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Abstract

Intelligence tests are used in various scenarios in order to as-
sess individuals’ cognitive abilities. As these tests are typi-
cally resource-intensive and quite lengthy, we propose a pre-
dictive analysis paradigm with the aim of most effectively pre-
dicting IQ scores and thus shortening and optimising tests by
identifying the most predictive test components. Using the
Berlin Intelligence Structure Test for Adolescents (BIS-HB)
as an example, we apply machine learning models and suc-
cessfully predict IQ scores at the individual level. In addition,
we identify non-significant and potentially redundant tasks and
items and exclude them from the analyses, while maintaining
the same satisfactory predictive results. A new direction of
research in this area will allow not only the inductive optimi-
sation of intelligence tests, but also the improvement of knowl-
edge and understanding of intelligence in general.

Keywords: Intelligence, Predictive Analysis, Test-
Optimisation, Prediction of the Individual, BIS-HB

Introduction

Intelligence encompasses the essence of our intellectual and
cognitive abilities. In a broader sense, it can be understood as
an individual’s ability to “learn, reason and solve problems”
(Plomin & Von Stumm, 2018, p. 148) and is a significant pre-
dictor of many important outcomes in life, including educa-
tional and occupational success (Deary, Strand, Smith, & Fer-
nandes, 2007; Gottfredson, 1997), health, longevity (Deary,
Hill, & Gale, 2021) and general well-being (Pesta, 2022).
However, because the number and nature of testable intel-
lectual abilities subsumed under the term “intelligence” are
disputed, many theories vie for primacy, such as the Theory
of primary mental abilities (Thurstone, 1938), or the Cattell-
Horn-Carroll Model (McGrew, 2005), resulting in the lack of
a universally accepted definition.

Intelligence is measured via a variety of theory-dependant
and appropriately constructed tasks and items that cover the
predefined range of cognitive abilities, forming a test. Due
to the previously mentioned theoretical variations, the type of
assessment, the abilities required, and the general task design
vary considerably from test to test, with some emphasising
school and culture-based content, such as mathematics and
vocabulary tasks (e.g., Stanford-Binet Intelligence Scales;
Grob, Gygi, & Hagmann von Arx, 2019), and others using
exclusively abstract content, such as figural matrices (e.g.,
Raven’s Progressive Matrices; Raven, 1940). Thousands of
working hours and large sums of money and expertise are in-

vested into the creation of intelligence tests, making them 1rare4

and at times expensive. More importantly, the length of test-
ing, up to 2 hours for traditional assessments, coupled with
potential biases (Nenty & Dinero, 1981) and participant fa-
tigue (Ackerman & Kanfer, 2009), raises questions about the
fairness and practicality of traditional intelligence tests.

In this paper, we focus on the “Berlin Intelligence Structure
Test for Adolescents: Diagnosis of High Abilities and Gift-
edness” (BIS-HB; Jéger et al., 2006), based on Jager’s (1982,
1984) Berlin Intelligence Structure (BIS) model and its pre-
dictive power concerning the individual as well as possible
methods of improvement to combat the aforementioned cons
to intelligence testing inductively, largely free from theoreti-
cal assumptions. To do so, we explore the potential for identi-
fying the optimal combination of test components. So, rather
than relying on extensive assessments and theoretical argu-
ments, we ask whether a more concise set of tasks and items
could achieve comparable accuracy within acceptable mar-
gins of error. With that sentiment in mind, we are interested
in taking the first steps towards assessing the predictive power
of individual tasks and items that make up intelligence tests,
utilizing simple machine learning (ML) approaches, leading
to our first research question:

[RQ1] To which extent can we predict an individual’s 1Q
score using machine learning models?

Moreover, by focusing on possible reductions in test
length, we will take advantage of the ability of ML ap-
proaches to uncover novel patterns from complex data. By
learning more about the relationships between tasks and items
in an intelligence test and by recognizing the most predictive
ones, we can subsequently identify the smallest set of tasks
that predicts an individual’s IQ score within comparable error
margins. Accordingly, we pose our second research question:

[RQ2] Which BIS-HB tasks and items are the most influ-
ential predictors of an individual’s 1Q score?

