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A B S T R A C T   

Background: A central goal of systems neuroscience is to understand the relationships amongst constituent units 
in neural populations, and their modulation by external factors, using high-dimensional and stochastic neural 
recordings. Parametric statistical models (e.g., coupling, encoding, and decoding models), play an instrumental 
role in accomplishing this goal. However, extracting conclusions from a parametric model requires that it is fit 
using an inference algorithm capable of selecting the correct parameters and properly estimating their values. 
Traditional approaches to parameter inference have been shown to suffer from failures in both selection and 
estimation. The recent development of algorithms that ameliorate these deficiencies raises the question of 
whether past work relying on such inference procedures have produced inaccurate systems neuroscience models, 
thereby impairing their interpretation. 
New method: We used algorithms based on Union of Intersections, a statistical inference framework based on 
stability principles, capable of improved selection and estimation. 
Comparison: We fit functional coupling, encoding, and decoding models across a battery of neural datasets using 
both UoI and baseline inference procedures (e.g., ℓ1-penalized GLMs), and compared the structure of their fitted 
parameters. 
Results: Across recording modality, brain region, and task, we found that UoI inferred models with increased 
sparsity, improved stability, and qualitatively different parameter distributions, while maintaining predictive 
performance. We obtained highly sparse functional coupling networks with substantially different community 
structure, more parsimonious encoding models, and decoding models that relied on fewer single-units. 
Conclusions: Together, these results demonstrate that improved parameter inference, achieved via UoI, reshapes 
interpretation in diverse neuroscience contexts.   

1. Introduction 

Neuroscience is undergoing a rapid growth in the size and 
complexity of experimental and observational data (Sejnowski et al., 
2014; Marx, 2013). Realizing the benefits of these advances in data 
acquisition requires improvements in the statistical models character
izing the data, as well as the inference procedures used to fit those 
models (Stevenson and Kording, 2011; Bzdok and Yeo, 2017). For 
example, generalized linear models are appealing because the model 
parameters can be interpreted to gain insight into the underlying bio
logical processes that generated the data (Stevenson et al., 2008; Okatan 

et al., 2005; Truccolo et al., 2005; Pillow et al., 2008). However, even for 
this ubiquitously used class of models, the impact of an inference pro
cedure’s statistical properties on neurobiological interpretation is poorly 
appreciated. 

These issues are particularly salient in systems neuroscience, where 
parametric models are often used to understand how neural activity is 
modulated by external factors (e.g., stimuli or a behavioral task) and 
internal factors (e.g., other neurons) (Paninski et al., 2007; Kass et al., 
2018). The fitted parameter values, therefore, specify which factors are 
important in modulating neural activity, and how important they are. 
The specific relationships that a parametric model describes ultimately 
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frames how the model will be interpreted in a neuroscientific context, 
emphasizing the importance of accurate parameter inference. 

For example, functional coupling models (Fig. 1a) capture the sta
tistical dependencies between different functional units in the brain, at 
scales ranging from single units to functional areas (Stevenson et al., 
2008, 2012; Okatan et al., 2005; Truccolo et al., 2005; Pillow et al., 
2008; Babadi et al., 2010; Zhao et al., 2012; Song et al., 2013). These 
models can be used to construct networks (Bassett and Sporns, 2017; 
Bullmore and Sporns, 2009), which are analyzed with an assortment of 
tools from graph theory to characterize the population (Bassett and 
Bullmore, 2006; Barabási and Albert, 1999). Additionally, functional 
coupling networks are related to structural connectivity (Melozzi et al., 
2019), used to assess directed influence amongst neurons (i.e., effective 
connectivity) (Friston et al., 2013; Seth et al., 2015), or related to 
external factors such as behavior, genetics, aging, or psychiatric condi
tions (Kiani et al., 2014; Fulcher and Fornito, 2016; Arnemann et al., 
2018). Encoding models map the dependence of a brain signal (e.g., 
neuronal spikes) on external factors, such as stimuli (Fig. 1b) (Dayan and 
Abbott, 2001; Schwartz et al., 2006; Triplett and Goodhill, 2019). An 
example encoding model is a spatio-temporal receptive field of a visual 
cortex neuron, which maps the image space to the neuronal response 
(Fig. 1b, right) (Sharpee, 2013; Theunissen et al., 2001; Hubel and 
Wiesel, 1962). More complex encoding models of neural population data 
can be used to test theoretical and computational theories of neural 
coding (Rao and Ballard, 1999; Vinje and Gallant, 2000; Zhu and Rozell, 
2013). On the other hand, decoding models map brain signals to 
external factors, using the activities in, e.g., a neural population, to 
predict a stimulus or task-relevant behavioral condition (Fig. 1c) (Glaser 
et al., 2017; Naselaris et al., 2011; Holdgraf et al., 2017; Bouchard et al., 
2013; Bouchard and Chang, 2014; Livezey et al., 2019; Anumanchipalli 
et al., 2019). A common linear decoding model is the extraction of a 
hyperplane in the neural activity space, which provides a decision 
boundary for one of two behavioral conditions or stimuli (Fig. 1c, right: 
s1, s2) (Kiani et al., 2014; Yamashita et al., 2008; Rich and Wallis, 2016). 
Recent work has explored more complex decoders, using artificial neural 
networks (Livezey et al., 2019) or predictive latent representations 
(Pandarinath et al., 2018). Using decoding models for brain–computer 
interfaces has both clinical uses and scientific implications for under
standing learning and motor control (Wander et al., 2013; Carmena 

et al., 2003). Since these models are used to make scientific conclusions 
about the function of the brain, understanding the stability, accuracy, 
and parsimony of the inference procedures and resulting models is of 
paramount importance. 

The utility of parametric models hinges on the assumption that the 
inference procedure used to fit them selects the correct parameters (i.e., 
specified as zero or non-zero) and properly estimates their values. The 
statistical consequences of improper selection are false positives or false 
negatives (Fig. 1d), while poor estimation results in high bias (Fig. 1e: e. 
g., β1) or high variance (Fig. 1e: e.g., β6). The neuroscientific conse
quences of statistical inference lie in the interpretation of the fitted 
parametric model. Selection informs which internal and external factors 
are relevant for predicting neural activity, and estimation specifies their 
relative importance. Importantly, accurate selection is not a natural 
byproduct of predictive capacity, as cross-validated predictive accuracy 
is often a poor criterion for feature selection. Specifically, model selec
tion by held-out cross-validation predictive accuracy lacks guarantees 
on consistency and has been implicated in producing false positives 
(Shao, 1993, 1997; Zhang et al., 2010; Wasserman and Roeder, 2009; 
Liu et al., 2010). Thus, validating that an inference procedure can reli
ably select and estimate a model’s parameters is vital to ensure that they 
motivate correct conclusions about neural activity. 

These issues imply that, when fitting parametric models in a scien
tific context, multiple goals beyond predictive performance must be 
balanced to produce a scientifically meaningful model. In particular, 
achieving a parsimonious model, which uses the fewest number of fea
tures to sufficiently predict the response variable (i.e., finding the 
“simplest”), has long served as a goal in statistical model selection 
(Schwarz, 1978). One approach to model parsimony relies on the 
imposition of sparsity during feature selection, which has the added 
benefit of identifying a small subset of predictive features, facilitating 
the interpretability of the model (Tibshirani, 1996; Hastie et al., 2015). 
This is particularly relevant in high-dimensional settings where there are 
few task-relevant features and strong priors from domain knowledge for 
selection may not exist. Another desired property is stability, or the 
reliability of an inference algorithm when its inputs are slightly per
turbed (Yu et al., 2013; Bousquet et al., 2002). For a model to be 
interpretable, its parameters must be robust to the often noisy processes 
that generated the data. Thus, encouraging stability in a model’s 

Fig. 1. Parametric models and statistical 
inference in systems neuroscience. (a–c) 
Three examples of parametric models widely 
used in systems neuroscience. (a) Functional 
coupling models characterize the statistical re
lationships between neurons in a population. 
(b) Encoding models map M internal or external 
factors {ei}

M
i=1 to a neuronal response n. (c) 

Decoding models map the activities of N neu
rons in a population {ni}

N
i=1 to an internal or 

external factor e. (e-f) Quantification of statis
tical selection and estimation performance. (e) 
The ground truth values of the parameters in an 
example model, given by the first column, along 
with estimated values across K different 
resamples of the data, denoted by R1, R2, …, 
RK. (f) The distribution of estimated values for 
each parameter in the ground truth model of 
the previous panel, with the true values deno
ted by vertical lines. For β1, ▾ denotes the mean 
estimated value across resamples. False posi
tives and false negatives are denoted with an ×
.   
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parameter inference procedure will ensure that the features describing 
the relevant signal are selected and their correct contributions are 
properly estimated (Lim and Yu, 2016; Baldassarre et al., 2017). Until 
recently, inference procedures that sufficiently balanced selection and 
estimation, predictive performance, and stability were lacking. This 
raises the question of whether the usage of traditional inference pro
cedures in systems neuroscience has adversely impacted neuroscientific 
interpretation and data-driven discovery. 

Our recently introduced Union of Intersections (UoI) is an inference 
framework based on stability principles which enhances inference in a 
variety of common parametric models (Bouchard et al., 2017). The 
properties characterizing UoI models — sparsity, stability, and predic
tive accuracy — are well-suited to data-driven discovery in neurosci
ence, due to the high dimensionality and many sources of variability in 
these datasets. Furthermore, UoI is a frequentist approach, similar to the 
predominant traditional approaches used by neuroscientists (though we 
note recent development of Bayesian inference algorithms that also 
perform well in these settings (Chen et al., 2010; Zhou et al., 2016; 

Huang and Tran, 2018)). Thus, we used UoI to assess whether common 
approaches to parameter inference in models are susceptible to 
improper feature selection and estimation, and if so, assess the conse
quences for model interpretability in a neuroscience context. 

In this work, we used the UoI framework to fit functional coupling, 
encoding, and decoding models to diverse neural data in an effort to 
elucidate the impacts of precise selection and estimation on neurosci
entific interpretation. We found that, compared to baseline procedures 
(e.g., ℓ1-regularization), we obtained models with enhanced sparsity, 
improved stability, and significantly different parameter distributions, 
while maintaining predictive performance across recording modality, 
brain region, and task. Specifically, we obtained highly sparse coupling 
models of rat auditory cortex, macaque V1, and macaque M1 without 
loss in predictive performance. These models were used to construct 
functional networks that exhibited enhanced modularity and decreased 
small-worldness. We built parsimonious encoding models of mouse 
retinal ganglion cells and rat auditory cortex that more tightly matched 
with theory. These models were able to predict held-out neural re

Fig. 2. The Union of Intersections framework combines ensemble and regularization approaches in model inference. (a) Schematic of regularization and 
ensemble methods. Top: Regularization can be used to perform feature selection. Features set exactly to zero are denoted by × . Bottom: Ensemble procedures 
aggregate model fits across resamples of the data. (b) Schematic of the UoI framework. The x-axis corresponds to the set of regularization parameters while the y-axis 
corresponds to the feature space (X1,X2,…,Xp). Pink bands denote features included in a support or estimated model. Dark pink bands denote features included after 
the intersection step. (c) UoILasso depicted in a data-distributed fashion. Model Selection (left): Left column depicts the NS data resamples, ZS

i , during selection. Lasso 
fits are obtained for each resample, at different λj (e.g., left column: λ2). Right column depicts the intersected supports Sj for each λj, with S2 referring specifically to 
the estimates in the left column. Red here denotes 1, rather than maximum value. Model Estimation (right): Middle column denotes each data resample, ZE

i , for 
estimation. Each resample is fit using each support 

{
Sj
}J

j=1 (arrows before left column), generating a set of fits per resample (left column). The fit that achieves the 
best predictive performance for a given resample is chosen as that resample’s candidate fit (left column: dashed lines). The candidate fits are aggregated to produce 
the final predictive model (right column). 
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sponses with parameters that were as simple as possible, but no simpler. 
Lastly, we decoded task-relevant external factors from rat basal ganglia 
activity using fewer single units than baseline models. Overall, by uti
lizing improved inference algorithms during the fitting of parametric 
neural models, we constructed more sparse and stable models. We 
assessed the neuroscientific consequences of using these models, finding 
notable changes in secondary analyses. 

