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Investigating genomic prediction strategies for grain 
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Vitamin A deficiency remains prevalent on a global scale, including in regions where maize constitutes a high percentage of human diets. 
One solution for alleviating this deficiency has been to increase grain concentrations of provitamin A carotenoids in maize (Zea mays ssp. 
mays L.)—an example of biofortification. The International Maize and Wheat Improvement Center (CIMMYT) developed a Carotenoid 
Association Mapping panel of 380 inbred lines adapted to tropical and subtropical environments that have varying grain concentrations 
of provitamin A and other health-beneficial carotenoids. Several major genes have been identified for these traits, 2 of which have par
ticularly been leveraged in marker-assisted selection. This project assesses the predictive ability of several genomic prediction strategies 
for maize grain carotenoid traits within and between 4 environments in Mexico. Ridge Regression-Best Linear Unbiased Prediction, 
Elastic Net, and Reproducing Kernel Hilbert Spaces had high predictive abilities for all tested traits (β-carotene, β-cryptoxanthin, provita
min A, lutein, and zeaxanthin) and outperformed Least Absolute Shrinkage and Selection Operator. Furthermore, predictive abilities 
were higher when using genome-wide markers rather than only the markers proximal to 2 or 13 genes. These findings suggest that gen
omic prediction models using genome-wide markers (and assuming equal variance of marker effects) are worthwhile for these traits even 
though key genes have already been identified, especially if breeding for additional grain carotenoid traits alongside β-carotene. 
Predictive ability was maintained for all traits except lutein in between-environment prediction. The TASSEL (Trait Analysis by 
aSSociation, Evolution, and Linkage) Genomic Selection plugin performed as well as other more computationally intensive methods 
for within-environment prediction. The findings observed herein indicate the utility of genomic prediction methods for these traits 
and could inform their resource-efficient implementation in biofortification breeding programs.
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Introduction
Vitamin A deficiency is a global issue, impacting approximately 
30% of children less than 5 years old worldwide, that can cause 
xerophthalmia (conjunctival and corneal dryness), blindness 
(particularly night blindness), morbidity, and mortality, particu
larly for children and pregnant women (World Health 
Organization 2009, 2014; Wirth et al. 2017; Hodge and Taylor 
2023). Deficiencies can be alleviated through increased intake of 
provitamin A carotenoids in the diet (Bouis and Welch 2010; 
Pixley et al. 2013; Prasanna et al. 2020). Biofortification is a multi
faceted strategy to address malnutrition through the enhance
ment of nutritional quality in crops via breeding and/or 
agronomic practices (Bouis and Welch 2010). Biofortifying maize 
with higher grain concentrations of provitamin A carotenoids 
through breeding can help alleviate Vitamin A deficiency, espe
cially in regions, including parts of sub-Saharan Africa, where 
a large portion of the daily diet typically comes from maize 

(Zea mays) (Bouis and Welch 2010; Pixley et al. 2013; Saltzman 
et al. 2013).

Ongoing biofortification efforts have resulted in lines with 
higher concentrations of provitamin A carotenoids (12–15 μg/g 
dry weight) than the average for maize grain (<1.5 μg/g dry weight) 
(Andersson et al. 2017; Ortiz et al. 2018). The International Maize 
and Wheat Improvement Center (CIMMYT, a member of CGIAR) 
developed and used a Carotenoid Association Mapping (CAM) pa
nel of 380 maize inbred lines with different levels of grain carote
noids with growth phenotypes adapted to tropical and subtropical 
environments, which are relevant to the global target regions 
for carotenoid biofortification in sub-Saharan Africa and Latin 
America (Suwarno et al. 2015). The grain carotenoid traits of inter
est for the present study—β-carotene, β-cryptoxanthin, lutein, 
zeaxanthin, and provitamin A—were found to be highly heritable 
in the CAM panel in 3 environments, with broad-sense heritabil
ities ranging from 0.89 to 0.93 as reported by Suwarno et al. 
(2015). Ten lines included in the CAM panel have been biofortified 
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(using marker-assisted selection; MAS) for an allele of crtRB1 
(β-carotene hydroxylase 1) previously found to be associated with 
higher levels of provitamin A carotenoids (Yan et al. 2010; Babu 
et al. 2013; Suwarno et al. 2015).

Provitamin A and other health-beneficial carotenoids are 
synthesized in maize grain, primarily in the endosperm (Blessin 
et al. 1963; Weber 1987). Carotenoids are C40 isoprenoids, which 
can be classified as carotenes (including β-carotene) and xantho
phylls (oxygenated carotenoids, including β-cryptoxanthin, zeax
anthin, and lutein). β-Carotene and β-cryptoxanthin are the 
provitamin A carotenoids included in this study. Provitamin A is 
a derived trait, calculated based on retinol equivalents (Babu 
et al. 2013, Suwarno et al. 2015); i.e. provitamin A = β-carotene +  
0.5(β-cryptoxanthin), due to β-carotene providing 2 units of retinol 
(vitamin A) upon oxidative cleavage in human and animal systems, 
whereas β-cryptoxanthin provides only 1 unit. Certain cis isomers 
of β-carotene, namely 9-cis-β-carotene and 13-cis-β-carotene, have 
also been of specific interest (to be quantified individually) for hu
man nutrition given that their concentration may change during 
cooking, and they may have different bioavailability (compared to 
all-trans-β-carotene) during the digestion process (Bohn et al. 
2019). Lutein and zeaxanthin are not provitamin A carotenoids, 
but are nonetheless crucial to human health, specifically eyesight 
and eye development (Krinsky et al. 2003; Bernstein and 
Arunkumar 2021). Zeaxanthin is the most abundant grain caroten
oid in the population under study herein (Suwarno et al. 2015).

Genomic prediction (GP) methods use genetic markers located 
throughout the genome to estimate breeding values for phenotyp
ic traits (Crossa et al. 2017). GP can be a valuable tool to accelerate 
genetic gain in a breeding program by increasing the accuracy of 
selections and/or reducing cycle time (Crossa et al. 2017). In their 
review of the implementation of GP in CIMMYT maize and wheat 
breeding programs, Crossa et al. (2014) described 2 primary appli
cations: predicting breeding values of individuals for rapid cyc
ling, and predicting genotypic (including epistatic) values of 
advanced breeding lines; the present study will focus on the for
mer, given the structure of the CAM panel involved herein.

