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Abstract

Methodology development in medical and genomics data

by

Zoe Vernon

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Haiyan Huang, Co-chair

Professor Peter Bickel, Co-chair

Data that quantify various aspects of medicine and biology are constantly improving and
changing. As new techniques become available, opportunities arise to improve our under-
standing of diseases and other biological properties. With these ever changing data modalities
new statistical techniques are required to do proper analysis. In this thesis we analyze, and
develop new methods when necessary, for three types of biological data, bulk and single cell
RNA-sequencing as well as magnetic resonance imaging (MRI).

First, we develop a statistic for analyzing high-throughput RNA-sequencing data in the
context of drug discovery. Changes in gene expression between disease and normal tissues
can be used to understand the genomic signature of a disease. When those diseased cells
are exposed to a large number of drugs and other perturbations, we can systematically
search for the perturbations that reverse the expression of the genes which are altered in the
disease. In Chapter 2, we present a new method for quantifying this relationship between
disease and drug that outperforms existing methods in simulation, decreases computation
time, and is comparable in real data. Additionally, we show an improved ability to quantify
the involvement of individual genes in effective drugs. An accompanying software package
makes this method easily applicable to new data.

In the second study we extend an existing semi-supervised learning method called Gene-
Fishing for application to single cell RNA-sequencing data (scRNA-seq). Single cell data
has unique properties that make its analysis different from the bulk data used in Chapter 2.
While direct application of GeneFishing was not always possible in scRNA-seq, due to dissim-
ilar sources of variation and a marked increase in technical noise, the provided modifications
allowed for the analysis to be possible. In addition to using GeneFishing as an effective
gene prioritization method in single cell data, we show that it can be used as a way to un-
derstand how to measure gene-gene co-expression and as a context specific feature selection
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method for downstream analyses. Again, we present the accompanying software package,
scGeneFishing, for performing GeneFishing in a variety of datasets, including scRNA-seq.

Finally in Chapter 4 of this dissertation we analyze a different type of medical data, brain
images. We use MRI scans of patients with primary progressive multiple sclerosis to study
the association of regional brain volume at baseline with disease progression. We find that
statistics summarizing volume in pre-defined regions of interest (ROIs) are not more predic-
tive of progression than using traditional clinical and MRI variables. However, by deriving
data-driven ROIs through voxel-level clustering we are able to achieve better predictive per-
formance.
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Chapter 1

Introduction

There is a long-standing symbiotic relationship between biological data and statistics. The
statistical techniques that are created for the analysis of biological data allow researchers
to solidify and expand our knowledge of living organisms. Additionally, many ideas and
technique designed originally for biological data are now used in analysis in other fields.
Until recently most data describing biology were relatively small, however with modern
technologies this is no longer true. Methods for collecting medical and genomic data are
rapidly changing and improving. As new data sources become available and increase in
size the requisite for improved methodology to do sound statistical analysis in biology is
expanding as well. There is often a need for modifications to existing analysis techniques
or the development of new methods altogether, to analyze the increasingly high-dimensional
data.

One class of data that has been revolutionary to the field of computational biology,
both for methodology development and biological knowledge, is next generation sequencing
(NGS). With next generation sequencing it is now possible, and cost effective, to analyze
molecular features such as the transcriptome and proteome. There are a wide variety of se-
quencing platforms and applications, including data types such as chromatin immunoprecip-
itation sequencing (ChIP-seq), which quantifies DNA binding and ATAC-seq that measures
regions of open chromatin along DNA. These data, and data from other NGS technologies,
make it possible develop models of regulatory mechanisms with neural networks [115] or
determine the epigenetic marks associated with tumor reoccurence in prostate cancer [86].
More details, data types, and applications are included in these reviews [90, 98, 80].

Although, not as recently developed as high throughput sequencing technologies, mag-
netic resonance imaging (MRI) is another data modality that has important applications
in biology and medicine, primarily in disease diagnosis and staging. With MRI scans it is
possible to view internal organs, such as the brain, without invasive procedures. Similar to
sequencing technology, the applications of MRIs continue to expand with new capabilities
such as function MRIs, which detect brain activity through blood flow.

It is in this context that this thesis arises. The constantly changing data modalities that
characterize the inner workings of cells and organs necessitate careful and computationally
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efficient analyses. These methods must account for the structure and unique aspects of
the data that is being analyzed. Methods that are good for one type of data may provide
misleading or undesirable results on others. With that in mind we present three studies that
use data from either next generation sequencing or MR imaging data to learn novel biology.

The remainder of the introduction contains additional context and motivation for the
individual chapters in this thesis.

Systematic drug discovery with bulk RNA-sequencing data

One application of the aforementioned next generation sequencing is bulk RNA-sequencing
(RNA-seq), which measures the average expression of genes in a sample of cells. Bulk
RNA-seq has a broad set of applications, including, characterizing diseases by comparing
expression between diseased and healthy tissues. Differential expression analyses that search
for genes with significantly higher, or lower, expression in the disease allow researchers to
understand what genomic changes are driving disease.

In this chapter we use bulk RNA-seq data to systematically sort through thousands of
potential therapeutics for a disease based on the genomic signature of the disease and the
drug. We compare the disease differential expression to the differential expression induced
by the drug, when comparing samples exposed to and not exposed to the drug, and look for
the therapies that alter the expression of disease associated genes. Specifically, the drugs
with potential to be viable treatments reverse the expression changes that are seen when
comparing disease and healthy tissue.

This framework has successfully been used for drug discovery previously using methods
such as the Connectivity Map [52] and sRGES [23]. However, both these techniques are
computationally expensive and have theoretical inconsistencies that we aim to address. In
Chapter 2 we present a new statistic for computing the described negative dependency
that improves computation time while maintaining power in both simulation and real data
analysis. We also present an accompanying R package, LoCor, that allows researchers to
perform the analysis with their data.

Understanding relationships among genes in scRNA-sequencing
data

The bulk RNA-sequencing data, like what is used in Chapter 2, has led to many impor-
tant discoveries, but because expression is averaged over a sample it cannot be used to
study cellular heterogeneity. In the last decade new technology that sequences RNA, and
other molecular features, at the single cell level has exploded in popularity [103, 44]. This
data measures the quantity of molecules in individual cells and thus allows researchers to
understand dynamics that were otherwise impossible when looking at average expression.
For example, this data are used to investigate cellular differentiation as well as intratumor
heterogeneity in cancer [14].
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In this chapter, we focus on single cell RNA-sequencing (scRNA-seq) data, which quan-
tifies the expression of genes at the cellular level. As is the case with most single cell data,
scRNA-seq has unique properties that make analysis difficult. The most challenging aspect
of this data are the high levels of noise and sparsity. Additionally, the sources of variation
within a sample of cells differs from that in bulk data. Due to the intricacies of single cell data
there has been a wave of computational tools specially intended for analysis of scRNA-seq.

Many of these methods are for cell level analyses, such as clustering and labeling cell
types and pseudo-time ordering. However, there is comparatively less work in developing
gene networks from single cell data. In Chapter 3 we aim to further develop our understand-
ing of measuring gene-gene similarity in scRNA-seq while modifying a bulk gene network
technique, called GeneFishing, to work well in this data. The extensions to GeneFishing
allow us to rank similarity metrics performance in a scRNA-seq dataset. Finally, we show
how GeneFishing can be used as a context specific feature selection method for improved
downstream analyses. In addition, to these interesting discoveries in scRNA-seq we provide
an R package, scGeneFishing, that will allow users to perform GeneFishing on a variety of
data. The original GeneFishing software is contained in an R script [41], as well as a python
package [54]. scGeneFishing increases the usability of the existing GeneFishing software
and adds additional functionality for use in scRNA-seq.

Using MRI scans to predict progression in multiple sclerosis

In the final chapter of this dissertation we transition from sequencing data to analyze data
derived from MR imaging. Imaging data is high dimensional, and similar to single cell data,
often requires well thought out pre-processing steps to be used in downstream analyses.
One such processing technique is called deformation based morphometry (DBM) [10]. Using
DBM, MRI scans are mapped to a common reference image and the amount that each voxel
must be shrunk or expanded to match the reference is recorded.

This technique produces data on a common scale, allowing the comparison of regional
volume across different time points and individuals. This regional volumetric data it opens
the possibility to understand how the spatial distribution of atrophy is associated with
progression of neurodegenerative diseases.

In the final chapter of this thesis, Chapter 4, we analyze DBM data from a mulitple
sclerosis (MS) clinical trial to predict disease progression in individuals with relapsing re-
mitting MS. RRMS is a disease course where patients experience onsets of new neurological
symptoms followed by periods of relief.

Over many years the disability accumulates, however the volatility of symptoms and long
term nature of progression makes it difficult to prognosticate advancement of the disease. In
this chapter, we cluster the voxels of the DBM images to create data-driven regions of interest
(ROIs). We find that these regions were anatomically meaningful and more predictive of
progression than using predefined atlas based ROIs.
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Chapter 2

Local rank-pattern based reverse
correlation: a new statistic for
leveraging genomic data in drug
discovery

Co-authored with Yuting Ye

2.1 Introduction

Traditional drug discovery strategies rely on leveraging biological knowledge about a known
target or system to design small molecules for treatments. However, these development
processes are costly and on average only 9.6% of drugs that make it to Phase I clinical trials
are approved [67]. Given the high cost and low success rate of these target and systems-
based approaches, using computational methods to search through existing drugs and known
molecules as potential therapies is becoming popular [22]. Researchers can utilize high-
throughput omics data to rank thousands of candidates in a cost effective manner without
a priori knowledge of a target.

This is made possible by modern sequencing technology which has enabled diseases to be
characterized in terms of molecular features, such as the transcriptome and proteome [40, 65,
35, 117]. In addition to these ever expanding disease databases, quantification of molecular
activity in the presence of drugs and other perturbations are being collected at a rapid pace
[53, 108, 1, 93]. This presents researchers with the opportunity to leverage these two types
of data to connect individual diseases with drugs based on their molecular signatures.

The hypothesis behind this omics-based method of drug discovery is that compounds
which favorably alter the molecular signature of the disease are more likely to be therapeutic.
In particular, most studies have relied on transcriptomic data, which is also the focus of this
paper. In that case the goal is to find drugs which tamp down the expression of genes that
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are over-expressed in disease as compared to normal tissue, and ramp up the expression
of those that are under-expressed in disease as compared to normal tissue. This is done
by computing dependency between the disease differential expression (DE), which looks at
changes in gene expression between healthy and diseased tissue, and the drug DE, which
compares expression between untreated samples and samples treated with a drug or other
type of perturbagen.

Studies based on the aforementioned hypothesis, have been successfully applied in a num-
ber of ways, including, discovering new potential therapeutics, finding avenues for repurpos-
ing existing drugs, and/or uncovering mechanisms of action that can be used for employing
more traditional drug discovery strategies [76, 68]. Namely, novel drug candidates have been
found in lung cancer [79] and cancer mestatasis [102], among other diseases. There have
also been success stories utilizing this approach to find new applications of existing drugs for
diseases like muscle atorophy [51], inflammatory bowel disease [30] and lung cancer [88, 111].
Additionally, biologists have used these computational approaches to generate hypotheses
about new mechanisms of action in various cancers, including prostate[37] and ovarian [82]
cancers. It has also been seen that this computational approach can find treatments that
reverse physiological markers of dyslipidemia in mouse models [101] and recover a limited
number of known drug indications [70, 26, 101].

Given, that we want to find drugs which reverse the changes found in disease, the sta-
tistical goal is to quantify the relationship between disease and drug by measuring negative
dependency between the two vectors of differential expression. Notice that this dependency
is not global, as we primarily care about reversing expression in the small set of genes that are
at the extremes of the disease DE (e.g. genes that are significantly over- or under-expressed
in the disease). On the other hand, reversal of genes that show little difference in expression
when comparing diseased to healthy tissues is unimportant. Standard methods of measuring
dependency, such as or Pearson’s or Spearman’s rank correlation, are designed to compute
dependency over entire lists and thus are not applicable for detecting the described structure.
The most common method for computing this type of local dependency in the context of
drug discovery is the Connectivity Map (CMap) [52] and various modifications [118, 33, 23].

CMap based methods determine whether the up- and down-regulated disease genes are
over-represented at the top or bottom of the ordered drug DE. Where up- and down-regulated
genes are the genes which are over- and under-expressed, respectively, above some threshold
on the log fold change of the disease DE. Despite attempts to systematically determine the
appropriate cutoff values [107], the choice is relatively arbitrary, and can lead to potentially
useful information being discarded about the genes which are not classified as up- or down-
regulated. Additionally, this thresholding results in statistics that require permutation tests
for assessing significance, which is computationally expensive.

We provide a rank based count statistic, called Local rank-pattern based reverse Cor-
relation (LoCor), for quantifying the relationship between drug and disease that does not
rely on employing a cutoff to the disease differential expression. We use LoCor to measure
gene importance in drugs that reverse expression to provide potential biomarkers for future
drug discovery efforts. We evaluate the performance of LoCor in simulation and in real data
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and find that LoCor improves computation time while still enabling detection of the desired
local structure in real data and simulation. LoCor also improves identification of the genes
involved in the reversal for effective drugs over existing methods. Given the vast amount of
data that is increasingly available this boost in computational efficiency is important and
the accompanying R package allows for easy implementation for researchers in this field. As
drug and disease differential expression data become widely available for additional molec-
ular features this method could be readily extended to be used in that context and, with
slight modifications, in combination with the gene expression data discussed in this paper.

2.2 Data and problem formulation

As mentioned in Section 2.1, the relationship between disease and drug is determined by uti-
lizing differential expression between disease and control samples as well as between treated
and untreated samples. This is depicted in Figure 2.1. The two data sources used in this
paper are The Cancer Genome Atlas (TCGA) [106], to quantify the molecular signature of
the disease, and The Library of Integrative Network Based Cell Signatures LINCS-L1000
database [53, 93] to quantify the changes in gene expression in the presence of perturbagens
for 978 landmark genes. The perturbagens, which we will interchangeably refer to as ”drugs”,
in this database are primarily small molecules, but they include additional categories such
as ligands and CRISPR knockdown experiments.

In order to understand the relationship between gene and disease we utilize the differen-
tial expression profiles from the sRGES paper [23] for breast invasive carcinoma (BRCA),
colon adenocarcinoma (COAD) and liver heptocellular carcinoma (COAD). The differential
expression analysis was done using DESeq V1 [6] with data from TCGA. These three cancers
were chosen because they have adequate representation in both TCGA and the other data
used in our study. The resulting disease differential expression profiles indicate changes in
gene expression between disease and normal tissue for over 20,000 genes. In particular, genes
that tend to be significantly up- or down-regulated in the disease as compared to the normal
tissue are likely to be important to the disease.

To understand the relationship between drug and disease, through gene expression, we
utilize data from the LINCS-L1000 database. LINCS is a project which collects gene expres-
sion data for 978 genes with and without exposure to perturbagens in a number of cell lines.
The perturbagens can be drugs, small molecular compounds, or various genetic perturba-
tions and the 978 genes were selected due to their connection with disease. The resulting
drug differential expression profiles measure the changes in the gene expression between cells
which have had exposure of a certain dose and duration to one of these perturbagens and
unexposed cells. In this report we use the same set of 66,612 samples from the sRGES
paper. The samples are made up of over 12,000 unique perturbagens in 71 cell lines, includ-
ing multiple cell lines in both the breast, colon, and liver, at various doses and duration of
exposure.
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Figure 2.1: Compute disease differential expression and drug differential expression lists by
comparing disease samples to control samples and treated samples to untreated samples
respectively. The colors in the DE list represent the degree to which the gene is up-regulated
(green) in disease or under treatment or down-regulated (red) in disease or under treatment.
The relationship between disease and drug DE lists illustrated here is the ideal scenario as
all genes are reversed by the drug in question.

Related work

In the context of drug discovery previous methods to compute negative dependency between
these two DE vectors, such as CMap, are largely based on the concept of gene set enrichment
analysis (GSEA) [94], where GSEA is used to determine whether the up- and down-regulated
disease gene sets are randomly distributed in the ordered drug DE list or preferentially fall
towards the top and/or bottom. In both CMap and summarized reverse genes expression
(sRGES) [23], an extension of CMap which will use as an additional benchmark, the up- and
down-regulated genes are determined by applying a threshold on the log fold changes in the
disease differential expression profile. Then an enrichment score is computed for the up- and
down-regulated disease genes, separately, and combined to get a single score per sample. In
this section we discuss in detail how GSEA is used and what issues arise from the resulting
statistics.

Assume the drug DE has been measured at n genes for a given sample and assume of those
n genes there are a subset of size mup (resp. mdown) up-regulated (resp. down-regulated)
disease genes. Construct a vector Vup (resp. Vdown) made up of the positions of the mup
(resp. mdown) disease genes in the drug DE list after sorting the list in ascending order.
For example, consider mup = 2 where the genes with the 8th and 10th largest DE values are
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up regulated. We would then have Vup = (8, 10). Then compute

aup = max
1≤i≤mup

{
i

mup

− Vup(i)

n

}
and bup = max

1≤i≤mup

{
Vup(i)

n
− i− 1

mup

}
and

adown = max
1≤i≤mdown

{
i

mdown

− Vdown(i)

n

}
and bdown = max

1≤i≤mdown

{
Vdown(i)

n
− i− 1

mdown

}
where Vup(i) (resp. Vup(i)) is the value at position i in the vector. The enrichment scores
are given by

esup = aup − bup
and

esdown = adown − bdown
The enrichment scores esup (resp. esdown represent the absolute enrichment of an up (resp.
down) gene list in a given drug DE profile. A large enrichment score (close to 1) is given
when the set of up- or down-regulated genes tend to have high ranks (i.e. have large positive
DE expression) in the drug DE list while a small score (close to -1) is given when the set
of up- or down-regulated genes tend to have low ranks. Then for each sample we obtain a
measure of the negative dependency between drug DE and disease DE

SCMap =

{
esup − esdown if sign (esup) = sign (esdown)

0 otherwise

or
SRGES = esup − esdown

It should be noted that in practice and simulation we rarely see sign (esup) 6= sign (esdown)
and thus there is no significant difference between these methods for individual samples.
The main difference between these CMap and sRGES arises in the way in which individual
scores are combined across samples for a single perturbagen. For most perturbagens, they
have been measured in different cell lines at different doses and durations, however in the
end the goal is to measure the dependency for a drug or compound, not just a sample. We
use the sRGES method to summarize the LoCor sample scores in this paper as it produces
optimal results in real data (see Figure 2.12).

Both RGES and CMap weight dependency at the extremes of the disease and drug
DE lists more heavily than the middle in two ways (1) by only considering genes that are
significantly DE expressed in the disease and (2) in the computation of the enrichment scores.
We can see that esup is close to -1 when up-regulated genes are ranked towards the bottom of
drug DE list and esdown is close to 1 when down-regulated genes are ranked highly and thus
the most extreme negative score will be given when up-regulated genes have low ranks and
down-regulated genes have high ranks. However, there are some issues with the enrichment
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score computation, which we illustrate below in words and examples, that lead to scores that
are not consistent with the desired properties.

In these methods, when we threshold the disease DE profile to obtain the up- and down-
regulated disease genes we remove all information about the magnitude and significance of
their fold changes. The thresholds on disease DE profiles need to be stringent enough that
genes that have no true association with disease are excluded, but lenient enough that there is
not a loss of important information from genes which are related to disease. This difficulty in
choosing a threshold, and the impact on the power of CMap for detecting local dependency, is
explored in more detail in simulations in Section 2.4. We find that the statistics are sensitive
to the amount of genes which are classified as up- or down-regulated across many scenarios.
LoCor does not rely on such a threshold, instead there is a robust parameter which governs
a more gradual increase in weighting at the extremes of the DE profiles.

Consider the following toy example, with mup = mdown = 1. Let the up-regulated gene
have the largest negative drug DE and the down-regulated genes have the largest positive
drug DE. That is if the drug DE has n = 1000 genes we would have Vup = 1000 and Vdown = 1.
This results in SCMap = SRGES = −1.99 (a very significant score) as the range of scores is
(−2, 2). However, because we do not consider the dependency over the remaining 998 genes
it could be that all those genes show a positive dependency. In fact, if we increase the cutoff
on p-value such that mup = mdown = 2 and it happens that now the second most positive DE
drug gene is up-regulated and the second most negative DE drug gene is down-regulated we
would have Vup = (2, 1000) and Vdown = (1, 999), giving SCMap = SRGES = −0.001, which
indicates almost no dependency. Of course, this is a somewhat contrived example, but the
point remains that the choice of threshold on p-value for the log fold changes can effect the
scores dramatically. We will see this in simulation and in the real data later in the paper.

Secondly, there is a lack of comparability between scores from different diseases or molec-
ular features when using GSEA methods. This inability to directly compare scores is because
the maximum range of enrichment scores vary depending on the number of genes in the dis-
ease signature. In fact, counter to intuition, disease signatures with a small number of genes,
all of which are truly reverse, takes on more extreme values than disease signatures with a
larger number of genes, again which all are truly reversed.