2. Methods 

Our goal is to demonstrate how the statistical properties of inference 
algorithms impact the fitting and interpretation of diverse parametric 
models commonly used in neuroscience. The main tools we use for this 
purpose are algorithms based on the Union of Intersections framework 
(Bouchard et al., 2017; Ubaru et al., 2017; Sachdeva et al., 2019). Thus, 
we organize the Methods as follows. First, in Section 2.1, we introduce 
the Union of Intersections framework, while providing other relevant 
background. Second, in Section 2.2, we describe a large-scale synthetic 
experiment comparing a specific UoI algorithm, UoILasso, versus other 
algorithms on a synthetic dataset to motivate UoI’s usage on neural 
datasets. Third, in Section 2.3, we describe the neural datasets on which 
we performed the model-fitting and subsequent analyses. Lastly, in 
Section 2.4, we provide the details of those analyses, outlining how 
model-fitting was performed for each coupling, encoding, and decoding 
model. We provide further details on subsequent analyses performed on 
the fitted models, such as statistical tests and network construction for 
coupling models. The code used to produce all figures and analyses 
discussed in this paper is publicly available on Github1. 

2.1. The Union of Intersections framework balances sparsity, stability, 
and predictive performance 

Union of Intersections (UoI) is not a single method or algorithm, but 
a flexible framework into which other algorithms can be inserted for 
enhanced inference. In this work, we apply the UoI framework to 
generalized linear models, focusing on linear regression (UoILasso), 
Poisson regression (UoIPoisson) and logistic regression (UoILogistic). We 
refer the reader to UoI variants of other procedures, such as non- 
negative matrix factorization (Ubaru et al., 2017) and column subset 
selection (Bouchard et al., 2017). 

Consider the general problem of mapping a set of p features x ∈ ℝp×1 

to a response variable y ∈ ℝ, of which we have N samples 
{
xi, yi

}N
i=1. For 

convenience, we focus on linear models, which require estimating p 
parameters β ∈ ℝp×1 that linearly map xi to yi. We describe the UoI 
framework in this context, which involves the algorithm UoILasso. The 
steps we detail, however, extend naturally to other penalized general
ized linear models (Friedman et al., 2010). Typically, the mapping in 
linear models is corrupted by i.i.d. Gaussian noise ε: 

y = βT x + ε. (1)  

The parameters β can be inferred by optimizing the traditional least 
squares error on y: 

β̂ = argminβ
1
N

∑N

i=1
(yi − βT xi)

2
, (2)  

where i indexes the N data samples. The UoI framework combines two 
techniques — regularization and ensemble methods — to balance 
sparsity, stability, and predictive performance, thereby improving on 
the traditional least squares estimate (Fig. 2a). 

Structured regularization, or the inclusion of penalty terms in the 
objective function to restrict the model complexity, can be useful when a 

subset of the βi are exactly equal to zero, i.e., β is sparse. Sparsity implies 
that some features are not relevant for predicting the response variable. 
This assumption is often useful for data-driven discovery in biological 
settings, particularly for framing the interpretation of the model in the 
context of physical processes that generated the data. The identification 
of which βi are non-zero can be viewed as a feature selection (or more 
generally, model selection) problem (Hastie et al., 2015). A common 
regularization penalty used for feature selection is the lasso penalty |β|1, 
or the ℓ1-norm applied to the parameters (Tibshirani, 1996). For the 
case of linear regression, this creates an optimization problem of the 
form 

β̂ = argminβ
1
N
∑N

i=1
(yi − βT xi)

2
+ λ|β|1. (3)  

Solving Eq. (3) returns parameter estimates with some sparsity, pro
vided that λ is appropriately chosen (Fig. 2a, top). Typically, λ, the de
gree to which feature sparsity is enforced, is unknown and must be 
determined through cross-validation or a penalized score function such 
as the Bayesian information criterion (BIC) (Schwarz, 1978) across a set 
of J hyperparameters 

{
λj
}J

j=1. Importantly, solving the lasso problem 
simultaneously performs model selection (identifying the non-zero fea
tures) and model estimation (determining the specific values of those 
parameters). However, the application of the lasso penalty suffers from 
shrinkage (Tibshirani, 1996), or a parameter bias that erroneously re
duces the magnitudes of the parameters (Fig. 2a, top: compare opacity of 
parameter estimates), and often does not correctly identify the true 
non-zero parameters (Fig. 2a, top: false positives). 

On the other hand, ensemble procedures (e.g., bagging and boosting 
(Breiman, 1996; Friedman, 2001)) aggregate model fits across resam
ples of the data to improve the stability of parameter estimates (Fig. 2a, 
bottom). The more stable parameter estimates result in improved pre
dictive accuracy. This is particularly desirable in biological settings, 
where model aggregation ensures that the relevant signal in noisy data is 
reflected in the parameter estimates. However, ensemble procedures do 
not perform feature selection. 

UoI separates model selection and model estimation into two stages, 
with each stage utilizing ensemble procedures to promote stability. 
Specifically, model selection is performed through intersection 
(compressive) operations and model estimation through union (expan
sive) operations, in that order. This separation of parameter selection 
and estimation provides selection profiles that are robust and parameter 
estimates that have low bias and variance. Fig. 2b and 2 c provide a 
visual depiction of the UoI framework, and A provides pseudocode for 
the UoI algorithm in generalized linear models. For UoILasso, the pro
cedure is as follows: 

Model Selection. Define the support S as the set of non-zero pa
rameters in an estimate ̂β. First, generate a regularization path of 

{
λj
}J

j=1 

spanning (ελmax, λmax) where λmax is analytically determined to result in 
an empty support and ε = 10− 3 (Friedman et al., 2010). For each λj, 
generate parameter estimates by solving the lasso optimization problem 
(Eq (3)) on NS resamples of the data, and calculate a support for each 
resample-λj pairing. The intersection step requires that only the features 
that appear in a sufficient number of resamples are included in the final 
stability support Sj for λj. We depict this in Fig. 2b, top, where the light 
pink bands denote features that are included in the model due to regu
larization while the dark pink bands denote features that are included in 
the stability support after the intersection across resamples. The bands 
are arranged in order of increasing regularization strength (Fig. 2b: 
x-axis) and thus sparser (i.e., smaller) support sets (Fig. 2b: y-axis). Note 
that the stability support may be calculated with a hard intersection (e. 
g., Fig. 2c: Model Selection) or a soft intersection. In the former case, a 
feature must appear in the support of every resample to be included in Sj. 
In the latter, the feature must only appear in a sufficient fraction of 
supports which is a hyperparameter. 1 URL: https://github.com/BouchardLab/neuroinference. 
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Model Estimation. Generate NE resamples of the data, and perform 
an unregularized fit on each resample using each support set Sj. For each 
resample, the support generating the fit that performs the best according 
to some metric is chosen as the “candidate fit” for that resample (Fig. 2b: 
bottom). We used the Bayesian information criterion (BIC) as this 
metric, which balances both predictive accuracy and model size (see 
Section 2.4.1 for more details on this choice). Unique supports may have 
the best performance across multiple resamples (e.g., only three unique 
supports, Sj− 1, Sj, and Sm− 1, are included for model averaging in Fig. 2b). 
The NE candidate fits across resamples are unionized according to some 
metric (e.g., median, mean, etc.), resulting in a final parameter estimate 
(Fig. 2b, bottom). We use the median during the union step because it is 
more stable than the mean from a selection perspective. To be clear, the 
median will result in a parameter estimate set exactly equal to zero if 
that parameter is equal to zero in at least a majority of candidate fits. In 
contrast, the mean will likely result in a non-zero parameter estimate if 
even a single parameter value is non-zero. Note that, in the context of 
(generalized) linear models, the bagging of model parameters performed 

in the estimation procedure is equivalent to the bagging of model pre
dictions. For UoILasso, the estimation procedure consists of applying 
Ordinary Least Squares to each stability support and resample combi
nation (Fig. 2c: Model Estimation). 

UoI’s modular approach to parameter inference capitalizes on the 
feature selection achieved by stability selection and the unbiased, low- 
variance properties of the bagged OLS estimator. Furthermore, UoI’s 
novel use of model aggregating procedures within its resampling 
framework allows it to achieve highly sparse (i.e., only using features 
robust to perturbations in the data) and predictive (i.e., only using 
features that are informative) model fitting. Importantly, this is ach
ieved without imposing an explicit prior on the model distribution, and 
without formulating a non-convex optimization problem. Since the 
optimization procedures across resamples can be performed in parallel, 
the UoI framework is naturally scalable, a fact that we have leveraged to 
facilitate parameter inference on larger datasets (Sachdeva et al., 2019). 
The application of UoILasso in a data-distributed manner is depicted in 
Fig. 2c. In the selection module, the first column depicts lasso estimates 

Fig. 3. UoI achieves superior selection and estimation performance on synthetic data over a battery of alternative inference algorithms. The performance 
of ridge regression (purple), lasso regression (green), smoothly clipped absolute deviation (SCAD; red), bootstrapped adaptive threshold (BoATS; blue), debiased 
lasso (dbLasso; coral), and UoILasso (black) on data generated from a synthetic linear model. Panels a-d highlight separate measures per row, with each column 
referring to a separate inference algorithm. Each column in panel (e). directly compares a summary measure across inference algorithms. (a) Comparison of the 
predicted and true values of the response variable for held-out data. (b) Histogram of the estimated parameters (colored outline) compared to the distribution of true 
parameters (gray). (c) Estimated parameters (colored points; error bars denote the IQR across data resamples) compared to true parameters (gray), both sorted on the 
x-axis according to the value of the true parameter. (d) Variance of the parameter estimates across data resamples as a function of the mean estimated parameter’s 
magnitude. (e) Direct comparison of the selection accuracy, estimation error (root mean square of parameter estimates), estimation variability (mean parameter 
variance), prediction accuracy (coefficient of determination), the inferred model’s size (number of identified non-zero parameters, with the black dashed line 
denoting ground truth), and parsimony (Bayesian information criterion). Error bars denote IQR across data resamples. 
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across data resamples for a particular choice of regularization param
eter, all of which can be fit in parallel (Fig. 2c, Model Selection: left 
column). In the estimation module, OLS estimates are fit across resam
ples and supports, which can be done in parallel (Fig. 2c, Model Esti
mation: left column). 

2.2. Evaluation of Union of Intersections on synthetic data 

We evaluated UoILasso’s abilities as an inference procedure by 
assessing its performance on synthetic data generated from a linear 
model. The performances of UoI and five other inference procedures are 
depicted in Fig. 3: UoILasso (black), ridge regression (purple) (Hastie 
et al., 2015), lasso (green) (Tibshirani, 1996), smoothly clipped absolute 
deviation (SCAD; red) (Fan and Li, 2001), bootstrapped adaptive 
threshold selection (BoATS; blue) (Bouchard, 2015), and debiased lasso 
(dbLasso; coral) (Javanmard and Montanari, 2014). 

The linear model consisted of p = 300 total parameters, with k = 100 
non-zero parameters (thereby having sparsity 1 − k/p = 2/3). The non- 
zero ground truth parameters were drawn from a parameter distribution 
characterized by exponentially increasing density as a function of 
parameter magnitude (Fig. 3b: gray histograms). We used N = 1200 
samples generated according to the linear model (1) with noise magni
tude chosen such that Var(ε) = 0.2× |β|1. We report metrics according 
to their statistics across 100 randomized cross-validation samples of the 
data. 

In Fig. 3a, we show scatter plots comparing the predicted and actual 
values of the observation variable on held-out data samples. We visu
alized how well the inference procedures captured the underlying 
parameter distribution by comparing the histograms of (average) esti
mated model parameters (colors) overlaid on the ground truth model 
parameters (grey) (Fig. 3b). We additionally plotted parameter bias and 
variance, first by comparing the mean estimated value (± standard de
viation) against the ground truth parameter value (Fig. 3c), and then 
examining the standard deviation of the parameter estimates as a 
function of their mean estimated value (Fig. 3d). 

Fig. 3a-d captures the improvements that the UoI framework offers in 
parameter inference. UoILasso is designed to maximize prediction accu
racy (Fig. 3a) by first selecting the correct features (Fig. 3b), and then 
estimating their values with high accuracy (Fig. 3c) and low variance 
(Fig. 3d). By separating model selection and model estimation, UoILasso 

benefits from strong selection (as in BoATS and debiased Lasso), but 
with the low variability of the structured regularizers (Lasso, SCAD), 
while alleviating shrinkage with its nearly unbiased estimates. 