Genomic prediction is typically deployed in 1 or multiple of 4 
scenarios: (1) tested lines are predicted in tested environments; 
(2) tested lines are predicted in untested environments; (3) untest
ed lines are predicted in tested environments; and (4) untested 
lines are predicted in untested environments. GP allows the re
searcher to leverage the known associations between genetic 
markers and the phenotype in lines from (2)–(4) to make informed 
predictions. Within-environment prediction is a scenario in which 
the model is trained on lines grown in a particular environment 
(location and year) and used to predict the performance of lines 
grown in that same environment. In between-environment pre
diction, a model that has been trained on lines grown in 1 environ
ment is used to predict breeding values for grain carotenoid traits 
of lines that were grown in a different geographic location and/or 
year than the lines included in the training set. Predicting the 
breeding values for 1 or more phenotypes of interest of lines in 
an unknown environment using GP could be expected to work 
best for traits that are highly heritable in the respective target 
population of environments because the environment has less 
of an impact on the phenotype.

GP strategies targeting genome-wide markers or markers prox
imal to 8 or 58 a priori genes were previously found to exhibit high 
prediction accuracy for a similar set of grain carotenoid traits 
(Owens et al. 2014) in 201 inbred lines with yellow to orange grain 
from a maize diversity panel (Flint-Garcia et al. 2005). That panel 
consisted primarily of lines with temperate adaptation, with only 

approximately one-quarter of the lines having tropical/subtropic
al adaptation (both in the original set of 302 lines and in the 
201-line subset analyzed in Owens et al. 2014), and was grown 
in Indiana, in the Midwest region of the United States (Owens 
et al. 2014). Testing of multiple marker sets and regression meth
ods in a tropical/subtropical panel that was grown in the corre
sponding target environments would be informative in assessing 
the utility of GP for tropical/subtropical biofortification breeding 
programs in which MAS has been deployed. The high heritabilities 
of the carotenoid traits in the CAM panel in tested tropical/sub
tropical environments (as reported in Suwarno et al. 2015) make 
them good candidates for GP given that heritability represents 
the proportion of phenotypic variance that is explained by genetic 
factors. Implementation of GP strategies has been recently ex
plored to support the biofortification of vitamin E (Tibbs-Cortes 
et al. 2022) and zinc-related (Guo et al. 2020) traits in maize, iron 
and zinc (among other health-beneficial mineral nutrients) in 
wheat (Velu et al. 2016, Manickavelu et al. 2017, Joukhadar et al. 
2021), and zinc in rice (Rakotondramanana et al. 2022).

Several genes have been identified through genome-wide asso
ciation studies (GWAS) for grain concentrations of provitamin A 
and other carotenoids in maize (Harjes et al. 2008; Yan et al. 
2010; Owens et al. 2014; Suwarno et al. 2015; Azmach et al. 2018; 
Baseggio et al. 2020, Diepenbrock et al. 2021; LaPorte et al. 2022), 
and could inform the marker sets to be targeted for use in GP. 
Two of these genes have been selected upon via MAS: crtRB1 
(β-carotene hydroxylase 1), which catalyzes the hydroxylation of 
β-carotene to β-cryptoxanthin to zeaxanthin, and lcyE (lycopene 
ϵ-cyclase), which catalyzes ϵ-ring cyclization at the branchpoint 
of the core carotenoid pathway (Yan et al. 2010; Babu et al. 2013; 
Suwarno et al. 2015). A larger set of 13 genes was identified for 
grain carotenoid traits in the US maize nested association map
ping panel (Diepenbrock et al. 2021; LaPorte et al. 2022; 
Supplementary Table 1), for which approximately half of the par
ents were tropical in adaptation.

Three types of regression have been extensively used to train GP 
models (Usai et al. 2009; Heslot et al. 2012; Azodi et al. 2019): Ridge 
Regression-Best Linear Unbiased Prediction (RR-BLUP; Meuwissen 
et al. 2001; Endelman 2011), Least Absolute Shrinkage and 
Selection Operator (LASSO; Tibshirani 1996), and Elastic Net 
(Zou and Hastie 2005). These methods are regularization techni
ques, meaning that they penalize model complexity and differ 
based on their penalization strategies (Ogutu et al. 2012). In brief, 
the penalization strategy for Ridge Regression (L2 regularization) 
is the sum of squares of the coefficients of the model. By contrast, 
LASSO (L1 regularization) uses the absolute value of the coeffi
cients and will zero coefficients for a sparse solution. Elastic 
Net is an intermediate method that utilizes both L1 and L2 regu
larization, modulated by a hyperparameter, α (Zou and Hastie 
2005). Models that conduct feature selection, such as LASSO or 
EN, may be advantageous for traits with relatively oligogenic 
architectures (Heslot et al. 2012, de los Campos et al. 2013). A 
Reproducing Kernel Hilbert Space (RKHS)-based approach has 
been developed for GP to take advantage of semi-supervised 
learning based on a projection into a Hilbert space (which is a 
mathematical construct that allows for such a projection) to 
model nonlinear relationships between predictors and traits 
more accurately (Gianola et al. 2006; de los Campos et al. 2010; 
Montesinos López et al. 2022). Kernel approaches, including 
RKHS, theoretically will have higher predictive abilities for traits 
with a more complex genetic architecture, that cannot be described 
by a linear model, underpinning the phenotype (Montesinos López 
et al. 2022).
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Implementation of GP relies on similar datasets as those used 
for genetic mapping—i.e. genotypic and phenotypic data. As 
such, being able to conduct GP in the same analytical workflow 
as genetic mapping and other quantitative genetics analyses 
could offer benefits from a computational efficiency perspective 
and alleviate barriers to entry for GP approaches that otherwise 
require custom scripting (and, for some implementations, high- 
performance computing). A software package called Trait 
Analysis by aSSociation, Evolution and Linkage (TASSEL; 
Bradbury et al. 2007) is widely used among the plant breeding/ 
genetics community for quantitative genetics analyses. TASSEL 
is well documented and maintained, can be operated in a graph
ical user interface (which is also helpful for alleviating barriers 
to entry), and is configured to accept multiple common formats 
of genotypic and phenotypic data.

