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Coherence analysis of geophysical wakes in flow

past a three-dimensional hill

Jinyuan Liu1 and Sutanu Sarkar1,2

1Department of Mechanical and Aerospace Engineering, UC San Diego, La Jolla, CA 92093,
USA
2Scripps Institution of Oceanography, La Jolla, CA 92037, USA

E-mails: jinyuanliu@ucsd.edu, ssarkar@ucsd.edu

Abstract. Wakes generated by topographies are ubiquitous in nature. The formation and
evolution mechanism of wake-generated eddies is essential to understanding the effect of
topography on oceanic bottom flow. In this study, we analyze the temporally resolved numerical
database [1] of stratified wakes past an isolated three-dimensional hill, via proper orthogonal
decomposition (POD) of the vertical vorticity field. We study the dynamics of the near wake
(x/D < 3) and the far wake (x/D ≥ 3) separately, where x is the downstream distance from
the center of the hill. The aim is to understand how rotation influences the change of coherence
from the near to the far wake and also the coherence across heights.

1. Introduction and motivation
Eddies are found everywhere in the ocean and the atmosphere and their origins are diverse.
In this work we focus on eddies generated by a known source - an isolated seamount in deep
water. Figure 1 illustrates the physical setting. A conical hill with base diameter D and height
h = 0.3D on the bottom of the seafloor interacts with a steady current with velocity U∞ in the
x-direction. The background density is linearly stratified and the reference frame is rotating at
a frequency of Ωc = fc/2, where fc is the Coriolis frequency.

Figure 1: Flow configuration.

We use a temporally resolved LES database [1]. The flow is governed by the incompressible
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Navier-Stokes equations under the Boussinesq approximation:

∇ · u = 0 (1)

∂u

∂t
+∇ · (uu) + fcêz × (u− U∞êx) = − 1

ρ0
∇p∗ +∇ · τ − ρ∗g

ρ0
êz (2)

∂ρ

∂t
+∇ · (ρu) = ∇ · Jρ (3)

where the stress and the scalar flux are

τ = (ν + νsgs)(∇u+ u∇), Jρ = (κ+ κsgs)∇ρ, (4)

with ν being the kinematic viscosity and κ being the scalar (density) diffusivity. The sub-grid
scales (denoted by subscript ‘sgs’) are estimated with the WALE model [2]. Here u = (u, v, w) is
the velocity vector in (x, y, z) directions, p is pressure, and ρ is density. Unit vectors êx and êz are
in x and z directions, respectively. The pressure and density involved in the momentum equations
(2) are their deviations (p∗ and ρ∗) from the hydrostatic balance, where a vertical pressure
gradient balances the unperturbed background density field, and the geostrophic balance, where
a spanwise pressure gradient balances the Coriolis force due to the uniform freestream. The
equations are solved with a central finite-difference solver on a Cartesian grid and the object is
handled with an immersed boundary method [3, 4]. For more numerical details the readers are
referred to [5, 1].

Table 1 gives a summary of the simulation parameters. The flow is controlled by the following
non-dimensional numbers: the rotation Rossby number Ro = U∞/(fcD), where fc is the Coriolis
frequency; the stratification Froude number Fr = U∞/(Nh), whereN is the buoyancy frequency;
the Reynolds number Re = U∞D/ν. The buoyancy frequency is defined byN2 = −(g/ρ0)dρb/dz
where ρb is the background density and ρ0 is a constant reference density. We use negative
Coriolis frequency (fc < 0, i.e. in the Southern Hemisphere) that results in negative Rossby
numbers. The Froude number is kept at Fr = 0.15 representing moderately strong stratification,
so that most of the flow is around the obstacle. The Reynolds number is Re = U∞D/ν = 10 000
in the present simulation. Rotation strength is varied such that Ro = ∞,−0.75,−0.15,
representing dynamics of non-rotational, submesoscale, and mesoscale motions. An additional
induced parameter, the Burger number defined as Bu = (Ro/Fr)2 = (Nh/fcD)2, is an
important measure of the relative importance of rotation to stratification and will also be used
in this work.