We quantified the performance of the inference algorithms on syn
thetic data using a variety of metrics capturing selection, bias, variance, 
and prediction accuracy. Specifically, these metrics were:  

(4) Selection Accuracy. The selection accuracy, or set overlap, is a 
measure of how well the estimated support captures the ground 
truth support. Define Sβ as the set of features in the ground truth 
support, S

β̂ 
as the set of features in the estimated model’s support, 

|S| as the cardinality of S, and Δ as the symmetric set difference 
operator. Then the selection accuracy is defined as 

selectionaccuracy(Sβ, Sβ̂
) = 1 −

|SβΔS
β̂
|

|Sβ| + |S
β̂
|
. (4)  

The selection accuracy is bounded in [0,1], taking value 0 if S
β̂ 

and 
Sβ have no elements in common, and taking value 1 iff they are 
identical.  
(5) Estimation error. The estimation error of the p fitted parameters 

β̂, with ground truth parameters β, is defined as the root mean 
square error, or 

estimationerror =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
p
∑p

i=1
(βi − β̂i)

2

√

. (5)    

(6) Estimation variability. The estimation variability for parameter 
βi is defined as the parameter standard deviation σ(βi). We 
calculated this quantity by taking the variance of the estimated 
parameter β̂i over R resamples of the data: 

σ(βi) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
R

∑R

j=1
(βi − β̂ ij)

2

√
√
√
√ , (6)  

where j indexes the resample. To summarize this measure across 
all p parameters in a model, we took the average, i.e., σ = 1

p
∑p

i=1σ(βi).

(7) Predictive performance. To capture predictive performance, we 
used the coefficient of determination (R2) evaluated on held-out 
data: 

R2 = 1 −

∑D
i=1(yi − ŷi)

2

∑D
i=1(yi − y)2 (7)  

where yi is the ground truth response for sample i, ŷi its corre
sponding predicted value, and y the mean of the response variable 
over trials. R2 has a maximum value of 1, when the model perfectly 
predicts the response variable across samples. R2 values below zero 
indicate that the model is worse than an intercept model (i.e., simply 
using the mean value to predict across samples).  
(8) Model Parsimony. We evaluated model parsimony using the 

Bayesian information criterion (BIC) (Schwarz, 1978): 

BIC = klog(D) − 2logℓ(β̂). (8)  

Here, D is the number of samples, k is the number of parameters 
estimated by the model, and logℓ(β̂) = p(β̂|𝒟,m) is the log-likelihood 
of the parameters β̂ under data 𝒟 and model m. Thus, the BIC in
cludes a penalty that encourages models to be more sparse (first 
addend) while still accounting for predictive accuracy (second 
addend). Importantly, the BIC is evaluated on the data that the model 
was trained on (rather than held-out data). It is typically used as a 
model selection criterion (in lieu of, for example, cross-validation). 
When used as a model selection criterion, the model with lower 
BIC is preferred. 

UoILasso generally resulted in the highest selection accuracy (Fig. 3e, 
first column), parameter estimates with lowest error (Fig. 3e, second 
column) and competitive variance (Fig. 3e, third column). In addition, it 
led to the best prediction accuracy (Fig. 3e, third column). UoILasso best 
captured the true model size (Fig. 3e, fourth column), avoiding the 
abundance of false positives suffered by most other inference algo
rithms. UoILasso’s enhanced predictive performance with fewer features 
resulted in superior model parsimony (Fig. 3e, fifth column). 

A robust set of experiments have been conducted comparing UoILasso 

to these methods in other settings. Specifically, these experiments 
assessed UoILasso’s performance across a range of ground truth model 
sparsities, parameter distributions, and noise levels. Overall, UoI excels 
at parameter inference relative to other models across all these settings. 
These results can be found in the appendix of the original UoI paper 
(Bouchard et al., 2017). 

Fig. 3 demonstrates the superiority of UoI methods over a battery of 
other approaches for a linear model. However, any generalized linear 
model fits within the UoI framework. For example, we used the Poisson 
(UoIPoisson) and logistic (UoILogistic) variants of the UoI algorithm in this 
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study. Thus, we compared the performance of UoI to baseline proced
ures for Poisson and logistic regression. Specifically, we created similar 
synthetic datasets as described above, but in the Poisson and logistic 
contexts, and attempted to estimate the ground truth parameters using 
UoI and lasso-penalized Poisson and logistic regression. These results are 
detailed in B. We arrived at similar conclusions: UoI exhibits increased 
selection accuracy, decreased estimation error, comparable variability, 
improved prediction accuracy, and enhanced model parsimony relative 
to the baseline procedures. These results are in line with theoretical 
guarantees on support recovery in generalized linear models (Van de 
Geer et al., 2008; Bühlmann and Van De Geer, 2011). 

2.3. Neural recordings 

We sought to demonstrate impact of improved inference on para
metric models across a diversity of datasets, spanning distinct brain 
regions, animal models, and recording modalities. We used micro- 
electrocorticography recordings obtained from rat auditory cortex (for 
coupling and encoding models), single-unit recordings from macaque 
visual and motor cortices (coupling models), single-unit recordings from 
isolated rat retina (encoding models), and single-unit recordings from 
basal ganglia (decoding models). We briefly describe the experimental 
and preprocessing steps for each dataset. 

2.3.1. Recordings from auditory cortex 
Auditory cortex (AC) data was comprised of cortical surface elec

trical potentials (CSEPs) recorded from rat auditory cortex with a 
custom fabricated micro-electrocorticography (μECoG) array. The 
μECoG array consisted of an 8 × 16 grid of 40 μm diameter electrodes. 
Anesthetized rats were presented with 50 ms tone pips of varying 
amplitude (8 different levels of attenuation, from 0 dB to − 70 db) and 
frequency (30 frequencies equally spaced on a log-scale from 500 Hz to 
32 kHz). Each frequency-amplitude combination was presented 20 
times, for a total of 4200 samples. The response for each trial was 
calculated as the z-scored, to baseline, high-γ band analytic amplitude of 
the CSEP, calculated using a constant-Q wavelet transform. Of the 128 
electrodes, we used 125, excluding 3 due to faulty channels. Data was 
recorded by Dougherty & Bouchard (DB). Further details on the surgical, 
experimental, and preprocessing steps can be found in Dougherty et al. 
(2019). 

2.3.2. Recordings from primary visual cortex 
We analyzed three primary visual cortex (V1) datasets, comprised of 

spike-sorted units simultaneously recorded in three anesthetized ma
caque monkeys. Recordings were obtained with a 10 × 10 grid of silicon 
microelectrodes spaced 400 μm apart and covering an area of 12.96 
mm2. Monkeys were presented with grayscale sinusoidal drifting grat
ings, each for 1.28 s. Twelve unique drifting angles (spanning 0◦ to 330◦) 
were each presented 200 times, for a total of 2400 trials per monkey. 
Spike counts were obtained in a 400 ms bin after stimulus onset. We 
obtained [106,88,112] units from each monkey. The data was obtained 
from the Collaborative Research in Computational Neuroscience 
(CRCNS) data sharing website (Teeters et al., 2008) and was recorded by 
Kohn and Smith (KS) (Kohn and Smith, 2016). Further details on the 
surgical, experimental, and preprocessing steps can be found in Smith 
and Kohn (2008) and Kelly et al. (2010). 

2.3.3. Recordings from primary motor cortex 
Primary motor cortex (M1) data was comprised of spike-sorted units 

simultaneously recorded in the motor cortex of Rhesus macaque mon
key. Recordings were obtained with a chronically implanted silicon 
microelectrode array consisting of 96 electrodes spaced at 400 μm and 
covering an area of 16 mm2. We used three datasets, consisting of three 
recording sessions from monkey I. The behavioral task required the 
monkey to make self-paced reaches to targets arranged on a 8 × 17 grid. 

Spike counts were binned at 150 ms over the course of the entire 
recording session, resulting in [4089,4767,4400] samples per recording 
session. We obtained [136,146,147] units from each dataset. Data was 
recorded by O’Doherty et al. (OCMS) and obtained from Zenodo 
(O’Doherty et al., 2017). Further details on the surgical, experimental, 
and preprocessing steps can be found in Makin et al. (2018). 

2.3.4. Recordings from retina 
Retina data comprised spiking activity, extracellularly recorded from 

isolated mice retina. Recordings were obtained using a 61-electrode 
array. Isolated retina were presented with a flicking black or white bar 
stimulus according to a pseudo-random binary sequence for a period of 
16.6 ms. We utilized recordings from 23 different retinal ganglion cells. 
Data was obtained from CRCNS and recorded by Zhang et al. (2014). 
Further details on the surgical, experimental, and preprocessing steps 
can be found in Lefebvre et al. (2008). 

2.3.5. Recordings from basal ganglia 
Basal ganglia data comprised tetrode recordings from two regions of 

rat basal ganglia: the globus pallidus pars externa (GPe: 18 units) and 
substantia pars nigra reticulata (SNr: 36 units). Recordings were per
formed during a rodent stop-signal task. Briefly, a rat was prompted to 
enter a center port with a light cue. The rat remained in the port until a 
Go cue (audio stimulus at 1 kHz or 4 kHz) which directed a lateral head 
movement to the left or right ports. On a subset of trials, the Go cue was 
followed by a Stop signal (white noise burst), indicating that the rat 
should remain in the center port. We utilized the successful Go trials, in 
which the rat was not given a Stop signal and successfully entered the 
correct port (186 trials). We used the spike count in the first 100 ms after 
the rat exited the center port to predict the behavioral condition (left or 
right). Further details on the surgical, experimental, and preprocessing 
steps can be found in Gu et al. (2020). 

2.4. Neural data analysis and model fitting 

All models fit to neural data consisted of various generalized linear 
models, depending on the application. We trained all baseline models 
using either the glmnet (Friedman et al., 2010) or scikit-learn 
(Pedregosa et al., 2011; Buitinck et al., 2013) packages. Meanwhile, we 
trained all UoI models using the pyuoi package (Sachdeva et al., 2019). 
This section is organized as follows: first, we discuss model fitting, 
including details on the estimation module in UoI, followed by data 
analysis for coupling, encoding, and decoding models. Second, we detail 
model evaluation, including the measures used to assess each model, 
statistical tests, calculation of effect size, and the cross-validation 
approach for evaluation. 

2.4.1. Model selection criterion in the estimation module 
In the UoI framework, the estimation module operates by unionizing 

fitted stability supports across resamples. Thus, the module requires a 
criterion by which to choose the best fitted stability support per 
resample. A natural choice, akin to cross-validation, is the out-of- 
resample validation performance according to some measure (e.g., R2, 
deviance, etc.). This is a principled approach when predictive accuracy 
is the only usage of the model. However, in this context, where we frame 
the fitted parameters of the model in the underlying neuroscience, 
parameter selection implicitly becomes an additional goal that must be 
reflected in the model criterion. Cross-validated predictive accuracy is 
often not sufficient in these cases. Variations of cross-validation have 
been shown to be model inconsistent (Shao, 1993, 1997), with theo
retical guarantees on its probability of overfitting (Zhang et al., 2010). 
Furthermore, empirically, it has been shown to overfit, and suffer from 
false positives (Wasserman and Roeder, 2009; Liu et al., 2010). There
fore, we instead utilized the Bayesian information criterion in the esti
mation module for each model, which has been shown to be model 
selection consistent (Shao, 1993). Furthermore, the BIC is a principled 

P.S. Sachdeva et al.                                                                                                                                                                                                                            



Journal of Neuroscience Methods 358 (2021) 109195

8

choice for model selection criterion because it can be couched as an 
approximation to Bayes factors (Neath and Cavanaugh, 2012a). 

2.4.2. Data analysis for coupling models 
We used UoILasso (rat auditory cortex) and UoIPoisson (macaque V1 and 

M1) to fit coupling models. The auditory cortex model can be described 
with a linear model as 

ni = βi0 +
∑p

j=1 j∕=i

βijnj + ε (9)  

where ni is the high-gamma activity of the ith electrode on a trial. The 
baseline procedure consisted of a lasso optimization with coordinate 
descent, while the UoI approach utilized UoILasso. The model for the 
spiking datasets, which utilizes a Poisson generalized linear model, can 
be written as 

μi = exp

(

βi0 +
∑p

j=1 j∕=i

βijnj

)

, (10) 

ni ∼ Poisson(μi). (11)  

where ni corresponds to the spike count of the ith neuron. The corre
sponding objective function for this model is the log-likelihood, 

ℒi

(

β|
{

nk
1,…,nk

p

}D

k=1

)

=
∑D

k=1

[

nk
i

(

β0i +
∑p

j=1 j∕=i

nk
j βij

)

− exp

(

β0i +
∑p

j=1 j∕=i

nk
j βij

)]

(12)  

where i denotes that this model corresponds to the ith neuron, j indexes 
over the remaining neurons, and k indexes over the D data samples. The 
baseline approach consisted of applying coordinate descent to solve this 
objective function with a lasso penalty: 

ℒi,baseline

(

β|
{

nk
1,…, nk

p

}D

k=1

)

=
1
D
ℒi + λ1|β|1 (13)  

where λ1 is a hyperparameter specifying the strength of the ℓ1 penalty. 
Note that the intercept terms were not penalized. Meanwhile, in 
UoIPoisson, we utilized the same objective function Eq (13) in the selection 
module. In the estimation module, we used Eq. (12) with a very small ℓ2 
penalty for numerical stability purposes. The specific optimization al
gorithm was a modified orthant-wise L-BFGS solver (Gong and Ye, 
2015). 