This study investigates the predictive ability of several GP mod
els to inform the implementation of genomic prediction/selection 
(GP/GS) in breeding efforts for carotenoid-dense tropical and sub
tropical maize. We compared several GP methods, targeting 
genome-wide markers with and without feature selection vs mar
kers proximal to 2 or 13 genes, to determine the method with 
the highest predictive ability for grain carotenoid traits within 
environments. Regression types tested within environments in
cluded RR-BLUP, GBLUP implemented in the TASSEL Genomic 
Selection plugin, LASSO, Elastic Net, and RKHS. Additionally, we 
tested the efficacy of RR-BLUP to predict between environments. 
Furthermore, we compared the predictive abilities of models 
trained on genome-wide markers vs markers proximal to 2 genes 
(crtRB1 and lcyE) or 13 genes (Supplementary Table 1) of known 
relevance to grain carotenoid biosynthesis within and between 
environments. Finally, we describe the performance of a 
Genomic Selection plugin that has been implemented in TASSEL 
for use by researchers and test the predictive ability and compu
tational efficiency of this plugin, including in comparison with 
other methods.

Methods
Maize germplasm
The design of the CAM panel was described in Suwarno et al. (2015). 
Briefly, inbred lines were selected at the initial stages of the 
CIMMYT-HarvestPlus maize biofortification breeding program, 
more than a decade ago, for inclusion in the panel. The CAM panel 
includes 380 lines, with the majority being tropical or subtropical 
lines (47% each) and 3% of lines adapted to temperate conditions 
(Suwarno et al. 2015). In addition to the CAM panel, 65 other 
CIMMYT lines were quantified in the same environments and 
were included in GP. These lines were distributed throughout the 
population in terms of genomic relatedness (Supplementary Fig. 
1). Of the included maize lines, 10 lines in this study include the 
beneficial alleles of one gene associated with high provitamin A 
(crtRB1). The pedigree of these lines was reported by Suwarno 
et al. (2015). These lines were: CIM-SYN-386-34, CIM-SYN-387-35, 
CIM-SYN-389-37, CIM-SYN-390-38, CIM-SYN-391-39, CIM-SYN- 
392-40, CIM-SYN-393-41, CIM-SYN-394-42, CIM-SYN-415-63, and 
CIM-SYN-416-64. The CAM panel was grown in Agua Fría (AF) in 
the state of Puebla, Mexico, in the years 2012 and 2013, and 
Tlaltizapan (TL) in the state of Morelos, Mexico, in the years 2010 
and 2011, resulting in 4 environments hereafter referred to as the 
combination of location and year: TL10, TL11, AF12, and AF13 
(Suwarno et al. 2015; Supplementary Fig. 2). Tlaltizapan (which is 
considered mid-altitude subtropical) is located 268 km south and 
west of Agua Fría (which is considered tropical). Tlaltizapan had, 

at the time of experimentation, a slightly warmer (+1.5°C), drier 
(−360 mm/year) climate at a higher elevation (+835 masl) than 
Agua Fría (Suwarno et al. 2015). Tlaltizapan and Agua Fría are in 
Aw (class 3) and Am (class 2), respectively, according to the 
Köppen–Geiger classification (Beck et al. 2018; Supplementary 
Fig. 2).

Phenotypic datasets
Lines from the 4 distinct environments (AF12, AF13, TL10, TL11) 
were phenotyped for the following traits: lutein, zeaxanthin, 
β-carotene, β-cryptoxanthin, and provitamin A [defined as the 
concentration of β-carotene + 0.5(β-cryptoxanthin)] as described 
in Suwarno et al. (2015). In the Agua Fría environments, 
lines were also phenotyped for 2 isomers of β-carotene: 
9-cis-β-carotene and 13-cis-β-carotene. Briefly, 2–6 plants per plot 
were self-pollinated, and random samples of 50 seeds from each 
accession were ground and quantified for carotenoid analysis fol
lowing the CIMMYT laboratory procedure (Galicia et al. 2009; 
Palacios-Rojas et al. 2017). In samples collected from TL10 and 
TL11, concentrations of individual carotenoid compounds were 
quantified using HPLC and in Agua Fría, they were quantified 
using UPLC (Suwarno et al. 2015). The results were reported as 
μg g−1 dry kernel weight (Galicia et al. 2009; Suwarno et al. 2015).

Data preparation
Genotypic data for each accession were generated as described by 
Suwarno et al. (2015). Briefly, genotyping by sequencing (GBS) 
(955,120 SNPs) was used for these lines, as generated by the 
Institute for Genomic Diversity, Cornell University, Ithaca, NY, 
USA (Suwarno et al. 2015). Filtering for minor allele frequencies 
(MAF) was not conducted before GP. The genotypic data, in the 
form of a matrix of SNP markers (including monomorphic mar
kers), were numericalized using the HapMap() function from 
Genome Association and Prediction Integrated Tool (GAPIT) ver
sion 3 in R (R Core Team 2021; Wang and Zhang 2021) for all meth
ods except for the TASSEL plugin, for which a kinship matrix was 
calculated within TASSEL from the input genotypic dataset as de
scribed below. The phenotypic data for each line and trait were 
matched to the genotype using the accession identifier. Data are 
available at: https://hdl.handle.net/11529/10549016 (LaPorte et al. 
2024).