Figure 2 presents the visualization of the vertical vorticity (ωz). It can be seen that stratified
hill wakes are very different from their unstratified counterpart, which was studied in [6]. Being
restricted by the potential energy barrier, the fluid below O(Frh) from the top of the hill will

Table 1: Parameters of the simulated cases. Each case is named according to their Burger
number. The number of snapshots is Nt = 2000, which covers more than 30 vortex shedding
periods in each case.

Case Bu = (Ro/Fr)2 Ro Fr Re Nt Color

BuInf ∞ ∞
0.15 10 000 2000

red
Bu25 25 -0.75 green
Bu1 1 -0.15 blue
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(a)

(b)
(c)

Figure 2: Flow visualizations of the vertical vorticity ωz: (a) BuInf, (b) Bu25, (c) Bu1. Each
subfigure shows ωz on a vertical plane (y = 0) and on a horizontal plane (z/h = 0.50). Note that
in (c), the magnitude of ωz (in convective units) is much greater than in the other two cases,
hence its colorbar range is different. The black dashed line in each vertical plane corresponds
to z/h = 0.50.

not have sufficient energy to flow over the hill but can only bypass it on the sides. As a result,
well-defined patterns of Kármán vortex shedding are found in horizontal planes. As the strength
of rotation increases (Burger number decreases), the vertical structures of vorticity change from
slanted ‘tongues’ to upright ‘cones’.

It can also be seen that the near wake (herein x/D < 3) and the far wake (x/D > 3)
exhibit different behavior. Stronger turbulence is generated near the body whereas the far wake
contains predominantly coherent vortex shedding (VS) motion that persist to the end of the
computational domain. It was also found that the non-hydrostatic pressure (deviation from the
hydrostatic balance) is greater in the near wake and negligible in the far wake (not shown).
This motivates us to separate their physics and modelling. It was found in all three cases in
table 1 that there are global VS modes and a planar VS frequency that doesn’t depend on
vertical location [1]. This suggests a vertical correlation scale much greater than the vertical
scale U∞/N = 0.15h restricted by stratification.

In this work, we perform POD on the near and far wake of [1] separately, analyze the different
limit cycles corresponding to the near and the far wake, and unveil the influence of rotation on
the system. The phase portraits of POD coefficient and the correlations between planes at
different heights are also studied to shed light on possible reduced-order modelling strategies.
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2. Proper orthogonal decomposition
The POD problem [7, 8, 9] is to solve the following eigenvalue problem

Rϕi(x) =

∫
A
R(x,x′)W (x′)ϕi(x

′) dx′ = λiϕi(x), (5)

with {ϕi}∞i=1 as the basis functions which are mutually orthogonal over the domain A. Here
R(x,x′) = ⟨q(x, t)q(x′, t)⟩ is the spatial correlation tensor of a zero-mean generic signal q(x, t)
and W (x) is a symmetric weight matrix that makes the following inner product,

(q1, q2)W =

∫
A
qT2 (x)W (x)q1(x) dx, (6)

suitable for defining an energy norm (∥q∥W = (q, q)1/2). Typically, W contains the constants
of numerical quadrature in a discrete system.

In this work, the wake is divided into two separate regions: the near wake (A1, x/D < 3),
and the far wake (A2, x/D ≥ 3). The domain decomposition can be seen in figure 4. The POD
problem is solved on A = A1 and A = A2 separately. The simulation data is arranged into

Q = [q1, q2, ...., qNt
] ∈ RNd×Nt (7)

where each qi ∈ RNd is one snapshot, Nd is the degree of freedom of the data, and Nt = 2000
is the number of snapshots. The dimension of the discrete eigenvalue problem is then
min (Nd, Nt) = Nt in the present database and hence the POD is performed in the temporal
domain via the method of snapshot [10].