For example, consider the following two disease signatures both with mup = mdown =
100. In (1) we have Vup = (501, 502, . . . , 600) and Vdown = (401, 402, . . . , 500). There is
some negative dependency in this scenario as all up-regulated genes have DE below the
median and all down-regulated genes have drug DE above the median, however reversal is
happening all in the genes that show little DE after exposure to the drug. In (2) let Vup =
(501, 502, . . . , 545, 946, 947, . . . , 1000) and Vdown = (1, 2, . . . , 55, 456, 458, . . . , 500). Clearly,
(2) exhibits stronger reversal that (1), but they have the exact same reversal score (i.e.
SCMap(1) = SCMap(2)). This is a consequence of the fact that outside of those up- and down-
regulated sets the only information we consider from other genes is how they contribute to
the position of those sets in the overall list.

An additional way in which comparison of scores from these methods is not possible
as the most extreme values the statistics can take depend on the number of genes in the
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up- and down-regulated sets as well as the the number of genes in the reference (drug)
signature. For example, if n = 1000 and we have Vup = 1000 and Vdown = 1 we saw that
SCMap = SRGES = −1.99. However, for Vup = (1000, 999, . . . , 991) and Vdown = (1, 2, . . . , 10)
we get SCMap = SRGES = −1.981, which is less extreme than the case with only one up- and
down-regulated genes.

A final important difficulty arises in the p-value computation. In both methods p-values
are computed based on permutation tests, which is computationally expensive. To get an
accurate p-value, for each sample, the disease signature is randomly sampled thousands of
times and the CMap or RGES score is recomputed for each of those samples. This reference
distribution is then compared to the score from the observed data. In practice, this means
that when a user queries a score for a large number of samples they have to wait for a while
for these computations to be done in parallel over the internet.

To summarize, both RGES and CMap weight are able detect local dependence at the
extremes of the DE lists, however, there are a number of theoretical and computational dis-
advantages. These difficulties motivated us to develop a more robust statistic with stronger
theoretical and computational properties. LoCor, which is described in detail in the next
section, does not require such a permutation test, while still maintaining adequate power for
detecting the desired local dependency. It allows users to do the computations through an R
package on local computers and utilizes information across all genes by naturally weighting
negative dependency at the extremes more heavily than dependency in the middle of the
drug and disease DE lists.

2.3 Local rank-pattern based reverse correlation:

LoCor

We propose a new measure to compute reversal at the extremes called Local rank-pattern
based reverse Correlation, LoCor. We say LoCor is a rank-pattern based measure of de-
pendency because the core idea is to count decreasing pairs in the ranked drug DE vector
after applying the permutation that sorts the disease DE in descending order. The statistic
is motivated by the successful rank-pattern based dependency measures from Wang et al.
[104, 105].

As is illustrated in the schematic in Figure 2.2, we are counting these decreasing pairs
that fall within a (circular) window length of each other. By circular window, we mean that
we allow windows to cross from one edge of permuted drug DE vector to the other. As we
slide the circular windows along the permuted drug DE vector it allows us to detect local
structure that may otherwise be lost with a more global measure of association.

We formally define the statistic below. Assume there are n genes with DE data in
both drug and disease. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be the disease and drug
differential expression profiles respectively. Also, let l < n

2
be the number of indices (i.e.

the window length) which we will count decreasing pairs within. Additionally, let z = σ(x)
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Figure 2.2: a) Compute LoCor by comparing the disease and drug DE lists. The numbers
inside the box represent the rank of the differential expression within east list respectively.
First, we permute the disease DE list in decreasing order and apply the same permutation
to the drug DE list. Next, we count the number of decreasing pairs within a window length
l = 4. In the first window, including genes G10, G9, G3, and G2, there are four decreasing
pairs (genes G10 and G9, genes G10 and G2, genes G9 and G2, and genes G3 and G2). Note,
genes G9 and G3 do not form a decreasing pair because gene G9 is less down-regulated than
gene G3. The second window starts with gene G9 and ends with gene G7 and has three
decreasing pairs. We continue sliding the window until the tenth one, which starts at gene
G6 and and includes genes G10, G9 and G3. In that window there are 4 decreasing pairs
(genes G6 and G10, genes G6 and G9, genes G6 and G3, and genes G10 and G3). Then to
get S(l) we the sum of the counts across all windows. b) After subtracting the mean and
dividing by the standard deviation of the null distribution, we have a Z-score which can be
used to compute p-values and compare significance across samples.
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be the vector that applies the permutation, σ, which sorts the elements of the disease DE
vector y in decreasing order to the drug DE vector x. That is,

z = (z1, . . . , zn) =
(
xσ−1(1), . . . , xσ−1(n)

)
.

Then the measure of per-sample negative dependency, S(l), is defined as

S(l) =
n∑
i=1

∑
j1<j2:j1,j2∈I+i (l)

I {zj1 > zj2} (2.1)

where I+i (l) are the indices of window starting at position i shifting right by adding 1 modulo
n until there are l genes in the window. Let i′ = i− 1. This can be explicitly written as,

I+i (l) = {i′ + 1, (i′ + 1) mod n+ 1, (i′ + 2) mod n+ 1, . . . , (i′ + l − 1) mod n+ 1}

By summing over all j1 < j2 : j1, j2 ∈ I+i (l) we are only counting decreasing subsequences
inside the windows of length l defined by the index sets I+i (l). Notice that these windows
are circular in nature, in that the index sets I+i (l) with i > n− l include entries from both
the top and the bottom of z.

For example, if we have window length l = 10 and n = 100 genes, then the sliding window
starting at position i = 98 is defined by I+98(10) = {98, 99, 100, 1, 2, . . . , 7}. Then, because
we only sum over j1 < j2 for j1, j2 ∈ I+98(10), we look for all decreasing pairs in the following
subset of z, (z1, z2, . . . , z7, z98, z99, z100).

The circular nature is a major aspect that helps detect the dependencies that are only
local the extremes of the list. If the up- and down-regulated disease genes are truly reversed
when we consider these circular windows the entries in z at small indices will be large relative
to the entries in z at the large indices leading to a large number of decreasing subsequences
and a significant overall score. This allows us to detect the relationship even in presence of
large amounts of noise, as is typically the case with genetic data.

From Theorem 1 we know that normalizing by the appropriate mean and variance S(l)
is asymptotically standard Gaussian. We show in Section 2.4 that for n = 1000, which is the
number of genes available in the LINCS data, it is reasonable to use the asymptotic distri-
bution to assess significance of S(l), allowing us to get p-values without using a permutation
test.

Theorem 1 Assume that l = o(n
1
3 ), k = 2, and

1. x and y are independent and have no ties within themselves.

2. at least one of x and y has an exchangeable distribution
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For n→∞
S(l)− µ

σ

d→ N(0, 1)

where µ = n
( l
k)
k!

and σ2 = Var(S(l))

Proof Define
Ij1,...,jk(zzz) = I {zj1 > · · · > zjk}

and
Si(l) =

∑
j1<...<jk

j1,...,jk∈I+i (l)

Ij1,...,jk(zzz).

This allows us to write

S(l) =
n∑
i=1

Si(l)

When no confusion arises, we will respectively use Ij1,...,jk , S and Si instead of Ij1,...,jk(zzz),
S(l) and Si(l) in order to simplify notation. Assume x has an exchangeable distribution and
that x and y are independent with no ties. This implies zzz = σ(x) also has an exchangeable
distribution and the ranks can be treated as a random permutation of {1, ..., n}.

To see the asymptotic distribution of S, we leverage the Stein’s method [83] for normal
approximation with dependency neighborhoods. Formally,

dW

(
S − µ
σ

, Z

)
≤ D2

σ3

n∑
i=1

E |Si − ESi|3 +

√
28D3/2

√
πσ2

√√√√ n∑
i=1

E [Si − ESi]4,

where µ = E [S], σ2 = var (S), D := maxi∈{1,...,n} |Ni| = 2l (Ni is the dependency neighbor-
hood for Si).

Next, we will calculate the desired quanties in the above formula.

We have

ES = E

[
n−1∑
i=0

Si

]
= nE [Si] = n

(
l
k

)
k!
.

The variance can be written as

var (S) =
∑
i

∑
i′

cov(Si, Si′).

Now we only investigate k = 2. Note that

cov(Si, Si′) = cov(
∑
a1<a2

a1,a2∈I+i (l)

Ia1,a2 ,
∑
b1<b2

b1,b2∈I+i′ (l)

Ib1,b2) =
∑
a1<a2

a1,a2∈I+i (l)

∑
b1<b2

b1,b2∈I+i′ (l)

[EIa1,a2Ib1,b2−EIa1,a2EIb1,b2 ].
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Suppose i < i′ and i′ − i = A. When A ≥ l, cov(Si, Si′) = 0. So we only need to consider
A < l. Then I+i (l) and I+i′ (l) overlap with the shared length B = l−A. To get a non-trivial
covariance between Ia1,a2 and Ib1,b2 , it must hold that {a1, a2} and {b1, b2} share at least one
index. We discuss the below scenarios.

• a1 = b1 but a2 6= b2. We have EIa1,a2Ib1,b2 − EIa1,a2EIb1,b2 = 1
3
− 1

4
= 1

12
. Now we

compute the number of index pairs that satisfy a1 = b1 but a2 6= b2:

N1 = (B − 1) · (A+B − 2) + (B − 2) · (A+B − 3) + · · ·+ 1 · A =
B(B − 1)

6
(3A+ 2B − 4).

• a2 = b2 but a1 6= b1. Similarly as above, we have EIa1,a2Ib1,b2 − EIa1,a2EIb1,b2 = 1
12

and
N2 = N1.

• a1 < a2 = b1 < b2. We have EIa1,a2Ib1,b2 −EIa1,a2EIb1,b2 = 1
6
− 1

4
= − 1

12
. The number of

index pairs that satisfy a1 < a2 = b1 < b2 is

N3 = A · (B − 1 + A) + (A+ 1)(B − 2 + A) + · · ·+ (A+B − 1) · A

=
B−1∑
k=0

(A+ k)(B − 1 + A− k)

=
B

6
[6A2 + (B − 1)(B + 6A− 2)].

• b1 < b2 = a1 < a2. We have EIa1,a2Ib1,b2 −EIa1,a2EIb1,b2 = 1
6
− 1

4
= − 1

12
. The number of

index pairs that satisfy b1 < b2 = a1 < a2 is

N4 = 1 · (B − 2) + 2 · (B − 3) + · · ·+ (B − 2) · 1

=
B−2∑
k=1

k · (B − 1− k)

=
B(B − 1)(B − 2)

6

• a1 = b1 < a2 = b2. It is easy to get that EIa1,a2Ib1,b2 − EIa1,a2EIb1,b2 = 1
2
− 1

4
= 1

4
. The

number of index pairs that satisfy a1 = b1 < a2 = b2 is N5 =
(
B
2

)
.

Putting the above results together, we can get that

cov(Si, Si′) =
1

12
·N1 +

1

12
·N2 −

1

12
·N3 −

1

12
·N4 +

1

4
·N5

=
B[(B − 1)(2B + 5)− 6A2]

72
A=l−B

=
B(12Bl − 6l2 − 4B2 + 3B − 5)

72
. (2.2)
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Particularly, when i = i′ or B = l, we have

var(Si) =
l(l − 1)(2l + 5)

72
,

which can also be verified by the result of [74] when k = 2. Hence,

var(S) =
∑
i

∑
i′

cov(Si, Si′)

=
∑
i

l−1∑
j=−(l−1)

cov(Si, Si+j)

by (2.2)
=

∑
i

[2
l−1∑
j=0

(l − j)[12(l − j)l − 6l2 − 4(l − j)2 + 3(l − j)− 5]

72
− var(Si)]

=
∑
i

[2
l∑

j=1

j(12jl − 6l2 − 4j2 + 3j − 5)

72
− var(Si)]

= n · ( l(l + 1)(l − 1)

18
− l(l − 1)(2l + 5)

72
)

= n · l(l − 1)(2l − 1)

72
.

We emphasize that this result is not exactly correct because when i < l or i > n − l + 1,
Cov(Si, Si′) is much more involved that above due to the selected circular pattern. In this
case

∑l−1
j=0 cov(Si, Si+j) = O(l4) but not O(l3). However, it does not affect the order of

var(S) if n� l. So we keep the above form.
It is easy to see that

E [Si − ESi(l)]4 =
∑
a1<a2

a1,a2∈I+i (l)

∑
b1<b2

b1,b2∈I+i (l)

∑
c1<c2

c1,c2∈I+i (l)

∑
d1<d2

d1,d2∈I+i (l)

E(Ia1,a2 −
1

2
)(Ib1,b2 −

1

2
)(Ic1,c2 −

1

2
)(Id1,d2 −

1

2
).

To ensure

E(Ia1,a2 −
1

2
)(Ib1,b2 −

1

2
)(Ic1,c2 −

1

2
)(Id1,d2 −

1

2
)

to be non-zero, it requires {a1, a2}, {b1, b2}, {c1, c2}, {d1, d2} to satisfy either of the below
condidtions:

• Each index pair intersects with at least one of the other index pair, so all the four
index pairs are “connected”.

• The four index pairs can be divided to two groups. In each group, there are two
intersected index pairs. The two groups are disjoint.
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The first condition corresponds to O(
(
l
5

)
) = O(l5) possible cases, while the second corre-

sponds to O(
(
l
3

)
) · O(

(
l
3

)
) = O(l6) cases. So in total E [Si − ESi(l)]4 ≤ O(l6). Note that

E [Si − ESi(l)]4 ≥
{
E [Si − ESi(l)]2

}2
= O(l6).

So we have E [Si − ESi(l)]4 = O(l6).
Next, by Cauchy-Schwarz inequality, we have

E |Si − ESi(l)|3 ≤
√
E [Si − ESi(l)]2 · E [Si − ESi(l)]4 = O(l

9
2 ).

Since E |Si − ESi(l)|3 must scale at an integer power of l, it follows that E |Si − ESi(l)|3 =
O(l4). With all the ingredients above, it follows that

dW

(
S − µ
σ

, Z

)
≤ C1

l2 · n · l4

n3/2l
9
2

+ C2
l3/2 ·

√
nl3

nl3
� l

3
2

√
n
,

where C1 and C2 are two positive constants. It indicates dW (S−µ
σ

) = O( l
3
2√
n
) → 0, when

l = o(n
1
3 ).

Gene-wise statistics

In addition to computing the overall dependency we can determine how much the gene
contributes to S(l). This allows us to assess the importance of individual genes to the
overall reversal and thus uncover potential biomarkers for drug efficacy in a disease. Below
in equation (2) we rewrite S(l) such that Gi(l) is the number of decreasing pairs that include
gene at index i, weighted by the number of times that pair falls in the same window.

S(l) =
1

2

n∑
i=1

Gi(l) (2.3)

where

Gi(l) =
∑

j>i:j∈I+i (l)∪I−i (l)

wi,j(l)I {zi > zj}+
∑

j<i:j∈I+i (l)∪I−i (l)

wi,j(l)I {zi < zj}

and the weights are given by

wi,j(l) =

{
l − |i− j| |i− j| ≤ l − 1

l − (n− |i− j|) |i− j| ≥ n− l + 1
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Recall that I+i (l) are the indices of the circular window starting at position i, and we
define I−i (l) to be the indices of the window ending at position i and moving backwards
modulo n,

I−i (l) = {i′ + 1, (i′ − 1) mod n+ 1, (i′ − 2) mod n+ 1, . . . , (i′ − l + 1) mod n+ 1}

This weighting scheme is another reason for the good performance of the statistic. By
applying larger weights to the pairs that are close together it allows us to put more emphasis
on the subsequences that are close together in a window, but far apart in the z vector (e.g.
z1 and zn) as opposed to pairs such as z1 and zn−100 which are less likely to be decreasing if
the dependency is only at the extremes. As we move towards the middle of the list, where
the circular indexing no longer applies, this weighting scheme does not provide any added
benefit, but it also does not detract from the power of the statistic as the middle is assumed
to be independent.

Interestingly, the asymptotic distribution of the gene-wise statistics, which is described in
Theorem 2, varies depending on the position of the gene in the permuted list. Genes at the
extremes of the list are asymptotically uniform, while genes in the middle are asymptotically
closer to Gaussian, although with heavier tails (See Figures 2.3a and 2.3b).

In Theorem 2, we use define the shift s to be s = max{0, l − 1− i, l − n + i}. The shift
value is the number of indices in I+i (l)∩I+i (l) which are circular in nature. When s is large,
i is close to the edge (e.g. i ≈ 0 or i ≈ n) and the gene at index i is included in many
windows with circular indexing. When s = 0, then i is in the middle of z and the gene at
position i is never included in any windows that are cross from one edge of vector to the
other.

Theorem 2 Assume that l < n/2, x and y are independent and have no ties within them-
selves, and at least one of x and y has an exchangeable distribution. Then

1. When s = o(l
3
4 ), Gi(l) is asymptotically a Gaussian-like random variable.

2. When s = O(lα) with α > 3/4, Gi(l) is asymptotically a uniform distribution random
variable.

3. When s = O(l
3
4 ), Gi(l) is asymptotically a random variable from a mixture of a

Gaussian-like distribution and a uniform distribution.

For the finite-sample property, define σ̃2 = l(l−1)(2l−1)
24

. we have

1. If s = 0,

P
(
Gi(l)−

(l − 1)2 + l

2
≥ g

)
≤ exp

(
− g

2

σ̃2

)
· I(g > 0) + I(g ≤ 0) (2.4)
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(a) l = 150

(b) l = 300

Figure 2.3: Density of gene-specific counts Y
(w)
i,l,s when generating two independent vectors

with window length (a) l = 150 and (b) l = 300. In both we have n = 1000. The distribution
of the counts depends on the position of the gene i. For example, when l = 150, then when
150 ≤ i ≤ 850 the distribution is close to Gaussian and for i = 1 or i = 1000 the distribution
is approximately uniform.
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2. If s 6= 0,

P
(
Gi(l)−

l(l − 1)

2
≥ g|zi = z

)
≤

exp

{
−(g − η(s, z))2

σ̃2

}
I(g ≥ η(s, z)) + I(v < η(s, z)), (2.5)

where η(s, z) = 1
2
(2z − 1)(s2 + |s|)

These theoretical properties allow us to compute conservative p-values for the each gene
in each disease/drug sample pair which serve as normalized gene-wise statistics. We use
these gene-wise statistics to assess the importance of each gene by looking for genes which
are reversed in potentially therapeutic drugs but not reversed in drugs which are not deemed
to have therapeutic potential. See Supplemental Information for details and proofs.

2.4 Simulations

Asymptotic normality of S

To determine the viability of using the asymptotic p-values for computing significance of
S(l) we looked at the normality of the normalized S(l) for different numbers of genes n
and window lengths l. We simulated 105 independent standard normal vectors x and y. In
Figure 2.4 (a) we increase n, holding l = 150 and in Figure 2.4 (b) we hold n constant at
1000 and vary l.

We can see that the normality assumption is reasonable for all depicted combinations of
n and l. Note that in Theorem 1 we can only prove asymptotic normality for l = o

(
n1/3

)
,

however the normality is holding in practice when l = 300 and n = 1000. This likely
indicates a tighter bound in the proof is possible or the constant describing the relationship
between l and n is large enough such that in practice we can have l > n1/3. Given that these
simulations indicate convergence to the asymptotic distribution with n = 1000 (the size of
the data in this project) for various values of l, we feel confident that the normal distribution
results in accurate p-values for assessing statistical significance.

Set up

Given that small number of verified drugs for a given disease benchmarking methods in
this field is difficult [45, 25]. For this reason we utilize simulations which are designed to
mimic the local structure we hope to detect in order to compare LoCor’s performance with
CMap and sRGES. To do this we consider simulations of three bivariate relationships. The
first such relationship is (a) linear. This is necessary to include in our simulations as most
correlation methods are designed to detect such a relationship and thus we need to compare
the performance of our statistic in such a scenario. We also investigate performance in
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(a) Varying n (b) Varying l

Figure 2.4: QQ-plots comparing the empirical null distribution of SLoCor to a standard
normal distribution. (a) We hold window length constant at l = 150 and vary the number
of genes n (b) We hold n = 1000 constant and vary window length l.

comparison to other methods in relationships that are thought to be more realistic in the
context of drug discovery, namely (b) that the reversal occurs at the top and bottom involves
genes at the extreme of x appearing at the opposing extreme of y with high probability, and
(c) that the linear reversal only occurs at the top and bottom of the gene expression vectors.
In both (b) and (c) we varying the amount of reversed genes based on the parameter p, which
is the proportion of truly reversed genes. The relationships are summarized in Figure 2.5

and Table 2.1 where xi
iid∼ N(0, 1), yi = f(xi) + εi and εi

iid∼ N(0, 3). We compute the power

for increasing fractions of replacing εi with ηi for ηi
iid∼ N(0, 8).