Data analysis for encoding models 
For retinal data, we fit spatio-temporal receptive fields (STRFs) 

frame-by-frame. Specifically, the STRF was comprised of F frames β1,β2,

…,βF, each a vector of size M and spanning Δt seconds. For neuron i and 
frame k, the encoding model consisted of 

ni(t) = β0 + βT
k e(t − kΔt) (14)  

where ni(t) is the spike count at timepoint t and e(t − kΔt) is flicking bar 
stimulus value at k bins before t. We fit the F models using lasso 
(baseline) and UoILasso, and created the final STRF by concatenating the 
parameter values β = [β1, β2,…, βF ]

The tuning model for the rat auditory recordings was constructed 
using Gaussian basis functions. We used eight Gaussian basis functions 
spanning the log-frequency axis with means 

{
μj
}8

j=1 (Stevenson et al., 
2008, 2012). Thus, the high-gamma activity ni of electrode i in response 
to frequency f was 

ni(f ) = βi0 +
∑8

j=1
βijexp

(

−
logf − μj

2σ2

)

(15)  

We chose σ2 = 0.64 octaves so that basis functions sufficiently spanned 

the plane. We chose p = 8 basis functions because this was the minimum 
number of basis functions for which every electrode had a selection ratio 
less than 1. We fit Eq. (15) using cross-validated lasso as the baseline. To 
characterize the relationship between selection ratio and predictive 
performance of the rat AC tuning models, we fit trendlines across models 
using Gaussian process regression. Specifically, we utilized a regressor 
with radial basis function kernel (length scale ℓ = 0.01) and a white 
noise kernel (noise level α = 0.1). 

Lastly, we fit encoding models for the macaque V1 and M1 datasets 
using cosine basis functions as a function of grating and reach angle, 
respectively (Stevenson et al., 2012). Importantly, we modeled the spike 
count of the ith neuron after a variance stabilizing square-root trans
form, which is typically used when a Gaussian model is applied to data 
exhibiting Poisson variability (Yu et al., 2008). For the M1 dataset, the 
encoding model can be written as 

ri = βi0 + βi1cos(θ) + βi2sin(θ) + ε (16)  

where ri =
̅̅̅̅ni

√ is the square-rooted spike count of the ith neuron, and θ 
is the angle of the reach (Stevenson et al., 2011). The encoding model for 
the V1 neurons was similar, aside from an adjustment in period: 

ri = βi0 + βi1cos(2θ) + βi2sin(2θ) + ε, (17)  

where θ is the angle of the grating. We adjusted the period of the basis 
functions because the single-units were responsive to gratings drifting in 
either direction along an axis. Since these models only use two basis 
functions, we fit them using ordinary least squares (OLS) with no reg
ularization. We did not perform a comparison between the baseline 
model and a UoI-fitted model, since the OLS estimator is a consistent 
estimator. These encoding models were only used when examining the 
relationship between network and tuning structure. 

Data analysis for decoding models 
We fit decoding models to basal ganglia recordings as binary logistic 

regression models. The model expresses the probability of one experi
mental condition e (e.g., the rat entering the left port) as 

Pr[e = left] = sigmoid

(

β0 +
∑p

j=1
βjnj

)

, (18)  

where ni is the neural activity of the ith neuron. The corresponding 
objective function is the log-likelihood, or 

ℒi

(

β|
{

nk
1,…,nk

p

}D

k=1

)

=
∑D

k=1

[

log

(

1+exp(β0+
∑p

j=1
βjnk

j )

)

− ek(β0+
∑p

j=1
βjnk

j )

]

(19)  

The baseline approach consisted of solving this objective function with 
an ℓ1 penalty. UoILogistic utilized objective function (19) with an ℓ1 
penalty in the selection module, and Eq. (19) alone in the estimation 
module. 

2.4.3. Network creation and analysis 
We performed secondary analyses on the coupling models by con

structing graphs using the fitted parameters. We then analyzed these 
networks with standard graph theoretic measures. Here, we detail how 
we constructed the networks and the measures we used to analyze them. 

We created directed graphs by filling the adjacency matrix Aij with 
the coefficient βij (i.e., the coupling coefficient for neuron j in the 
coupling model for neuron i). Meanwhile, we created undirected net
works from coupling models by symmetrizing coefficients (Wang et al., 
2014). Specifically, the symmetric adjacency matrix satisfies Aij =

1
2
(
βij + βji

)
where βij is the coefficient specifying neuron i’s dependence 

on neuron j’s activity, and vice versa for βji. Thus, the network lacked an 
edge between vertices (neurons) i and j if only if neuron i’s coupling 
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model did not depend on neuron j, and neuron j’s coupling model did not 
depend on neuron i. This adjacency matrix is weighted in that each entry 
depends on the magnitudes of the coupling coefficients. However, we 
can also consider an unweighted, undirected graph, whose adjacency 
matrix is simply the binarization of Aij. 

We analyzed the networks with the following measures:  

• In- and out-degree. In a directed graph, the in-degree of a vertex is 
the number of incoming edges to that vertex. Meanwhile, the out- 
degree is the number of outgoing edges from the vertex. We 
examine the distribution of in-degrees and out-degrees across 
vertices in each group, which is dependent on the sparsity of the 
coupling models.  

• Modularity. The modularity Q is a scalar value that measures the 
degree to which a network is divided into communities (Newman, 
2006). We operate on the undirected graph described by the binar
ized adjacency matrix, described above. Suppose each vertex v is 
partitioned into one of c communities, where vertices within a 
community are more likely to be connected with each other than 
vertices between communities. Then, the modularity is defined as 

Q =
1

2m

∑

v,w

[

Avw −
kvkw

2m

]

δ(cv, cw) (20)  

where cv denotes community identity, kv is the degree of vertex v, 
and m is the total number of edges. Thus, the modularity is greater 
than zero when there exist more edges between vertices within the 
same community than might be expected by chance according to the 
degree distribution. Specifically, Q is bounded within the range [ −
1/2,1], where Q > 0 indicates the existence of community structure. 
We calculated modularity with the Clauset–Newman–Moore greedy 
modularity maximization algorithm (Clauset et al., 2004). This 
procedure assigns vertices to communities by greedily maximizing 
the modularity, and then calculating Q using the ensuing community 
identities.  

• Small-worldness. Small-world networks are characterized by a high 
degree of clustering with a small characteristic path length (Watts 
and Strogatz, 1998; Bassett and Bullmore, 2006, 2017). There are 
multiple measures used to quantify the degree to which a network is 
small-world. We use ω, which can be expressed as 

ω =
Lr

L
−

C
Cℓ

, (21)  

where L is the characteristic path length of the network, Lr is the 
characteristic path length for an equivalent random network, C is the 
clustering coefficient, and Cℓ is the clustering coefficient of an 
equivalent lattice network (Telesford et al., 2011). The quantity ω is 
bounded within [ − 1,1], where ω close to 0 indicates that the graph is 
small-world. When ω is close to 1, the graph is closer to a random 
graph, while ω close to − 1 implies the graph is more similar to a 
lattice graph. 

2.4.4. Model evaluation 
We used the following measures to evaluate the models fit to 

neuroscience data:  

(22) Selection Ratio. We evaluate the sparsity of estimated models 
with the selection ratio, or the fraction of parameters fitted to be 
non-zero: 

selectionratio =
k
p
, (22)  

where p is the total number of parameters available to the model 

and k is the number parameters that a model-fitting procedure 
explicitly sets non-zero. 

(23) Predictive performance. We utilized several measures of pre
dictive performance, depending on the model. For linear models 
(i.e., a generalized linear model with an identity link function), 
we used the coefficient of determination (R2) evaluated on held- 
out data, as detailed in Section 2.2 Recall that R2 values below 
zero indicate that the model is worse than an intercept model (i. 
e., simply using the mean value to predict across samples). 

For Poisson regression, or a generalized linear model with a 
logarithmic link function, we utilized the deviance, which is the 
difference in log-likelihood between the saturated model and the 
estimated model (Nelder and Wedderburn, 1972). The saturated 
model has parameters specifically chosen to reproduce the 
observed values. For the Poisson log-likelihood, the expression 
for the deviance as a function of the estimation parameters β̂ is 
given by 

deviance(β̂) =

[
∑D

i=1
yilog(yi) − yi

]

−

[
∑D

i=1
yi(β̂0 + β̂

T
xi) − exp

(
β̂0

+ β̂
T
xi
)
]

,

(23)  

where {xi, yi}
D
i=1 denote the features and response variable of the 

model, respectively. Note that lower deviance is preferred, in 
contrast to the coefficient of determination. For logistic decoding 
models, we used the classification accuracy on held-out data as the 
measure of predictive performance.  

(24) Model Parsimony As detailed in Section 2.2, we evaluated 
model parsimony using the Bayesian information criterion (BIC). 
Recall that the BIC includes a penalty that encourages models to 
be more sparse while still accounting for predictive accuracy. 
Importantly, the BIC is evaluated on the data that the model was 
trained on (rather than held-out data). It is typically used as a 
model selection criterion (in lieu of, for example, cross- 
validation). When used as a model selection criterion, the 
model with lower BIC is preferred.  

(25) Effect Size. To fully capture the difference in model evaluation 
metrics beyond statistical significance, we measure effect size 
using Cohen’s d (Cohen, 2013). For two groups of data with 
sample sizes D1, D2, means μ1, μ2, and standard deviations s1, s2, 
Cohen’s d is given by 

d =

⃒
⃒
⃒
μ1 − μ2

s

⃒
⃒
⃒ (24)  

where s is the pooled standard deviation: 

s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(D1 − 1)s2
1 + (D2 − 1)s2

2

D1 + D2 − 2

√

. (25)  

We often considered cases where D1 = D2, implying that s =
̅̅̅̅̅̅̅̅̅
s2
1+s2

2
2

√

. Values of d on the order of 0.01 indicate very small effect 
sizes, while d > 1 indicates a very large effect size (Sawilowsky, 
2009). 

(26) Statistical Tests. We used the Wilcoxon signed-rank test (Wil
coxon, 1992) to assess whether the distributions of selection ra
tios and predictive performances, across units, were significantly 
different between the UoI models and the baseline models. 
Importantly, we did not apply the test to the distribution of BICs, 
since differences in BIC are better interpreted as approximations 
to Bayes factors (Neath and Cavanaugh, 2012b). To assess 
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whether distributions of UoI and baseline model parameters were 
significantly different, we used the Kolmogorov-Smirnov test. We 
applied a significance level of α = 0.01 for all statistical tests. 

Cross-validation, model training, and model testing 
Each dataset was split into 10 folds after shuffling across samples 

(except for the basal ganglia data, which was split into 5 folds due to 
fewer samples). When appropriate, the folds were stratified to contain 
equal proportions of samples across experimental setting (e.g., stimulus 
value or behavioral condition). In each task, we fit 10 models (or five, for 
basal ganglia) by training each on 9 (4) folds, and using the last fold as a 
test set. Hyperparameter selection for baseline procedures was per
formed via cross-validation within the training set of 9 (4) folds. 
Meanwhile, all resampling for the UoI procedures was also performed 
within the training set. Model evaluation statistics (selection ratio, 
predictive performance, Bayesian information criterion) are reported as 
the median across the 10 (5) models. Any measures that operate on the 
fitted models (e.g., coefficient value, network formation, modularity, 
etc.) were calculated by using the model that is formed by taking the 
median parameter value across folds. 

3. Results 

Parametric models are ubiquitous data analysis tools in systems 
neuroscience. However, their usefulness in understanding a neural sys
tem hinges on the assumption that their parameters are accurately 
selected and estimated. By accurate selection, we mean low false posi
tives and false negatives in setting parameters equal to zero; by accurate 
estimation, we mean low-bias and low-variance in the parameter esti
mates. The potential neuroscientific consequences of improper selection 
or estimation during inference are generally not well understood. Thus, 
we studied selection and estimation in common systems neuroscience 
models by comparing the properties of models inferred by standard 
methods to those inferred by the Union of Intersections (UoI) frame
work. We fit models spanning functional coupling (coupling networks 
from auditory cortex, V1, and M1), sensory encoding (spatio-temporal 
receptive fields from retinal recordings and tuning curves from auditory 
cortex), and behavioral decoding (classifying behavioral condition from 
basal ganglia recordings). We analyzed the fitted models to assess 
whether improvements in inference impact the resulting neuroscientific 
conclusions. 