The discrete estimate of the correlation tensor is

R = ⟨qqT⟩ = 1

Nt − 1
QQ

T =
1

Nt − 1

Nt∑
i=1

qiq
T
i (8)

where the factor Nt − 1 is the Bessel’s correction such that the expectation of the sampled
(co)variance converges to the (co)variance of the random signals. The discrete eigenvalue
problem becomes

RWΦ = ΦΛ, (9)

or, equivalently, in the formulation of Sirovich’s method of snapshots [10],

1

Nt − 1
Q

T
WQΨ = ΨΛ, (10)

where the POD eigenmodes are then recovered as Φ̃ = QΨΛ−1/2 such that the eigenfunction
expansion is R = Φ̃ΛΦ̃T with the orthogonality condition for the eigenmodes being Φ̃TW Φ̃ = I .
For convenience, the tilde will be dropped from now on. The POD expansion is then

q(x, t) =

Nt∑
i=1

ai(t)ϕi(x), (11)

where the time-dependent amplitude ai(t) =
√
λiψi(t) is the rescaled eigenfunctions in the

temporal domain and (11) can be regarded as either an eigen-expansion in space or in time.
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Figure 3: POD eigenspectra at z/h = 0.25, for BuInf (red), Bu25 (green), and Bu1 (blue): (a)
the near wake; (b) the far wake. In each case and plane, the eigenvalues are normalized by the
sum of all eigenvalues. The first thousand eigenvalues are shown. The first two modes account
for greater than 30% of the total vertical enstrophy in all cases.

3. Results
3.1. POD eigenspectra and eigenmodes
In this work, POD is applied to the vertical component of vorticity (ωz) in selected horizontal
planes. Since the mean is removed before POD, the variance of the signal that is represented
by POD is interpreted as the area integral of the fluctuation part of the vertical enstrophy
(
∫
A ω

′2
z (x) dx). Figure 3 shows the POD eigenspectra normalized by total vertical fluctuation

enstrophy in near and far wakes, respectively. The spectra at different Burger numbers are quite
similar, despite the increasing enstrophy in smaller scales (higher POD rank) in the far wake,
as rotation strengthens (Bu decreases). POD eigenvalues are found to occur as pairs in the far
wake but not in the near wake, presumably because the far wake is advection dominated and
less dissipative than the near wake, and hence can be better described by travelling-wave like
modes (e.g., in figure 4) that imply the degeneracy of eigenvalues. In a laminar cylinder wake,
POD eigenvalues occur in pairs and the corresponding eigenmodes differ by a phase shift of 1/4
period [11, 12] in order to accommodate a travelling-wave like structure [13, 14]. However, this
is not quite the case in high-Reynolds number wakes, where the second POD eigenvalue is found
to be smaller than the first one [15, 16].

An example of the symmetric leading mode in case BuInf is shown in figure 4. In case BuInf,
the leading modes corresponding to (a1, a2) are symmetric about y = 0 (as shown in figure 4)
and leading modes corresponding to (a3, a4) are antisymmetric (not shown). In cases Bu25 and
Bu1, the strict symmetry is broken due to the rotation but can still be found visually [1].

For all three cases and in the plane z/h = 0.25 as in figure 3, the first four POD modes
captures 31%-36% of the variance of ω′

z, and the first ten POD modes captures 38%-43%, in the
near wake. The far wake shows stronger low-rank behavior that the first four modes contains
42%-64% of the variance, while the first ten contains 53%-78%. The significantly increased
low-rank behavior encourages the reduced-order modelling (ROM) of the far wake.

Although the present POD does not involve all velocity components, the vorticity modes have
similar shapes and wavenumbers that are shared with the velocity modes (see [17]) and are more
suitable for the present problem of a well-defined vortex wake. With respect to convergence of
the numerical results, the first 10 POD eigenvalues are well converged using Nt = 400, and the
first 100 eigenvalues are converged using Nt = 4000. To balance efficiency and accuracy, we only
analyze the first 10 POD modes and the choice of Nt = 2000 is sufficient.
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Figure 4: Leading POD modes of ωz in the near (A1) and the far (A2) wakes pieced together,
for plane at z/h = 0.25 in case BuInf. Note that the POD problem is solved in A1 and A2
separately, and the near wake mode is multiplied by a constant for better visual comparison.