Our paper is structured as follows - in the following sec-
tion we present necessary theoretical background regarding
the BIS-HB intelligence test, followed by a brief description
of the used data and the applied ML approaches. Afterwards,
we present the results of our analysis and conclude with a
discussion of our outcomes and findings.

BIS-HB

The BIS-HB’s wide measurement range (up to 1Q=145) dis-
tinguishes it from other comparable instruments, avoiding
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Instructions:

Please complete the row.

@@ ﬁD? ?

Solution:

W (G

(a) Figural reasoning: Individuals must identify the rule,
90 degree clockwise rotation, used to construct a se-
quence of drawings in order to determine the last items.

Instructions:

Write down as many four-digit telephone numbers as possible
that have a regular structure so that they can be easily
memorised.

Exemplary solutions:
8282 5995 4321 9876 6789
1289 1100 6543 2233 4343

(b) Numerical creativity: Individuals are prompted to
construct easily memorised x-digit numbers, applying as
many different rules as possible.

Figure 1: Illustrative representations of a selection of BIS-HB items (Reasoning and Creativity). Individuals provide their
answers by writing or drawing the solutions by hand. Note: These are not original items and figures as they would appear in
the BIS-HB test, but only an analogy created by the authors for illustrative, exemplary purposes only.

“ceiling effects”, whereby test takers consistently achieve
the highest possible scores and therefore the difference in
their potential is not accurately reflected in their 1Q scores,
a common problem when testing gifted (IQ>130) individu-
als (Preckel, 2003). In addition, the BIS-HB aims to assess a
wide range of predefined abilities, all of which are thought to
reflect aspects of g, a general form of intelligence.

Most intelligence tests are based on theoretical assump-
tions that are reviewed and revised before the test is finally
normed and subsequently published. The standard review
process hereby involves the development of a battery of sim-
ilar tasks and items that are assumed to assess the same con-
structs. A task consists of a number of items which all ad-
here to the same theoretical principles and therefore possess
a comparable structure. Furthermore, items are the smallest
possible unit of a test.

The BIS-HB (Jager et al., 2006) distinguishes between the
four operations: reasoning (r), creativity (c), memory (m),
and speed (s). They can be assessed via the three content
formats: figural (f), numerical (n), and verbal (v) skill. The
nomenclature is adopted from Breit, Scherrer, Blickle, and
Preckel (2023), all terms are translations from the original
German. Multiplying four operations with three types of con-
tent results in 12 abilities, accessed via 45 tasks, comprised
of 278 items in total. According to its definition by Jager’s
(1982, 1984) BIS, all items possess the characteristics re-
quired to measure intelligence. The individual intelligence
score, as a result of a completed BIS-HB, is expressed in form
of an IQ value (u = 100,SD = 15; Frenzel & Nett, 2008). A
short form of the BIS-HB exists and takes ca. 55 instead of
the usual 140 minutes to complete, but it consists solely of
reasoning items (Vogl, Vogl, & Preckel, 2015), abandoning
other intelligence facets and therefore the BIS model’s core
idea of intelligence as a multifaceted construct, distributed
across a variety of operations and content domains.

Content Formats

The four operations, detailed below, are examined using fig-
ural, numerical and verbal contents. Figural content requires
test-takers to visually imagine spatial elements. Both numer-
ical and verbal content utilise test-takers capabilities in deal-
ing with complex symbol-systems (numbers or written lan-
guage), which entails the use of advanced skills such as infer-
ence and the application of rules (Jager et al., 2006).

Operations

Reasoning Reasoning equates to drawing conclusions or
inferences from information or more broadly speaking to how
people solve problems and make decisions (Lakin & Kell,
2020; Leighton, 2004). In the BIS-HB, reasoning describes
the ability to process complex information in tasks that cannot
be solved immediately but require drawing on information,
establishing a variety of relationships and applying formal
logic accurately and appropriately (Jager et al., 2006). Fig.
la illustrates a figural reasoning item that requires individu-
als to derive a rule describing the spatial transformation of an
object and draw a conclusion. In total, there are 15 reasoning
tasks, 5 per content format.