Fig. 4. Highly sparse coupling models 
maintain predictive performance. a-c Com
parison of coupling models fit using baseline 
and UoI approaches to recordings from the 
auditory cortex (AC), primary visual cortex 
(V1), and primary motor cortex (M1). Each 
column corresponds to a different recording 
area (titles), and each row corresponds to a 
different model evaluation measure (right side 
labels). Colors denote different data sets within 
the same experiment, if available. Caption 
continued on following page. Continued from 
previous page. (a) The selection ratio, where 
the y-axis refers to the UoI model and x-axis the 
baseline model. Each point represents a 
coupling model for a specific single-unit/ 
electrode. Gray line denotes the identity line. 
(b) Comparison of predictive performance. (c) 
The distribution of BIC differences across 
coupling models. (d) Comparison of the coeffi
cient values inferred by UoI (y-axis) and base
line (x-axis) methods. Data is depicted on a 
hexagonal 2D histogram with a log intensity 
scale. The marginal distributions of the non- 
zero coefficient values are shown on the top 
(baseline) and side (UoI) for each brain area. 
Note that the 1D histograms display the distri
bution in a more restricted domain than the 2D 
histograms, as depicted by the black lines.   
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3.1. Highly sparse coupling models maintain predictive performance 

Functional coupling models detail the statistical interactions be
tween the constituent units (e.g., neurons, electrodes, etc.) of a popu
lation. Such models can be used to construct networks, whose structural 
properties may elucidate the functional and anatomical organization of 
the neurons within the population (Song et al., 2013; Melozzi et al., 
2019; Bassett and Sporns, 2017). Enhanced sparsity in these models 
could result in different inferred functional sub-networks reflected in the 
ensuing graph. Furthermore, obtaining biased parameter estimates ob
scures the relative importance of neuronal relationships in specific 
sub-populations. Therefore, precise selection and estimation in coupling 
models is necessary to properly relate the network structure to the sta
tistical relationships between neurons. 

We examined the possibility of building highly sparse and predictive 
coupling networks by fitting coupling models to data from three brain 
regions: recordings from auditory cortex (AC), primary visual cortex 
(V1), and primary motor cortex (M1). The AC data consisted of micro- 
electrocorticography (μECoG) recordings from rat during the presenta
tion of tone pips (Dougherty & Bouchard, 2019: DB). The V1 data con
sisted of single-unit recordings in macaque during the presentation of 
drifting gratings (Kohn & Smith, 2016: KS). The M1 data consisted of 
single-unit recordings in macaque during self-paced reaches on a grid of 
targets (O’Doherty, Cardoso, Makin, & Sabes: OCMS). See Methods for 
further details on experiments, model fitting, and metrics used for model 
evaluation, and see Table C.1 for a model statistic summary. 

We constructed coupling models consisting of either a regularized 
linear model (AC) or Poisson model (V1, M1) in which the activity of an 
electrode/single-unit (i.e., node) was modeled using the activities of the 
remaining electrodes/single-units in the population. Thus, each dataset 
had as many models as there were distinct electrodes/single-units. We 
quantified the size of the fitted models with the selection ratio, or the 
fraction of parameters that were non-zero. We compare the selection 
ratio between baseline and UoI coupling models across electrodes/ 
single-units in Fig. 4a. For all three brain regions, UoI models exhibi
ted a marked reduction in the number of utilized electrodes/single-units. 
Specifically, UoI models used 2.24 (AC), 2.21 (V1), and 5.50 (M1) times 
fewer features than the corresponding baseline models. Across the 
populations of electrodes/neurons, this reduction was statistically sig
nificant (p≪0.001; see Table C.1) with large effect sizes (AC: d = 1.74; 
V1: d = 2.26; M1: d = 2.49). Interestingly, while the reduction in fea
tures for AC and V1 are roughly similar, the M1 models exhibit a much 
larger reduction in selection ratio, an observation that holds across the 
three M1 datasets. Furthermore, we examined coupling fits obtained via 
UoILasso, finding that the enhanced sparsity persists despite the change in 
model. Additionally, the UoI linear and Poisson models exhibited similar 
recovery in selection profiles not recapitulated by baseline procedures 
(D). 

We assessed whether the reduction in features resulted in meaningful 
loss of predictive accuracy. We measured predictive accuracy using the 
coefficient of determination (R2) for linear models (AC) and the devi
ance for Poisson models (M1, V1), both evaluated on held out data. Note 
that in contrast to R2, lower deviance is preferable. The predictive 
performances of baseline and UoI models for each brain region are 
compared in Fig. 4b. We observed that there is almost no change in the 
predictive performance across brain regions, with most points lying on 
or close to the identity line. We note that while the differences in per
formance across all models were statistically significant (AC: p < 10− 3; 
V1: p≪0.001; M1: p≪0.001; see Table C.1), the effect sizes of the 
reduction in predictive performance were very small (AC: d = 0.005; 
V1: d = 0.05; M1: d = 0.03), making it irrelevant in practice. Thus, 
these results imply that it is possible to construct highly sparse coupling 
methods that exhibit little to no loss in predictive performance across 
brain regions and datasets. 

We captured the two previous observations — increased sparsity and 

maintenance of predictive accuracy — with difference in Bayesian in
formation criterion (BIC) between baseline and UoI methods, ΔBIC =

BICbaseline − BICUoI. Lower BIC is preferable, so that positive ΔBIC in
dicates that UoI is the more parsimonious and preferred model. The 
distribution of ΔBIC across coupling models is depicted in Fig. 4c. ΔBIC 
is positive for all models, with a large median difference (AC: 170; V1: 
149; M1: 186; see Table C.1). Thus, usage of BIC as a model selection 
criterion provides very strong evidence against the baseline models. 

To characterize the functional relationships inferred by the coupling 
models, we examined the distribution of coefficient values. We 
normalized each model’s coefficients by the coefficient with largest 
magnitude across the baseline and UoI models, and concatenated co
efficients across models and datasets. We visualized the baseline and UoI 
coefficient values using a 2-d hexagonal histogram (Fig. 4d). First, we 
observed a density of bins above (positive coefficients) and below 
(negative coefficients) the identity line (Fig. 4d: red dashed line). This 
indicates that the magnitude of non-zero coefficients as fit by UoI are 
larger than the corresponding non-zero coefficient as fit by the baseline, 
demonstrating the amelioration of shrinkage and therefore reduction in 
bias. Next, we observed a density of bins on the x = 0 line, indicating a 
sizeable fraction of coefficients determined to be non-zero by baseline 
methods are set equal to zero by UoI. This density corroborates the 
reduction in selection ratio observed in Fig. 4a. We further note that the 
density of bins on the x = 0 line encompass a wide range of baseline 
coefficients values, especially for the V1 and M1 datasets. This implies 
that utilizing a thresholding scheme based on the magnitude of the fitted 
parameters for a feature selection procedure will not reproduce these 
results. Lastly, we observe no density of bins along the y = 0 line, which 
indicates that UoI models are likely not identifying the existence of 
functional relationships which do not exist (i.e., suffering from false 
positives). 

While many of the coefficients set equal to zero by UoI have large 
magnitude (as measured by baseline methods), the bulk of density lies in 
coefficients with small magnitude. We found that the difference in dis
tributions of non-zero coefficients between the two procedures is sta
tistically significant (p≪0.001; Kolmogorov–Smirnov test). We 
highlight the marginal distribution of non-zero coefficients whose 
magnitudes are small (Fig. 4d, top and side histograms). While the 
baseline histograms (Fig. 4d, top histograms) have the largest density of 
coefficients close to zero, the UoI histograms, in a similar range, exhibit 
a large reduction in density. Together, these results demonstrate that 
coupling models fit by UoI possess qualitatively different parameter 
distributions, and raise the possibility that these differences may reflect 
shrinkage and abundance of false positives. 

3.2. Improved inference enhances visualization, increases modularity, 
and decreases small-worldness in functional coupling networks 

Functional coupling networks are useful in that they provide op
portunities to visualize the statistical relationships within a population. 
Furthermore, their graph structures can be analyzed to characterize 
global properties of the network. The previous results show that 
improved inference gives rise to equally predictive models, but with 
much greater sparsity and qualitatively different parameter distribu
tions. Thus, we next determined the impact on network visualization 
and structure. To this end, we constructed networks by placing coeffi
cient values extracted from the coupling models directly in an adjacency 
matrix; i.e., Aij = βij, where βij is the jth parameter for the ith coupling 
model. The adjacency matrices constituted directed graphs with 
weighted edges, which served as the primary focus in the subsequent 
analyses. When necessary, we considered undirected graphs calculated 
by symmetrizing pairwise coupling coefficients (see Methods for more 
details). 

We first visualized the AC networks by plotting the baseline and UoI 
networks according to their spatial organization on the μECoG grid 
(Fig. 5a). Each vertex in Fig. 5a is color-coded by preferred frequency, 
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while the symmetrized coupling coefficients are indicated by the color 
(sign) and weight (magnitude) of edges between vertices. We observed 
that the UoI network is easier to visualize, with densities of edges clearly 
demarcating regions of auditory cortex. This is contrast to the baseline 
network, whose lack of sparsity makes it difficult to extract any mean
ingful structure from the visualization. For example, the UoI network 
exhibits a clear increase in edge density in primary auditory cortex 
(PAC) relative to the posterior auditory field (PAF) and ventral auditory 
field (VAF). Thus, the increased sparsity in UoI networks reveals graph 
structure that ties in closely with general anatomical structure of the 
recorded region. 

Since we lacked the physical layout for V1 and M1 recordings, we 
visualized the networks by fitting nested stochastic block models to the 

directed graphs and plotting the ensuing structure in a circular layout 
with edge bundling (Fig. 5b, c). The nested stochastic block model 
identifies communities of vertices (neurons) in a hierarchical manner. 
We color-coded the vertices of the visualized graphs according to 
preferred tuning inferred from fitted encoding models (drifting grating 
angle for V1 networks and hand movement angle for M1 networks with 
cosine basis functions: see Methods). The UoI V1 network exhibits clear 
structure, with specific communities identifying similarly tuned neurons 
(Fig. 5b). The baseline V1 network does not exhibit as clear structure, 
and was highly unbalanced, with more than half the neurons placed in 
the same community. For the M1 data, the UoI communities were more 
balanced, though they lacked clear association with tuning properties. 
Together, these results demonstrate that enhanced sparsity of functional 

Fig. 5. Improved inference enhances visualization, increase modularity, and decrease small-worldness in functional coupling networks. (a) Networks 
obtained from auditory cortex data. Vertices are organized according to their position on the electrocorticography grid. Vertices are color coded by preferred fre
quency, with fuchsia vertices denoting non-tuned electrodes. Edge width increases monotonically with edge weight while edge color denotes the sign of the weight. 
White lines segment the grid according to the regions of auditory cortex. (b) Visualization of example coupling networks for visual cortex recordings, with vertices 
color-coded by preferred tuning. Edges are bundled according to detected communities, while vertex size corresponds to its degree. Note that stimulus encoding is 
cyclical (static grating angle from 0◦ to 180◦). (c) Visualization of coupling networks for motor cortex recordings, with vertices color-coded by preferred tuning. 
Edges are bundled according to detected communities, and vertex size corresponds to its degree. Note that stimulus encoding is cyclical (movement direction angle 
from 0◦ to 360◦). Caption continued on the following page. Continued from previous page. d-f. Comparison of common graph metrics evaluated on UoI networks 
(red) and baseline networks (gray). Each row corresponds to a distinct brain region (left: AC, V1, and M1 from top to bottom). (d) In-degree and out-degree densities. 
(e) The graph modularity, averaged across datasets. (f) The small-worldness as quantified by ω, and averaged across datasets. 
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coupling networks result in cleaner visualizations and, in the case of V1, 
a clearer connection to functional response properties. 

These plots suggest different graph structures in the networks 
extracted by UoI and baseline methods. Thus, we first calculated the in- 
degree and out-degree distributions of the vertices in both networks 
(Fig. 5d). We observed that the in-degree and out-degree distributions 
for the UoI networks are much smaller, as one might expect due to the 
reduction in edges. Furthermore, the in- and out-degree distributions 
describing the UoI networks are nearly identical, in contrast to those of 
the baseline networks. Next, we calculated the modularity of the net
works, which quantifies the degree to which the networks exhibit 
community-like structure. We found that the modularity for the UoI 
networks is much larger than that of baseline networks, indicating that 
UoI networks express more community structure than baseline networks 
(Fig. 5e). These results corroborate the visual findings in Fig. 5b. Since 
modularity implicitly depends on degree distribution, the enhanced 
community structure exhibited by the UoI networks is not simply a 
property of the reduction of in- and out-degrees, emphasizing that the 
enhanced sparsity is functionally meaningful. We found similar findings 

in functional networks built from linear models, rather than Poisson 
models, implying that the structure of coupling networks persists across 
the type of underlying model (D). 