3.2. Phase-space evolution of POD coefficients
The dynamics of wakes past bluff bodies of various cross-sections can be explained by a fixed
point (mean flow) and a limit cycle around it (periodic shedding), after the first Hopf bifurcation
[12, 18]. The limit cycle can be characterized by the periodic orbits of the first two coefficients
of proper orthogonal decomposition (POD) modes, in wakes at Reynolds number ranging from
laminar to turbulent regimes [15, 11, 12, 16, 17]. Following the framework proposed by [12], it
was found in [17] that the coherent motions in the turbulent wake of a wall mounted cylinder
can be well approximated by the subspace spanned by the first four POD modes. Thus, reduced
order models (ROMs) of the present near and far wake are attractive. First, by comparing
the leading modes measured in the far wake, it becomes possible to infer the information (such
as the Rossby number which depends on the dimension of the wake generator), in an inverse
problem. On the other hand, in simulations of far wakes, the time step is restricted by the fine
grid near the body for a turbulence-resolving simulation and, since a substantial size of domain
(O(100D)) is needed to reach the far wake, the computational cost becomes quite large [19, 20].
The combination of ROM (such as a Galerkin system) and broadband turbulence as a substitute
inflow data generator that replaces the time-resolved near wake is appealing.

In this section, we consider the framework of Galerkin projection and it’s applicability in
the present flow. The time-resolved snapshots are projected on the POD modes to obtain the
expansion coefficient in (11):

ai(t) =
(q(x, t),ϕi(x))W
(ϕi(x),ϕi(x))W

. (12)

From eqn. (11) it can also be shown that

⟨aiaj⟩ = δijλi, (13)

i.e., the expected value of ⟨a2i ⟩ is λi. Assume the evolution of ai(t) takes the form of

ai(t) =
√
2λi cos(t), (14)

where the factor
√
2 is the ratio of the maximum to the variance of a sinusoidal signal, such that

the expectation of the maximum of ai(t)/
√
2λi is unity. This normalization is used for figure 5.

The trajectories of the leading pairs of POD coefficients (a1, a2) and (a3, a4) are plotted in
figure 5, which are reminiscent of Lissajous curves. The trajectories of (a1, ai) where ai (i > 2)
is any higher-rank POD coefficient are Lissajous curves with different frequency and phase
relations, similar to [11, 17] and are not shown. The first few pairs (a2i−1, a2i) are found to be
quasi-periodic in laminar and turbulent bluff body wakes [15, 11, 16, 17]. Even though each
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5: Trajectories of the pairs of POD coefficient (a1, a2) and (a3, a4). Left: BuInf; middle:
Bu25, Right: Bu1. First two rows: near wake; last two rows: far wake. Plane locates at
z/h = 0.25 and color denotes time (in convective units) that spans more than 30 VS cycles. The
signs of a2 and a4 are chosen to make all the trajectories counter-clockwise. A red unit circle is
also plotted as a reference.
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pair of POD modes is statistically uncorrelated by construction, the members of the pair are
not independent.

In figure 5, most of the trajectories are orbital while some of them are space-filling. In general,
the near wake (figure 5, top two rows) is less ordered than the far wake (figure 5, bottom two
rows). As the coherent VS structures emerge and dominate, the phase trajectories of both pairs
of (a1, a2) and (a3, a4) approach circular orbits. Comparatively, the phase space of (a3, a4) is
more filled than that of (a1, a2) for all cases, corresponding to a greater extent of variance in
higher-rank modes. For the pair (a3, a4), although the orbits are closer to being circular going
from the near to the far wake, there is still a large amplitude variation a3/