We used the scenarios in Figure 2.5 to guide our choice of the two tuning parameters,
window length l and decreasing subsequence length k. Note that in the previous analyses in
Section 2.3 we only present the statistics where we count decreasing pairs (k = 2). This is
because we found in the simulations that are in the Figure 2.6 that had the highest power for
detecting the desired relationships. We also found that choosing l = 150 provided balance
for detecting local relationships as amounts of dependency at the extremes. Choosing k = 2
has the additional advantages of increased computation speed, simplicity, and allows us to
defined gene level statistics Si(l).
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(a) Linear (b) Extremes swapped (c) Extremes linear

Figure 2.5: Simulation scenarios we consider to compare the power between methods. (a) is
a negative linear relationship with yi = xi+εi for all i = 1, . . . , 1000. (b) the top and bottom
p = 10% are swapped such that there is an overall negative relationship, but within the
extremes the data are independent. (c) negative linear relationship in the top and bottom
p = 10% of the data and independent in the middle. For the purposes of visualization the
points generated in these figures have less noise than in our simulation.

Comparison to other methods

We compare the power of our method to Pearson and Spearman’s correlation as well as the
GSEA based methods CMap and sRGES. Recall that the primary difference between CMap
and sRGES is in the method to summarize scores across samples of the same drug. Given
that our simulation is focused on the assessing the power to detect the desired patterns of
reversal in an individual sample we found that the two methods were equivalent, and thus
in all figures we show a single value that corresponds to both methods.

In order to assess the performance of LoCor to previous methods we compared the meth-
ods in two ways. First, in Figure 2.7 we assess the sensitivity of the methods hyperparameters
by varying the proportions of truly reversed genes p, for scenario (b), as well as the number
of up- and down-regulated genes for CMap / RGES and the window length l for LoCor.
Second, Figure 2.8 for a single hyperparameter from each model we compare across all three
scenarios in Figure 2.5.

We investigate the claim that LoCor is less sensitive to window length than CMap and
sRGES are to threshold on the disease signature by considering varying percentages of rever-
sal at the extremes and compare to RGES (same for different window lengths and numbers
of up and down regulated genes, which correspond to varying thresholds on the p-values of
the log fold changes. Note, that when the reversal occurs in the top 100 × p% and bottom
100×p% of the genes the ideal choice for mup = mdown = np, while the idea choice of window
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Figure 2.6: Power for the simulation scenarios, subsequence lengths k, and window lengths
l.
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length l = 2np. The results are shown in Figure 2.7.
We can see that at the lowest percentage if we pick exactly the correct number of up and

down regulated genes RGES method out performs ours for any choice of l, however at the
remaining percentages the optimal choice of l has comparable power to the optimal choice
of up/down regulated genes. Another important aspect to note from this plot is that our
method is less sensitive to choosing a larger or smaller window size than RGES is to having
the correct number of up and down regulated genes. For example in Figure 2.7(b) RGES
with 150 and 150 up- and down-regulated genes performs significantly worse that our method
with l = 300, which is the corresponding window length, even though both are ill-suited as
the ideal number of up- and down-regulated genes is 50 and the ideal window size is 100.
Similar patterns exist across all three scenarios.

In addition to considering the effect of hyperparameter selection we compared LoCor
to other methods and standard correlation methods across simulation scenarios (a)-(c) us-
ing SLoCor(150) and the corresponding CMap/RGES with 75 up-regulated and 75 down-
regulated genes, as 75 + 75 = 150. In Figure 2.8 we can see that across these scenarios
SLoCor(150) has relatively high power. In scenario (a) as expected Spearman’s and Pearson’s
correlations are able to perform well because the negative dependency is linear and exists
across the entirety of the list. However in scenarios (b) and (c), which are the dependen-
cies structures that are of interest to the data discussed in this paper, LoCor outperforms
these standard measures of correlation. When comparing to CMap/RGES we are able to
maintain power with a single choice of l while the power for different numbers of up- and
down-regulated genes falters when those choices are incorrect.

Relationship type Label Functional form
Linear (a) yi = −xi + 2εi

Top/bottom switched (b) yi =


max(x) + 2εi xi < xbp×nc

min(s) + 2εi xi > xb(1−p)×nc

2εi otherwise

Top/bottom linear (c) yi =

{
−xi + 2εi xi < xbp×nc or xi > xb(1−p)×nc

2εi otherwise

Table 2.1: Simulation scenarios. Here p is the percentage of the simulated genes which
exhibit the reversal relationship at each extreme. For example, if p = 0.05 and n = 100 the
top 5 genes and bottom 5 genes are reversed while the remaining 90% of genes are simulated
independently.
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Figure 2.7: Comparison of power for our method and RGES for different fractions of nega-
tive dependency at the extremes of the list exhibiting the reversal relationship when genes
randomly change sign with high probability. We have (a) top and bottom 2.5%, (b) 5%, and
(c) 10%. Lines with triangles are LoCor and the line with a triangle of the same color is the
CMap/sRGES statistic with the number of genes included in the computation corresponding
to the window size of LoCor.

2.5 Real data results

One practical note is that we had to choose a window length to use for the analysis. We
choose l = 150 as in simulation it appeared to strike a good balance between reversal across
most of the list and reversal that only occurs at small portions of the extremes. By tuning
the window length for each disease we can achieve increased performance in validation.
However, a priori it is unclear how to choose the window length, so we decided to use a
universal window length suggested by our simulations.

Finding compounds

We computed our results using the entirety of the LINCS database to get a score for each
of the 66,612 samples and summarized applying the method described in Chen et al. We
compare the effectiveness of our method with that of CMap and sRGES in breast, liver
and colon cancers. To validate the results we compare the LoCor statistics to median IC50

values for each disease from the ChEMBL dataset [15]. IC50 measures the amount of a drug
that needed to kill 50% of the cells in a sample, thus we will have an idea that LoCor is
performing well if we find that drugs with large negative LoCor scores have low IC50 values.
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Figure 2.8: Comparison of power for different methods where (a) is the linear dependency
across the whole list,(d) has the top and bottom 5% randomly switched and (b) has the top
and bottom 5% linearly dependent. In LoCor we choose a window length of l = 150 and for
CMap / RGES we compute the power with 75 up-regulated and 75 down-regulated genes.

This validation technique limits us to considering drugs that are present in both datasets,
of which there are 115 for BRCA, 93 for COAD, and 53 for LIHC.

In previous papers the correlation of drug efficacy statistics with median IC50 values have
been used as the primary way to compare methods. We computed Pearson and Spearman’s
correlation between each method and the IC50 data. The results are summarized in Fig-
ure 2.9. We can see that in all three diseases the correlation there is a positive correlation,
while the bars representing the 95% confidence intervals of the correlation show that the only
disease with correlations of both types that are significantly different than zero is breast in-
vasive carcinoma. Additionally, notice that although sRGES tends to have the strongest
correlation, followed by LoCor, and finally CMap, there is large overlap in the confidence
intervals across all the diseases.

In addition, to looking at the correlation with IC50 we wanted to try to tease out the
differences between the methods in a more nuanced manner. The most important thing is
that highly ranked drugs are effective, as those are the drugs that biologists will investigate
further. To this end we plotted the percentile rank of each compound with both IC50 and
LINCS L1000 date for LoCor (x-axis) versus the other methods (y-axis) in Figure 2.10. Each
point in this scatter plot is a compound and we use log10 (IC50) > 4 as a cutoff to indicate
whether the compounds effective or not treating a given disease. This cutoff was chosen
as it is the same one used in the sRGES paper. In the figure the different colors represent
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Figure 2.9: Correlation of reversal scores with IC50 for drugs with overlapping data.

ineffective and effective label based on IC50 and the black line is at y = x. Any point below
the line indicates a lower rank (e.g. less effective) when comparing sRGES (left) or CMap
(right) to LoCor while any point below the line indicates that either sRGES or CMap ranks
the compound as more effective than our method.

We can see for the top ranked compounds, particularly in BRCA and COAD, our method
tends to ranks effective compounds higher than sRGES (right side) because the compounds
are primarily above the y = x line. After the compounds ranked in the top 25% we start to see
a mix of ineffective and effective drugs, however as we stated previously, the most important
thing is that a method is able to rank effective compounds highly while not ranking ineffective
compounds highly. When we look at the left-hand side of the plot to compare LoCor with
CMap we see that while there are some highly ranked effective drugs in CMap that LoCor
does not rank highly and vice versa. However, we also see a number of ineffective compounds
(green points) that fall below the y = x line indicating that CMap is giving high ranking to
those compounds while LoCor does not. In summary, Figure 2.10 shows that our method
has higher specificity for sorting effective from ineffective compounds than LoCor and while
sRGES has similar specificity LoCor is able to consistently rank effective compounds higher
than sRGES.

Finding genes

Now that we have discussed how to use our method for determining which compounds
have the potential to treat a given disease we investigate using the gene-wise number of
decreasing subsequences Si to determine which genes are exhibiting more reversal in effective
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Figure 2.10: Percentile rank of the scores from sRGES (left) and CMap (right) versus LoCor
where the color of points indicate where a compound is effective based on the corresponding
median that have IC50 value. The three different cancers are indicated by the shapes. The
diagonal black line is at y = x. Any point above the line implies that the compounds is
ranked higher, i.e. more effective, by LoCor than one of the other two methods.

compounds, defined as a compound with log10 (IC50) < 4 and SLoCor > 2, than ineffective
compounds, log10 (IC50) > 4 and SLoCor < 1. We use the resulting conservative p-values
from each of these statistics to find pairs of genes and drugs with stronger reversal in the
effective group than the ineffective group. Finally, we take the weighted average over the
effective drugs, weighted by the SLoCor for each drug, to get a single score for each gene.
The details for this computations are included below:

1. Subset compounds into an effective and ineffective groups based on log10 (IC50) and
LoCor. The effective group has log10 (IC50) < 4 and LoCor > 2. The ineffective group
has log10 (IC50) > 4 and LoCor < 1.

2. Compute conservative p-values based on the gene contribution to the overall LoCor
scores for each gene in each sample. Take the − log of the conservative p-values.

3. For each drug in the effective group, compute mean difference between effective samples
and ineffective samples for each gene and divide by the pooled standard deviation of
all samples of the effective drug and all ineffective samples.



CHAPTER 2. LOCAL RANK-PATTERN BASED REVERSE CORRELATION: A NEW
STATISTIC FOR LEVERAGING GENOMIC DATA IN DRUG DISCOVERY 28

Figure 2.11: Comparison of sLoCor (y-axis) to IC50 (x-axis). Notice, the relatively small
number of compounds for computing correlation with IC50. This points to the need for
continued validation of these methods as new data become available.

4. For each of the effective drugs we now have a score per gene. Take the average, weighted
by the LoCor score for the drugs, to get a single score for each gene in a given disease.

To validate these results we looked at the Project Achilles database from the Cancer
Dependency Map[96]. Project Achilles quantifies gene essentiaility for cancers by performing
genome-scale RNAi and CRISPR-Cas9 genetic perturbations to cancer cell lines to determine
which genes are most essential to cancer cell survival. We compared the LoCor and sRGES
gene scores to the Achilles effect scores to determine if LoCor is able to effectively discover
genes that are essential to survival of the disease in question. A large Achilles score indicates
that a gene is important for the disease.

In order to compare the gene scores we do a t-test for difference in means of Achilles
effect scores after grouping the LoCor and sRGES gene scores into low and high groups. We
choose to do a t-test, instead of correlation, for this comparison because the distribution
of the sRGES scores is almost discrete, with almost all gene statistics either close to 0
(essential gene) or close to 1 (non-essential gene). Additionally, the sRGES genes scores are
only available for a subset of the genes, 83 in BRCA, 65 in COAD, and 73 in LIHC, thus
although LoCor produces a gene statistic for all genes we will only consider the genes with
sRGES scores.

The results are in Figure 2.13 and the scatter plot comparing the LoCor gene scores to
the Achilles effect score is in Figure 2.14. In Figure 2.13 we can see that for all diseases the
genes we find to be important have a significantly higher mean Achilles effect than genes
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Figure 2.12: Spearman’s rank correlation with IC50 summarized LoCor scores with different
summarization methods. The left panel shows the summarization on the normalized LoCor
values, while the right panel is the summarization over the p-value of those normalized
statistics.
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Figure 2.13: Results from a t-test for difference in means of Achilles gene scores when binning
the LoCor and sRGES scores.

which we find to be be non-essential. On the other hand, while the sRGES genes score
have somewhat higher means, they are not significantly different than zero. Again, there
is a strong overlap in confidence intervals indicating that more data is needed to determine
whether this difference is real.

Additionally, the scatter plots in Figure 2.14 show while there is some relationship with
large Achilles scores corresponding to genes deemed important through the LoCor analyses
there are a number of genes with high Achilles importance that are not picked up by LoCor
and vice versa. This provides further evidence that additional datasets or methods are
warranted to differentiate and validate the gene scores from both LoCor and sRGES.

2.6 Run time

We compared the run time for computing RGES with p-values and LoCor for subsequences
of length k = 2 and a window size of l = 150 with p-values using the package LoCor available
on GitHub. Note the code for RGES was taken from the corresponding GitHub. CMap code
is only available in an online tool where it is possible to control the number of samples,
so we were not able to directly compare timing with that method. However, given that
CMap and sRGES have similar computational strategies it is likely the computational time
between those methods is comparable. Recall, to compute p-value for sRGES it requires
a permutation test, the sRGES code defaults to using 10,000 permutations, which is what
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we use for this comparison. The results using the microbenchmark package in R in the
table below. The times were compared using the LIHC data to create a disease signature
and subsets of varying size of the LINCS data to see how run time changes as sample
size increases. The LoCor algorithm can be simplified when the user does not ask to save
gene specific counts, so we show the computational time for LoCor when the user wants to
understand the gene contributions and one where the user does not need that information.

100 1,000 10,000 66,510
sRGES 28.95 31.21 65.23 333.60

LorCor (with gene counts) 6.33 9.03 36.53 247.34
LorCor (without gene counts) 6.20 7.22 16.52 76.98

Table 2.2: Comparision of run for k = 2 and l = 150 on the LIHC data.

Of note in Table 2.2 we notice that there is significant decrease in run time for LoCor
when compared to RGES. This is primarily due to the fact that in RGES (and CMap) p-
values for individual samples are computed using a permutation test, however we know the
asymptotic distribution of our statistic under the null and have seen in simulation that for n
as small as 500 that we approach the asymptotic distribution. Thus, our method has almost
automatic computation of p-values that does not rely on a permutation test. Both CMap
and sRGES are cloud based computation tools due to issues with run time, but a distinct
advantage of LoCor is the ability to compute statistics and associated p-values on a personal
computer in the matter of mintues, even for a large number of samples.

We also compute run times for k = 2 and various window lengths, which is included in

Figure 2.14: Comparison of LoCor gene score (x-axis) to median Achilles effect score (y-axis).
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Tables 2.3 and 2.4. It should be noted that for k > 2 we see a significant increase in run
times, because the algorithm required to compute decreasing counts for subsequences that
are larger than 2 must be implemented as a dynamic program which is much more intensive
the relatively simple computations when we only care about finding pairs of decreasing
subsequences.

Window length l 100 1,000 10,000 100,000
100 4.50 6.42 12.85 86.60
150 6.27 7.62 19.52 128.40
200 8.76 9.54 23.91 170.77

Table 2.3: Comparison of run time in simulated data for varying window lengths l, when
we do not need to compute gene-wise statistics

Window length l 100 1,000 10,000 100,000
100 4.65 6.85 29.35 242.32
150 6.58 9.05 37.37 318.10
200 8.71 12.42 50.10 412.19

Table 2.4: Comparison of run time in simulated data for varying window lengths l, when
we do need to compute gene-wise statistics

2.7 Discussion

In this paper we introduced a new statistic, called LoCor, to assess the relationship between
diseases and drugs based on changes in gene expression. LoCor is a computationally efficient
method that overcomes the statistical disadvantages of current methods by removing the
need to apply a cutoff to the disease differential expression profile. The statistic is still able
to detect the local pattern of reversal in the disease genes by naturally applying more weight
to reversal at these genes through the counting decreasing pair in circular windows on the
permuted drug DE profile. From our simulation we found that LoCor outperformed previous
methods in a number of scenarios, while also being less sensitive to tuning parameters. Using
IC50 as the pseudo-ground truth to evaluate performance LoCor performs comparably to
both CMap and sRGES in real data. Admittedly, IC50 is not a perfect evaluation framework
given that it is not a definitive indicator of true drug efficacy. Even if we ignore this concern
about IC50 the limited overlap of drugs with IC50 and LINCS L1000 data further limits this
validation strategy. We are only able to compare methods on a subset of less than 1% of
compounds, and those tend to be the well studied compounds. Ideally, in the future we
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would be able to effectively validate a wider range of perturbagens and test discovered drug
indications in vitro.

Another avenue for future work is to improve summarization across samples of the same
compound, particularly as better validation strategies become available. Finally, and poten-
tially most importantly, as data measuring other differential changes of molecular features
in diseases and with exposure to drugs, increases in the coming years methods can be ap-
plied to these new data modalities will be crucial. The drug discovery statistics need to be
flexible enough to incorporate new data types and combine information across these data
types. That is one advantage that LoCor has over previous methods, because sRGES and
CMap rely on picking a informed cutoff to determine disease related features that will require
researchers to appropriately choose such a cutoff in other data types. LoCor, on the other
hand, has window length as a tuning parameters, which is less sensitive, and thus more likely
to be directly used on these new molecular features. Finally, given the asymptotic distribu-
tion of LoCor is independent of this choice of window length, it may be possible to combine
information across data modalities by simply taking the mean or median of the individual
modality scores.
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Chapter 3

GeneFishing in scRNA-sequencing
data and its applications

3.1 Introduction

Data which profile the transcriptome at cell-level resolution have been a revolutionary ad-
dition to the field of genomics. The so-called single cell RNA-sequencing (scRNA-seq) data
have allowed researchers to uncover dynamics that were otherwise impossible to see in bulk
transcriptomic data. It is now feasible to create atlases of cells and their sub-types, such as
the Human Cell Atlas [78], and to investigate cellular differentiation, among many other ap-
plications. Accompanying the opportunities that arise with scRNA-seq data there are unique
difficulties, such as high sparsity due to dropout [48] and the need to account for cell-to-cell
heterogeneity [100]. The particular characters of this data often require modifying and/or
creating new computational tools from those used previously in bulk RNA-seq [114].

While much effort in the past decade has been made to develop statistical methods
for tasks in single cell data, such as differential expression analysis, imputation, and cell
type clustering, less is understood about quantifying relationships between genes in scRNA-
seq. In bulk data using gene-gene co-expression and other modeling techniques to infer gene
regulatory networks (GRNs) have been successful [92, 116]. Some of these methods originally
developed for assessing gene similarity in bulk data have been applied to single cell data [50,
43].

Additionally, there are recent attempts to develop models and co-expression measures
designed specifically for single cell data [91, 20, 66, 97]. Many of these methods require
pseudo-time estimates to infer the networks, and thus are only applicable to single cell
datasets where such an ordering is possible. Moreover, efforts to benchmark similarity mea-
sures and the inferred networks in single cell data have generated conflicting results, with
no method consistently producing better inference or outperforming methods originally de-
signed for bulk data [24, 89, 75].

In this paper we extend the semi-supervised learning method called GeneFishing [55],
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to assess similarity among genes in single cell data. GeneFishing is a gene prioritization
method, meaning that it searches for genes likely to be involved in a biological process based
on a small set of genes that are already known to play a role process in question, which we
call ”bait” genes. The output of GeneFishing is a list of genes that tightly co-express with
the genes which are known to be involved in the biological process, thus providing biologists
with a manageable group of genes to further study.

To the best of our knowledge this is the first gene prioritzation approach that is applicable
to single cell data. Common techniques such as ENDEAVOUR [95] and GIANT [109] are
run through online databases which currently have no single cell data for analysis.

While originally designed for use in bulk RNA-sequence data, GeneFishing leverages the
statistical techniques of subampling, dimension reduction, clustering, and aggregation to
tease out signal in large genomic datasets. In each step of the GeneFishing method small
groups of non-bait genes are randomly sampled and subsequently gene-gene similarity is
computed between those random sets of genes and the bait. This dramatically reduces the
size of the co-expression matrix, and when combined with the other features mentioned above
it allows the true biological signal to stand out. Without this subsampling, even in bulk data
where gene-gene co-expression is comparatively easier to measure, the large number of gene
pairs can lead to high false positive rates. This problem is exacerbated in single cell data
due to the higher levels of noise, and has been shown to worsen with the use of imputation
[7].

Despite the advantageous properties of GeneFishing, we found two main difficulties with
applying GeneFishing directly to single cell data due to the higher noise levels. Namely, it
was not trivial to define the biologically relevant bait genes and the application of traditional
spectral clustering was often overwhelmed by outliers. In order for GeneFishing to function
correctly, the method requires a group of genes with similar expression that are dissimilar to
most other genes in the data. The original GeneFishing process used spectral clustering [69]
to determine gene groupings. However, we found that in single cell data spectral clustering
was not sufficient. We use uniform manifold projection (UMAP) [63] as a second dimension
reduction step after computing the spectral decomposition of the gene-gene similarity matrix.
The UMAP coordinates result in the desired clustering pattern when the spectral coordinates
alone did not.