Creativity The underlying processes of generating novel
ideas or concepts are captured by creativity. This operation
is measured via tasks that require the active generation of
ideas rather than, e.g., simple identification, recognition, or
selection of material. Therefore, test takers are instructed to
provide a variety of responses under comparatively unstruc-
tured conditions. According to Runco (1986), this assesses
divergent thinking — the ability to generate numerous and dif-
ferent ideas as e.g. responses to questions with no obvious,
singular answer. Fig. 1b presents a numerical creativity item
challenging individuals to generate as many different numeric
sequences as possible, following a specific rule. In total, there
are 12 creativity tasks, 4 per content format.
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Instructions:

Memorise the following pairs.

North = fuhuv
Needle = tiele
Mixer = ghtze

Next to the English word there are five words in Phantasy
language. Which one is the previously displayed partner?

North hkuji sdrhb slmnb fuhuv mxrsw
Needle grfpl ticle ghrtz lkjea mcfrd
Mixer ghtze sltzt ysdra plknm  strsi

(a) Verbal memory: Given German (English) - Phantasy
word pairs, individuals need to memorise them and then
correctly recognise the Phantasy words.

Instructions:

Cross out all the letters ‘x” as quickly as you can.

uwkwkuwzuxbbwxhkjosipgkpxjk

Solution:

uwk josipakpxjkx

(b) Figural speed: Given a sequence of random letters,
individuals need to detect and cross out a specific letter
as fast as possible.

Figure 2: Tllustrative representations of a selection of BIS-HB items (Memory and Speed). Individuals provide their answers
by writing or drawing the solutions by hand. Note: These are not original items and figures as they would appear in the BIS-HB
test, but only an analogy created by the authors for illustrative, exemplary purposes only.

Memory This operation includes the active memorisation
and short-term recognition or reproduction of various types
of contents. The BIS-HB defines it as a measure of short-term
acquisition and retention performance (Jager et al., 2006).
It should be noted that longer-term retention processes, i.e.,
the activation of long-term memory structures through the re-
trieval of crystalline knowledge, are not captured by the BIS-
HB. Typical memory tasks require the retention of pairs of
stimuli, the free recall of previously viewed content, or the
reproduction of visual figures. In Fig. 2a an example of a
verbal memory item is illustrated. First, individuals are re-
quired to memorize a pair of words, one being in German
(English in the example) and the other one in an imaginary
fantasy language. After the time has elapsed, they are asked
to recall the correct fantasy word, out of a set of 5, corre-
sponding to the German word. In total, there are 9 memory
tasks, 3 per content format.

Speed Cognitive processing speed is typically captured via
tasks that require rapid information processing on easy task
material — due to the easy task-difficulty, adherence to the
given time limits is essential. Typical speed-tasks require test-
takers to locate and mark certain stimuli within the test mate-
rial, to complete a pattern, or to make pairwise assignments.
As the time taken to solve items is predetermined for all of the
items in the BIS-HB, not just those capturing the operation
speed, it is unlikely that the measures of the other factors (op-
erations and content-domains) are completely independent of
the variance explained by processing speed. Such a depen-
dence has already been demonstrated for the BIS reasoning
tasks (Wilhelm & Schulze, 2002). Figure 2b shows an exam-
ple of a figural speed item. Individuals are given a sequence
of letters and asked to detect the positions of a specific letter
and cross out all occurrences as fast as possible. In total, there
are 9 speed tasks, 3 per content format.

Methods
Data

The data used in the following analyses is the result of two
BIS-HB surveys (LUMI Project; Breit, Scherrer, & Preckel,
2020-2021). The time frame between the two surveys spans
6 months. The tested subjects, in both samples, are pupils at-
tending four high schools in Rhineland-Palatinate, Germany.
A unique feature is the inclusion of children enrolled in spe-
cial classes for the ‘gifted’.

Sample 1. 424 individuals were tested, including 138 gifted
children. 87 are excluded due to being too young or too old
to obtain norm-referenced IQ scores and 34 are excluded due
to missing data. That leads to a total of N = 303 subjects with
a mean age of M = 13.66 years.