√
2λ3, a4/

√
λ4 ranging

from 0 to about 1.5 in figure 5.
Given the nearly circular orbits of (a1, a2) in figure 5, and the fact that leading POD modes

occur in pairs, we define the amplitude and phase of the first pair of POD modes that represent
the VS motion as

θ = arctan(
a2/

√
2λ2

a1/
√
2λ1

) (15)

r =

√
(
a1√
2λ1

)2 + (
a2√
2λ2

)2, (16)

such that (a1/
√
2λ1, a2/

√
2λ2) = reiθ. This POD phase is found to agree well with the phase

identified from the pressure signals [21]. Both θ and r will be analyzed in detail in a later section.

3.3. Inter-plane correlation between POD coefficients
With the aim of understanding the inter-plane connection that could be helpful in the modelling
such flows, we study the correlations between POD coefficients and amplitudes. As seen in the
previous section, the first two POD coefficients (a1 and a2) are not independent, and represent
the same dynamics of VS motion. Hence, we only analyze the inter-plane correlation of a1 in
this section. The correlation of a1 at two different heights is defined as

C1(∆t; z1, z2) =
⟨a1(t; z1)a1(t+∆t; z2)⟩

⟨a1(t; z1)2⟩1/2⟨a1(t; z2)2⟩1/2
, (17)

where z1, z2 are the distance from the bottom wall. Since C1(∆t) ̸= C1(−∆t) in general, we
require the order of z1 < z2. Moreover, the value of C1(0; z1, z2) can be used to evaluate the
phase lag between two planes, assuming that both are evolving at the same frequency. Assume
two harmonic signals in [0, 2π]

q1(t) = sin t, q2(t) = sin(t+ ψ) (18)

share the same frequency but only differ by a phase shift. Their correlation at ∆t = 0 is

Cq =
⟨q1q2⟩

⟨q21⟩1/2⟨q22⟩1/2
=

⟨12 cosψ − 1
2 cos(2t+ ψ)⟩
1√
2

1√
2

= cosψ, (19)

which only depend on the phase difference (ψ) between these two signals. Here ⟨·⟩ is interpreted
as 1/(2π)

∫ 2π
0 dt. If q1 and q2 are in phase (ψ = 0) then Cq(0) = 1 is true.

Figure 6 compares the correlation (17) between the near and the far wake. The pairs of planes
are taken from z/h = 0.12, 0.25, 0.50, 0.75. The correlation coefficients are harmonic, with the
period being close to the VS period (TVS ≈ 4D/U∞), but the maximum can vary. A harmonic
correlation function with a maximum close to unity indicates that the POD modes of different
planes oscillate at the same frequency but only with a phase shift. This is the case in figure 6.
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Figure 6: POD correlation coefficients C1(∆t; z1, z2) of the first mode at two different planes.
(a,c,e) show the near wake (A1) and (b,d,f) show the far wake (A2). (a,b) BuInf; (c,d)
Bu25; (e,f) Bu1. Colors from dark to light indicate pairs of planes at (z1/h, z2/h) =
(0.12, 0.25), (0.12, 0.50), (0.12, 0.75).

For case BuInf, both the correlations in the near and the far wake achieve the maximum close
to unity, indicating that a constant VS frequency is maintained both in the near and the far
wake but the phase lag between different planes has change a bit.

The correlations in case Bu1 are similar to BuInf in the near wake, both in terms of phase
lag and maximum. However, the far wake in case Bu1 shows exactly the same phase in the four
planes examined, as implied by C1(0; z1, z2) = 1 and according to (19). This is in agreement
with the vertically aligned vortex ‘columns’ shown in figure 2(c) where the VS in each height are
in phase. The simpler vertical structures in the strongly rotating case Bu1 implies the possibility
of neglecting the inter-plane phase difference of VS when modelling is considered.