Finally, we examined the small-worldness of the networks, a graph 
structure commonly used to describe brain networks. Small-world net
works are characterized by a high degree of clustering and low char
acteristic path length, making them efficient for communication. We 
used ω to calculate small-worldness, whose values are bounded by the 
range [ − 1,1], with ω close to − 1, 0, and 1 indicative of lattice, small- 
world, and random structure, respectively. Interestingly, UoI networks 
are considerably less small-world than the baseline networks (Fig. 5f). 
However, we note that all networks are more small-world than they are 
random. Furthermore, the small-worldness of the networks is dependent 
on the brain region. For example, the V1 networks exhibit substantially 
more small-worldness than the auditory cortex or M1 networks. 
Together, these results demonstrate that several properties of networks 
can be substantially altered by the utilized inference procedure, and that 
UoI networks are more modular and less small-world. 

Fig. 6. Parsimonious tuning from encoding models. a-e Analysis of spatiotemporal receptive fields (STRFs) fit to spikes from mouse retinal ganglion cells using a 
1d white noise stimulus. (a) Example STRF extracted by baseline (left) and UoI (right) procedures. (b-c) Quantitative comparison of STRFs extracted with UoI (y-axis) 
and baseline (x-axis) procedures. Each point represents a unique STRF. Gray line denotes identity. (b) Comparison of selection ratios for each STRF. (c) Comparison of 
coefficient of determination (R2) on held out data. (d) The distribution in BIC differences across STRFs. Dashed line denotes equal BIC, i.e. ΔBIC = 0. (e) Distribution 
of normalized coefficient values across all baseline (gray) and UoI (red) STRFs. The broken y-axis is log-scale below the break and a regular scale above the break. 
Inset shows distribution of coefficients for STRFs depicted in a. f-j. Analysis of tuning curves extracted from micro-electrocorticography recordings on rat auditory 
cortex during the presentation of tone pips. (f) Examples of tuning curves for a subset of electrodes on the grid, as fit by baseline (gray) and UoI (red) procedures. 
Purple outlines denote tuning curves set exactly equal to zero by UoI (of the four electrodes, only two are shown). g-h. Quantitative comparison of tuning curves 
extracted with UoI (y-axis) and baseline (x-axis) procedures. Panels are structured similarly as panels b-c.. Purple points highlight tuning curves that had a selection 
ratio of zero, as determined by UoI. (i) The distribution in BIC differences across electrode tuning curves, structured similarly as panel (d) (j) Selection ratio plotted 
against coefficient of determination for baseline (gray) and UoI (red) procedures. Each point denotes a STRF. Trendlines are fit with Gaussian process regression. 
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3.3. Parsimonious tuning from encoding models 

A long-standing goal of neuroscience is to understand how the ac
tivity of individual neurons are modulated by factors in the external 
world (e.g., how the position of a moving bar is encoded by a neuron in 
the retina). In such encoding models, incorrect feature selection or 
parameter bias may mistakenly implicate factors in the production of 
neural activity, or misstate their relative importance. Thus, we exam
ined how improved inference impacts tuning models, where an external 
stimulus is mapped to the corresponding evoked neural activity. 

We first fit spatio-temporal receptive fields (STRFs) to single-unit 
recordings from isolated mouse retinal ganglion cells during the pre
sentation of a flicker black or white bar stimulus (generated by a pseudo- 
random sequence). We used a linear model with a lasso penalty to fit 
STRFs (i.e., regularized, whitened spike-triggered averaging) to re
cordings from 23 different cells, using a time window of 400 ms. Thus, 
the fitted STRFs were two dimensional, with one dimensional capturing 
space (location in the bar stimulus) and the other capturing the time 
relative to neural spiking. For further experimental and model fitting 
details, see Methods. See Table C.2 for a dataset and model statistic 
summary. 

The fitted STRFs for an example retinal ganglion cell are depicted in 
Fig. 6a. The UoI STRF captures the ON-OFF structure exhibited by the 
baseline STRF. However, the UoI model is noticeably sparser, resulting 
in a tighter spatial receptive field. The features set to zero by UoI 
(relative to baseline) include regions both further from the dominant 
ON-OFF structure, and regions very close to the center. Additionally, the 
coefficient values of the UoI STRF are noticeably larger in magnitude. 
These observations raise the possibility that the baseline procedure 
could be producing false positives in both the central and distal regions 
of the STRF, with the remaining coefficients suffering from shrinkage. 

We compared the selection ratios across fitted STRFs (Fig. 6b) and 
found UoI fits to be substantially sparser, with a median reduction factor 
of 4.98. This reduction was statistically significant (p≪0.001; see 
Table C.2) and had a very large effect size (d = 3.05). At the same time, 
UoI models exhibited a statistically significant improvement in R2 

(p < 0.01; see Table C.2c), but with a very small effect size, making the 
improvement irrelevant in practice (d = 0.05; see C.2). Meanwhile, the 
BIC differences (Fig. 6d) were all large and positive (mediandifference =

654), providing very strong evidence in favor of the UoI model. Lastly, 
we compared the distribution of baseline and UoI encoding coefficients, 
normalized to the largest magnitude coefficient. We found evidence that 
the UoI models exhibited reduced shrinkage (Fig. 6e: larger tails), and a 
substantial reduction in false positives (Fig. 6e: reduced density at 
origin). Thus, improved inference resulted in STRFs with tighter 
structure. 

Across neurons, we observed selection ratios and predictive perfor
mances spanning a wide range of values (Fig. 6b, c). We might expect 
that models with little predictive accuracy utilize fewer features, since 
poor predictive performance indicates that the provided features are 
inadequate. For example, in the limit that the model has no predictive 
capacity (R2 ≤ 0), the model should utilize no features, since such an R2 

indicates that none of the available features are relevant for reproducing 
the response statistics better than the mean response value. Therefore, 
we sought to determine whether inaccurate inference mistakenly iden
tifies models as tuned (i.e., non-zero tuning features), when in fact a 
“non-tuned” model is appropriate (e.g., an intercept model: all features 
set equal to zero). To this end, we utilized a dataset in which the feature 
space dimensionality is small. This scenario provides a suitable test bed 
for assessing whether an intercept model could arise, and if such a model 
is appropriate given the response statistics of the data. We examined a 
dataset consisting of μECoG recordings from rat auditory cortex during 
the presentation of tone pips at various frequencies. We employed a 
linear tuning model mapping frequency to the peak (z-scored relative to 
baseline, see Methods), high-γ band analytic amplitude of each 

electrode. The model features consisted of 8 Gaussian basis functions 
that tiled the log-frequency space. 

We first examined whether improved inference resulted in any 
qualitative changes in the fitted encoding models. We plotted the fitted 
tuning curves as a function of log-frequency for a subset of electrodes 
arranged according to their location on the μECoG grid (Fig. 6f). Inter
estingly, the baseline and UoI tuning curves exhibit similar structure for 
a large fraction of the electrodes on the grid, in many cases matching 
closely (e.g., Fig. 6f: anterior side of grid). In other cases, particularly on 
the posterior side of the grid, the UoI tuning curves exhibit similar broad 
structure with noticeable smoothing, indicating that UoI has simplified 
the tuning model. 

We compared the selection ratio of the models (Fig. 6g), and found 
that the UoI tuning curves utilize fewer features than those fit by base
line, with a median reduction factor of 2.5 that was statistically signif
icant (p≪0.001; see Table C.2) and a large effect size (d = 2.19). 
Furthermore, despite a statistically significant decrease in R2 (Fig. 6h) 
across electrodes (p≪0.001; see C.2), the observed effect size is very 
small (median ΔR2 = 0.001; d = 0.05). Meanwhile, we observed a 
median BIC difference of 19.4, providing evidence in favor of the UoI 
models (Fig. 6i). Taken together, these results imply that the reduction 
in features did not harm the predictive performance of the tuning 
models, thereby enhancing their parsimony. 

We highlight four electrodes whose selection ratios, according to 
UoI, are exactly zero in Fig. 6g (purple points; some points overlap). The 
tuning curves of two of these electrodes are depicted in the posterior 
region of Fig. 6f (purple axis boundaries). These four “non-tuned” 
electrodes are among the least predictive, with R2 close to or below zero 
for both baseline and UoI methods (Fig. 6h: purple points; some points 
overlap). Interestingly, the baseline selection ratio for one of these 
models was close to 0.4, indicating that UoI is generating models with 
substantially different support. We visually examined the frequency- 
response areas (FRAs) of these four electrodes, which detail the mean 
response values as a function of sound frequency and amplitude. We 
compared them to the FRAs of two randomly chosen electrodes, finding 
they had little discernible structure relative to the “tuned” FRAs (E). 
Thus, while increased sparsity in encoding models may not always result 
in perceptible changes in their appearance (e.g., Fig. 6f), there are cases 
where an inference procedure may mistakenly imply that a constituent 
unit is tuned, when in fact the stimulus features are not relevant for 
capturing its response statistics. To understand the behavior of the se
lection ratio as R2→0, we examined the relationship between selection 
ratio and R2 for baseline (gray) and UoI (red) models (Fig. 6j). We found 
that the sparser models exhibit lower predictive power, with model 
trends predicting that at R2 = 0, the selection ratio for the baseline 
model would be 0.35 ± 0.10 (mean ± 1 s.d.) while the UoI selection 
ratio would be 0.12 ± 0.10. This demonstrates that baseline procedures 
can suffer from false positives even when their fitted models exhibit little 
to no explanatory power. Overall, our results reveal that UoI can identify 
units as non-tuned when their encoding models lack predictive ability. 

3.4. Decoding behavioral condition from neural activity with a small 
number of single-units 

Decoding models describe which neuronal sub-populations contain 
information relevant for an external factor, such as a stimulus or a 
behavioral feature. Such models can identify which neurons may be 
useful to a downstream population for a task that requires knowledge of 
an external factor. Specifically, a decoding model’s non-zero parameters 
can be interpreted as the sub-population of neurons containing the task- 
relevant information, emphasizing the need for precise selection. 
Additionally, the model details how specific neurons describe the 
decoded variable through the magnitudes of its parameters, requiring 
unbiased estimation. Thus, we sought to assess the degree to which an 
improved inference algorithm might impact data-driven discovery in 
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neural decoding models. 
For this analysis we examined 54 single units in the rat basal ganglia 

(18 units from globus pallidus pars externa, GPe, and 36 from the sub
stantia nigra pars reticulata, SNr) that were recorded simultaneously 
during performance of a behavioral task involving rapid leftward or 
rightward head movements in response to cues. Details of the task are 
given in Gu et al. (2020); the analysis was restricted to trials in which a 
correct head movement was made. Thus, the decoding model consisted 
of binary logistic regression predicting trial outcome (left or right) using 
the single-unit spike counts as features. We fit the logistic regression 
with an ℓ1 penalty (baseline) and the UoI framework (UoILogistic). Further 
details on the experimental setup and model fitting can be found in 
Methods. See C.3 for a summary of the dataset and fitted model 
statistics. 

The selection ratios for GPe and SNr, as obtained by baseline and UoI 
procedures, are depicted in Fig. 7a. In GPe, the UoI decoding models 
utilized about half the number of parameters as the baseline procedures. 
Meanwhile, in SNr, the UoI models utilized four times fewer parameters 
than the baseline. Furthermore, we observe that UoI model sizes were 
more consistent across folds of the data. For example, the baseline SNr 
decoding models estimated anywhere from 1 to 21 parameters (out of 
36) depending on the data fold, while UoI models consistently used only 
2 or 3 parameters (Fig. 7a: IQR bars). These results validate that neural 
decoding models are capable of utilizing fewer features to predict rele
vant behavioral features. Furthermore, the stability principle ensures 
that these features are more robust to perturbations of the data (e.g., 
random subsamples). 

To examine whether the use of fewer single-units decreased predic
tive performance, we evaluated the decoding models’ classification ac
curacy on held-out data, depicted in Fig. 7b. The classification accuracy 
of the UoI models is equal to that of the baseline models for both GPe 
(67%) and SNr (100%). Furthermore, in both regions, the classification 
accuracy is greater than chance (56%), implying that the models are 
extracting meaningful information about the behavioral condition from 
the neural response. Interestingly, the median SNr models achieve per
fect classification accuracy. The UoI model achieves this performance 
utilizing only 2 neurons, in contrast to median baseline model, which 
utilizes 8. Therefore, the activities of only a small subset of neurons are 
required to predict the behavioral condition, an observation that 
required an improved inference algorithm to consistently capture. 