Sample 2. 387 individuals were tested, including 128 gifted
children. 66 are excluded due to their age and 22 due to miss-
ing data. Ultimately, this sample is comprised of N = 299
subjects with a mean age of M = 13.70 years. 76.82% of the
subjects from the second sample were retested.

Each subject was assessed via all 45 BIS-HB tasks, com-
prising a total of 278 items. The number of items per task
varies between 5, (or 1 in cases where task and item were
synonymous) and 22. The items of 23 tasks possess inter-
val scaled responses, while the remainder are dichotomously
coded in the data as correct or incorrect. The task features
provide the overall score for all items in the respective task.
Additionally, we acknowledge that Breit et al. (2023) found a
large variance between the two samples. Due to that and the
fact that over 75% of the subjects are retested, we decided to
treat the samples separately.

Analysis

To address our research questions, we define a predictive task
utilising models applied to data describing individual perfor-
mance in tasks or, when appropriate, items, to predict 1Q
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Table 1: Predictive performance of models given all tasks.

S Model RZ RMSE MAE

Linear Regression .96  2.51 2.07
Random Forest .88  5.56 4.27
Linear Regression .97  2.51 2.03
Random Forest 91 5.41 4.19

Annotation: S — Sample; RMSE — Root Mean Squared Error;
MAE - Mean Absolute Error

2

scores. We use two machine learning methods, linear regres-
sion and random forest, to assess the importance and predic-
tive power of individual tasks and items in the BIS-HB, al-
lowing for comparative analysis of their performance.

Linear Regression is a statistical method used to estab-
lish the relationship between one or more independent vari-
ables/predictors and a dependent variable. Giving a concise
representation of the connection between the variables, it fa-
cilitates predictions of the dependent variable given new data
points. We fit the linear regression model by minimising the
sum of squared distances between the true and the predicted
values. Due to the dichotomous nature of some of the items,
we only applied linear regression to the tasks.

Random Forest is a robust machine learning model, an en-
semble of decision or regression trees. For our task particu-
larly, we use regression trees, generated by recursively split-
ting the data based on feature values while minimising the er-
ror of the target variable. By using randomly selected subsets
of the data, we generate a number of regression trees, which
store dataset features and splitting criteria in their nodes. The
final result is the average predictions of all trees (Burger,
2018; Rebala, Ravi, & Churiwala, 2019). The randomness
introduces a degree of diversity within the ensemble, making
random forests less likely to overfit the data, while being able
to capture complex relationships. The most valuable aspect of
random forests for our task is the fact that they have an inher-
ent feature selection process, when determining the best split
at every node, which can help identify the most important
predictors in a model (Horning, 2010). In order to evaluate
the importance of the variables we examine the node purity,
which is a measure of how much the model error changes
when a particular variable is randomly shuffled or permuted
(Tohry, Chelgani, Matin, & Noormohammadi, 2020). With
it we obtain a quantification of the increase in model error
should a particular variable have no information. No norm
values exist, as it is a purely relative measure of the individ-
ual variable importance, specific to each random forest model
(Dewi, 2019; Kuhn, 2008a).

Feature Importance Recursive Feature Elimination (RFE)
is a popular predictor selection technique that works by it-
eratively using machine learning algorithms to identify and
remove the least important predictors. This is achieved by fit-
ting the selected machine learning algorithm, ranking all the

predictors based on their importance, discarding the least im-
portant one, and re-fitting the model with the new, reduced
number of predictors. This process is repeated until a speci-
fied number of predictors is obtained. Possible hyperparam-
eters to explore are the number of predictors and the choice
of algorithm used to aid feature selection (Brownlee, 2020).
We apply RFE to determine the most prominent predictors
among the tasks and items while using random forest. In or-
der to evaluate the performance of each feature subset, we
performed k-fold cross validation, with kK = 10 — a technique
used to assess the generalisability of models by splitting the
dataset in k subsets and repeatedly validating a model trained
on k — 1 subsets on the remaining one, ensuring that each sub-
set has been used as both training and validation data among
all iterations.