Contrary to BuInf and Bu1, the inter-plane correlation in case Bu25 is larger in the far wake
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than in the near wake, except for the farthest pair z/h = (0.12, 0.75). This increased degree of
order is consistent with the phase portraits of (a1, a2) and (a3, a4) (middle column of figure 5)
which are more regular in the far wake. Additionally, as shown in figure 6(d), the first POD
mode at z/h = 0.75 in case Bu25 is hardly correlated to that at z/h = 0.12. This doesn’t
indicate a complete loss of vertical coherence at z/h = 0.75 but is a result of mixed frequencies
in POD modes. A spectral POD analysis which separates structures that oscillate at different
frequencies was performed in [1] and the dominant mode in that plane is still the VS mode at the
VS frequency, and the three-dimensional coherent VS structures are found to extend vertically
beyond z/h = 0.75. In all, the difference observed in Bu25 implies a non-monotonic dependence
of wake coherence on rotation, which needs to be accounted for in any modeling strategies.

From figure 6, it can be inferred that the correlation coefficients can generally achieve a value
of nearly unity for a certain time lag ∆t between two planes separated at z1/h = 0.12 and
z2/h = 0.75, suggesting that the flow remains coherent in this range. Note that the uppermost
and lowermost planes (z/h = 0.12 and z/h = 0.75) are chosen to be the rough boundaries of
the core of the vortex wake - neither too close to the top of the hill to be influenced by internal
gravity waves nor in the bottom boundary layer where the wake is disturbed. This gives some
hope that the core of the wake - isolated from the obstacle as well as the bottom wall - can be
described with a ROM.

In all cases, the maximum location of C1(∆t) = 1 nearest to ∆t = 0 tend to be negative in
the near wake. Combining with (17) and the fact that z1 < z2, it implies that the upper planes
lead in the phase, consistent with figure 2 and the global modes in [1]. The phase of each plane
will be further analyzed in the next section.

3.4. Analysis of the phase and the amplitude of the VS mode
In order to model these wakes by assuming periodic base flow in the form of periodic VS
motions in each plane with a phase shift between planes, one needs to know whether constant
VS frequency and phase lag are maintained throughout the evolution. Also, the variability of
the amplitude r of the periodic leading mode a1ϕ1 + a2ϕ2 is important to modelling. Besides,
as shown in figure 5, the variation of the amplitude of the leading modes during their evolution
is not negligible. The correlation between amplitudes at two offset planes would be of interest
as it gives an idea as to how much the knowledge in one plane can be used to infer another and
whether this system can be further reduced. In this section, the phase θ and amplitude r of the
orbital motion of (a1, a2), defined in (15), will be analyzed.

Figure 7(a) shows the phase angle of the leading pair defined in (15) in the far wake as a
continuous function of time. The angle is allowed to exceed 2π as more cycles elapse. The slopes
give an estimate of the averaged VS Strouhal number StVS ≈ 0.26 in all three cases, and the
VS frequency is quite constant during the evolution, for all cases (excluding z/h = 0.75 in Bu25
that will be discussed below).

For case Bu25 (figure 7c), the phase angle in plane z/h = 0.75 varies significantly from others,
and leads to a frequency almost twice of the shedding frequency. This is due to the fact that in
this case the f -kx relation of the POD modes is not linear, or in other words, there are mixed
frequencies. Here f and kx are the dominant frequency and streamwise wavenumber of a POD
mode, respectively. In cylinder wakes [11, 12] or the present hill wake [1] the relation between
f and kx is quite linear - a pair of POD modes will have a single characteristic streamwise
wavenumber and a single frequency of associated coefficients. For example, the first pair has a
wavelength kx = 2π/λx (λx is the average separation between same-sign vortices) and evolves at
fVS, and the second pair has a wavelength 2kx and evolves at 2fVS, and so forth. This is found
to be true in the present wake (except for z/h = 0.75, case Bu25) for at least the best-resolved
first 6 POD modes. This linear relation results in the same spatial modes if the spectral POD
(SPOD) is carried out at the first 3 frequencies - fVS, 2fVS, 3fVS. In case Bu25, where the first
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Figure 7: (a,c,e) The POD phase angle θ as a function of time, in the far wake. The phases are
shifted to be continuous by adding integer multiples of the VS period (VSP). (b,d,f) Coherence
map in the near wake and in the far wake. Cases Buinf (a,b), Bu25 (c,d), and Bu1 (e,f). Color
represents correlation coefficient Cr(∆tmax; z1, z2) between two planes, where z1 < z2 and ∆tmax