We examined the fitted coefficient values for each brain region and 
fitting procedure (Fig. 7c). First, we observed that all coefficients set 
equal to zero by the baseline procedure are also set equal to zero by UoI. 
Additionally, the coefficients set equal to zero by UoI, but not the 

baseline procedure, typically have smaller magnitudes than the co
efficients that are non-zero for both procedures. Finally, the coefficients 
set non-zero by UoI have larger magnitudes relative to their value under 
the baseline procedure. These observations imply that the UoI proced
ure, for this task, consistently utilized only the most important neurons 
to predict the behavioral condition. At the same time, UoI elevated the 
coefficient values relative to the baseline procedure, implying that 
baseline procedures suffered from substantial parameter shrinkage. In 
contrast to the coupling models, the parameters with the lowest 
magnitude in the baseline decoding models were set to zero by UoI. This 
could reflect differences in the task (classification vs. regression) or 
collinearity between the neural responses. Overall, these results 
demonstrate that task-relevant information is conveyed by a sparse 
subset of basal ganglia neurons, especially in SNr. 

4. Discussion 

Parametric models are used pervasively in systems neuroscience to 
characterize neural activity. The parameters of these models must be 
precisely selected and estimated in order to ensure accurate interpre
tation, particularly in the sparse parameter regime that is desirable for 
neural data. Motivated by the advent of new inference procedures 
capable of improved inference, we used the UoI framework to assess the 
degree to which poor parameter inference may impact neuroscientific 
interpretation of parametric models. We fit functional coupling, 
encoding, and decoding models to a battery of neural datasets, using 
standard and UoI inference procedures. We found that, across all 
models, the number of non-zero parameters could be reduced by a factor 
of 2–5, while maintaining predictive performance. Furthermore, we 
found broader, structural differences in the models beyond enhanced 
sparsity, which resulted in concrete changes to secondary analyses that 
inform neuroscientific interpretation. 

The parameters obtained in coupling models denote the existence 
and strength of functional relationships between constituent units in a 
population. We fit coupling models that exhibited a marked reduction in 
model size, providing evidence that the baseline models suffered from 
false positives. Interestingly, the amount of feature reduction varied 
across brain areas, which may reflect differences in the nature of neural 
activity for these regions. Furthermore, we observed striking differences 
in the distribution of these parameter estimates, which impacted the 
graph structure. These changes produced cleaner visualizations, which 
in the case of V1, could related to the functional response properties of 
the neurons. In M1, we found no such relationship, inline with the dy
namics view of this region (Churchland et al., 2012). Additionally, these 

Fig. 7. Behavioral condition can be decoded with a small number of single-units at no loss in accuracy. Decoding models were applied to single-unit re
cordings from rat basal ganglia. The models, consisting of binary logistic regression, predicted whether the rat went left or right on a stop signal task. Single-unit 
recordings were used from the globus pallidus pars externa (GPe: 18 units) and the substantia nigra pars reticulata (SNr: 36 units). a-b. Evaluation of decoding 
models fit via the UoI (red) and baseline (gray) procedures. Bar heights indicate median across five data folds, while error bars denote IQR. (a) Comparison of the 
selection ratios. (b) Comparison of left/right classification accuracy on held-out data. Dashed line denotes accuracy by chance. (c) Comparison of fitted coefficient 
values extracted by baseline and UoI procedures in GPe and SNr. The decoding models fit by UoI utilize about 3 times fewer single-units at no cost to accuracy, 
indicating that task relevant information is contained in a small number of single-units. 
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networks were characterized by increased modularity and decreased 
small-worldness. These results do not directly contradict previous work 
characterizing brain networks as small-world, but do reduce the 
magnitude of the characterization (Bassett and Bullmore, 2006, 2017; 
Honey et al., 2007) (though see Markov et al., 2013). Furthermore, 
coupling model parameters have been assessed for their recapitulation 
of synaptic weight distributions in neural circuits, in some cases iden
tifying parameter biases induced by specific dynamical regimes of 
neural activity (Das and Fiete, 2019). These biases could be due to 
shrinkage of large parameter values, as observed here, and are mitigated 
by UoI. Furthermore, the coupling parameters extracted by UoI better 
reflect the weight distribution as observed in neural circuits, which is 
characterized by sparse connectivity with a heavy-tailed distribution 
(Song et al., 2005; Barbour et al., 2007). This was not achieved by 
baseline procedures, suggesting that the previously identified biases are 
due to inaccurate inference. The salient differences in the inferred 
coupling parameter distributions we observed motivates similar exam
ination in models that capture neural dynamics, such as vector 
auto-regressive models (Balasubramanian et al., 2018; Ruiz et al., 2019), 
which could be further assessed by controllability metrics used in recent 
work on fMRI networks (Gu et al., 2015). 

The parameters in encoding models detail which features modulate 
neural activity. We observed that the application of UoI to the encoding 
models highlighted cases where the fitted model had only zero param
eter values, other than the intercept. Such an intercept model implies 
that a tuning model may be inappropriate for capturing the response 
statistics of the constituent units. This observation can be understood as 
a natural consequence of stability enforcement during parameter infer
ence: UoI benefits from the stability principle by only utilizing selected 
features that persist across data resamples (Murdoch et al., 2019). The 
use of data resamples mimics perturbing the dataset, ensuring that 
features are included only if they are robust to those perturbations. Thus, 
the stability principle enforces model parsimony by encouraging the use 
of fewer features, eliminating those that offer no predictive accuracy 
throughout the resamples. However, UoI prioritizes predictive accuracy 
in the model averaging step. Therefore, models will only be made “as 
simple as possible” (e.g., removing all features) when they possesses no 
predictive ability. Furthermore, the fit spatio-temporal receptive fields 
on the retinal ganglion cells had typical ON-OFF structure, characteristic 
of the linear model (Pillow et al., 2008). In contrast to the auditory 
cortex, the stability enforcement of UoI resulted in models that were 
more spatially constrained, in better agreement with theoretical work 
characterizing the receptive fields and more accurately reflecting the 
visual features that explain the production of neural activity in retinal 
ganglion cells (Olshausen and Field, 1996; Stringer et al., 2019). More 
broadly, these results indicate that such improvements in parameter 
inference could serve to close the gap between experiment and theory in 
systems neuroscience. 

Likewise, decoding models can inform which internal factors contain 
information about a task-relevant external factor. We found that 
decoding models could be fit using fewer single-units, at no cost to 
classification accuracy, implying that task-relevant information can be 
confined to a very small fraction of a neural circuit. In the context of this 
work, we note that SNr is a basal ganglia output nucleus, receiving 
converging inputs from multiple basal ganglia structures including GPe. 
Thus, the finding that SNr decodes behavioral output more selectively 
and accurately compared to GPe is consistent with the idea that SNr is 
closer to post-decision behavioral outputs, whereas GPe represent in
ternal preparatory states. Our observations have more general implica
tions for communication between brain areas: wiring constraints often 
restrict information transmission through a relatively smaller number of 
projection neurons, suggesting that these neurons contain the relevant 
information required to “decode” a given signal (Schüz et al., 2006; Isely 
et al., 2010). These results, in which we identified a very small fraction 
of the neurons capable of accurate decoding, raise the possibility that 
these selected neurons are, in fact, the projection neurons. Decoding 

using fewer single-units also has practical implications. An abundance of 
work has considered the fidelity of a neural code by assessing the 
decoding ability of neural populations as a function of population size 
(Kohn et al., 2016). These decoding analyses can be informed by 
knowledge of the sparse sub-populations predictive of an external factor, 
which these results indicate are smaller than previously thought. 
Brain-machine interfaces (BMIs), which rely on accurate decoding from 
neural activity to operate, could reduce their power consumption by 
using a decoder relying on fewer single-units. Together, these results 
imply that accurate inference procedures, more capable of discovering 
specific task-relevant neuronal sub-populations, could drive the devel
opment of normative theories of neural communication and decoding. 

Across brain regions and models, UoI resulted in more parsimonious 
models with differences in predictive performance that were irrelevant 
in practice, as measured by Cohen’s d. However, statistical tests 
comparing the distribution of predictive performance between the 
baseline and UoI models revealed a statistically significant decrease in 
predictive performance for some cases (coupling models, AC tuning) and 
statistically significant increase in others (retinal STRF, decoding). 
Depending on one’s goals, relying solely on predictive performance to 
judge a model may be unreliable (Shao, 1993; Wang et al., 2007). In 
particular, because model interpretability depends crucially on the 
included features and their estimates, we prioritized feature selection 
and estimation. Cross-validated predictive accuracy is often a poor cri
terion for accurate feature selection (Shao, 1997; Zhang et al., 2010). In 
these cases, the BIC, which captures model parsimony, serves as a more 
suitable criterion (Schwarz, 1978), and universally favored the UoI 
models (though we note there is no single preferred model selection 
criterion (Schwarz, 1978; Akaike, 1974; Rissanen, 1978; George and 
Foster, 2000; Zhang et al., 2010)). Furthermore, the increase in sparsity 
of the UoI models imply that the baseline fits suffered from an abun
dance of false positives. The similar predictive performance between the 
UoI and baseline fits could imply that false positives can have little 
impact on predictive performance in models of neural data, further 
emphasizing the need to consider multiple criteria in model selection. 
Alternatively, UoI fits may have suffered from false negatives, thereby 
lowering predictive performance, though previous experiments in syn
thetic data make this unlikely (Bouchard et al., 2017). 

We considered models of neural activity exclusively in terms of 
coupling, encoding, or decoding. However, past studies have built 
parametric models of neural activity by using other features or model 
structures. For example, the combination of coupling and encoding in a 
single model is a natural extension which has been examined extensively 
in previous work (Stevenson et al., 2012; Pillow et al., 2008; Vidne et al., 
2012; Truccolo et al., 2005; Okatan et al., 2005). Other features that are 
not constrained within coupling, encoding, or decoding — such as 
spike-time history or global fluctuations — are also important to 
incorporate (Truccolo et al., 2005; Okun et al., 2015; Paninski et al., 
2007). Additionally, latent variable models have been used to great 
success to capture, in particular, the dynamics of neural activity (Byron 
et al., 2009; Paninski et al., 2010; Macke et al., 2011). In this work, the 
stability principles used by UoI resulted in a significant difference in the 
model sparsity and estimated parameter distribution, which impacted 
interpretation. Future work should assess whether similar results can be 
achieved in these extended models, and if so, determine the neurosci
entific consequences. 

UoI is formulated in a frequentist context, which guided the baseline 
methods we chose as comparisons. This was done to have maximal 
utilization by neuroscientists, which predominantly utilize frequentist 
inference. However, a multitude of inference approaches, including 
Bayesian methods (Chen et al., 2010; Zhou et al., 2016; Huang and Tran, 
2018), have been introduced in recent years which all excel at parameter 
inference. This new class of inference approaches will fundamentally 
change the interpretation of parametric models on neural data, and 
therefore should preferentially be used in future studies to improve 
data-driven discovery. As these inference procedures continue to be 
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improved, additional assessments on neural data will be informative to 
better understand how neuroscientific interpretation further develops. 

We restricted our analysis to generalized linear models, because their 
structure lends itself well to interpretation, making them ubiquitous in 
neuroscience. However, the improvements we obtained by encouraging 
stability and sparsity in these models may extend to other classes of 
models. For example, dimensionality reduction methods have also 
played an important role in systems neuroscience (Cunningham and 
Byron, 2014). The UoI framework is naturally extendable to such 
methods, including column subset selection (Bouchard et al., 2017) and 
non-negative matrix factorization (Ubaru et al., 2017). Furthermore, 
recent work has found success in using artificial neural networks (ANNs) 
to model neural activity, which excel at predictive performance (Kell 
and McDermott, 2019). Since ANNs are highly parameterized, these 
models are not interpretable in the sense that their parameter values do 
not directly convey neuroscientific meaning. Instead, these models are 
often interpreted through the lens of learned representations or reca
pitulation of emergent properties of neural activity. Future work could 
assess whether the inference principles described in this work could 
have similar effects for ANNs modeling neural activity, especially given 
recent advancements in compressing such models (Abbasi-Asl and Yu, 
2017). 
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Appendix A Pseudocode for the Union of Intersections 

We provide pseudocode to the Union of Intersections framework. This pseudocode is generalized to all UoI algorithms discussed in the paper, with 
the objective L(β;Xk, yk) corresponding to the choice of algorithm. 

Algorithm 1. Union of Intersections inference in generalized linear models   

Input: Data X ∈ ℝn×p, y ∈ ℝn  

1: Regularization strengths 
{

λj
}q

j=1  

2: Number of resamples NS and NE  

3: Loss function L(β;X,y)
4: Model Selection 
5: for k = 1 to NS do  
6: Generate resample Xk, yk  

7: for j = 1 to q do  
8:  β̂

jk
⟵ Optimize L(β;Xk, yk) + λj|β|1 (ℓ1-penalized objective)  

9:  Sk
j ⟵{i} where β̂

jk
i ∕= 0  

10: end for 
11: end for 
12: for j = 1 to q do  
13: Sj⟵

⋂NS
k=1Sk

j ▹ Intersection  
14: end for 
15: Model Estimation 
16: for k = 1 to NE do  
17: Generate training 

(
Xk

T, yk
T
)

resample  
18: for j = 1 to q do  
19:  Xk

T,j⟵Xk
T with features Sj extracted.  