Predicting the Individual In the case of predictive mod-
els, we aim to evaluate their predictive performance of an
individual’s 1Q score. Following approaches in predictive
modeling of deductive reasoning (e.g., Todorovikj & Ragni,
2021; Riesterer, Brand, & Ragni, 2020), we evaluate the mod-
els’ predictive abilities using a leave-one-out cross valida-
tion (LOOCYV) approach. With LOOCY, we fit a model with
known data to all participants except the one, whose score is
to be predicted based on the scores/correctness of their task
and item answers. The same process is repeated for every par-
ticipant in the data set. LOOCYV has several advantages over
other validation approaches, including a more robust estimate
of model performance because each observation is given the
opportunity to represent the entire test data set, resulting in
lower bias and overall variability, providing a reliable esti-
mate of how well a particular model generalises.

The software used for all of the analyses featured in this
paper is R-Studio, version 2023.03.0, Build 386 ‘“Cherry
Blossom” (RStudioTeam, 2023). The basis to R-Studio is
R, version 4.2.3 “Shortstop Beagle”, released on the 15th
of March 2023 (RCoreTeam, 2023). Additionally, the fol-
lowing R-packages were used: AICcmodavg (Mazerolle,
2023), broom (Robinson, Hayes, & Couch, 2023), car (Fox
& Weisberg, 2019), caret (Kuhn, 2008b), corrr (Kuhn, Jack-
son, & Cimentada, 2022), dplyr (Wickham, Francois, Henry,
Miiller, & Vaughan, 2023), doParallel (Daniel, 2022), effsize
(Torchiano, 2020), haven (Wickham, Miller, & Smith, 2023),
and multcomp (Hothorn, Bretz, & Westfall, 2008).

Results

In the following, we present the results of our analysis. As
mentioned above, we apply the models to the two samples
separately. For each sample and feature scenario we report
the R? value — the coefficient of determination, a statistical
metric quantifying the proportion of variance captured by the
model. Additionally, we report two errors measurements: the
Root Mean Squared Error (RMSE) and the Mean Absolute
Error (MAE). Between the two, RMSE is a strict metric that
penalises large errors more, making it useful in cases when
data contains outliers. MAE, on the other hand provides a
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Table 2: Predictive performance of models given a reduced
number of tasks. The total number of tasks is 45. In the
case of Linear Regression, the number of tasks was reduced
based on their lack of statistical significance as predictors.
For Random Forest the amount is reduced through Recursive
Feature Elimination.

S Model R> RMSE MAE #Tasks

Linear Regression .95  2.79 2.22 28
Random Forest .88 5.53 4.23 43
Linear Regression .96  2.64 2.08 35
Random Forest 91 5.33 4.09 35

Annotation: S — Sample; RMSE — Root Mean Squared Error;
MAE - Mean Absolute Error; #Tasks — Number of tasks

2

more intuitive and interpretable value, which is especially
valuable in our task. We report all three metrics to provide
a comprehensive assessment of model performance.

The results of the models applied to the tasks are shown in
Table 1. For both samples, linear regression captured a very
high variance percentage (.96 and .97, respectively). Addi-
tionally, evaluating the MAE, we can see that the model is
able to predict individual 1Q scores with a low margin of er-
ror — approximately 2 IQ points. In the case of random forest,
we notice a slight decline in performance, yet still a large por-
tion of variance is accounted for (.88 and .91, respectively),
with a margin of prediction error being approximately 4 1Q
points.

As stated before, we did not perform RFE using linear re-
gression, however, we examined the statistical significance of
the tasks as predictors of the target variable — the IQ score.
For Sample 1, we found that 17 out of 45 tasks failed to
reach statistical significance (p > .05) and for Sample 2, 10
out of 45. There was an overlap of five non-significant tasks:
four reasoning and one speed task. Overall, the ratio of non-
significant tasks in Sample 1 is: 47% reasoning, 44% speed,
22% memory and 33% creativity, and in Sample 2: 27% rea-
soning, 33% speed, 11% memory and 17% creativity. Ulti-
mately, we fitted a linear regression model using only the sta-
tistically significant tasks, the results are presented in Table 2.
With 17 tasks less in Sample 1, the R? value remains almost
unchanged, while the error metrics suffer a slight increase,
however negligible. Similarly, for Sample 2, after removing
10 tasks, the performance remains practically identical.