is the optimal time lag between two planes that maximizes the correlation coefficient. The
elements below the diagonal line are for the near wake, while those above are for the far wake.
Elements on the diagonal line representing self-correlation which are expected to be unity are
removed for clarity. Numbers from 1 to 4 represent planes at z/h = 0.12, 0.25, 0.50, 0.75.
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4 POD modes all have the same wavelength (not shown) and similar shapes with a tendency
to symmetry about y = 0 (not shown), hence the second harmonic (2fVS) is aliased to the
projection coefficient of the first pair of POD modes. The preceding argument explains the
anomalous slope in figure 7(c) and the low amplitude of the correlation function in figure 6 in
the z/h = 0.75 plane. A SPOD analysis in [1] which is advantageous over POD in this special
situation ascertains that the dominant frequency of this plane is still the same as other planes
(fVS).

The correlations between the amplitude of the first pair POD modes (defined in (17)) at two
different planes are compiled into correlation maps in figure 7(b,d,f). A unit amplitude of r is
regarded as a baseline of the model periodic flow (a1, a2) = reiθ and is subtracted. We denote
the deviation of r from unity as r′ = r−1 and similar to (17), the correlation between the values
of r′ in two different planes is denoted as Cr(∆tmax; z1, z2). The optimal time lag ∆tmax that
maximizes Cr(∆t; z1, z2) differs among cases. To take advantage of the symmetry with respect
to the commutation of z1 and z2, Cr in the near wake and the far wake are plotted in the lower
and upper triangles of the matrices in figure 7, respectively, for better comparison. The matrices
are colored according to the magnitudes of correlation coefficients. Here we use 1 to 4 to refer
to planes from bottom to top.

In case BuInf, it can be seen that planes 1 and 2 have the strongest correlation in the near
wake, while this correlation is strengthened in the far wake, accompanied by the increased
correlation between planes 1, 3 and 2, 3. This also implies an emergence of order during the
evolution. No matter in the near or in the far wake, the topmost plane 4 at z/h = 0.75 is not
well correlated with others. In case Bu25, there is only one strong correlation in the near and
in the far wake, respectively. And all planes are mutually less correlated for Bu25 compared to
the other two cases. In case Bu1, there is only one pair of planes that have a correlation greater
than 0.6 in the near wake. However, when the flow enters the far wake, the magnitudes show
that all planes become correlated mutually, suggesting the best vertical coherence in this case
and significant simplification in its modelling.

4. Summary and conclusions
Geophysical wakes visually exhibit coherent eddies in their horizontal motion (coherent vertical
vorticity ωz) as is well known from satellite and other images of cloud cover and ocean color. Less
known is the systematic influence of density stratification and rotation on the dynamics of these
wake eddies. Thus motivated, we conduct POD analysis of a time-resolved wake dataset. The
specific problem is a steady current past a conical obstacle - a hill or seamount - with 30◦ slope
and Re = U∞D/ν = 10 000. Unstratified flow past a conical obstacle does not exhibit coherent
ωz eddies. The stratification, which has to be sufficiently large for flow to be primarily around the
obstacle than over it, is chosen so that the height-based Froude number is Fr = U∞/Nh = 0.15.
System rotation is systematically increased from the non-rotating case to values corresponding
to Rossby number Ro = U∞/fD = −0.75 and Ro = −0.15. The negative value of Ro follows
from the chosen Southern Hemisphere location with negative (clockwise) rotation and Coriolis
frequency (fc). Associated with the change of rotation rate at fixed stratification, the Burger
number Bu = (Ro/Fr)2 (a measure of the relative strength of stratification to rotation) takes
the values of ∞ (case BuInf), 25 (case Bu25) and 1 (case Bu1) corresponding to Ro = ∞, −0.75
and −0.15, respectively.