Additionally, we provide a bait gene selection algorithm that overcomes the difficulties
with finding the appropriate group of tightly co-expressing genes. The algorithm takes
a larger set of potential bait, usually a group of genes annotated to a pathway or gene
ontology (GO) term, and finds subsets that have high co-expression. This allows biologists
to begin with a loose hypothesis about related genes that will are expected to be expressed
in a sample and still fish out biologically relevant genes.

Initially, the goal of this project was apply GeneFishing to single cell data, through the
extensions described above. However, we found that we could also use the methodology as a
means to better understand how to to measure of gene-gene similarity in a specific scRNA-
seq dataset and as a context-specific feature selection technique for downstream analyses
such as clustering cells.
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The central part of the automatic bait selection algorithm is a statistic quantifying the
tightness of bait set. We found that this can be used to check which similarity measure
is most applicable to a given dataset by seeing if genes, which we believe should be co-
expressed in a sample are exhibiting that co-expression in the data. Additionally, with the
same tightness metric we noticed that cellular heterogeneity is important for detecting co-
expression among related genes. We find that when measuring similarity among genes using
a homogeneous sample of cells, say all cells with the same cell-type label, the relationships
between related genes is not distinguishable, despite being so when additional cell types are
included in the analysis. These two observations provide additional insights to the growing
literature on GRNs in single cell data.

Finally, we can use the list of biologically relevant genes that are outputted from Gene-
Fishing as a context-specific feature selection method. Many downstream analysis of scRNA-
seq require an initial feature selection step, selecting a smaller set of genes, to overcome the
curse of dimensionality. There are a number of methods for performing this feature selec-
tion, such as using highly variable genes [18] or removing genes with higher than expected
dropout-rates [8]. However, these methods choose genes based on expression in all cells in
the sample and do not leverage any prior information about genes we know that should
be expressed in a particular cell type. We use the output from GeneFishing to select a
reasonable size subset of genes which are highly expressed in the targeted cell type. Then,
we show that these genes allow us isolate these individual cell types and uncover additional
heterogeneity that is challenging to see otherwise.

GeneFishing has been shown to work well in bulk RNA-sequencing data, but our goal in
this paper is to improve the method for single cell RNA-sequencing (scRNA-seq) data and
present an accompanying R package called scGeneFishing. We provide two modifications
to GeneFishing that improve performance in single cell data and demonstrate the unique
ways that the method can be used to understand the intricacies of single cell data, from cell
type heterogeneity to cell type clustering.

3.2 Methods

GeneFishing framework

As mentioned in the introduction, GeneFishing is a semi-supervised technique that relies on
clustering and random sampling of genes. The input to the algorithm is a gene expression
matrix and a tightly co-expressed and biologically relevant group of genes, which we call
”bait”. The bait is then used to ”fish out” genes that are likely to be related to the original
biological process. The authors found that the method worked well in bulk RNA-sequencing
data. Namely, using the liver data from GTEx [57] they were able to discover novel cholesterol
metabolism genes, which were experimentally validated.

An overview of the framework is included in right panel of Figure 3.1. Given a tightly
co-expressed set of bait genes the method works by randomly partitioning all other genes
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Figure 3.1: Schematic of automatic bait selection and GeneFishing procedure. Starting with
a larger set of potential bait genes (e.g. genes from a GO term) we search for subsets of those
potential bait that are able to be used as bait. If there is a subset with tight co-expression
we call that bait and do GeneFishing. In GeneFishing, all non-bait genes, are split into
random sub-groups that are clustered with the bait genes. This is repeated n times and the
proportion of times that a non-bait gene clusters with the majority of the bait over the n
samples is called the capture frequency rate (CFR). High CFR indicates the non-bait gene
is highly co-expressed with the bait genes.

into sub-search-spaces, which contain α times the number of bait genes. Typically, we set
α = 5, but this is a parameter of the method that can be changed. These sub-search-spaces
are the key of GeneFishing as they increase the signal-to-noise ratio and allow the biological
structure in the data to be detected. For each sub-search-space we apply spectral clustering
[69] with k = 2 clusters to the non-bait and bait genes. The non-bait genes which cluster
with the majority of bait genes have similar expression patterns in that sample, while the
non-bait genes in the other cluster have less similar expression. For this to work the bait
genes need to form a tight cluster in most sub-search-spaces such that only a small number
of bait are in the bait gene cluster. This desired clustering structure is depicted by the green
bait genes in Figure 3.1.

This random partitioning is repeated N times and we count the proportion of times that
each non-bait gene clusters with the bait genes for each partition, which we call the capture
frequency rate (CFR). Typically, the CFR distribution looks similar to that in Figure 3.1,
where the majority of genes have CFR ≈ 0 indicating they rarely cluster with the bait, and
a smaller set of genes have CFR ≈ 1 indicating they almost always cluster with the bait.
Those genes with CFR ≈ 1 are what we say are fished out. The steps for this algorithm as
summarized below:

Step 1: Randomly partition the data into sub-groups of size m.
Step 2: For each sub-group compute co-expression matrix of m sub-group genes and the
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bait genes.
Step 3: For each sub-group co-expression matrix do spectral clustering and determine

which, if any, sub-group genes cluster with the majority of the bait genes.
Step 4: Repeat steps 1-3 N times and compute capture frequency rate (CFR), which

is the proportion of times that each non-bait genes clusters with the majority of the bait
genes. The CFR is used to rank relevance of genes.

Step 5: Determine cutoff on CFR for fished genes using method from [112]
For scRNA-sequencing data we optionally modify Step 3 by using UMAP on the original

spectral coordinates before applying the k-means algorithm to perform clustering. This ad-
ditional dimension reduction step improved performance by increasing signal in the presence
of noisy genes.

Automatic bait selection algorithm

In the original GeneFishing method the user needed to a priori select a tightly co-expressing
set of bait genes. However, finding such a set is not trivial in bulk data and due to the
sparsity of single cell data very challenging in single cell data. We alleviate this problem
by adding an automatic bait selection algorithm that will take a larger list of biologically
related genes, which we will call potential bait W and search for a set of subsets B = {B1 ⊆
W, . . . , Bm ⊆ W : Bi ∩ Bj = ∅, ∀i 6= j} that cluster tightly in the presence of randomly
sampled genes. Each of the subsets Bk = (b1, . . . , bmk

) can then be used as bait. Typically,
W will be all genes annotated in a GO term or pathway that is thought to be expressed in
the sample of cells present in the data.

If there are no subsets of W that can be used as bait that is likely either due to the
potential bait being unrelated to the sample of cells in the data or the need to use a different
measure of similarity. In this sense the automatic bait selection algorithm is a good way
to check the appropriate measure of similarity in a given dataset. We illustrate this idea
in Section 3.2 below. For this paper we find that using Spearman’s rank correlation is
sufficient, but the R package allows for the use of different similarity measures such as
Pearson’s correlation and cosine similarity.

The tightness of the set of bait Bk in the presence of a set of the mk × α randomly
sampled gene set Rl = (r1, . . . , rmk×α) is determined by the following metric:

tl (Bk) =


median(||bi−bj ||)
||mB−mRl

|| spectral coordinates
median(||bi−bj ||)√
||mB−mRl

||
UMAP coordinates

for all i 6= j : bi, bj ∈ Bk. We do this for l = 1, . . . .M samples to get the average tightness

t (Bk) =
1

M

M∑
l=1

tl (Bk)
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With α = 5, we are sampling five times the number of genes in Bk. Intuitively, this
metric compares the average distance between all bait genes to the distance between most
bait and most random genes. We use medians and medoids to avoid strong influence from
outliers. The final step in the algorithm is to ensure that for each discovered bait set Bk

for k = 1, . . . ,m does not cluster with too many random genes for most samples. This
is necessary to avoid large influence from lowly expressed genes, which often form a small
cluster of their own.

If we are using UMAP, instead of spectral coordinates, to probe for bait we will slightly
modify the tightness metric to mitigate the fact that separation between clusters is exagger-
ated in the UMAP space. We do so by taking the square root of the distance between mB

and mRl
.

The algorithm for selecting bait, which is summarized in Algorithm 1 works by first
computing the tightness of the potential bait set W , t(W ). If t(W ) is below the tightness
threshold it will be used as bait, otherwise we split W into two groups. Splitting the genes
is done with by applying k-means with two clusters, either on the spectral coordinates of the
gene-gene correlation matrix or the UMAP coordinates of those spectral coordinates. We
then check the tightness of the two clusters, and if it is below the threshold we say those are
a set of bait genes. We typically use 0.5 as a threshold on the tightness of a bait set. This
roughly corresponds to the distance between the bait and random genes being twice as big
as the distance between bait genes. If the set of genes are not tight enough to classify as
bait, we try splitting the cluster again and recomputing tightness. We stop when there are
no sets with less than a minimum number of genes, usually 10.

Algorithm 1 Automatic bait selection

P ← {W}
while |P| > 0 do
Ptmp ← []

for P in P do
Cluster P = (p1, . . . , pm) into two clusters
for k ← 1 to 2 do

if t ({pi : i ∈ k}) ≤ cutoff then . check if set if tight enough
cnt1← cnt1 + 1; Bcnt1 ← {pi : i ∈ k} . these genes are a bait set

else if |{pi : i ∈ k}| > min genes then
cnt2← cnt2 + 1; Ptmp[[cnt2]]← {pi : i ∈ k} . these genes will be split and

tested again
end if

end for
end for

end while
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3.3 Results

Data Processing

For all real data analyses we used data from the Tabula Muris Consortium [28]. We followed
the pre-processing steps outline in Chapter 6 of ”Orchestrating Single Cell Analysis” [5].
We used quickPerCellQC from the scater R package [61] to remove any cells with a high
proportion of spike-in reads.

After removing low quality cells we followed Chapter 7.5.1 of ”Orchestrating Single Cell
Analysis” to normalize the expression matrix. We again used the scater package to nor-
malize the counts using the default quickCluster and computeSumFactors to normalize
by applying the deconvolution strategy [59]. Finally, we log-transformed the data. It is
important for single cell data to use the normalized and log-transformed counts as input to
the automatic bait selection and GeneFishing algorithms in order to appropriately assess
similarity of genes.

In addition to filtering out low quality cells we removed genes with low expression. In
order to reduce the search space for GeneFishing we removed 25% of genes with the lowest
variance across the remaining cells. If any genes remained that were not expressed in at least
5 cells those were removed as well.

Automatic bait selection in liver data

Bulk RNA-seq GTEx data

As an initial test of viability of the described automatic clustering algorithm we looked at the
bulk RNA-seq liver data from GTEx [57] used the original GeneFishing paper. In the original
paper the authors used with 21 genes from the GO term ”GO:0008203 cholesterol metabolic
process” from Ensembl BioMart, which were hand selected from all genes annotated in the
GO term. Since the publishing of the paper additional genes have been added to the GO
term. Using the automatic bait selection algorithm we recovered a bait set with 29 genes,
including all 21 of the original bait set genes, 20 of which are in the cholesterol biosynthesis
pathway.

In Figure 3.2 (a) we can see the spectral coordinates for all GO term genes. The newly
discovered bait set contains 8 genes that were not in the previous bait set (the green circles)
while the blue points represent annotated GO term genes that will not be used as bait.
Recall, that the bait needs to cluster tightly in the presence of non-bait genes and the
selected bait satisfies that constraint while the unselected GO term genes do not as is shown
in Figure 3.3. Overall, this algorithm produces a bait set that is very similar to the bait set
manually selected in the original paper as Algorithm 1 is appropriately subsetting GO term
genes based on their co-expression.
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Figure 3.2: Results from automatic bait selection and GeneFishing in liver data. a) Compar-
ing selected bait GTEx bulk RNA-sequence data to the bait used in the original GeneFishing
paper. All points on this plot are from the cholesterol metabolic process GO. We discover
a set of 29 genes (green points) to be used as bait and recover all original bait (triangles).
b) Comparing spectral and UMAP coordinates for bait selection in mouse scRNA-sequence
data. Green points are the 14 genes from cholesterol metabolic process GO term that were
discovered by the algorithm and red points 70 genes randomly sampled from all other genes
in the data. UMAP coordinates clearly cluster bait genes which is not the case with spectral
coordinates. c) Capture Frequency Rate (CFR) from GeneFishing with UMAP bait from
b). d) GO term (left) and KEGG pathway (right) enrichment results for the fished out genes
from c). To the left of the bar are the number of genes in the fished out gene set (excluding
the original bait) that are annotated in the GO term or pathway.
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Figure 3.3: Automatically selected bait (right) vs. non-selected cholesterol metabolic process
GO term annotated genes in the presence of genes that are not annotated in the cholesterol
metabolic process GO-term (grey). We see that the selected bait (green) separate along
the first eigen vector from the non-GO term annotated genes, which is not the case for any
reasonable sized subset of the group of GO-term annotated genes that were not selected
(blue).

Using UMAP to select bait and perform GeneFishing in liver scRNA-seq data

In addition to performing Algorithm 1 on the bulk data we used the same GO term for mice in
scRNA-seq liver data from the Tabula Muris consortium [28]. The cholesterol metabolic pro-
cess GO annotated genes come from http://www.informatics.jax.org/go/term/GO:0008203.
We used the normalized log counts from 7,878 genes in 1,924 liver cells. This data was
collected using microfluidic droplet-based 3’-end counting technology. Of these cells, 1,764
are hepatocyte cells making this a relatively homogeneous sample. To remove unexpressed
genes from the search space we did an initial feature selection step of removing the 25% of
the genes with the least variable expression.

After removing genes with low expression we were left with 99 annotated genes, which
we used to search for bait sets with Algorithm1. Using spectral coordinates we were unable
to recover any subsets of the cholesterol metabolic process genes that would be used as bait.
However, by using the UMAP coordinates of those spectral coordinates in Step 3 we found
two sets of 14 and 11 genes, respectively, that are tightly co-expressed. The 14 bait genes
selected have three cholesterol metabolic process pathway genes while the seven of the eleven
genes for the second bait gene are in the steroid biosynthesis pathway.

The spectral and UMAP coordinates for the 14 gene bait set (green points), which is the

http://www.informatics.jax.org/go/term/GO:0008203
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tighter of the two, in the presence of 70 randomly sampled genes (grey points) are shown
in Figure 3.2 (b). We can see that the UMAP coordinates produce a bait gene cluster that
is clearly separated from most random genes. On the other hand in the left panel of the
spectral coordinates do not exhibit such separation. This is mostly due the large influence
on the spectral decomposition from the small number of randomly sampled genes that in the
bottom right hand of the figure. Although we are only showing one sample of non-bait genes
this phenomenon is consistent across the majority of samples we saw for this liver data.

We have found that there are times where both spectral and UMAP coordinates can be
used to discover similar, or exactly the same, bait sets. This is particularly true when there
is a tightly co-expressing set of bait genes that separates from non-bait genes in the spectral
coordinate space. If that is the case using UMAP coordinates provides no additional benefit.
The primary benefit for the purposes of bait discovery is in the situation that is depicted
in Figure 3.2 (b) where a small number of non-bait genes consistently separate themselves
from all other genes which makes the bait gene cluster indistinguishable from the majority
of the non-bait genes.

In addition to using UMAP to in the automatic bait selection algorithm, we can also
use UMAP throughout the GeneFishing process, as additional layer of dimension reduction
prior to performing k-means. The CFR distribution for doing so with this 14 gene bait set is
show in Figure 3.2 (c). We can see that this looks very similar to the idea CFR distribution
in that we are fishing out a relatively small group of non-bait genes, in this case 453 genes.
We do fish out 31 genes that were in the original GO term, despite there being on 14 genes
in the bait set.

In order to assess the quality of the fished out genes we check which KEGG pathways and
GO terms those genes are enriched for in comparison to the other genes in the data using
the R packages clusterProfiler [113] and topGO [4], respectively. The 10 most enrichment
pathways and GO terms are shown in Figure 3.2 (d) where the number at the edge of each
bar indicates the number of fished out genes in either the pathway or GO term. This data
is also shown in more detail the Supplementary information Tables B.1 and B.2.

We find that fished out genes are enriched for a number of pathways that are related
to cholesterol metabolism such as steroid hormone biosynthesis (mmu00140), bile secretion
(mmu04976), linoleic acid metabolism (mmu0591), and cholesterol metabolism (mmu04979).
Cholesterol is the precursor for many classes of steriod hormones and is relied on in the
biosynthesis pathway [85] and bile is a direct byproduct of cholesterol biosynthesis [27].
Additionally, linoleic acid is known to lower blood cholesterol levels [19]. While we fish out
13 additional cholesterol metabolism pathway genes that were not in the original bait set.

However, the two pathways with the strongest enrichment, the complement and coag-
ulation cascades (mmu04610) and retinol metabolism pathways (mmu00830) have a less
clear relationship with the cholesterol metabolic process. There is a limited amount of re-
search connecting blood coagulation with cholesterol levels [12, 64] as well as blood retinol
and blood cholesterol levels [99], but the connection is less direct than the other enriched
pathways mentioned above.

Additionally, cholesterol, drug and xenobiotic metabolism are all subject to feedback from
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P450 enzymes and transporters [81], so the enriched GO terms of exogenous drug catabolic
process (GO:0042738), negative regulation of epoxygenase P450 pathway (GO:0019373) and
xenobiotic metabolic pathway (GO:0006805) all make sense biologically. Again there is not
much research connecting cholesterol metabolism to other enriched GO terms like endopep-
tidase activity (GO:0010951) or blood coagulation (GO:0007596), but overall the fished out
genes are enriched for a number of pathways and GO terms with direct implications in
cholesterol metabolism. This indicates that we are the genes clustering with the cholesterol
metabolism bait have biological importance.

Overall, we were able to use UMAP coordinates to detect viable bait sets in scRNA-seq
data when it was not possible with spectral coordinates. Those bait genes were then used
to perform GeneFishing, also with UMAP coordinates, and produce a fished out gene set
that contains genes which are present in pathways and GO terms relevant to cholesterol
biosynthesis.

In general, we have found that using UMAP will always produce results with smaller
sets of fished out genes than spectral coordinates on the same bait set. This is important if
the biologist is interested in having a small set of hypotheses to test. However, UMAP does
increase the computation time considerably, so it is recommended to use spectral coordinates
if you are able to discover a tight enough bait set in that coordinate space prior to using
the GeneFishing algorithm with UMAP. The timing comparison for spectral and UMAP is
included in Tables 3.1 and 3.2.

Coordinate type Correlation method Time (s)

Spectral
Pearson 480.4

Spearman 604.2

UMAP
Pearson 914.4

Spearman 1075.8

Table 3.1: Time in seconds for using probeFishability function to search for bait sets from
potential bait on 20 cores. Using the liver Tabula Muris data with 7,878 genes and 1,924
cells. Our potential bait set is the cholesterol metabolic process GO term genes. There are
97 of these genes in the data. Throughout we set α = 5, k = 2, and M = 100
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Coordinate type Correlation method Time (hh:mm:ss)

Spectral
Pearson 01:05:36

Spearman 01:48:25

UMAP
Pearson 05:02:32

Spearman 05:27:01

Table 3.2: Time in seconds for using scGeneFishing function to perform GeneFishing using
bait selected from the automatic bait selection algorithm on 20 cores. Using the liver Tabula
Muris data with 7,878 genes and 1,924 cells. Our bait set is 14 genes chosen from the
cholesterol metabolic process GO term genes. Throughout we set α = 5, k = 2, and
N = 1000

Importance of cell heterogeneity and metric choice to gene-gene
similarity

In addition to using UMAP coordinates to refine the analysis in single cell data, we can use
the automatic bait selection algorithm to to assess the importance of cell heterogeneity and
similarity metric choice to co-expression analysis. The viability of GeneFishing is directly
related to whether there is signal in gene-gene similarity. In this section we use a sample
of 1,419 pancreas cells, again from the Tabula Muris consortium, to that how we can use
Algorithm 1 to determine a good similarity metric and to illustrate that using a set of cells
that is too homogeneous makes it difficult to separate signal from noise.

Impact of similarity metric

We looked at three measures of similarity, Pearson correlation, Spearman’s rank correlation,
and cosine similarity. Using these measures we found that Pearson and Spearman’s rank
correlation outperformed cosine similarity in the pancreas data. After data pre-processing
the pancreas scRNA-seq data used from Tabula Muris contained measurements from 10,856
genes in 1,419 cells. This data was collected using FACS technology. There are nine cell
types that were labeled in the pancreas including 439 beta cells and 386 alpha cells.

Using the aforementioned measures of similarity we found almost exactly the same bait set
of 11 genes from the insulin secretion GO term http://www.informatics.jax.org/go/term/GO:0030073
with the exception that there was one extra gene in the Spearman’s correlation bait.