Model types
The model types used in the model fitting procedure described 
above include RR-BLUP, Least Absolute Shrinkage and Selection 
Operator (LASSO), Elastic Net (EN), and Reproducing Kernel 
Hilbert Spaces (RKHS). RR-BLUP was completed using the rrBLUP 
package (Endelman 2011) function kinship.BLUP(). This function 
carries out both the training and prediction steps. The median 
and standard deviation (SD) of predictive ability across the 5 
folds were calculated and reported. LASSO was fit using the 
GLMNet package (Friedman et al. 2010) function cv.glmnet(), 
with α = 1 and by tuning the lambda hyperparameter (the shrink
age parameter) by identifying the value with the lowest mean 
cross-validated error (referenced in the documentation as 
“cvm”) from a set of 250 potential values for each fold and iter
ation, using the nlambda argument (Friedman et al. 2010). 
Predictions were calculated using the GLMNet library function 
predict(). Within each cross-validation model fitting instance, 
Elastic Net was conducted 9 times using the GLMNet() function 
from the GLMNet package (Friedman et al. 2010), with a different 
α value each time. The 9 α values (the weight of L1 vs L2 regular
ization penalties) tested ranged from 0.1 through 0.9 with steps 
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of 0.1. Note that an α value of 1 is equivalent to the LASSO method, 
and an α value equal to 0 corresponds to RR-BLUP in this function. 
The lambda (shrinkage) parameter was selected from a set of 250 
values for each α value of Elastic Net separately, in the same man
ner as described above for LASSO.

The BGLR (Bayesian Generalized Linear Regression) function 
from the BGLR package was used to train and fit a Reproducing 
Kernel Hilbert Space (RKHS) model (Perez and de los Campos 
2014). The Gaussian kernel was used as the covariance matrix 
(Kernel “K”), calculated using a bandwidth parameter of 1 and a 
distance matrix, D, containing the Euclidean distance between 
the training and test set of marker genotypes (a square matrix 
with the dimensions of the number of lines). We ran 6,000 
iterations per fit model with a burn-in size of 1,000 (based on 
hyperparameter tuning with smaller burn-in sizes). The bglr() 
function was used to fit the model and generate the predicted 
values.

GBLUP, which is mathematically equivalent to RR-BLUP 
(Meuwissen et al. 2001; Habier et al. 2007; Clark and Van Der 
Werf 2013), was conducted using the TASSEL GUI built-in imple
mentation (Bradbury et al. 2007). After genotypic data was loaded, 
a kinship matrix was created using TASSEL. Genomic prediction 
was conducted by selecting the phenotypic file and kinship ma
trix. Five-fold cross-validation was repeated in 20 iterations for 
each trait and environment. While all other methods (Ridge, EN, 
LASSO, RKHS) used the same line assignments for the training 
and test sets, TASSEL did not, as the plugin conducts random 
fold assignments unless given an incomplete phenotype vector 
(in which values in the desired test set have been masked). The 
RKHS, LASSO, and RR-BLUP methods were run with the same nu
mericalization strategy and training and test splits (within a given 
iteration) and are thereby a direct comparison within a given trait. 
Running TASSEL on the same train–test-split assignments as the 
other methods was performed for a subset of iterations to deter
mine the extent to which RR-BLUP predicted values were similar 
to those generated by TASSEL. RR-BLUP, RKHS, LASSO, and EN 
were run on a High-Performance Computing (HPC) cluster, with 
250 Gb of memory allocated to a parallelized script. The TASSEL 
GUI and the 2-gene and 13-gene R scripts were all run on the desk
top. The TASSEL software was run with a maximum heap of -Xmx 
100g.

We also compared the use of subsets of known carotenoid- 
related genes in prediction to whole-genome prediction. Two-gene 
and 13-gene approaches were conducted with RR-BLUP, both 
within and between environments, using the markers within 
250 kilobases (kb) of genes that are related to grain carotenoid 
traits (Supplementary Table 1); these markers were extracted using 
a custom R script. The locations of the genes used in the 2-gene and 
13-gene approaches were determined using MaizeGDB (Woodhouse 
et al. 2021; Supplementary Table 1). The 2-gene approach included 
all markers within ±250 kb of lcyE and crtRB1 (1,540 markers). 
The 13-gene approach included markers within ±250 kb of 13 iden
tified carotenoid-related genes (11,143 markers) (Diepenbrock et al. 
2021; LaPorte et al. 2022; Supplementary Table 1), which included 
lcyE and crtRB1.

Between-environment analyses were conducted using 
RR-BLUP. Every pairwise combination of environments (refer
enced here as environments E1 and E2) was evaluated as training 
and test sets for prediction. Five-fold cross-validation was con
ducted for each pair of environments E1 and E2, such that both 
within- and between-environment predictions were conducted 
in an identical framework. Namely, for a given fold of cross- 
validation, (1) 80% of E1 was used as the training set, and the 

remaining 20% of E1 was used as the test set; (2) 80% of E2 was 
used as the training set, and the remaining 20% of E2 was used 
as the test set; (3) 80% of E1 was used as the training set, and 
the remaining 20% of E2 was used as the test set; and finally, (4) 
80% of E2 was used as the training set, and the remaining 20% 
of E1 was used as the test set.

Genomic prediction (GP) was conducted using a 5-fold cross- 
validation approach with 20 iterations. As a result, each model 
was run 100 times. For each cross-validation instance, the acces
sions were divided into randomized training and testing sets, with 
∼80% of the lines used for training and the remaining ∼20% with
held for testing model performance. Each GP model was trained 
using genomic and phenotypic data in the training set, and the re
sulting model was then fit to the test set to predict their breeding 
values based on genomic information. Predictive ability for every 
model type was calculated as the Pearson correlation (r) between 
the predicted values for the test set and the actual observed va
lues in the test set. The median predictive ability of each iteration 
was calculated and reported. The 20-iteration, 5-fold cross- 
validation process was repeated with each model-fitting method 
(RR-BLUP, EN, LASSO, and RKHS) for each of the carotenoid traits 
within each environment, using the same lines in the training 
and test sets for each method. For within-environment GP, the 
training and test sets were grown in the same environment 
(AF12, AF13, TL10, TL11). The 5-fold cross-validation process 
was also conducted with RR-BLUP between each environment 
for each of the carotenoid traits (β-carotene, β-cryptoxanthin, 
lutein, zeaxanthin, and provitamin A in all environments, as 
well as 9-cis-β-carotene and 13-cis-β-carotene in the Agua Fría 
environments).

