word sense’s probabilistic
feature value is “peaked” enough to justify using the
feature during schema execution.

Connectionist Implementation

We have described the model at the computational level
but as stated earlier we are committed to connectionist
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reducibility for important parts of the model, namely
x-schemas and the model-merging algorithm.

Since Petri nets involve only local control, x-schemas
could be straightforwardly modeled using connectionist
units to represent places and transitions—if it weren’t
for the complication of passing parameters. A solution to
this problem has been developed (Grannes et al., 1997)
using a temporal synchrony approach to binding. Focal
clusters, which in the SHRUTI reasoning system represent
assertions and queries of predicates plus their arguments,
are extended to trigger and coordinate primitive syner-
gies plus their parameters.

A connectionist account of the model-merging algo-
rithm has been sketched in the framework of recruit-
ment learning (Feldman, 1982). Binder nodes represent
the conjunction of lexical item, motor parameters and
world state features which make up a word sense. These
compete to explain new training examples, and when a
close match is found, the winning binding node is slightly
modified to account for the features of the training ex-
ample (effectively merging the new example into the ex-
isting sense). However if no clear winner is found, a new
binder unit is recruited to represent the new training ex-
ample (effectively creating a new sense). This account
applies only to the online version of model-merging.

Discussion

Bailey’s model of lexical development of action verbs of-
fers several advantages. The bidirectional mapping be-
tween word senses and x-schemas allows the model to not
only recognize but also carry out the verbs it has learned.
This bidirectionality is accomplished by the intermedi-
ary linking f-struct which confers two benefits: (1) Hard-
wiring relevant features (as opposed to allowing hidden
units to evolve novel features) facilitates translation from
verbs back to a set of features. (2) Using a restricted,
parameterized formalism for x-schemas facilitates trans-
lating linking features to and from an executing schema



(bridging the declarative-procedural gap).

The use of conjunctive probabilistic feature structures
to represent word senses is compatible with the notion
of gestalt perception and prototype theory. The model
also offers an account of pragmatics: verb representation
is simplified by the fact that many context dependencies
will be handled during schema execution. The learn-
ing algorithm operates without negative evidence and
exhibits fast mapping. It also provides an explanation
for children’s ability to learn typological patterns such
as verbs’ tendency to encode manner (English) vs. path
(Korean), although this feature is not discussed here.

Yet, the model has several shortcomings. It offers no
account of the radial category structure connecting word
senses (Lakoff, 1987). Nor does it explain how x-schemas
might interact with image schemas such as Regier’s to
model phrases like push through. An account of x-schema
learning and how it relates to lexical learning would also
be desirable.

Abstract Concepts and Words

Of course, the whole program of directly embodied
meaning only applies to a limited range of concrete con-
cepts and lexical items. Cognitive linguists in general
and Lakoff (1987) in particular believe that abstract con-
cepts ultimately derive their meaning from mappings to
the directly embodied ones and have studied these map-
pings for many years. Part of our current effort is to
apply the computational techniques described above to
model how such mappings might occur.

The key computational mechanisms, x-schemas and
binding f-structs, also are at the core of our abstract
concept story. Narayanan (1997) describes an imple-
mented program that demonstrates through simulation
how an x-schema structure which is a controller abstrac-
tion over multiple motor actions is able to offer some
answers to well known problems in modeling the seman-
tics of verbal aspect. Another project involves a model
which interprets certain abstract concepts using, inter
alia, metaphorical mappings to concrete source domains,
We imagine our model to be reading news stories about
international economics and politics and trying to under-
stand them. We test understanding by examining bind-
ings in various f-structs after processing the story. We
are currently validating our model by modeling exam-
ples from a database of about 30 simple (2-3 sentence)
newspaper stories. A critical test is the system’s ability
to understand stories that appear after the validation is
complete. This work is summarized in Narayanan (1996)
and will be described more fully in his 1997 dissertation.
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