Using the 11 genes common to all three bait sets we computed the tightness of the bait
tl(B) over M = 500 random samples of non-bait genes. In Figure 3.4 (a) we plot the tightness
of each similarity metric using UMAP coordinates across these samples and see that Pearson
and Spearman’s correlation consistently has the bait set separating from the non-bait genes.
Recall, that a tightness of 0.5 implies that the bait genes are twice as close to each other
as they are from the non-bait genes in the sample. Cosine similarity still finds this bait to
be tight enough with mean (tl(B)) < 0.5, however it is on average much more disperse than

http://www.informatics.jax.org/go/term/GO:0030073
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Figure 3.4: Impact of cellular heterogeneity and similarity metric choice of GeneFishing. a)
Tightness of a set of 11 bait genes (the same set was found by all three similarity metrics)
in pancreas cells over 500 random samples of non-bait genes. Pearson and Spearman’s
correlation on average produce tighter bait sets, which results in more precise GeneFishing
results, than cosine similarity in this data. b) Tightness of the same 11 bait genes when
using different groups of cells to cluster genes. When using all the cells in the data (red) or
using only the alpha and beta cells (blue) we are able to produce tight clusters of non-bait.
Using only beta cells (green), which are the cells expected to have high expression of insulin
secretion genes, we see much less differentiation in co-expression from the non-bait genes.
c) Example of a sample of non-bait genes in the pancreas using those 11 insulin secretion
genes. We can see how tightly the bait cluster away from the non-bait when using all cells
or alpha and beta cells. That is not the case when we only consider beta cells.
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the the other two metrics. This implies that in this data using one of the two correlation
measures is appropriate. In Figure 3.5, we show the UMAP projection of two samples of
non-bait genes for each similarity measure. We also a similar pattern using the liver data
and bait from Section 3.3 where, again, Pearson and Spearman’s correlation work best in
Figures 3.6 and 3.7.

In general, the user can use the automatic bait selection algorithm to determine whether
there is a similarity metric that allows for a subset of genes in a pathway or GO term to
show strong co-expression. If there no similarity metric exhibits co-expression, then it is
likely that those genes are not related in the sample of cells.

Impact of cell heterogeneity

We found that the level of heterogeneity in the cells has an interesting relationship with the
ability to perform GeneFishing in this data. When we use cells, all of the same cell type,
the gene-expression is too homogeneous to see clear clusters of the bait genes. However, if
we include one additional cell type in the analysis, the contrast of expression in those cell
types allows for clear patterns to arise. It is often the case that this one additional cell type
produces similar results to using all the cells in the data.

We illustrate this point by considering the same pancreas data. Of the 1,419 pancreas
cells there are 439 cells that are labeled as pancreatic beta cells and 386 as pancreatic alpha
cells, as well as smaller numbers of an additional seven cells types If we consider the insulin
secretion GO term we expect the expression of these genes to be strongest in beta cells,
because insulin is secreted in response to high blood glucose levels from beta cells in the
pancreas.

In Figure 3.4 b we see the bait tightness for the 12 bait genes selected from the insulin
secretion GO term using Spearman’s rank correlation in three different groups of cells. The
distribution of tightness values is centered around 0.2 when using the two larger groups of
cells. However when we restrict to only use beta cells we see much higher tightness scores,
indicating that the bait genes are clustering much closer to the non-bait genes in most
samples. In Figure 3.4 c we see an example of this for a single sample of non-bait genes.
Clearly, the bait is separating well when using all cells or both alpha and beta. This is
somewhat surprising as those insulin secretion genes are more highly expressed in the beta
cells.

One possible explanation is that we are showing this for bait selected using all cells, so
it may be that we can find viable bait with Algorithm 1 when only using the beta cells. We
did this and found a small group of 7 insulin secretion genes, 4 of which were in the original
bait set found from all cells. These 7 genes do cluster more strongly in the beta cells only
(See Figure 3.8), however the tightness is much lower than when we use all cells and has
much higher variability.

Additionally, using these bait to perform GeneFishing we get better results when we use
the 12 bait genes in all cells as opposed to the 7 bait genes in beta cells. We are only able
to fish out a set of 4 additional genes using only the beta cells, while we get a group of 158
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(a) Non-bait sample 1.

(b) Non-bait sample 2.

Figure 3.5: Similarity for three different similarity metrics in two samples of non-bait genes
in the pancreas using a set of 11 bait genes selected from the insulin secretion GO-term. In
both (a) and (b) we are able to get clear clusters of bait genes using Pearsons and Spearman’s
rank correlation. Cosine similarity gives good separation in (b) but not (a).
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Figure 3.6: Tightness for three different similarity metrics in liver using genes selected from
cholesterol metabolic process GO term as bait.

genes when using all cells that are enriched for pathways associated with insulin secretion
such as maturity onset diabetes of the young (mmu04950) and prolactin signaling pathway
(mmu04917). Diabetes is a disease marked by the inability to properly secrete insulin for
controlling blood sugar levels while prolactin increases insulin production [73]. The 158
genes are also enriched for related GO terms such as glucose homeostasis (GO:0042593) and
G protein-couple adenosine receptor signaling (GO:0001973), which play a role in regulating
insulin prodction [46, 38].

We also checked that the tighter co-expression is not just a result of the number of cells
in the analysis by randomly selecting 439 cells from all pancreas cells and re-computing the
tightness. We found that we were still able to have very tight clustering of all 11 genes across
a number of samples of cells. In Figure 3.9 we show the UMAP projection for three of these
random samples. The bait is able to strongly separate from the non-bait genes in all three
instances. This implies that the decrease in co-expression when we restrict to only using
beta cells is not simply due to there being a low number of cells.

Finally, we see a similar phenomenon using a sample of heart and aorta cells, which is
shown in Figure 3.10 where the tightest co-expression arises when we use all cells to cluster
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(a) Non-bait sample 1.

(b) Non-bait sample 2.

Figure 3.7: Similarity for three different similarity metrics in two samples of non-bait genes in
the liver. Using genes selected from cholesterol metabolic process GO term as bait. In both
(a) and (b) we are able to get clear clusters of bait genes using Spearman’s rank correlation.
Cosine similarity gives good separation in (a) but not (b), and Pearson’s correlation has the
worst separation. These are just two samples of non-bait genes, but it is representative as
we see in Figure 3 a of the main text.
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(a) Non-bait sample 1.

(b) Non-bait sample 2.

Figure 3.8: Tightness of 7 bait genes selected from insulin secretion GO term in only beta
cells in pancreas. We can see that in all cell groups, even beta cells, the tightness is relatively
high compared to Figure 3 in the main text, but we are able to get tighter clustering when
only using beta cells than with all cells or when we add alpha cells.
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Figure 3.9: Tightness of bait genes selected from insulin secretion GO term when randomly
sampling pancreas 439 cells (the number of beta cells in the data). This shows three different
samples of cells, and in each sample we still see clear clustering of the bait genes. This
illustrates that the increased co-expression is not simply due to a smaller number of cells,
but more likely due to the contrast in cells that allows for co-expression to be seen.

the bait genes as opposed to the cell type with the highest expression of the biological process
of interest. This indicates that understanding gene-gene co-expression requires contrast in
expression levels within the cells being used to compute that correlation exists in multiple
datasets.

We hypothesize that the inability to detect strong co-expression is due to the homogeneity
of gene expression that exists within each cell type. The beta cells are marked by having high
expression of these insulin secretion genes, but with the group of cells which cells express
which genes is somewhat random, potentially due to dropout. When we include just one
additional group of cells, say the alpha cells, we now have samples with contrasting expression
of the insulin secretion genes. This difference in expression along the sample is what allows
us to see differentiate insulin secretion genes from other genes when using similarity metrics.

Using GeneFishing to refine cell type clustering in heart and aorta

A final interesting application of GeneFishing in scRNA-seq data is to use the fished out
gene set as a context specific feature selection method in a sample of cells. As mentioned
in the Section 1 selecting genes is an initial step that most algorithms require to prior to
performing analysis. These selected features and then used in the downstream analyses, such
as dimension reduction and clustering which are commonly used for creating cell atlases. In
this section we show how using GeneFishing with a GO associated with a specific cell type
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(a) Bait selected from all cells.

(b) Bait selected using only cardiac muscle cells.

Figure 3.10: Importance of cell heterogeneity to co-expression in a sample of Heart and
Aorta cells. Here we are using the cardiac muscle contraction GO term as potential bait
and find stronger correlation, using Spearman’s rank correlation, among the selected bait
when we use the bait selected from all cells in the data (a). If we only use bait selected from
cardiac muscle cells and endocardial (b) we still have tighter co-expression when we use all
cells to cluster the bait (red) as opposed to only the muscle cells (green).
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Figure 3.11: Using fished out genes to cluster cells. a) UMAP of heart and aorta cells using
the 500 most variable genes (left), 354 genes that were fished out using genes from the antigen
processing and presentation GO term as bait (middle), and 359 genes that were fished out
using genes from the endothelial cell proliferation GO term as bait (right). b) Zooming
in on middle plot showing the cell type labels from the SingleR package. c) Hierarchical
clustering on the correlation matrix of all cells in b) using the 500 most variable genes (left)
and 354 genes that were fished out using genes from the antigen processing and presentation
GO term as bait (right).
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Figure 3.12: Cell type separation from a heart and aorta single cell sample when using
various GO terms corresponding to the additional cell types in the data.

can be used as features for isolating that cell type from the remaining cell types. In addition
to isolating the cell type we also illustrate how the fished out genes help elucidate cell type
heterogeneity within the targeted cell type.

In this analysis we consider a sample of 654 heart and aorta cells which was collected using
microfluidic droplet-based 3’-end counting technology. After removing performing quality
control on the genes and cells we were left with 9,312 genes measure in 619 cells. There are
five cell types in this data (57 cardiac muscle cells, 63 endocardial cells, 176 endothelial cells,
97 leukocytes, and 226 fibroblast cells). For each cell type, with the exception of endocardial
cells, which are a subtype of endothelial cells, we found a GO term that describes a function
expected to be done by the cell type and using the automatic bait selection and GeneFishing
algorithms to find highly related genes. The fishing results, including enrichment analyses
are included in the Supplemental Information. We then used those fished out genes, along
with the discovered bait set, as features to cluster the cells with the hopes of isolating the
targeted cell type from all other cells, but not necessarily separating other cell types.

We show two examples of this in Figure 3.11 and additional results for GO terms related
to endothelial cells and fibroblasts are included in the Figures 3.12. To isolate leukocytes
(white blood cells) we used the antigen processing and presentation GO term (GO:0019882).
White blood cells are part of the immune system and thus rely on antigen presentation to
function properly. The antigen processing and presentation GO term has 114 genes, 74 of
which had expression high enough to be included in the analysis. Using UMAP coordinates
we found a set of 11 bait genes, mostly coming from the major histocompatibility complex II,
and were able to fish out 337 genes (excluding the bait set). The 337 genes are enriched for

http://www.informatics.jax.org/go/term/GO:0019882
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biologically relevant pathways like osteoclast differentiation and B cell receptor signaling and
GO terms such as innate immune response, adaptive immune response and inflammatory
response.

We can see in Figure 3.11 a) when we compare the leftmost panel, which shows the
UMAP coordinates for the cells based on the 500 most variable genes that there are three
groups of leukocytes, one of which is indistinguishable from the fibroblast cluster. When we
instead use these 354 genes from GeneFishing we still see three groups of these cells, but the
group of labeled leukocyte cells that were clustering with fibroblasts are now in the cloud
of cells including all other cell types. Using SingleR [9] we annotated the leukocyte cells
and found that these outlier cells are more likely to be fibroblast cells than leukocytes. This
is supported by the fact that when using primarily immune system genes we are unable to
separate that group from the other cell types.

In Figures 3.11 b) we show that the resulting clusters separated by cell type labels from
SingleR illustrating that these fished out genes are maintaining the ability to see cellular
heterogeneity within the leukocyte group, despite not being able to in the large cloud of other
cells. In Figure 3.11 c) we compare the hierarchical clustering of the cells in Figure 3.11 b)
when using the 500 most variable genes to do the clustering versus the fished out genes from
the antigen processing and presentation GO term. Both sets of genes produce a clustering
that roughly matches that of the SingleR labels, however the ratio of within group to out
of group correlation is much higher with the fished out genes than the variable genes. This
signals that we are selecting genes with more ability to distinguish between subtypes of
leukocytes than simply using variable genes.

In addition to the antigen processing and presentation GO term we also looked at the
endothethial cell proliferation GO term (GO:0001935) which has 153 genes. 108 of which
passed the threshold to be included in the analysis. Endothelial cells are cells which line
the blood vessel. We found a bait set of 21 genes which are involved in pathways like
Rap1 signaling, which is a regulator of endothelial barrier function [72]. We fish out 359
non-bait genes which are enriched for biologically relevant pathways like Rap1 signaling [72]
and GO terms such as angiogenesis (the formation of new blood cells) and establishment of
endothelial barrier.

We can see that these genes are mostly able to separate endothelial cells as well as
endocardial celll, a subtype of endothelial cells that are found lining the way of the heart,
from the remainder of the data. There is an exception of 4 cells which are labeled by Tabula
Muris as endocardial that are not clustering with the other endocardial cells using endothelial
cell proliferation but when we use the most variable genes. We compared those cells to the
SingleR reference. There are no endocardial cells in the reference, but those 4 cells had
the lower similarity to the endothelial cells than any other cell labeled as endocardial. The
correlation of the endocardial cells with the SingleR endothelial label is shown in Figures 3.13.

Additionally, we looked for genes with large differences in expression betwen those 4 out-
lier endocardial cells the endocardial cluster using the scran R package [58]. As is depicted
in Figure 3.14, we found many genes with low expression in the outlier cells including a
number of genes with documented importance in endothelial and/or endocardial cell devel-

http://www.informatics.jax.org/go/term/GO:0001935
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Figure 3.13: Correlation with endothelial reference cells using SingleR for all endocardial
cells. Note, that there was no endocardial reference and endocardial cells are a subtype of
endothelial cells. The cells marked in blue are the 4 endocardial cells from Figure 3 in the
main text that did not cluster with the others. SingleR labels all these cells as endocardial,
but the four outliers do have the least correlation with the reference, and thus are less likely
to truly be of that cell type.

opment and function such as Ephb4 [60], Arhgap29 [110], Ablim1 [77] and Rasip1 [110].
Further investigation would be needed to determine whether these cells are truly mislabeled,
but there at least some indication of a difference in those outliers that would not be picked
up by simply using the most variable genes.

We performed a similar analysis using the pancreas data from Section 3.3 and similarly
found that GeneFishing results using the insulin secretion or glucose homeostasis GO terms
isolated pancreatic beta cells. The cell type clustering for the pancreas cells is shown in
Figure 3.15, where we show that with bait derived from the insulin secretion and glucose
homeostatsis GO terms we can separate pancreatic beta and delta cells from the remaining
cells in the data. Additionally, we performed marker gene analysis using only the fished out
genes we found that GeneFishing isolated a number of genes that mark the pancreatic beta
cells such as insulin encoding genes Ins1 and Ins2 as well as the Iapp gene which encodes
for proteins released by the pancreas in conjunction with insulin [47]. This is shown in
Figure 3.16.
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Figure 3.14: Gene markers, selected only from the fished out gene using genes from endothe-
lial cell proliferation GO term as bait, that differentiate the large cluster endocardial cells
from the four outlier cells in main text Figure 3
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Figure 3.15: Cell type separation from a pancreas single cell sample when using various GO
terms corresponding to the individual cell types in the data.

Overall, we are able to use the GeneFishing results as a context specific feature selection
method that can help isolate individual cell types by pulling out biologically relevant genes.
This is useful in single cell analysis as it may be able to help elucidate cell type clusters
that have large overlap when using all cells. We have seen here that is can also maintain
subgroupings of larger cell types, in the case of leukocytes, and thus could be used to discover
finer structure in the data and potentially assist in relabeling cell types that were previously
mislabeled.

3.4 Discussion

GeneFishing is a semi-supervised learning method that utilizes subsampling, dimension re-
duction, and clustering to uncover signal in large datasets. The method is applicable in a
wide range of scenarios where the user a priori knows a group of items that are thought
to be associated. The automatic bait selection algorithm can be used to determine if the
relationship between those items is present in the data. If they are, then GeneFishing can be
applied, to search for other observations in the data with similar expression. In this paper
we illustrate its application in single cell genomics datasets as tool to discover new genes
related to a biological process of interest.

We are able to apply GeneFishing to scRNA-seq by using UMAP prior to clustering.
Typically UMAP is used a visualization tool in cell type clustering, but we show its impact
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Figure 3.16: Gene markers, selected only from the fished out gene using genes from insulin
secretion GO term as bait, that differentiate the pancreatic delta cell and pancreatic beta
cell clusters in Figure 3.15
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extends into gene clustering. It allows us to see distinct groupings among biologically related
bait genes that would otherwise be overwhelmed by noise when we use standard techniques
such as spectral clustering.

Additionally, GeneFishing in scRNA-seq data is not only useful as a gene discovery
method, but can be used to understand better ways to measure gene-gene similarity in this
data. This is important, because choosing the appropriate way to quantify relationships
between genes in single cell data is difficult [89] and additional information about how the
data and metric of association are related can lead to increased understanding. We show that
that cellular heterogeneity is important when assessing similarity among genes as a largely
homogeneous sample of cells does not provide the necessary contrast to cluster biologically
related genes.

The output of GeneFishing can also assist in downstream analyses, such as cell type
clustering, when used as a feature selection method. By starting with a group of genes
known to be expressed in a particularly cell type that is thought to be present in the data
the fished out genes can be used as features for isolating the cell type of interest, and
potentially uncovering heterogeneity among the targeted cell type. This can be particularly
useful if applied to datasets with hard to separate clusters of cells.

To summarize, the extensions in this paper allow for GeneFishing to be used in scRNA-
sequencing data. The code to perform the automatic bait selection and GeneFishing is
available in the scGeneFishing R package. In conjunction with its intended use of under-
standing function of genes the method has additional applications that are unique to single
cell data.
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Chapter 4

Using regional volumetric data to
predict clinical progression in multiple
sclerosis

4.1 Introduction

Multiple sclerosis (MS) is a neurodegenerative disease that affects the brain and spinal cord
through inflammation and demyelination. Patients with MS experience a wide range of symp-
toms, including loss of coordination and vision impairment. The majority of these symptoms
are physical disabilities, however individuals often experience cognitive impairment, such as
decreases in processing speed.

In addition to the variety of symptoms that are associated with MS there are also multiple
disease courses which are marked by varying patterns of progression. The majority of MS
patients have the relapsing-remitting course, RRMS. In RRMS individuals experience attacks
of new symptoms followed by periods of partial or full recovery. In this paper we will focus
on the RRMS disease course.

Magnetic resonance imaging (MRI) is used are a common clinical tool in MS care to help
determine disease course as well as to assess neurological damage. MRIs can be used to
track brain atrophy and monitor lesions. There has been much research to investigate the
relationship between MRI features and clinical outcomes. Studies have found associations
of disability with MRI features, such as whole brain volume and T2-lesion volume [21, 17,
2]. In addition to finding correlations between clinical outcomes and MR imaging features,
some researchers have looked into using these imaging features to predict disease progression
with varying success [16, 29, 56].

In addition to the work above that uses features describing changes across the whole brain,
there has been some work to understand the relationship of regional brain measurement and
progression. A few studies have found associations between disease course and regional
atrophy [71] as well as with clinical outcomes [31, 11, 13].
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The aforementioned are studies are focused on determining relationships between regional
atrophy and clinical outcomes. In this chapter we look to expand this research by using
regional volumetric data to predict progression at 96 weeks for patients with RRMS. This
is a difficult problem, because studies of MS are often small and given the volatile nature of
progression in RRMS it is difficult to assess progression when data are collected over only a
few years. Despite these challenges, we show that by clustering voxels to define subregions
of interest we are able to achieve good predictive performance and outperform models that
use no regional volumetric data.

4.2 Data

The data in this chapter is from the control arm of the phase 3 clinical trial OPERA I
(NCT01247324) [36]. The 411 patients in this arm received interferon beta-1a, which was
at the time the standard of care for RRMS. These patients were followed for 96 weeks and
a variety of demographic, clinical, and MRI data were collected throughout the trial.

We use the following baseline demographic, clinical, and and traditional MRI variables
to predict 24 week confirmed disease progression:

• Demographic: age, sex, weight, ethnicity, race, and region

• Clinical:

– Expanded disability scale score (EDSS): EDSS is an overall clinical score of MS
disability. It is heavily weighted by physical disabilities.

– Timed 25 foot walking test (25FWT): The 25FWT is a test of motor disability
where patients are timed while walking 25 feet.

– 9 hole peg test (9HPT): The 9HPT is a test of upper limb disability where patients
place pegs in a set of 9 holes.

– Single digit modality score (SSDMT): The SSDMT is a common test of cognitive
disability.