Medians were depicted in the figures as a measure of central 
tendency for predictive ability because they are less affected by 
outliers than means. Plots for all models were visualized using 
ggplot2 and color palettes from Viridis and base R (Wickham 
2016; R Core Team 2021; Garnier et al. 2023), and boxplots were or
dered by median using the reorder() function from the R stats 
package (included in base R). To aid in figure readability, the 
results of the best-performing EN model [determined using the re
order() function across all traits and environments] were depicted 
in the main text, and the remainder of the EN results were re
ported in the supplementary. Models are systematically referred 
to as “similar to” and “different from” one another based on the 
differences in median predictive ability between all iterations 
for a given model type, trait, and environment. Namely, “similar 
to” refers to models where the median predictive ability across 
all iterations of one method was within the interquartile range 
(IQR) of predictive abilities of another method. Models being 
“better than” (or “worse than”) one another is defined as when 
the median for the “better” (or worse) method is higher (or lower) 
than the median of the second method and not within the IQR of 
that method.

Results
Phenotypic correlations
The phenotypic values were positively correlated for most traits 
and in most environments (Fig. 1). Zeaxanthin levels in all envir
onments and lutein in the Agua Fría environments were highly 
positively correlated. A high positive correlation was observed be
tween provitamin A and β-carotene in all environments. A nega
tive correlation was observed between lutein and each of 
provitamin A and β-carotene in the Tlaltizapan environments. 
β-Cryptoxanthin showed a slightly higher correlation with 
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provitamin A within Agua Fría environments than within the 
Tlaltizapan environments.

Within-environment prediction
First, we compared the predictive abilities of RR-BLUP (α = 0), 
Elastic Net (α = 0.1–0.9), and LASSO (α = 1) (Fig. 2, Supplementary 
Fig. 3). For most traits and in most environments, RR-BLUP had 
the highest predictive ability, although in some cases, the predict
ive ability was similar to that of 1 or several EN models. 
Specifically, RR-BLUP had better predictive ability than the EN 
and LASSO methods for β-carotene (in TL11), 13-cis-β-carotene 
(in AF12), 9-cis-β-carotene (in AF12 and AF13), β-cryptoxanthin 
(in TL10, TL11, and AF13), provitamin A (in TL11, AF12, and 
AF13), and zeaxanthin (in TL10 and AF13). The EN model with 
α = 0.1 was generally the highest-performing EN model 
(Supplementary Fig. 3) and is therefore reported in Fig. 2 for 
comparison to RR-BLUP and LASSO. For most trait–environment 
combinations, LASSO performed similarly to the EN models ex
cept in the case of 3 traits in TL11. Specifically, LASSO per
formed worse than all EN models and RR-BLUP for zeaxanthin 
in TL11, and LASSO and RR-BLUP performed better than all of 
the EN models for β-carotene and provitamin A in TL11. High 
predictive abilities were observed for β-carotene and provitamin 
A in TL10 for all of RR-BLUP, EN, and LASSO, with the medians of 

all models higher than 0.75 for β-carotene and ranging from 0.71 
to 0.75 for provitamin A. However, β-carotene and (to a lesser ex
tent) provitamin A also generally had larger ranges of median 
predictive ability (represented by the height of the violins; Fig. 2) 
than the other traits in each environment. For this 
within-environment prediction experiment, RR-BLUP took the least 
computational time compared to EN and LASSO (which took ap
proximately 4 times as long).

RR-BLUP and RKHS had similar predictive abilities for all traits 
and environments (Fig. 2). In all trait–environment combinations, 
both of these methods performed better than LASSO (which ex
hibited median predictive abilities of 0.10–0.59). Although there 
were some variations in the median predictive ability, none of 
the median predictive abilities for these 2 superior-performing 
methods were outside of the IQR of one another for a given 
trait–environment combination (0.32–0.88 for RR-BLUP, and 
0.34–0.88 for RKHS). For RR-BLUP, the predictive ability was high
est for β-carotene (highest median value of 0.831, for any trait–en
vironment combination). Although the RKHS method performed 
as well as RR-BLUP in all instances, it took longer to run (approxi
mately 6 times as long). RR-BLUP performed highly similarly to 
GBLUP conducted through the TASSEL Genomic Selection GUI 
plugin (Supplementary Fig. 4); these 2 methods are mathematical
ly equivalent but used different fold assignments.

Fig. 1. Correlations between phenotypic values for each trait and environment. The trait–environment pairs are listed as the abbreviation for the trait 
(lut, lutein; zea, zeaxanthin; bcx, β-cryptoxanthin; bc, β-carotene; proa, provitamin A) and the environment [Agua Fría 2012, Agua Fría 2013, Tlaltizapan 
2010, and Tlaltizapan 2011 (AF12, AF13, TL10, and TL11, respectively)]. The heatmap is arranged in clustered groups denoted with the line diagram. Red 
corresponds to a positive correlation, and blue corresponds to a negative correlation. A darker color indicates a higher absolute value of the correlation.
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We plotted the median predictive ability for each iteration of 
the RR-BLUP within-environment prediction experiment vs the 
SD of predictive ability across folds within that iteration 
(Supplementary Fig. 5). No clear trend was observed between 
these 2 metrics for most traits and most environments. For certain 
traits and environments—for example, β-carotene in all environ
ments—iterations with higher SD tended to have lower predictive 
ability. The raw phenotypic values were also examined to check 
for any relationship with SD of predictive ability within iterations; 
the range of phenotypic values was similar between the environ
ments (Supplementary Fig. 6). The 10 biofortified lines in the panel 
under study herein had an allele of crtRB1 that was previously 
found to be favorable for provitamin A (Yan et al. 2010; Babu 
et al. 2013; Suwarno et al. 2015). The lines that possessed these al
leles indeed had among the highest levels of β-carotene and pro
vitamin A (Supplementary Fig. 6). For the other traits, notably 
including β-cryptoxanthin, the phenotypic values were located 
throughout the population distribution.

Between-environment prediction
RR-BLUP was performed between environments to test the ex
tent to which the data from 1 environment could be used as a 
training set to predict values for a different environment. 
Between-environment predictions performed approximately as 
well as within-environment predictions for the lowest-predictive 
ability environment (Fig. 3). Notable exceptions include predic
tions for lutein in instances in which data from Agua Fría (AF) 
are being used to predict in Tlaltizapan (TL) and vice versa; in 
each of those cases, the predictive ability for lutein was near 
zero. The within-environment predictive abilities for TL10 for 
β-carotene and provitamin A were higher, and narrower in range 
(indicated by the height of the violin; Fig. 3), compared to the 
between-environment predictive abilities for TL10 when AF13 

was used as the training set. When different years were com
pared in the same location (between AF12 and AF13, or between 
TL10 and TL11), the predictive abilities were similar to those of 
the across-location models. In some cases, there was a marginal
ly higher predictive ability when an environment was used as the 
test rather than the training set. For example, higher predictive 
ability was observed for provitamin A when AF12 was used as 
the training set (0.531) and TL11 as the test set rather than the 
opposite scenario (0.456).