20:  β̂
jk

⟵ Optimize L(β;Xk
T,j ,yk

T)

21:  ℓjk⟵BIC(β̂
jk
,Xk

T,j ,yk
T)

22: end for 
23: β̂

k
⟵argmin

β̂
jk

ℓjk  

24: end for 
25: β̂

∗
= median

k

(
β̂

k)
▹ Union  

26: return β̂
∗
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Appendix B. Extended synthetic results for Poisson and logistic variants 

We conducted additional synthetic experiments evaluating the performance of UoI in the context of Poisson and logistic regression. As in the case 
of the linear model (detailed in Section 2.2), we generated data with p = 300 total parameters of which k = 100 were non-zero. The non-zero ground 
truth parameters were drawn from a parameter distribution characterized by exponentially increasing density as a function of parameter magnitude 
(Fig. 3b: gray histograms). We used N = 1200 samples generated according to the Poisson model and N = 2400 samples generated according to the 
logistic model (logistic regression typically requires more samples for convergence). We compared UoI against ℓ1-penalized Poisson regression, fit by 
glmnet (Friedman et al., 2010), and ℓ1-penalized logistic regression, fit by scikit-learn (Pedregosa et al., 2011). We did not conduct an analysis 
against a full battery of methods, as done in Section 2.2, because solvers beyond the ℓ1-penalty are not readily available in the Poisson and logistic 
contexts. 

We summarized our findings with similar metrics detailed in Section 2.2. Specifically, we quantified selection performance with the selection 
accuracy, bias with estimation error, variance with the estimation variability, predictive performance with the deviance and log-likelihood, and model 
parsimony with the Bayesian information criterion. Our results are shown in Fig. B.1, with boxplots capturing the distribution of metrics across 30 
synthetic datasets (in the case of estimation variability, the distribution across parameters). We found that UoI exhibits increased selection accuracy 
(Fig. B.1a, b) and decreased bias (Fig. B.1c,d). At the same time, UoI exhibits comparable variability, with most parameters seeing an improvement, 
but a longer tail exhibiting increased variance (Fig. B.1e, f). These improvements in model sparsity and bias translated to improved prediction 
performance, as quantified by the deviance for Poisson regression (Fig. B.1g: lower is better) and the log-likelihood for logistic regression (Fig. B.1h: 
higher is better). Lastly, UoI exhibited markedly improved model parsimony as quantified by the Bayesian information criterion (Fig. B.1i: lower is 
better). 

Fig. B.1. UoI exhibits improved selection, decreased bias, comparable variance, and superior model parsimony on Poisson and logistic variants. Top row 
depicts results for Poisson regression, while bottom row depicts results for logistic regression. Each column corresponds to a different metric, with red box plots 
denoting UoI performance and gray boxplots denoting baseline performance. Circular points denote median, with whiskers denoting the total spread of responses. a, 
b. Comparison of selection accuracies (higher is better). c, d. Comparison of estimation errors, quantifying bias (lower is better). e, f. Comparison of estimation 
variabilities (lower is better). g, h. Comparison of predictive performance. For Poisson models, this is quantified by deviance (g: lower is better). For logistic models, 
this is quantified by log-likelihood (h: higher is better). i, j. Comparison of model parsimonies, as quantified by Bayesian information criterion (lower is better). 
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Appendix C. Supplementary tables 

C.1 Functional coupling dataset summary and fitted model statistics 

Dataset summary (Table C.1a) provides details on the datasets used to fit functional coupling models, including the number of units and samples 
across brain region and recording session. The following tables provide statistics summarizing aspects of the fitted baseline and UoI models, including 
selection ratio (Table C.1b), predictive performance (Table C.1c), and Bayesian information criterion (Table C.1d). 

C.2 Encoding model dataset summary and fitted model statistics. 

Dataset summary (Table C.2a) provides details on the datasets used to fit encoding models, including the number of units and samples across 
dataset. The following tables provide statistics summarizing aspects of the fitted baseline and UoI models, including selection ratio (Table C.2b), 
predictive performance (Table C.2c), and Bayesian information criterion (Table C.2d). 

C.3 Decoding model dataset summary and fitted model statistics 

Dataset summary (Table C.3a) provides details on the datasets used to fit decoding models, including the number of units and samples across 
dataset. The following tables provide statistics summarizing aspects of the fitted baseline and UoI models, including selection ratio (Table C.3b), and 
predictive performance (Table C.3c). 

Table C.1b 
Selection ratio  

Brain region Baseline UoI Reduction factor p-value  d  

AC 0.30 ± 0.07  0.13 ± 0.03  2.24  5× 10− 23  1.74  

VC 1 0.59 ± 0.11  0.27 ± 0.07  2.21  2× 10− 19  2.26  

VC 2 0.66 ± 0.17  0.26 ± 0.11  2.56  2× 10− 16  1.87  

VC 3 0.59 ± 0.10  0.28 ± 0.07  2.13  2× 10− 20  2.57  

MC 1 0.43 ± 0.12  0.07 ± 0.04  5.85  3× 10− 24  2.49  

MC 2 0.46 ± 0.12  0.08 ± 0.04  5.50  3× 10− 25  2.37  

MC 3 0.46 ± 0.10  0.09 ± 0.04  5.15  1× 10− 25  2.58   

Table C.1a 
Dataset summary  

Brain region Number of units Number of samples 

AC 125 4200 
VC 1 106 2400 
VC 2 88 2400 
VC 3 112 2400 

MC 1 136 4089 
MC 2 146 4767 
MC 3 147 4400  

Table C.1c 
Predictive performances  

Brain region Baseline UoI p-value  d  

AC 0.98 ± 0.02  0.98 ± 0.02  5× 10− 4  0.005  

VC 1 203 ± 35  205 ± 36  3× 10− 16  0.05  

VC 2 166 ± 44  168 ± 43  3× 10− 12  0.03  

VC 3 213 ± 42  217 ± 41  2× 10− 18  0.05  

MC 1 232 ± 65  233 ± 65  1× 10− 23  0.03  

MC 2 263 ± 60  266 ± 59  1× 10− 23  0.03  

MC 3 248 ± 57  250 ± 58  2× 10− 25  0.03   
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Table C.2c  
Predictive performances  

Brain region Baseline UoI p-value  d  

Retina 0.028 ± 0.013  0.028 ± 0.013  0.004  0.05  
AC 0.042 ± 0.034  0.041 ± 0.033  2× 10− 19  0.05   

Table C.2d 
Bayesian information criterion  

Brain region Baseline UoI Median difference 

Retina − 1646606 ± 44936  − 1647261 ± 44857  654  
AC 4371 ± 2495  4351 ± 2493  19.4   

Table C.3b 
Selection ratio  

Brain region Baseline UoI Reduction factor 

GPe 0.722 ± 0.083  0.333 ± 0.028  2.167  
SNr 0.222 ± 0.167  0.056 ± 0.014  4   

Table C.3c  
Predictive performances.  

Brain region Baseline UoI 

GPe 0.676 ± 0.054  0.676 ± 0.031  
SNr 1.000 ± 0.014  1.000 ± 0.014   

Table C.3a  
Dataset summary  

Brain region Number of units Number of samples 

GPe 18 186 
SNr 36 186  

Table C.2b 
Selection ratio  

Brain region Baseline UoI Reduction factor p-value  d  

Retina 0.084 ± 0.020  0.017 ± 0.004  4.98  3× 10− 5  2.21  

AC 0.625 ± 0.116  0.250 ± 0.114  2.50  7× 10− 23  2.19   

Table C.2a  
Dataset summary  

Brain region Number of units Number of samples 

Retina 125 4200 
AC 23 89896  

Table C.1d 
Bayesian information criterion  

Brain region Baseline UoI Median difference 

AC − 6240 ± 1884  − 6491 ± 1859  170  
VC 1 − 15349 ± 20946  − 15516 ± 20970  149  
VC 2 − 2864 ± 11046  − 3007 ± 11087  131  
VC 3 − 35164 ± 34069  − 35309 ± 34066  161  
MC 1 481 ± 124  321 ± 59  162  
MC 2 542 ± 150  354 ± 75  186  
MC 3 564 ± 120  362 ± 67  190   
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Appendix D. Comparison of Poisson and linear coupling models for single-unit activity 

We used a Poisson distribution to model single-unit spike count activity in the M1 and V1 datasets. However, past work has modeled single-unit 
activity with a linear-Gaussian model, after applying variance-stabilizing square root transform to the spike count responses. The degree to which a 
linear model can capture the functional relationships identified by a Poisson model for spiking data is unclear. Thus, we sought to characterize this 
capability, and its dependence on the inference procedure. We modeled the neural activity after a square-root transform ̅̅̅̅ni

√ using a linear model 

̅̅̅̅
ni

√
= β0 +

∑M

j=1
βij

̅̅̅̅nj
√

+ ε. (D.1)  

We fit this model with lasso optimization by coordinate descent (baseline) and UoILasso. 
We compared the fitted selection profiles, i.e. the set S = {i|βi ∕= 0} between the linear and Poisson models. To do so, we used the hypergeometric 

distribution, which describes the probability that k objects with a particular feature are drawn from a population of size M that has K total objects with 
that feature, using m draws without replacement. To frame this in terms of selection, suppose the Poisson model has |SPoisson| = K non-zero parameters 
out of the M possible features. Then, the probability the linear model, which has |Slinear| = m non-zero parameters, would match the Poisson model on k 
such features is given by the hypergeometric distribution: 

Pr(k) =

(
K
k

)(
M − k
m − k

)

(
M
m

) . (D.2)  

Thus, the probability that the selection profile would overlap at most as well by chance as the linear model is given by poverlap = 1 − Pr(k < klinear). We 
compared the distribution of poverlap across coupling models, calculated for both baseline and UoI procedures (Fig. D.1, panel a). For the V1 data, the 
UoI linear models better reproduced the Poisson selection profiles, with 98% of the profiles fit by UoI satisfying poverlap < 0.001, compared to only 74% 
of the baseline selection profiles. In contrast, in the M1 data, both inference procedures fit linear models that closely matched the selection profiles of 
the Poisson models, with 99% of the selection profiles satisfying poverlap < 0.001. Therefore, improved inference results in more consistent selection 
across models, and furthermore this consistency depends on brain region. 

We constructed networks from the linear models as described in Methods, and calculated their in-degree and out-degree distributions. We 
compared the in-degree and out-degree distributions of the linear networks to the Poisson networks, finding a closer correspondence between the UoI 
models than for the baseline models in most cases (Fig. D.1, panel b). Specifically, the in-degrees of UoI models had a correlation of 0.742 (V1) and 
0.969 (M1) compared to 0.717 (V1) and 0.924 (M1) for the baseline procedures. Similarly, we obtained out-degree correlations of 0.806 (UoI) and 
0.531 (baseline) for V1 and 0.918 (UoI) and 0.924 (baseline) for M1. Lastly, we found that the UoI linear networks were more modular than the 
baseline linear networks. Interestingly, both were more modular than their Poisson counterparts (Fig. D.1, panel c). Taken together, these results 
imply that a more precise inference framework better preserves structure across model types. 

Fig. D.1. Improved inference ensures that the structure of fitted coupling networks persists across the type of underlying model. Linear and Poisson 
coupling models were fit to the datasets with single-unit recordings (V1 and M1) using baseline (gray) and UoI (red) procedures. Top row corresponds to results from 
networks fit to V1 recordings, while bottom row corresponds to networks fit to M1 recordings. (a) The (log) probability distribution of extracting a support (set of 
non-zero parameters) by the linear model that matches with the Poisson model support, according to a hypergeometric distribution. Vertical line denotes a p-value of 
0.001 (b) Comparison of the in-degree and out-degree distributions between the Poisson network (y-axis) and linear network (x-axis). Each point represents a single 
unit. Black line denotes identity. (c) Graph modularity of linear and Poisson networks. 
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Appendix E. Frequency response area analysis for tuned and non-tuned electrodes 

Fig. E.1 

References 

Abbasi-Asl, R., Yu, B., 2017. Structural compression of convolutional neural networks 
based on greedy filter pruning arXiv:1705.07356.  

Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. 
Automatic Control 19 (6), 716–723. 

Anumanchipalli, G.K., Chartier, J., Chang, E.F., 2019. Speech synthesis from neural 
decoding of spoken sentences. Nature 568 (7753), 493–498. 
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