• Traditional MRI

– T2 lesion volume (T2VOL)

– Whole brain volume (BNVOL)

We choose these variables based on inclusion in previous MS analyses. In addition to
the variables listed above we have regional volumetric data of the brain extracted from MRI
scans. This regional volumetric data was processed via deformation based morphometry
(DBM), which aligned each patients baseline MRI scan to a common reference and compared
the expansion or shrinkage of each voxel from a given patient to the reference [10]. The
DBM data is in the form of a Jacobian map which describes the voxel-level transformation
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(a) Reference image (b) Deformation grid (c) Patient image (d) Jacobian map

Figure 4.1: Schematic of deformation based morphometry (DBM) adapted from [49]. Each
patient image (c) is aligned with the reference image (a). The deformation grid (b) illustrates
how the voxels from the reference image are distorted to match the patient image. The result
is a Jacobian map (d) where light colors indicate an expansion of the voxel in the patient and
dark colors indicate a shrinkage of the voxel in the patient. For example, the cerebrospinal
fluid in the center of the brain (the darkets area on the reference image) is much larger in
the patient. This is indicated by the bright white areas in the center of the Jacobian map.

to the reference where a Jacobian value greater than 1 indicates a larger voxel in the patient
compared to the reference and a Jacobian value less than 1 indicates the patient voxel is
smaller than the corresponding voxel in the reference. An schematic of how these Jacobian
maps are created is included Figure 4.1.

After dropping patients with missing baseline data in any of the variables listed above,
we were left with 371 individuals. Of these remaining patients 246 are females and 125 are
males. This is consistent with the breakdown of this disease in the general population as
approximately two thirds of MS patients are female.

Due to the nature of this data we will model using survival analysis, where we fit a
Cox proportional hazards model to predict disease progression. Of the 371 patients with
full baseline data, 90 have composite confirmed disease progression at 24 weeks (CCDP24).
CCDP24 is the outcome that we will be predicting in this study. It is defined by a patient
having 24 weeks of sustained disability progression in EDSS, the 25FWT, and/or the 9HPT.
We choose CCDP24 as the outcome for this study due to the relatively large number of
events as compared to the other clinical outcomes. It should be noted that EDSS is primarily
measuring physical disability, as is the 25FWT and 9HPT test. In future work, it may be
interesting to use this data to model additional clinical outcomes. Potentially, these different
models could provide important information about the relationship between regional brain
volume and different symptoms.

The Kaplan Meier curve for CCDP24 in these patients is plotted in Figure 4.2. In the
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(a) All patients (b) Separately by sex

Figure 4.2: Kaplan-Meier curves for CCDP24 using (a) all patients and (b) separating by
sex. In this dataset there is a higher proportion of progression in the male patients.

Figure 4.2 we show the survival for (a) all patients as well as (b) separating by sex. We can
see that there are a higher proportion of cases of progression in males than females (35 out
of 125 vs. 54 out of 246). However, using the log-rank test for differences in survival curves,
we found no significant difference between the two sexes (Chi-sq value of 2.7 and p-value
of 0.1). We show the sex-difference in progression, because we find in this data there are
additional distinctions between sexes when predicting progression in the male and female
groups separately. This may be due to random noise, but it is worth investigating in future
research whether this difference holds in additional datasets.

4.3 Methods and results

As mentioned in the introduction the goal of this chapter is to predict disease progression
using regional volumetric data dervied through DBM. Due to the large number of voxels
in the raw DBM images, we can dramatically reduce our search space by summarizing the
voxel level data within a region of interest (ROI). A ROI is defined by mapping images onto
an atlas that registers voxels to pre-defined brain regions. The ROIs are made up of varying
numbers of voxels and for each patient at each time point we can compute statistics such as
the mean, standard deviation, and skewness over those voxels. In doing so we now have a
relatively small set of features that describe the volume within each region.

Doing this summarization with the atlas defined ROIs we found they provided limited
ability to improve prediction of disease progression beyond what can be achieved using other
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(a) All patients (b) Separately by sex

Figure 4.3: Projection of thalamus proper voxels onto the PCA and UMAP coordinates
coloring by (a) clustering label from data-driven ROI definition and (b) side of brain.

demographic, clinical, and MRI features. We hypothesize that this is due to the atlas ROIs
encompassing voxels with high within patient heterogeneity and thus when we summarize
over all voxels in a ROI we may be losing the important information that is contained within
that heterogeneity. For example, consider a patient with DBM values less than 1, e.g. low
volume as compared to the reference, in a small portion of an ROI but DBM values slightly
larger than 1, e.g. larger volume than the reference, in the remaining voxels. When we
summarize over the ROI, the information in that small atrophied region will likely be lost in
the noise. Hypothetically, if this were the case for all patients who progress and in patients
who do not progress that atrophied area does not exist this will not be discovered.

Defining data-driven regions of interest

To overcome this hurdle, we defined data-driven ROIs, which split the original ROIs into
multiple groups. These new groups are determined by clustering the voxels based on the
distribution of Jacobian values across the patients. By doing this, voxels with similar patterns
across patients will be grouped together and separate from other voxels in the same ROI
with dissimilar patterns.

To do this clustering, for each of the 51 original ROIs, we apply two dimension reduction
techniques to the mk × n matrix Xk. Here mk is the number of voxels in ROI k and n is
the number of patients. We first do principal component analysis (PCA) on Xk to reduce
the number of features used to represent each voxel to 20. Then we use uniform manifold
projection (UMAP) [63] to further reduce the data, so that each voxel is represented by
4 features. UMAP is a non-linear dimension reduction method that is commonly used in
single cell data analysis. It succinctly summarizes the information in the 20 PCs into a lower
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(a) Brain stem (b) Paracentral

Figure 4.4: Projection of data-driven ROIs in the (a) brain stem and (b) paracentral. For
both of these regions we subset the original ROIs into three groups indicated by the red,
yellow and blue colors in the figures.

dimension, which is helpful for distance based clustering like k-means. In Figure 4.3 we show
the first two PCs and UMAP coordinates in the thalamus proper as well as. The cluster
labels are from applying k-means to the PCs and UMAPs respectively, while the left/right
labels in (b) indicate the side of the brain. We can see that the UMAP coordinates produce
an anatomically meaningful cluster structure that essentially separates the right lobe from
the left, which is not the case if we use the PCs.

After reducing each ROI into a mk × 4 matrix we use k-means to cluster the data and
choose the number of clusters which correspond to the highest average silhouette width [84].
The average silhouette width is a commonly used index for selecting a number of clusters
between 2 and 10. Average silhouette width is a statistic that looks for the clustering which
produces labels where the average distance between points in the same cluster being small
when compared to the average distance between points in different clusters. This procedure,
while it has been shown to work well in application, is ad hoc. We attempted other clustering
approaches, such as DBCSAN [32] and HDBSCAN [62] that automatically select a cluster
number, but we found they split the regions into too many groups.

In Figure 4.4 we show the clustering results in two atlas-based ROIs, the brain stem and
the paracentral. In both regions we split the original into three data-driven sub regions.
We can see that these data-driven cluster labels are grouping together voxels with close
anatomical proximity. This is important because it shows that these clusters have potential
for biological interpretation and indicates that the procedure is producing reasonable results.
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Figure 4.5: Adjusted rand index of voxel clustering in the brain stem and paracentral over
five random samples of patients. We use the ARI to assess stability of the data-driven ROIs.
A value close to 1 indicates strong agreement of clustering results, while a value close 0
indicates clustering results that are consistent with random partitions of the data.

As a further validation step for the derived data-driven ROIs, we compared clustering
results over five random samples of patients in the paracentral and brain stem. In each
sample we randomly selected 80% of the patients to be included in the dimension reduction
and clustering. We used the adjusted rand index (ARI) to compare the clustering results
over these five samples. The ARI is a common metric for assessing similarity between cluster
labels that compares the number of pairs in the data that agree between two clusters (e.g.
the points are in the same cluster in both labelings or in different clusters in both labelings)
to the expected number of pairwise agreements under a random model [42]. ARI is a value
between 0 and 1 where 1 indicates complete agreement between cluster results and a value
close to 0 represents agreement consistent with randomly assigning a label to each voxel.

In Figure 4.5 we show the ARI over these five random samples in the brain stem and
paracentral. We can see that there most values are close to 1 indicating strong similarity.
There is one exception in the paracentral in the fourth row and column. In every other
sample the region is split into 3 roughly equivalent regions, however in that sample the
voxels corresponding to the yellow and blue regions in Figure 4.4 are further subdivided into
two additional ROIs, creating 5 total clusters. In the brain stem we see consistent similarity
across samples. Given that we only compared similarity across five samples and in two atlas-
based ROIs it may be worth performing more thorough analysis with more samples and in
more ROIs, however these results indicate good, albeit not perfect, stability of data-driven
ROI labels. The stability promotes further confidence in the validity of the clustering results
and potential for application in independent datasets.
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Feature selection

After computing the mean, standard deviation, and skewness within each data-driven ROI
for each patient at baseline we split the 51 original ROIs into 162 data-driven ROIs. For
each of those we compute the mean, standard deviation and skewness, giving us 648 DBM
features. We also tried computing robust statistics, such as the median and interquartile
range, but found they performed similarity so that is excluded from this report. We also
found that kurtosis was not a good predictor of progression in the original ROIs and thus it
was left out of the analysis.

Due to the small sample size in the data, we perform an initial feature selection step to
reduce the number of DBM features included in our predictive model. We fit 648 logistic
regressions of our outcome of interest, CCDP24, for each DBM feature, while controlling
for the demographic, clinical, and non-DBM MRI variables that we will include in our final
model. As a reminder, the demographic variables are age, sex, region, ethnicity and race. We
also control for the following baseline clinical variables, weight, EDSS, 9HPT, and 25FWT
as well as traditional MRI features of T2 lesion volume and whole brain volume.

After fitting these logistic regressions we selected all DBM features with a p-value less
than 0.025 on the coefficient in the model. This left us with 14 data-driven ROI features to
use in our final model. Note, we also compare the model with data-drive ROI features to
that with original ROI features. Doing the same feature selection method for the original
ROIs we had 11 features. A table with the features, as well as the coefficients and p-values
from the logistic regions, are included in the Appendix Tables C.1 and C.2.

We also checked the stability of the selected features by subsampling 80% of the data and
re-fitting the logistic regression models for each feature in all the data-driven and original
ROI. After repeating this 100 times we checked where each of the features ranked within
each subsample. We did this for the feature selection controlling for all features in the final
model as well as only controlling for age, sex, and years since onset of the disease.

Figure 4.6 shows the comparison between the top features from the data-driven ROIs and
the atlas-based ROIs. On the y-axis we see the percentile rank of the feature and the x-axis
shows the top six features corresponding to each ROI type. We can see that despite there
being more than three times as many features with the data-driven ROIs we get similar,
and often better, stability across these subsamples when controlling for both feature sets.
This indicates that there is no increased instability in selected features despite the larger
feature set with the data-driven ROI. Another takeaway from this Figure is that the feature
selection is imperfect, and there are some selected features that would not be selected in
many sub samples. This is due to the high levels of noise in this data.

Note, that the feature selection procedure selects two different sets of features for each
ROI type. Appendix Tables C.1 and C.2 has the names of the selected features and the
corresponding coefficients and p-values from the logistic regression.
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Figure 4.6: Percentile rank of each feature across 100 random samples of the data for the
top 6 ranked features when using all data for feature selection. In the left panel we show
the stability of the top-ranked features when controlling only for age, sex, and number of
years since disease onset. In the right panel we control for all features listed in Section 4.2.
We compare the data-driven ROI feature selection to the feature selection with the original
ROI labels to ensure that the addition features are not leading to additional instability in
the feature selection procedure.

Predicting progression

Following our feature selection procedure we fit a penalized Cox proportional hazards model
to predict progression. We use a Cox PH model because this data is best modeled as time-
to-event data due as a number of patients drop out of the study prior to the final 96 week
follow up. We use the glmnet R package [34, 87] to fit a L2-penalized model.

Because we have an independent dataset from the OPERA II trial to validate our final
model we compared potential models over multiple 80/20 train-test splits using the Concor-
dance index (C-index) to determine model performance. For each train-test split we trained
the penalized Cox PH model using 5-fold cross validation. The C-index compares the ob-
served time-to-event to the predicted risk and counts the number of pairs of patients where
those two values are consistent (e.g. we predict higher risk for a patient with observed pro-
gression prior to a second patient). It then compares the consistent, also called concordant
pairs, to number of pairs of patients where the predicted risk is inconsistent, or discordant,
with the observed timing.

In addition, to performing this analysis for the entire patient group we also did the feature
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No-DBM model Original ROI model Data-driven ROI model

All patients
CV 0.63 0.65 0.71
Test 0.62 0.64 0.71

Female patients
CV 0.67 0.67 0.74
Test 0.65 0.65 0.73

Male patients
CV 0.56 0.74 0.79
Test 0.55 0.74 0.78

Table 4.1: Average C-index for the various models across the 100 train-test splits of the data.
The CV values are the average of the average C-index over the 5 folds within each training
split, while the test values are average C-index for each split on the held-out test set.

selection and training separately for males and females. The selected DBM variables that
are used in features for both of the sexes are included in the Appendix for females in Tables
C.3 and C.4 as well as the males in Tables C.5 and C.6.

The results over 100 train-test splits are shown below in Table 4.1 and Figure 4.7. Ta-
ble 4.1 has the average of C-index from the cross validation (CV) and on the held out test
set over these 100 samples for three models, (1) the model including all non-DBM features
listed in Section 4.2, (2) the model using the non-DBM features as well as the selected DBM
features from the original ROI labels, and (3) the model using the non-DBM features as well
as the selected DBM features from the data-driven ROI labels. The cross validation We can
see that on average the data-driven ROI model produces the highest CV C-index and test
C-index in all patient groups.

Another thing to note from Table 4.1 is that the performance of the model without
DBM features depends largely on the patients included in the model. When we model all
patients or female patients only the performance is relatively good, with a C-index above
0.62. However, with the male patients the non-DBM features have much less predictive
ability in this data. This is contrasted by the fact that the data-driven ROI performance
is best in the male patient group, despite the lower sample size. This indicates, at least in
the OPERA I trial, that regional volumetric data is better at predicting progression in male
patients as compared to female patients. This observation warrants more investigation and
validation in independent datasets.

Table 4.1 shows that on average the data-driven ROI model performs best, but we also
compared the models directly within each train-test split by taking difference of the CV and
test C-indices from the model with no DBM feature to the two models that include DBM
features. The results are in Figure 4.7. Here we are plotting the average difference over the
splits and the error bars represent plus or minus one standard deviation from that difference.
All of the data-driven
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Figure 4.7: Comparison of C-index to the model that excludes DBM variables across 100
random 80/20 train test splits of the data. The top panel contains the difference between
the average C-index from 5-fold CV within each sample. While the bottom panel has the
difference between the C-index in the test data in each split. The error bars are one standard
deviation of the differences across samples.

Testing for feature importance in prediction

We tested the importance of selected DBM features from the data-driven ROIs by randomly
permuted their labels independently for each patient. In doing so we broke the connection
between the individual DBM features and the data. The idea was that if we saw similar
performance using the permuted model and the unpermuted model it would indicate that
while the DBM data increases performance it is not due to the information within indivdual
regions, rather from the overall value across regions.

We do this by randomly sampling 25 train-test splits and comparing the difference be-
tween 100 permuted models within each train-test split and the unpermuted model. The
results are shown in Figure 4.8. In (a) we see the distribution of C-indices on the test set
for the mutated models in a single train-test split. The orange point on this plot is the test
set C-index for the unpermuted model. We can see that the unpermuted model outperforms
the permuted model. In (b) we show the difference between the unpermuted model and the
average permuted model across the 25 train-test splits. It is clear that permutation decreases
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(a) Distribution of C-index
(b) Difference of permuted and unpermuted
models

Figure 4.8: Comparing C-index from models where we randomly permute the DBM features
for each patient to the unpermuted model. By doing these random permutations we break
the relationship with the individual ROI labels. In (a) we look at the distribution of the
permuted models in a single train/test split. In (b) we look at the difference between the
average permuted C-index to the unpermuted model over 25 train/test splits.

the performance on the test set. This is showing that there is value in the selected ROIs.

4.4 Discussion and Future work

In this paper we were able to predict composite disease progression in multiple sclerosis using
regional volumetric data extracted from MRIs along with other demographic, clinical, and
traditional MRI features. We found using traditional atlas-based ROIs for the analysis was
not able to provide any added benefit to prediction. However, by defining data-driven ROIs
through voxel clustering we were able to derive regional volumetric features that added value
to our predictive model.

This is an important observation indicating that there may be some important hetero-
geneity within atlas based ROIs that is lost when computing summary statistics over the
regions. These data-driven regions initially appear to be relatively stable and have spatially
consistent. This data-driven voxel clustering will require additional validation to ensure that
it has biological meaning, but the prelimary results indicate it is a procedure that is success-
ful. In future work we hope to better understand why this clustering procedure was beneficial
as well as to determine if there is any biological interpretation of the derived regions.

In addition to validating the data-driven ROIs, further validation of the final model is
needed by testing it on new data. OPERA II is a independent RRMS trial that is a natural
fit to use for this purpose.

Finally, in this report we only utilize baseline regional volumetric data as a predictor of
composite disease progression, however this is a rich dataset with many oppoturnities for
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different model setups. For example, one could use regional atrophy data as a predictor or
model different clinical outcomes to see if the relationship between regional volume and/or
atrophy changes.



75

Bibliography

[1] Jennifer G Abelin et al. “Reduced-representation phosphosignatures measured by
quantitative targeted MS capture cellular states and enable large-scale compari-
son of drug-induced phenotypes”. In: Molecular & Cellular Proteomics 15.5 (2016),
pp. 1622–1641.

[2] Martina Absinta et al. “Association of chronic active multiple sclerosis lesions with
disability in vivo”. In: JAMA neurology 76.12 (2019), pp. 1474–1483.

[3] Adrian Alexa, Jorg Rahnenfuhrer, et al. “topGO: enrichment analysis for gene ontol-
ogy”. In: R package version 2.0 (2010), p. 2010.

[4] Adrian Alexa and Jörg Rahnenführer. “Gene set enrichment analysis with topGO”.
In: Bioconductor Improv 27 (2009), pp. 1–26.

[5] Robert A Amezquita et al. “Orchestrating single-cell analysis with Bioconductor”.
In: Nature methods 17.2 (2020), pp. 137–145.

[6] Simon Anders and Wolfgang Huber. “Differential expression analysis for sequence
count data”. In: Nature Precedings (2010), pp. 1–1.

[7] Tallulah S Andrews and Martin Hemberg. “False signals induced by single-cell impu-
tation”. In: F1000Research 7 (2018).

[8] Tallulah S Andrews and Martin Hemberg. “M3Drop: dropout-based feature selection
for scRNASeq”. In: Bioinformatics 35.16 (2019), pp. 2865–2867.

[9] Dvir Aran et al. “Reference-based analysis of lung single-cell sequencing reveals a
transitional profibrotic macrophage”. In: Nature immunology 20.2 (2019), pp. 163–
172.

[10] John Ashburner et al. “Identifying global anatomical differences: Deformation-based
morphometry”. In: Human brain mapping 6.5-6 (1998), pp. 348–357.

[11] Rohit Bakshi et al. “Regional brain atrophy is associated with physical disability in
multiple sclerosis: semiquantitative magnetic resonance imaging and relationship to
clinical findings”. In: Journal of Neuroimaging 11.2 (2001), pp. 129–136.

[12] MJ Ball et al. “Comparison of two triphasic contraceptives with different progesto-
gens: effects on metabolism and coagulation proteins”. In: Contraception 41.4 (1990),
pp. 363–376.



BIBLIOGRAPHY 76

[13] Marco Battaglini et al. “Voxel-wise assessment of progression of regional brain atro-
phy in relapsing-remitting multiple sclerosis”. In: Journal of the neurological sciences
282.1-2 (2009), pp. 55–60.

[14] Francisco Beca and Kornelia Polyak. “Intratumor heterogeneity in breast cancer”. In:
Novel biomarkers in the continuum of breast cancer (2016), pp. 169–189.
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Appendix A

Supplemental material for ”Local
rank-pattern based reverse
correlation”

A.1 Gene-wise statistics theory

In order to prove Theorem 2 from the main text, we need to show the result holds for
Z = σ(x), when Z is a uniform random permutation of {1, . . . , n}. This follows from the
assumption that x has an exchangeable distributions and x and y are independent.

For notational simplicity in the proof, we define a new coordinate system. For any
i ∈ {1, . . . , n}, we consider a window of size 2l − 1 that concentrates on i, denoted as Wi.
When i lies in the middle of the sequence {1, . . . , n}, the center of Wi is i. When i locates
close to the two ends of the sequence, i.e., 1 and n, Wi can stretch outside the sequence.
We rearrange Wi to follow the circular pattern, as defined in by equation (1) in the main
text. Since Z1, . . . , Zn are identically distributed under the null hypothesis that no gene is
affected by the drug, {Z1, . . . , Zh} (or {Zn−h+1, Zn−h+2, . . . , Zn}) are identically distributed
as {Zt+1, . . . , Zt+h} for any t ≥ 1, ≤ h ≤ n and t + h ≤ n. Therefore, we can specifically
define the window as

Wi =


[i− l + 1, i+ l − 1] if l ≤ i ≤ n− l + 1
[1, 2l − 1] if i < l
[n− 2(l − 1), n] if i > n− l + 1

(A.1)

We mention that the definition of the window in (A.1) is different from that of (1). The
former rearranges the part of the window, which stretches outside of the sequence {1, . . . , n},
to the other end of the window, while the latter rearranges this part to the other end of the
sequence ([Ye] Need a picture for illustration). However, the two definitions are equivalent
in distribution. We use the former definition is to simplify the analysis.