Testing of marker sets
Next, we investigated if including fewer markers in RR-BLUP could 
have comparable predictive ability to RR-BLUP using genome- 
wide markers, which was the best-performing whole-genome pre
diction method (Fig. 4). For this purpose, we incorporated 2 add
itional approaches, referred to as the 2-gene and 13-gene 
approaches (Supplementary Table 1), that used a smaller subset 
of markers as the only predictors in the model (Fig. 4). The 
2-gene and 13-gene RR-BLUP approaches both had lower predict
ive abilities than RR-BLUP using genome-wide markers. The 
13-gene approach performed much better than the 2-gene ap
proach for some trait–environment combinations: notably, lutein 
in the AF environments and zeaxanthin in all environments. The 
13-gene approach performed better than LASSO (except for simi
lar performance in AF12), which in turn performed better than the 
2-gene approach, for β-cryptoxanthin. For β-carotene and provita
min A, the 2-gene and 13-gene approaches had similar predictive 
abilities. For 13-cis-β-carotene and 9-cis-β-carotene, the 2-gene 
method performed better than the 13-gene method. The 2- and 
13-gene approaches maintained similar predictive abilities be
tween vs within environments for all traits except for lutein, for 
which predictive abilities were near zero between locations (par
ticularly for the 2-gene approach; Supplementary Figs. 7 and 8).

Fig. 2. Within-environment predictive abilities for 4 regression types (RR-BLUP, EN, LASSO, and RKHS) for each trait–environment combination. RR-BLUP, 
Ridge Regression-Best Linear Unbiased Prediction; LASSO, Least Absolute Shrinkage and Selection Operator; EN, Elastic Net; RKHS, Reproducing Kernel 
Hilbert Space. For EN, the numeric value of 0.1 indicates the ɑ value. Trait abbreviations: bc, β-carotene; bc9, 9-cis-β-carotene; bc13, 13-cis-β-carotene; bcx, 
β-cryptoxanthin; lut, lutein; proa, provitamin A; zea, zeaxanthin. The median for each violin is represented by a black dot. The interquartile range (Q1–Q3) 
of each set of iterations is represented by a black vertical line through the center of each violin.
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Discussion
Genomic prediction is the central mathematical exercise in 

Genomic Selection. A key application of these models is the pre

diction of germplasm performance in tested and untested envir

onments (Heslot et al. 2012, 2015; Bhat et al. 2016; Azodi et al. 

2019). In this study, we predicted breeding values for maize grain 

carotenoid traits for tested lines in tested environments in 5-fold 

cross-validation and for those same lines in “untested” environ
ments (for which phenotypes had been masked in 5-fold cross- 
validation) in between-environment prediction. Comparison of 
methods that use genome-wide markers in prediction (such as 
RR-BLUP) with those that conduct feature selection (such as 
LASSO and EN) or that only include markers proximal to 2 or 13 
genes could inform optimal prediction strategies for these rela
tively oligogenic traits. Knowing the predictive ability of a model 

Fig. 3. Between-environment predictive abilities using RR-BLUP for all traits, within every pairwise combination of environments. Trait abbreviations: bc, 
β-carotene; bc9, 9-cis-β-carotene; bc13, 13-cis-β-carotene; bcx, β-cryptoxanthin; lut, lutein; proa, provitamin A; zea, zeaxanthin.

Fig. 4. Comparison of predictive abilities for RR-BLUP and LASSO models using genome-wide markers to those of RR-BLUP models using markers 
proximal to 2 or 13 genes. Trait abbreviations: bc, β-carotene; bc9, 9-cis-β-carotene; bc13, 13-cis-β-carotene; bcx, β-cryptoxanthin; lut, lutein; proa, 
provitamin A; zea, zeaxanthin.
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within and/or between environments is helpful for breeders who 
wish to use this model to predict the performance of tested and/ 
or untested lines.

Within-environment prediction
RR-BLUP consistently exhibited a higher predictive ability than 
LASSO. These results suggest that, in this dataset, penalizing 
model complexity and utilizing a smaller set of predictors was det
rimental to model predictive ability, even for these grain caroten
oid traits, which are thought to be relatively oligogenic in 
architecture. Incorporating more markers appears to be beneficial 
for model predictive ability within the model configurations 
tested within this study. This finding is corroborated by the results 
in Fig. 4, where the 2- and 13-gene approaches had lower predict
ive abilities than the RR-BLUP approach that included genome- 
wide markers. LASSO, which also tested a smaller subset of 
markers (that the model identifies through hyperparameter opti
mization) but which uses no prior information about the markers 
in the selection of the subset, performed worse than the 13-gene 
method (but better than the 2-gene method) for β-cryptoxanthin 
in 3 of 4 environments, and otherwise performed similarly to 
the 13-gene method (Fig. 4). In this study, whole-genome predic
tion methods had higher predictive abilities than methods that 
used marker subsets. The 2-gene approach was tested given the 
use of lcyE and crtRB1 in MAS efforts specifically for provitamin 
A, whereas the 13-gene approach was tested to determine the pre
dictive ability of a model focused on a broader set of a priori genes 
for grain carotenoid traits. Based on the 2-gene approach exhibit
ing worse predictive abilities than the 13-gene approach (and 
approaches using genome-wide markers) for zeaxanthin within 
each of the 4 environments, we particularly recommend using a 
marker set that is less targeted than the 2-gene subset for predic
tion of or selection upon zeaxanthin.