POD is the tool employed here to diagnose coherent dynamics in the simulated wakes with
a focus on the effect of system rotation. POD is conducted on the vertical vorticity at selected
horizontal planes (z/h = 0.12, 0.25. 0.5 and 0.75) chosen to encompass the wake core, away
from the bottom boundary layer and also from the upper region with internal gravity waves.
The leading members of the set of POD coefficients {ai(t)} are investigated and their cross-
correlation between planes at different elevations is computed to reveal inter-plane coherence.
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The near wake (x/D < 3) has turbulence and also interacts with internal waves. Therefore, the
near and far wakes are analyzed separately.

Vortex shedding at a specific frequency and advection of the vortices by a constant speed
would lead to a limit cycle in the trajectory of a2(t) plotted against a1(t). The expectation
that an increase of rotation rate (decreasing |Ro| and decreasing Bu) would lead to a systematic
increase of coherence as measured by POD is not borne out. The overarching conclusion of the
POD analysis is that the dependence is more complex as summarized and discussed below.

For the near wake, trajectories in a1(t), a2(t) coordinates show that there is a decrease in
coherence relative to the baseline non-rotating case when |Ro| decreases to 0.75 (case Bu25)
followed by an increase when |Ro| decreases to 0.15 (case Bu1). In particular, the trajectories in
case Bu25 (see figure 5b) are space-filling rather than repeating on an orbital path. Since
Ro = −0.75 is in the submesoscale regime, the newly-formed vortices can be unstable to
submesoscale instabilities that are known to occur at Ro = O(1) and cause deviations from
a defined orbit. For the far wake, it is the cases Bu = 25, 1 with rotation that display more
ordered trajectories while the non-rotating case (BuInf) show more variance.

The inter-plane cross-correlation coefficient C1(∆t; z1, z2) is also computed to diagnose
correlation across planes at different elevations. The characteristic vertical scale is U/N which,
when nondimensionalized by h becomes Fr = U∞/Nh and takes the value of 0.15 in all cases.
The correlation between the VS modes in different horizontal planes can stay correlated with a
vertical separation several times greater than the stratification length scale for overturn motions
(U/N), as can be seen in figure 6. The vertical coherence and temporal periodicity of vortex
motions encourages the ROM of such wakes. The simplest model of the leading POD coefficients
that is consistent with vortex shedding is a limit cycle with frequency that is constant across
z1 and z2. Such a model would lead to C1(∆t; z1, z2) taking the form of a harmonic function
with unity amplitude. Indeed, the non-rotating, strongly-stratified case BuInf and the strongly-
rotating, strongly-stratified case Bu1 do conform to the simple model in both the near and
the far wake. It is intermediately strong rotation that breaks this model. At Ro = −0.75
(Bu25), the behavior is that of a harmonic function but with amplitude reduced from 1 to about
0.6 in the near wake. The amplitude recovers to near unity in the far wake except for the
(z1 = 0.12, z2 = 0.75) pair which includes planes at the upper and lower edges of the wake core.

A correlation map (figure 7, right column) summarizes inter-plane correlation. It is evident
that as the flow progresses from the near to the far wake there is a strong increase in mutual
correlation, i.e., a significant increase in order. We conclude that ROM could provide a
possible surrogate for the coherent part of wake dynamics and also as part of the inflow
generation procedure for more complex problems, e.g., the interaction of wake vortices with
downstream features such as broad-band roughness, other isolated topographic elements, a
different stratification, etc. A caveat is that, at the large Re of geophysical flows, additional
modeling would be needed for the incoherent part and its potential feedback to the low-order
model. Furthermore, it is quite possible that, at even stronger stratification and values of Fr
less than 0.15, the inter-plane coherence of wake eddies would be disrupted [22].
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