Additionally, let the shift s in this new coordinate system be s = (Wi[2l−1]+Wi[1])/2−i,
which is the shift quantity of the position i form the center of the window Wi. We consider
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two types location-specific counts of the decreasing pairs in the window Wi that involves Zi.
The first one is an unweighted statistic:

Vi,l,s =
l−1−s∑
j=1

I(Zi−j > Zi)︸ ︷︷ ︸
Ai,l,s

+
l−1+s∑
j=1

I(Zi > Zi+j)︸ ︷︷ ︸
Bi,l,s

(A.2)

The second one is weighted by the Manhattan distance between the two locations in a
decreasing pair:

V
(w)
i,l,s =

l−1−s∑
j=1

I(Zi−j > Zi) · wj︸ ︷︷ ︸
A

(w)
i,l,s

+
l−1+s∑
j=1

I(Zi > Zi+j) · wj︸ ︷︷ ︸
B

(w)
i,l,s

, (A.3)

where wj = |l − 1 − j| + I(j ≤ l − 1). Note that under the assumptions from Theorem
2, we have that Z is a uniform random permutation of {1, . . . , n}. When that is true, we

know V
(w)
i,l,s = Gi(l), and thus we can prove Theorem 2 by showing that V

(w)
i,l,s has the same

properties.
To begin we provide properties of the un-weighted version, Vi,l,s. Note that Vi,l,s is simply

counting the number of decreasing pairs containing gene i without adding the additional
weights that result from the sliding windows.

Theorem 3 For the asymptotics property of Vi,l,s, it follows that

1. When s = o(
√
l), Vi,l,s is asymptotically a Gaussian-like random variable.

2. When s = O(lα) with α > 1
2
, Vi,l,s is asymptotically a uniform distribution random

variable.

3. When s = O(
√
l), Vi,l,s is asymptotically a random variable from a mixture of a

Gaussian-like distribution and a uniform distribution.

For the finite-sample property, we have

1. If s = 0,

P(Vi,l,s − l + 1 ≥ v) ≤ exp(− v2

l − 1
) · I(v > 0) + I(v ≤ 0) (A.4)

2. If s 6= 0,

P(Vi,l,s − l + 1 ≥ v) ≤ (
|s| − v

2|s|
)+ +

√
l − 1π

4|s|

{
erf

(
v + |s|√
l − 1

)
− erf

(
(v − |s|)+√

l − 1

)}
,

(A.5)
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where (·)+ = max(0, ·), erf(·) is the error function, i.e.,

erf(z) ≡ 2√
π

∫ z

0

exp(−t2)dt.

Remark 1 A quick calculation shows that

EVi,l,s = l − 1

var(Vi,l,s) = s2+l−1
3

.

From the variance expression, we can have some sense why the asymptotic distribution of
Vi,l,s changes when the scale of s increases from o(

√
l) to o(lα) (α > 1

2
). The most difficult

case to analyze is s = O(
√
l), where we can not easily determine how the two components of

the mixture distribution interact. Another noteworthy thing is that we do no have an exact
Gaussian distribution even in the asymptotics sense. Instead, we have a distribution that
looks like the Gaussian distribution. This phenomenon occurs because any two indicators in
Vi,l,s are highly correlated (they all contain the Zi term). Common tools like Stein’s methods
can no longer be used here.

Theorem 4 For the asymptotics property of V
(w)
i,l,s , it follows that

1. When s = o(l
3
4 ), V

(w)
i,l,s is asymptotically a Gaussian-like random variable.

2. When s = O(lα) with α > 3
4
, V

(w)
i,l,s is asymptotically a uniform distribution random

variable.

3. When s = O(l
3
4 ), V

(w)
i,l,s is asymptotically a random variable from a mixture of a

Gaussian-like distribution and a uniform distribution.

For the finite-sample property, define σ̃2 = l(l−1)(2l−1)
24

. we have

1. If s = 0,

P(V
(w)
i,l,s −

(l − 1)2 + l

2
≥ v) ≤ exp(−v

2

σ̃2
) · I(v > 0) + I(v ≤ 0) (A.6)

2. If s 6= 0,

P(V
(w)
i,l,s −

l(l − 1)

2
≥ v|Zi = z) ≤ exp

{
−(v − η(s, z))2

σ̃2

}
I(v ≥ η(s, z)) + I(v < η(s, z)),

(A.7)
where η(s, z) = 1

2
(2z − 1)(s2 + |s|).
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Proof of Theorem 3

Lemma 5 Suppose Z̃i
i.i.d∼ Uniform(0, 1), i = 1, . . . , n. Follow all the definitions above for

Ṽi,l,s and Ṽ
(w)
i,l,s using Z̃ ′is. Then

Ṽi,l,s
d
= Vi,l,s.

Ṽ
(w)
i,l,s

d
= V

(w)
i,l,s .

This is called Renyi representation.

Proof By Lemma 5, we can assume Zi
i.i.d∼ Uniform(0, 1) without loss of generality. Con-

ditional on Zi = z, it is easy to see that

I(Zi−j > Zi)
i.i.d∼ Bernoulli(1− z)

I(Zi > Zi+j)
i.i.d∼ Bernoulli(z)

}

|= ,

where |= represents the independence. By Central Limite Theorem, it follows that

Ai,l,s−(l−1−s)(1−z)√
l−1−s

d→ N(0, z(1− z)) as l − 1− s→∞
Bi,l,s−(l−1+s)z√

l−1+s
d→ N(0, z(1− z)) as l − 1− s→∞

.

In other words, we have

Ai,l,s ≈ (l − 1− s)(1− z) +
√

(l − 1− s)z(1− z) ·W1

Bi,l,s ≈ (l − 1 + s)z +
√

(l − 1− s)z(1− z) ·W2

}
|= ,

where W1 |= W2 are two standard Gaussian random variables. It implies that

Vi,l,s = Ai,l,s +Bi,l,s ≈ l − 1 + s(2z − 1) +
√

(l − 1) · 2z(1− z)W3,

where W3 is a standard Gaussian random variable.

1. If s = o(
√
l), Vi,l,s ≈ l− 1 +

√
(l − 1) · 2z(1− z) ·W3. Then consider the characteristic

function of normalized Vi,l,s and integrate over z ∈ [0, 1], we have

f(t) = E exp

(
it
Vi − (l − 1)√

(l − 1)/3

)
→
∫ 1

0

exp(−3(1− z)zt2)dz

=
2
√

3

3t
exp

(
−3t2

4

)∫ √
3t
2

0

exp(v2)dv

= 1− t2

2
+

t4

20/3
+O(t6),
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where we normalize Vi,l,s by substracting its mean (l − 1) and dividing
√

l−1
3

. On the

other hand, the characteristics function of the standard normal is

E exp (itZ) = exp
(
−t2/2

)
= 1− t2

2
+
t4

8
+O(t6).

We can see that the asymptotic distribution of the normalized Vi,l,s is close to the
standard normal, but not exactly the same.

2. If s = O(lα) with α > 1
2
, then

Vi,l,s ≈ l − 1 + s(2z − 1),

where
√
l − 1N(0, 2z(1 − z)) can be ignored compared to the scale of s. Specifically,

we have
Vi,l,s − l + 1

s
d
= 2Zi − 1 ∼ Uniform(−1, 1), a.s. l→∞.

3. If s = O(
√
l), then neither s(2z − 1) nor

√
l − 1N(0, z(1− z)) can be ignored. In this

case, the normalied Vi,l,s is a mixture of the Gaussian-like distribution random variable
and the uniform distribution random variable, i.e.,

Vi,l,s − l + 1√
s2 + l − 1

≈ s(2z − 1)√
s2 + l − 1

+

√
(l − 1) · 2z(1− z) ·W3√

s2 + l − 1
.

Note that the sum of the weights on the two components is not one. This is because
the two components are correlated.

Finally, we give the conservative p-values for Vi,l,s. Since all the indicators are upper bounded
by 1 and lower bounded by 0, by using Hoeffding bound, we can easily obtain that

P(Vi,l,s − (l− 1) ≥ v|Zi = z) ≤ exp

(
−(2sz − v − s)2

l − 1

)
· I(v > s(2z − 1)) + I(v ≤ s(2z − 1))

1. If s = 0, the unconditional p-value is

P(Vi,l,s − (l − 1) ≥ v) =

∫ 1

0

P(Vi,l,s − l + 1 ≥ v|Zi = z) · 1dz

≤ I(v ≤ 0) + I(v > 0) ·
∫ 1

0

exp

(
− v2

l − 1

)
dz

= exp(−v2/(l − 1)) · I(v > 0) + I(v ≤ 0)
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2. If s > 0, we have

P(Vi,l,s − l + 1 ≥ v) =

∫ 1

0

P(Vi,l,s − l + 1 ≥ v|Zi = z)dz

≤
∫ min( v+s

2s
,1)

0

exp

(
−(2sz − v − s)2

l − 1

)
dz + 1−min(

v + s

2s
, 1)

= (
−v + |s|

2|s|
)+ +

√
(l − 1)π

4|s|

{
erf

(
v + |s|√
l − 1

)
− erf

(
(v − |s|)+√

l − 1

)}
.

3. If s < 0, we can prove the same result as s > 0 with a similar argument.

Proof of Theorem 4

Proof Given Lemma 5, we refer V
(w)
i,l,s to Ṽ

(w)
i,l,s in the following proof. It is easy to show that

EV (w)
i,l,s =

1

2
[(l − 1)2 + l − 1]

E[V
(w)
i,l,s |Zi = z] =

1

2
[((l − 1)2 + (l − 1)) + (2z − 1)(s2 + |s|)]

var[V
(w)
i,l,s ] =

1

18
· l(l − 1)(2l − 1) +

1

12
· (s2 + |s|)

var[V
(w)
i,l,s |Zi = z] =

1

3
· z(1− z) · l(l − 1)(2l − 1)

By Linderberg CLT, we have

V
(w)
i,l,s − 1

2
[((l − 1)2 + l − 1) + (2z − 1)(s2 + |s|)]√

1
3
· l(l − 1)(2l − 1)

d→ N(0, z(1− z)) given Zi = z.

Therefore,

V
(w)
i,l,s ≈

1

2
((l − 1)2 + l − 1) +

1

2
(2z − 1)(s2 + |s|) +

√
1

3
· l(l − 1)(2l − 1) ·N(0, z(1− z)).

1. When s = o(l
3
4 ), we can ignore the term 1

2
(2z − 1)(s2 + |s|), and have

V
(w)
i,l,s ≈

1

2
((l − 1)2 + l − 1) +

√
1

3
· l(l − 1)(2l − 1) ·N(0, z(1− z)).

As analyzed in Theorem 3, 3
√

2 · [V (w)
i,l,s ) − 1

2
((l − 1)2 + l − 1)]/

√
l(l − 1)(2l − 1) is

distributed as a Gaussian-like distribution.
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2. When s = O(lα) with α > 3
4
, then

V
(w)
i,l,s ≈

1

2
((l − 1)2 + l) +

1

2
(2z − 1)(s2 + |s|).

In this case, V
(w)
i,l,s is uniformly distributed as shown in Theorem 3.

3. When s = O(l
3
4 ), either 1

2
(2z − 1)(s2 + |s|) or

√
1
3
l(l − 1)(2l − 1) · N(0, z(1 − z)) can

be ignored. So the normalized V
(w)
i,l,s is a mixture of Gaussian-like distribution and a

uniform distribution.

Next, we consider the conservative p-value of V
(w)
i,l,s . Define 2σ̃2 =

∑l−1−s
j=1 w2

j+
∑l−1+s

j=1 w2
j =

(l−1)l(2l−1)
3

. Then by Hoeffding bound, we have

P(V
(w)
i,l,s −

l(l − 1)

2
≥ v|Zi = z) ≤ exp

{
−(v − η(s, z))2

σ̃2

}
I(v ≥ η(s, z)) + I(v < η(s, z)),

where η(s, z) = 1
2
(2z − 1)(s2 + |s|).

1. If s = 0, it follows that

P(V
(w)
i,l,s −

l(l − 1)

2
≥ v) =

∫ 1

0

P(V
(w)
i,l,s −

l(l − 1)

2
≥ v|Zi = z) · 1dz

≤ I(v ≤ 0) + I(v > 0) ·
∫ 1

0

exp

{
−v

2

σ̃2
dz

}
= I(v ≤ 0) + I(v > 0) · exp

{
−v

2

σ̃2
dz

}
(A.8)

2. If s > 0, it follows that

P(V
(w)
i,l,s −

l(l − 1)

2
≥ v)

=

∫ 1

0

P(V
(w)
i,l,s −

l(l − 1)

2
≥ v|Zi = z)dz

≤
∫ v+ 1

2
(s2+|s|)

(v− 1
2
(s2+|s|))+

exp{−t2/σ̃2}
s2 + |s|

+ (
1

2
− v

s2 + |s|)
)+

= (
1

2
− v

s2 + |s|
)+ +

√
π · σ̃

2(s2 + |s|)

{
erf

(
v + 1

2
(s2 + |s|)
σ̃

)
− erf

(
(v − 1

2
(s2 + |s|))+
σ̃

)}
.

3. If s < 0, we can prove the same result as s > 0 with a similar argument.
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A.2 Top compounds

Rank Perturbagen name sLoCor Rank Perturbagen name sLoCor
1 BRD-K64040351 5.78 16 BRD-K26772093 4.81
2 BRD-K26359746 5.76 17 BRD-K95716640 4.80
3 BRD-K12126940 5.67 18 SA-85148 4.78
4 SA-103150 5.48 19 BRD-K73008154 4.77
5 SA-1459172 5.35 20 BRD-K62014585 4.77
6 BRD-M79326715 5.32 21 BRD-K88819433 4.74
7 BRD-A72837804 5.17 22 BRD-K24427624 4.73
8 BRD-K73205140 5.12 23 SA-419090 4.69
9 BRD-K57393707 5.08 24 BRD-K11424789 4.68
10 BRD-K64687628 5.00 25 BRD-K43048602 4.66
11 BRD-K33486590 4.98 26 BRD-K31439714 4.64
12 BRD-K36591038 4.97 27 BRD-K14704318 4.63
13 BRD-K95521279 4.87 28 BRD-K96270963 4.62
14 BRD-K55681368 4.85 29 BRD-K47664103 4.61
15 BRD-K60796852 4.82 30 BRD-K22862802 4.60

Table A.1: Top perturbagens based on sLoCor for BRCA.
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Rank Perturbagen name sLoCor log (IC50)
75 camptothecin 4.19 2.32
109 PHA-793887 4.00 3.11
231 entinostat 3.64 3.63
239 topotecan 3.62 2.66
247 alvocidib 3.61 1.85
291 SN-38 3.54 2.27
316 mitoxantrone 3.50 1.26
347 doxorubicin 3.46 2.48
370 raloxifene 3.42 -0.10
404 MG-132 3.40 2.60
477 trichostatin-a 3.31 1.78
514 gemcitabine 3.26 2.17
567 amonafide 3.19 3.57
722 amsacrine 3.02 2.34
737 vorinostat 3.01 3.18

Table A.2: Top perturbagens with IC50 based on sLoCor for BRCA.

Rank Perturbagen name sLoCor Rank Perturbagen name sLoCor
1 BRD-K30025108 4.89 16 BRD-K74782274 3.71
2 BRD-K56366698 4.48 17 BRD-K29582182 3.71
3 BRD-K69681876 4.34 18 BRD-K82483257 3.62
4 BRD-K54711075 4.25 19 BRD-K30373477 3.62
5 BRD-K32014638 4.18 20 BRD-K41761879 3.61
6 BRD-K19898724 4.13 21 BRD-K07689498 3.59
7 BRD-K56647759 4.07 22 BRD-K46999092 3.56
8 BRD-K03608142 4 23 BRD-K68730107 3.52
9 BRD-K72827150 3.97 24 BRD-K40695780 3.51
10 BRD-K42624823 3.89 25 BRD-K90004840 3.50
11 BRD-K13234528 3.89 26 ropivacaine 3.46
12 BRD-K23077259 3.87 27 BRD-K15916856 3.45
13 BRD-K64716493 3.83 28 BRD-K55288106 3.44
14 BRD-K70125131 3.81 29 BRD-K67485291 3.44
15 BRD-K74594501 3.73 30 BRD-K71452159 3.44

Table A.3: Top perturbagens based on sLoCor for COAD.
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sLoCor rank Perturbagen name sLoCor log (IC50)
152 dactinomycin 2.76 0.78
168 triptolide 2.71 1.19
190 doxorubicin 2.65 2.36
282 amonafide 2.48 3.67
303 daunorubicin 2.45 2.43
336 mitoxantrone 2.40 1.29
389 vorinostat 2.33 3.59
710 topotecan 2.04 2.57
726 bosutinib 2.03 3.65
789 camptothecin 1.98 2.41
906 etoposide 1.89 3.28
949 PD-184352 1.86 2.12
1220 NVP-TAE684 1.74 3.68
1436 gemcitabine 1.65 1.00
1484 ellipticine 1.63 4.17

Table A.4: Top perturbagens with IC50 based on sLoCor for COAD.

Rank Perturbagen name sLoCor Rank Perturbagen name sLoCor
1 BRD-K91617567 5.29 16 BRD-K86638751 4.19
2 BRD-K66383562 5.15 17 SA-1973507 4.19
3 BRD-A14014306 4.81 18 BRD-K60019754 4.14
4 BRD-K55851396 4.64 19 BRD-K67035256 4.13
5 BRD-K46088987 4.46 20 BRD-K28934562 4.13
6 BRD-K09701578 4.45 21 BRD-K67774729 4.09
7 BRD-K94034047 4.44 22 BRD-K71701252 4.08
8 BRD-K81164606 4.43 23 BRD-K92627732 4.05
9 BRD-K51674646 4.42 24 BRD-K47533918 4.04
10 malonoben 4.38 25 BRD-K73008154 4.04
11 BRD-K55082668 4.36 26 BRD-K32581454 4.02
12 BRD-K47977047 4.34 27 BRD-K07339740 4.01
13 tyrphostin-A9 4.31 28 VU-0418939-2 4.00
14 BRD-K03652504 4.30 29 VU-0418946-1 3.99
15 BRD-K30025108 4.23 30 BRD-K23319301 3.97

Table A.5: Top perturbagens based on sLoCor for LIHC.
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Rank Perturbagen name sLoCor log (IC50)
193 camptothecin 3.12 2.22
199 topotecan 3.10 2.92
216 ryuvidine 3.08 0.08
311 brazilin 2.88 4.08
422 etoposide 2.72 3.69
438 amonafide 2.70 3.59
647 entinostat 2.51 4.48
685 MG-132 2.47 2.51
751 doxorubicin 2.42 2.70
753 bortezomib 2.42 1.40
812 cycloheximide 2.36 3.40
1250 vorinostat 2.11 3.22
1264 daunorubicin 2.11 2.85
1372 mercaptopurine 2.05 3.90
1453 bufalin 2.01 2.81

Table A.6: Top perturbagens with IC50 based on sLoCor for LIHC.
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A.3 Top genes
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Gene name LoCor gene score Achilles median effect
CCNA2 1.44 -1.40
CDC20 1.25 -1.66
PLK1 1.19 -1.63

CCNB2 1.16 0.03
AURKA 1.11 -1.24
KIF20A 1.07 -0.59
SMC4 1.01 -1.23

TOP2A 0.96 -1.65
CCNF 0.92 -0.34

LYRM1 0.91 0.11
KIF2C 0.91 -0.48
UBE2C 0.88 -0.54
CCNB1 0.82 -0.81
BIRC5 0.81 -1.41
POLE2 0.81 -1.64

Table A.7: Top genes for BRCA.

Gene name LoCor gene score Achilles median effect
MYC 1.13 -1.79

PSMG1 0.95 -0.85
DNMT1 0.92 -0.49
TSEN2 0.89 -0.85
EPHA3 0.88 -0.20

CCDC85B 0.85 -0.30
TCEA2 0.85 -0.07
CTSD 0.84 0.19

CSNK1E 0.82 -0.01
TM9SF3 0.80 -0.04
STUB1 0.79 -0.29

CDC25B 0.79 -0.31
SLC2A6 0.79 -0.23
GRB10 0.79 0.06
RPL39L 0.79 0.08

Table A.8: Top genes for COAD.
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Gene name LoCor gene score Achilles median effect
CCNA2 1.35 -1.39

GADD45A 1.30 0.10
PLK1 1.11 -1.72

AURKA 1.10 -1.09
CCNF 1.09 -0.18
CDC20 1.05 -1.52
KIF20A 1.02 -0.42
KIF14 0.99 -0.55

TOP2A 0.95 -1.61
CCNB2 0.92 0.09
WDR7 0.86 -1.10
JUN 0.82 -0.27

GADD45B 0.80 -0.25
PSRC1 0.77 -0.28
MCM3 0.77 -0.84

Table A.9: Top genes for LIHC.
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Appendix B

Supplemental material for
”GeneFishing in scRNA-sequencing
data and its applications”

B.1 Enrichment analysis results

Tables in this section were created using stargazer [39]. All enrichment results are from
clusterProfiler [113] for KEGG pathway enrichment and topGO [3] for GO term enriche-
ment.