Previous literature suggests that it can be beneficial to include 
markers tagging 1–3 major genes or genomic regions (e.g. quanti
tative trait loci) of interest as fixed effects in genomic prediction 
(Rutkoski et al. 2012; Bernardo 2014; Spindel et al. 2016; Sehgal 
et al. 2020). To do so, it is necessary to identify the feature to be 
used in genomic prediction, such as a developed marker or haplo
type representing the favorable allele. The former could be emu
lated by identifying a peak marker through a GWAS conducted 
on each training set in 5-fold cross-validation before the predic
tion step is conducted on the held-out fold (as in Spindel et al. 
2016 and Rice and Lipka 2019), which was outside the scope of 
the present study. Further automation of that capability would 
be helpful for studies testing a large number of prediction scen
arios. Bernardo (2014) found in simulation experiments that in
cluding fixed effects for major known genes is most beneficial 
when a trait is highly heritable and 1–3 major genes (and a marker 
tagging them) are identified. That finding suggests that GP ap
proaches informed by GWAS in the training set may be beneficial 
if markers or haplotypes representing favorable alleles for lcyE 
and crtRB1 are set as fixed effects, but the advantages of this ap
proach vs using the deployed MAS markers (which have not 
been scored in the CAM panel) would need to be considered.

Between-environment prediction
RR-BLUP was used for between-environment prediction because it 
had the highest predictive ability and computational efficiency 
of all regression methods (LASSO, EN, RKHS, Ridge) tested in 
the within-environment experiment (Figs. 1, 2, and 3). The 
between-environment models maintained predictive ability be
tween locations and years (with the exception of lutein between 

locations), which is concordant with the high heritability of the 
tested traits, and suggests that the results of these predictions 
could be beneficial for breeders wishing to develop carotenoid- 
dense varieties for untested environments (at least within a simi
lar climatic zone). Breeding of provitamin A-dense maize varieties 
is also taking place by teams at CIMMYT, IITA, and other institu
tions in southern and western Africa, among other geographies. 
Testing predictive ability in multi-environment trials across 
CIMMYT regional stations (namely between Mexico and 
sub-Saharan Africa) would be informative in optimizing collab
orative breeding activities across those stations vs station-specific 
activities focused on local/subregional adaptation. Namely, GP 
(and estimates of heritability) across mega-environments would 
further inform the extent to which grain carotenoid traits could 
be treated as largely genetic parameters or whether they would 
need to be treated more akin to agronomic traits (for which breed
ing for local/subregional adaptation has been critical within pro
vitamin A biofortification efforts; Manjeru et al. 2019). The 2 
locations examined in the present study had similar Köppen– 
Geiger classifications (Supplementary Fig. 2), which may impact 
the ability to extrapolate beyond these environmental classes.

Between-environment prediction with fewer 
markers
Predictive abilities were maintained between vs within environ
ments for the 2- and 13-gene approaches, indicating that markers 
proximal to these genes were able to predict consistently despite 
environmental effects. Owens et al. (2014) tested the use of ran
dom sets of 8 genes (selected from the whole genome or from a 
set of 58 a priori genes for maize grain carotenoids) in prediction 
and found that a nonrandom set of 8 major-effect a priori genes 
(which were included in the 13 genes tested herein) exhibited im
proved performance compared to both types of random sets. That 
finding suggests that the non-negligible predictive abilities of the 
2- and 13-gene approaches observed herein (particularly within 
environments, and for provitamin A traits between environ
ments) were not solely due to gene (and corresponding marker) 
subsets of those sizes simply managing to sufficiently capture 
genomic relationships—rather, that gene identity (and namely 
relevance to the target traits) is important. Nonetheless, given 
that genome-wide markers exhibited high predictive abilities in 
this study, and given that GP/GS is deployed at CIMMYT for other 
traits (such that assaying of genome-wide markers could be bene
ficial for other traits as well) and such assays are increasingly low- 
cost, it seems that use of genome-wide markers in GS for grain ca
rotenoid traits would be robust (with moderate to high predictive 
abilities observed in this study both within and between environ
ments; with the exception of lutein between locations, which 
showed poor predictive abilities for all marker sets) and still 
resource-efficient.

Considerations for lutein quantification and 
prediction in carotenoid biofortification programs
In this study, trait values for lutein in TL10 and TL11 showed slight 
negative correlations with β-carotene and provitamin A and slight 
to negligible correlations with β-cryptoxanthin and zeaxanthin in 
all environments (Fig. 1). While trait values for lutein in AF12 and 
13 had slight to negligible correlations with β-carotene, they ex
hibited a slight positive correlation with provitamin A and sub
stantially higher positive correlations (than those observed for 
lutein in the TL environments) with β-cryptoxanthin (median 
0.45, SD 0.06) and zeaxanthin (median 0.81, SD 0.08) in all environ
ments. These relationships would be important to monitor if 
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seeking to increase lutein (produced in the ɑ-branch of the caroten
oid pathway) alongside other carotenoid traits (namely those pro
duced in the β-branch, including β-carotene, β-cryptoxanthin, and 
zeaxanthin)—particularly if selecting upon lcyE, which encodes 
the enzymatic step at the pathway branchpoint.

Interestingly, these trait relationships were consistent across 
years within locations. One potential explanation for the differen
tial relationships observed between locations could be that some 
environmental (or repeatable GxE) factor in TL vs AF made for 
weaker vs stronger relationships of lutein with other traits (name
ly β-cryptoxanthin and zeaxanthin) in the 2 locations. While we do 
not exclude this possibility, it was also noted in Suwarno et al. 
(2015) that the HPLC method used for carotenoid quantification 
in TL10 and 11 allowed for better separation of lutein and zeax
anthin on the resulting chromatograms than the UPLC method 
used for AF12 (and the same UPLC protocol was used for AF13). 
Notably, the predictive abilities of GP models for lutein were 
poor when predicting between TL and AF environments in either 
direction. That finding could be due to lack of concordance be
tween lutein as quantified via HPLC vs UPLC, as instrument plat
form was confounded with location. The substantially higher 
correlations observed between lutein and zeaxanthin in AF (com
pared to TL) could be artificially high due to that inferior separ
ation, as a larger peak in the relevant range of retention times 
could have resulted in higher quantified levels of both compounds. 
Taken together, we would recommend prioritizing the prediction 
of values acquired through optimal analytical methods for all ana
lytes and gathered using the same instrument platforms.

Suitability of the TASSEL GS plugin for GP
The TASSEL GS plugin implementation of GBLUP, which has been 
available since 2015, is accessed through the TASSEL GUI; the re
sults are generated quickly (in approximately 30 s in this study), 
and all traits can be run simultaneously. This plugin could be 
helpful for researchers needing to perform GP without HPC re
sources or who wish to test the model as part of their quantitative 
genetics analytical workflows (e.g. if genetic mapping is already 
being conducted in TASSEL) without building up dedicated cus
tom script bases, which can represent a barrier to entry. This plug
in is a user-friendly resource hosted within TASSEL, which is well 
documented and maintained, and could facilitate the implemen
tation of GP/GS in breeding programs for many crops. We would 
also refer readers to rTASSEL (Monier et al. 2022), which offers 
many of the same utilities of TASSEL (including GP) in an R envir
onment. We anticipate that both the TASSEL GUI and rTASSEL im
plementations could have utility for partially overlapping user 
bases, with the overall outcome of increased accessibility to GP 
methods and increased continuity with other analytical work
flows routinely carried out by plant breeders/geneticists. Finally, 
the kin.blup() function has superceded kinship.blup() in the 
rrBLUP package (Endelman 2011); while both are valid from a lin
ear algebra perspective (and are wrappers to the mixed.solve() 
function in the same package), kin.blup() offers the advantage of 
the user not needing to specify design matrices.

Considerations for implementing GS 
in biofortification programs
Ten lines in this study were biofortified for β-carotene and had 
among the highest grain concentrations of β-carotene in the panel 
(Supplementary Fig. 6; Suwarno et al. 2015). Twenty iterations 
were conducted per method per experiment, largely to mitigate 
the placement of a small number of lines within a given rando
mized fold assignment influencing the overall median predictive 

ability (as calculated across iterations). The iterations with the 
highest predictive ability generally had low SDs between the dif
ferent cross-validation folds within that iteration. The median 
predictive ability in most traits and environments had either no 
linear trend or a negative linear trend when plotted against SD, 
a metric for variation or dispersion, within model iterations 
(Supplementary Fig. 5).

Provitamin A is a “derived” trait in the sense that it was calcu
lated as the concentration of β-carotene plus half of the concentra
tion of β-cryptoxanthin. Given that β-cryptoxanthin is immediately 
downstream of β-carotene within the biosynthetic pathway, con
ducting GP for provitamin A itself—as a trait that is of direct inter
est for human nutrition—is important to biofortification efforts, 
and both accounts for and masks the biological complexity under
lying provitamin A concentrations. crtRB1 encodes an enzyme that 
catalyzes 2 consecutive steps in the carotenoid biosynthetic path
way: β-carotene to β-cryptoxanthin, and β-cryptoxanthin to zeax
anthin. This gene was found to exhibit negative pleiotropy 
between β-carotene and each of β-cryptoxanthin and zeaxanthin 
in the US maize NAM panel (Diepenbrock et al. 2021). The 10 lines 
with a favorable allele of crtRB1 that were included in this study had 
among the highest levels of β-carotene, but their levels of 
β-cryptoxanthin were distributed throughout those of the rest of 
the population (Supplementary Fig. 6). Use of GP, whether using 
genome-wide markers or markers proximal to a larger set of genes, 
could help in optimization of provitamin A concentrations as the 
sum of the 2 compound concentrations without solely operating 
upon their direct substrate-to-product relationship, which is itself 
upstream of another health-beneficial carotenoid: zeaxanthin.

Future directions and recommendations
Next steps for this work include the testing of grain carotenoid 
concentrations (and GP models predicting them) across mega- 
environments. Notably, we would recommend ensuring that the 
same instrument platform was used for carotenoid quantification 
when conducting single-trait predictions across environments, 
particularly for lutein. If UPLC methods that were specifically op
timized for provitamin A carotenoids are being used, multi-trait 
GP models (based on levels of provitamin A compounds) may 
have higher predictive abilities for lutein (and perhaps secondar
ily, zeaxanthin) than single-trait models that train and predict 
breeding values for those non-provitamin A compounds on data 
from different analytical platforms. However, such approaches 
would be limited by the extent of the genetic correlations between 
levels of provitamin A and non-provitamin A compounds (which 
could also change as 1 or both trait sets are being selected upon) 
and would need to be tested empirically.

Another key next step for this work is the use of GP methods in 
selection. Given that the CAM panel is composed of key inbreds for 
the breeding program, the recurrent selection scheme proposed 
by Windhausen et al. (2012) for application of GP in closed popula
tions could be pertinent. Namely, recurrent selection (repeated 
cycles of selection with intermating of selected individuals, in dis
tinct rather than overlapping rounds; Labroo and Rutkoski 2022) 
could be used to conduct population improvement for priority 
traits and select candidate pre-commercial lines out of that popu
lation. Key inbreds from outside of the CAM panel could also be in
corporated to help maintain genetic variation and integrate 
complementary favorable genomic regions (de Paula et al. 2020). 
We would recommend using GP methods that penalize or monitor 
for loss of genetic diversity; Ozimati et al. (2019) did not observe 
such a loss when carrying out GS for 4 traits including dry matter 
content in cassava, though that program prioritized crosses 
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across (rather than within) population clusters based on genomic 
relationships. The TASSEL GS plugin can be readily tested by in
terested parties on the TASSEL tutorial data, which are included 
in the TASSEL installation directory, and/or on the input datasets 
used in the present study. In conclusion, the high predictive abil
ities of GP methods for maize grain carotenoid traits herein, even 
via less computationally intensive methods, and the availability 
of the TASSEL GS plugin represent the predictive ability of and 
an opportunity for the use of GP/GS in biofortification alongside 
other crop improvement efforts.

Data availability
Genotypic and phenotypic data are available through the CIMMYT 
Dataverse repository using the standard data terms, with a per
manent link: https://hdl.handle.net/11529/10549016 (LaPorte 
et al. 2024). Scripts are publicly available as Supplementary 
material on GitHub via https://zenodo.org/doi/10.5281/zenodo. 
10655189.

Supplemental material available at G3 online.
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