Liver - cholesterol metabolic process bait

Bait set 1

Using the liver with 14 bait genes selected from the cholesterol metabolic process GO term
we fished out 453 additional genes using a CFR cutoff of 0.969. Table B.1 and B.2 show the
pathways and GO terms that are enriched for these 453 genes compared to the other genes
in the data.
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ID Description GeneRatio BgRatio p.adjust

mmu04610 Complement and coagulation cascades 34/279 61/3447 0
mmu00830 Retinol metabolism 26/279 55/3447 0
mmu00140 Steroid hormone biosynthesis 24/279 48/3447 0
mmu04976 Bile secretion 24/279 52/3447 0
mmu00591 Linoleic acid metabolism 11/279 19/3447 0.00000
mmu05204 Chemical carcinogenesis - DNA adducts 18/279 52/3447 0.00000
mmu04141 Protein processing in endoplasmic reticulum 28/279 130/3447 0.00003
mmu03320 PPAR signaling pathway 17/279 59/3447 0.0001
mmu02010 ABC transporters 11/279 27/3447 0.0001
mmu04979 Cholesterol metabolism 13/279 39/3447 0.0001

Table B.1: 10 most enriched KEGG pathways for GeneFishing with 14 cholesterol metabolic
process GO term genes in the liver data.

GO.ID Term Significant Annotated p.value

GO:0042738 exogenous drug catabolic process 16 31 3.0e-12
GO:0010951 negative regulation of endopeptidase act... 20 81 1.4e-10
GO:0019373 epoxygenase P450 pathway 12 21 3.5e-10
GO:0006805 xenobiotic metabolic process 19 62 7.9e-09
GO:0006958 complement activation, classical pathway 11 23 2.3e-08
GO:0007596 blood coagulation 31 74 1.9e-07
GO:0072378 blood coagulation, fibrin clot formation 6 7 3.1e-07
GO:0055114 oxidation-reduction process 66 528 7.7e-07
GO:0051918 negative regulation of fibrinolysis 5 5 7.8e-07
GO:0015722 canalicular bile acid transport 5 5 7.8e-07

Table B.2: 10 most enriched GO terms for GeneFishing with 14 cholesterol metabolic process
GO term genes in the liver data.

Bait set 2

We found an additional bait set of 11 cholesterol metabolic process genes, where we fished
out 532 additional genes with a CFR cutoff of 0.951. The enrichment results are very similar
to the results above because there are 413 genes in common between the two GeneFishing
results and we recover 13 of the 14 bait genes from the first bait set.
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ID Description GeneRatio BgRatio p.adjust

mmu04610 Complement and coagulation cascades 31/306 61/3447 0
mmu00140 Steroid hormone biosynthesis 26/306 47/3447 0
mmu00830 Retinol metabolism 27/306 55/3447 0
mmu04976 Bile secretion 22/306 52/3447 0
mmu00591 Linoleic acid metabolism 12/306 19/3447 0.00000
mmu05204 Chemical carcinogenesis - DNA adducts 18/306 52/3447 0.00001
mmu03320 PPAR signaling pathway 19/306 60/3447 0.00002
mmu02010 ABC transporters 12/306 27/3447 0.00003
mmu04931 Insulin resistance 19/306 65/3447 0.00004
mmu04141 Protein processing in endoplasmic reticulum 29/306 130/3447 0.00004

Table B.3: 10 most enriched KEGG pathways for GeneFishing with 11 cholesterol metabolic
process GO term genes in the liver data.

GO.ID Term Significant Annotated p.value

GO:0042738 exogenous drug catabolic process 16 31 3.3e-11
GO:0010951 negative regulation of endopeptidase act... 21 82 1.4e-09
GO:0019373 epoxygenase P450 pathway 12 21 2.2e-09
GO:0055085 transmembrane transport 71 473 1.5e-08
GO:0001676 long-chain fatty acid metabolic process 30 68 4.2e-08
GO:0007596 blood coagulation 30 74 5.2e-08
GO:0006805 xenobiotic metabolic process 20 62 7.2e-08
GO:0042632 cholesterol homeostasis 18 64 2.3e-07
GO:0006641 triglyceride metabolic process 25 74 4.7e-07
GO:0072378 blood coagulation, fibrin clot formation 6 7 7.8e-07

Table B.4: 10 most enriched GO terms for GeneFishing with 11 cholesterol metabolic process
GO term genes in the liver data.
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Pancreas - insulin secretion bait

Using all pancreas cells with 12 bait genes selected from the insulin secretion GO term we
fished out 158 additional genes using a CFR cutoff of 0.912. Table B.5 and B.6 show the
pathways and GO terms that are enriched for these 158 genes compared to the other genes
in the data.

ID Description GeneRatio BgRatio p.adjust

mmu04950 Maturity onset diabetes of the young 5/72 15/4304 0.001
mmu04917 Prolactin signaling pathway 6/72 50/4304 0.013
mmu04080 Neuroactive ligand-receptor interaction 10/72 163/4304 0.018
mmu04960 Aldosterone-regulated sodium reabsorption 4/72 26/4304 0.034

Table B.5: KEGG pathway enrichment for GeneFishing in all 1,419 pancreas cells.

GO.ID Term Significant Annotated p.value

GO:0042593 glucose homeostasis 9 166 4.5e-05
GO:0007601 visual perception 7 73 0.00011
GO:0001973 G protein-coupled adenosine receptor sig... 3 7 0.00011
GO:1904659 glucose transmembrane transport 4 75 0.00131
GO:0007605 sensory perception of sound 6 85 0.00174
GO:0002678 positive regulation of chronic inflammat... 2 5 0.00219
GO:0060384 innervation 3 19 0.00272
GO:0035556 intracellular signal transduction 34 1, 471 0.00300
GO:0048149 behavioral response to ethanol 2 6 0.00325
GO:0048312 intracellular distribution of mitochondr... 2 6 0.00325

Table B.6: 10 most enriched GO terms for GeneFishing in all 1,419 pancreas cells.
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Heart and aorta - antigen presentation bait

Using the heart and aorta with 11 bait genes selected from the antigen presentation GO
term we fished out 337 additional genes using a CFR cutoff of 0.933. Table B.9 and B.10
show the pathways and GO terms that are enriched for these 337 genes compared to the
other genes in the data.

ID Description GeneRatio BgRatio p.adjust

mmu04613 Neutrophil extracellular trap formation 20/166 71/3824 0
mmu04380 Osteoclast differentiation 22/166 91/3824 0
mmu05150 Staphylococcus aureus infection 13/166 28/3824 0
mmu04650 Natural killer cell mediated cytotoxicity 19/166 74/3824 0
mmu04662 B cell receptor signaling pathway 17/166 61/3824 0
mmu04062 Chemokine signaling pathway 24/166 126/3824 0
mmu05140 Leishmaniasis 15/166 50/3824 0.00000
mmu05152 Tuberculosis 21/166 106/3824 0.00000
mmu04666 Fc gamma R-mediated phagocytosis 15/166 70/3824 0.00000
mmu04670 Leukocyte transendothelial migration 16/166 83/3824 0.00001

Table B.7: 10 most enriched KEGG pathways for GeneFishing with 11 antigen presentation
GO term genes in the heart and aorta data.

GO.ID Term Significant Annotated p.value

GO:0045087 innate immune response 61 374 2.2e-17
GO:0002250 adaptive immune response 46 240 3.0e-10
GO:0006954 inflammatory response 68 413 3.3e-10
GO:0030593 neutrophil chemotaxis 18 67 1.6e-09
GO:0006911 phagocytosis, engulfment 17 44 6.3e-09
GO:0001774 microglial cell activation 14 34 6.8e-09
GO:0032715 negative regulation of interleukin-6 pro... 10 29 4.5e-08
GO:0032755 positive regulation of interleukin-6 pro... 13 55 6.8e-08
GO:0070374 positive regulation of ERK1 and ERK2 cas... 19 122 9.3e-08
GO:0032760 positive regulation of tumor necrosis fa... 11 41 1.7e-07

Table B.8: 10 most enriched GO terms for GeneFishing with 11 antigen presentation GO
term genes in the heart and aorta data.
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Heart and aorta - cardiac muscle cell contraction bait

Using the heart and aorta with 30 bait genes selected from the cardiac muscle cell contraction
GO term we fished out 583 additional genes using a CFR cutoff of 0.931. Table B.9 and
B.10 show the pathways and GO terms that are enriched for these 583 genes compared to
the other genes in the data.

ID Description GeneRatio BgRatio p.adjust

mmu05415 Diabetic cardiomyopathy 37/266 154/3809 0
mmu01200 Carbon metabolism 24/266 72/3809 0
mmu00020 Citrate cycle (TCA cycle) 14/266 25/3809 0
mmu04714 Thermogenesis 34/266 152/3809 0.00000
mmu04260 Cardiac muscle contraction 18/266 46/3809 0.00000
mmu05412 Arrhythmogenic right ventricular cardiomyopathy 16/266 46/3809 0.00000
mmu04020 Calcium signaling pathway 25/266 109/3809 0.00000
mmu00190 Oxidative phosphorylation 23/266 99/3809 0.00000
mmu05012 Parkinson disease 33/266 189/3809 0.00001
mmu01210 2-Oxocarboxylic acid metabolism 7/266 10/3809 0.00002

Table B.9: 10 most enriched KEGG pathways for GeneFishing with 30 cardiac muscle cell
contraction GO term genes in the heart and aorta data.

GO.ID Term Significant Annotated p.value

GO:0006099 tricarboxylic acid cycle 13 25 6.7e-10
GO:0045214 sarcomere organization 15 34 1.2e-07
GO:0006103 2-oxoglutarate metabolic process 8 13 2.6e-07
GO:0014874 response to stimulus involved in regulat... 6 7 4.4e-07
GO:0055003 cardiac myofibril assembly 8 14 5.7e-07
GO:0055013 cardiac muscle cell development 29 69 8.7e-07
GO:0010880 regulation of release of sequestered cal... 6 8 1.7e-06
GO:0002027 regulation of heart rate 17 45 2.0e-06
GO:0048747 muscle fiber development 13 38 2.1e-06
GO:1903779 regulation of cardiac conduction 7 12 2.5e-06

Table B.10: 10 most enriched GO terms for GeneFishing with 30 cardiac muscle cell con-
traction GO term genes in the heart and aorta data.
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Heart and aorta - endothelial cell proliferation bait

Using the heart and aorta with 21 bait genes selected from the endothelial cell proliferation
GO term we fished out 359 additional genes using a CFR cutoff of 0.971. Table B.11 and
B.12 show the pathways and GO terms that are enriched for these 359 genes compared to
the other genes in the data.

ID Description GeneRatio BgRatio p.adjust

mmu04015 Rap1 signaling pathway 17/131 128/3821 0.0002
mmu04072 Phospholipase D signaling pathway 12/131 85/3821 0.003
mmu04360 Axon guidance 12/131 109/3821 0.020
mmu04670 Leukocyte transendothelial migration 10/131 83/3821 0.022
mmu04014 Ras signaling pathway 13/131 133/3821 0.022
mmu04926 Relaxin signaling pathway 10/131 87/3821 0.022
mmu04923 Regulation of lipolysis in adipocytes 6/131 33/3821 0.022
mmu05200 Pathways in cancer 22/131 329/3821 0.040
mmu04514 Cell adhesion molecules 9/131 85/3821 0.050
mmu04724 Glutamatergic synapse 7/131 55/3821 0.050

Table B.11: 10 most enriched KEGG pathways for GeneFishing with 21 endothelial cell
proliferation GO term genes in the heart and aorta data.

GO.ID Term Significant Annotated p.value

GO:0001525 angiogenesis 47 335 2.0e-06
GO:0061028 establishment of endothelial barrier 10 36 2.1e-05
GO:1905653 positive regulation of artery morphogene... 4 6 3.5e-05
GO:0048013 ephrin receptor signaling pathway 6 18 4.7e-05
GO:0043267 negative regulation of potassium ion tra... 5 23 7.8e-05
GO:1902396 protein localization to bicellular tight... 4 7 7.9e-05
GO:0048845 venous blood vessel morphogenesis 4 9 0.00027
GO:0045765 regulation of angiogenesis 28 204 0.00035
GO:0043114 regulation of vascular permeability 9 29 0.00056
GO:0003348 cardiac endothelial cell differentiation 3 5 0.00059

Table B.12: 10 most enriched GO terms for GeneFishing with 21 endothelial cell proliferation
GO term genes in the heart and aorta data.
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Heart and aorta - fibroblast proliferation bait

Using the heart and aorta with 8 bait genes selected from the fibroblast proliferation GO
term we fished out 270 additional genes using a CFR cutoff of 0.972. Table B.13 and B.14
show the pathways and GO terms that are enriched for these 270 genes compared to the
other genes in the data.

ID Description GeneRatio BgRatio p.adjust

mmu04974 Protein digestion and absorption 17/108 44/3829 0
mmu04512 ECM-receptor interaction 12/108 51/3829 0.00000
mmu04151 PI3K-Akt signaling pathway 18/108 207/3829 0.001
mmu04510 Focal adhesion 12/108 143/3829 0.020
mmu05146 Amoebiasis 8/108 69/3829 0.020
mmu05204 Chemical carcinogenesis - DNA adducts 5/108 26/3829 0.020
mmu00982 Drug metabolism - cytochrome P450 5/108 27/3829 0.021
mmu00980 Metabolism of xenobiotics by cytochrome P450 5/108 30/3829 0.028
mmu04933 AGE-RAGE signaling pathway in diabetic complications 8/108 78/3829 0.028
mmu05165 Human papillomavirus infection 14/108 211/3829 0.038

Table B.13: 10 most enriched KEGG pathways for GeneFishing with 8 fibroblast proliferation
GO term genes in the heart and aorta data.

GO.ID Term Significant Annotated p.value

GO:0030199 collagen fibril organization 15 33 1.4e-14
GO:0030198 extracellular matrix organization 46 167 1.4e-12
GO:0007155 cell adhesion 58 759 3.0e-09
GO:0044849 estrous cycle 4 6 1.4e-05
GO:0048286 lung alveolus development 8 35 3.2e-05
GO:0048251 elastic fiber assembly 4 7 3.2e-05
GO:0001657 ureteric bud development 8 54 3.4e-05
GO:0002053 positive regulation of mesenchymal cell ... 6 22 4.7e-05
GO:0010575 positive regulation of vascular endothel... 5 15 7.2e-05
GO:0001568 blood vessel development 39 477 0.00013

Table B.14: 10 most enriched GO terms for GeneFishing with 8 fibroblast proliferation GO
term genes in the heart and aorta data.
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Appendix C

Supplemental material for ”Using
regional volumetric data to predict
clinical progression in multiple
sclerosis”

Region Cluster number Summary statistic Coefficient SE p-value

Pars orbitalis 1 Std -11 3.3 0.001
Rostral middle frontal 1 Skewness -0.48 0.13 0.003

Fusiform 1 Skewness 0.61 0.21 0.004
3rd ventricle 2 Skewness 0.60 0.21 0.005

Cerebellum (exterior) 1 Skewness 0.63 0.23 0.006
Posterior cingulate 1 Skewness 0.97 0.36 0.007

Pars orbitalis 2 Std -7.9 3.0 0.01
Superior frontal 4 Std 14 5.5 0.01

Rostral anterior cingulate 2 Std 6.0 2.4 0.01
Posterior cingulate 9 Skewness -0.57 0.23 0.01

Rostral anterior cingulate 4 Mean 3.1 1.3 0.02
Superior temporal 1 Std -11.7 4.9 0.02
Posterior cingulate 7 Skewness 0.84 0.40 0.02

Caudate 2 Std 10.6 4.7 0.03

Table C.1: Selected features for the data-driven ROIs. The cluster number is the number
from the clustering. The numbers themselves are not meaningful, but they are included
to distinguish the various clusters within a single original ROI label. For example, in the
pars orbitalis the standard deviation from two clusters (1 and 2) are included in the selected
feature set.
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Middle temporal Std -21 5.8 0.0002
Lingual Mean -23 6.4 0.0003

Pars orbitalis Std -12 3.3 0.0004
Cerebellum (exterior) Mean -14 4.3 0.001

Fusiform Mean -14 4.4 0.002
3rd ventricle Skewness 0.7 0.24 0.003

Superior temporal Std -17 6.1 0.003
Cerebellar vermal lobules VI-VII Mean -4.7 1.9 0.01

4th ventricle Mean -4.6 1.9 0.01
Cerebellar vermal lobules VIII-X Mean -4.4 1.9 0.02

Rostral middle frontal Std -8.9 3.9 0.02

Table C.2: Selected features for the original ROIs.

Region Cluster number Summary statistic Coefficient SE p-value

3rd ventricle 2 Skewness 094 0.30 0.002
Posterior cingulate 9 Skewness -1.0 0.32 0.002

Rostral anterior cingulate 2 Skewness 1.7 0.58 0.004
Brain stem 1 Mean -5.5 2.2 0.01
Pallidum 2 Skewness 1.1 .044 0.01

Posterior cingulate 2 Skewness -0.90 0.36 0.01
Inferior temporal 2 Skewness 0.83 0.33 0.01

Amygdala 2 Mean -6.6 2.8 0.02
Cerebellum (exterior) 2 Mean -14 6.0 0.02

CSF 10 Std 25 11 0.02
4th ventricle 1 Mean -4.3 2.0 0.02

Table C.3: Selected features for the data-driven ROIs in the female patients. Again, cluster
numbers are included.
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Region Summary statistic Coefficient SE p-value

3rd ventricle Skewness 1.0 0.32 0.002
Cerebellum (exterior) Mean -14 6.4 0.03

Hippocampus Std -15 7.1 0.03
Amygdala Mean -6.7 3.2 0.04

Inferior temporal Skewness 0.67 0.33 0.04
4th ventricle Mean -4.5 2.3 0.05

Table C.4: Selected features for the original ROIs in the female patients. Note, the cutoff
of p-value for feature selection was increased from 0.025 to 0.05 as to include more than one
DBM feature in the model.

Region Cluster number Summary statistic Coefficient SE p-value

Pars orbitalis 1 Std -25.95 7.34 0.0004
Basal forebrain 1 Skewness 1.47 0.46 0.002

Posterior cingulate 1 Skewness 2.24 0.72 0.002
Rostral middle frontal 1 Skewness -0.77 0.26 0.003
Lateral orbitofrontal 2 Std -10.01 3.37 0.004
Lateral orbitofrontal 3 Std -10.66 3.68 0.004

Middle temporal 1 Std -19.43 6.72 0.005
Posterior cingulate 7 Skewness 2.01 0.72 0.01

Pars orbitalis 2 Std -14.15 5.30 0.01
Supramarginal 1 Skewness 1.25 0.47 0.01
Pars orbitalis 1 Skewness -1.17 0.44 0.01

Rostral middle frontal 2 Skewness -0.86 0.34 0.01
Superior frontal 4 Std 23.24 9.23 0.01

Posterior cingulate 4 Std 25.84 10.31 0.01
Rostral middle frontal 2 Std -16.99 6.98 0.01

Pallidum 2 Skewness -1.35 0.57 0.02
Fusiform 1 Std -17.83 7.69 0.02

Inferior temporal 2 Std -17.84 7.71 0.02
Posterior cingulate 7 Std 19.75 8.56 0.02

Postcentral 1 Std 13.32 5.84 0.02
Accumbens area 2 Skewness 0.96 0.43 0.02

Table C.5: Selected features for the data-driven ROIs in the male patients. Again, cluster
numbers are included.
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Region Summary statistic Coefficient SE p-value

pars.orbitalis Std -21.91 6.51 0.0008
Middle temporal Std -35.55 11.25 0.002

Lateral orbitofrontal Mean -13.50 4.30 0.002
Lingual Mean -37.80 12.76 0.003
Fusiform Mean -29.83 10.53 0.005

Lateral orbitofrontal Std -8.89 3.32 0.01
Isthmus cingulate Mean -23.94 8.98 0.01

Rostral middle frontal Skewness -0.79 0.30 0.01
Inferior temporal Std -23.93 9.33 0.01

Pars orbitalis Mean -16.99 6.64 0.01
Supramarginal Skewness 1.42 0.56 0.01

Fusiform Skewness 0.98 0.39 0.01
Parahippocampal Mean -14.94 6.07 0.01
Inferior temporal Mean -19.08 7.96 0.02
Basal forebrain Skewness 1.17 0.49 0.02

Rostral middle frontal Std -16.86 7.18 0.02
Accumbens area Skewness 1.32 0.56 0.02

Cerebellar vermal lobules I-V Mean -11.82 5.08 0.02
Putamen Skewness -1.28 0.56 0.02

Table C.6: Selected features for the original ROIs in the male patients.
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