In order to select the best predicting tasks for random for-
est, we performed RFE using 10-fold Cross-Validation. For
Sample 1, we found that the optimal number of tasks is 43 out
of 45 (R? = .81, RMSE = 5.36, MAE = 4.23) and for Sample
2, 35 out of 45 (R? = .85, RMSE = 5.29, MAE = 4.13). In
Sample 1, one reasoning and one memory task are excluded.
The same ones are excluded in Sample 2, where the overall
ratio is: 27% reasoning, 11% speed, 33% memory and 17%
creativity. Despite the similar percentage distribution among

Table 3: Predictive performance of Random Forest given all
items and a reduced number of items. The total number of
items is 278. When reduced, the number of items was derived
through Recursive Feature Elimination.

S R? RMSE MAE #ltems

85 610 470 278 (all)
86 578 447 72
86 613 471 278 (all)
88 585 453 99

Annotation: S — Sample; RMSE — Root Mean Squared Error;
MAE - Mean Absolute Error; #ltems — Number of items

1

2

excluded tasks in Sample 2 with RFE to the non-significant
predictors in linear regression, most concerned tasks are dif-
ferent. After determining the subset of best predictors, we
used them to fit a random forest using LOOCV and the re-
sults can be seen in Table 2. If we compare the results with
those obtained using a full set of tasks, we see that the propor-
tion of variance explained remains the same, while the errors
decrease slightly, although negligible. In fact, after reducing
the number of tasks, the random forest is still able to perform
as well as before.

By focusing on the items, the smallest unit in the BIS-HB
test, we examine their performance exclusively using random
forest analysis, as linear regression is not an appropriate ana-
lytical tool for this analysis due to the dichotomous nature of
some items.

Table 3 reports the results. We notice a slightly worse per-
formance than when the model is fit to the tasks, with an ex-
plained variance of .85 for Sample 1 and .86 for Sample 2
and an error margin of more than 4.5 1Q points. Similarly
to before, we performed RFE in order to determine the best
predicting items using 10-fold Cross-Validation. For Sam-
ple 1, the optimal number of items is 72 out of 278 (R?> =
.79, RMSE = 5.93, MAE = 4.43) and for Sample 2, 99 out
of 278 (R* = .99, RMSE = 5.93, MAE = 4.45). Given the
large amount of individual items, we will analyze the exclu-
sion in detail based on which tasks they belong to. In Sample
1 there are 3 reasoning, 1 speed, 4 memory and 2 creativity
that are entirely excluded and 12 reasoning and 3 memory
tasks that have 2 or more items excluded. On the other hand,
in Sample 2, there are 2 reasoning and 2 memory entirely
excluded, 12 reasoning and 4 memory tasks with 2 or more
items excluded and 1 reasoning task with 1 item excluded.
Comparing these numbers and tasks to those excluded when
performing RFE with random forest on tasks, we observe an
overwhelmingly larger number of tasks that are affected when
discriminating based on the items’ relevance. With the ex-
ception of four tasks in Sample 2, all excluded tasks in the
previously reported analysis are also encountered in the item-
based exclusion. Between-sample comparison shows that the
tasks whose items were excluded are the same for the rea-
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soning tasks. Similarly for the memory tasks, with the ex-
ception of one. Finally, we evaluate the individual predictive
performance of the substantially smaller item subsets using
LOOCYV and report the results in Table 3. Once again, we no-
tice a slight improvement in the explained variance and error
margin allowing us to conclude that a significant decrease of
the items still allows for the same, satisfactory performance.

Discussion

Given the considerable time and resources required to create,
prepare and administer intelligence tests, this paper proposes
a novel approach to assessing the relevance of different tasks
and items other than through theoretical and/or deductive ap-
proaches. Motivated by cognitive load, fatigue and loss of
concentration, we applied machine learning methods to anal-
yse potential opportunities to reduce the number of tasks and
their smaller units, items. The main goals of our work were
summarised in our two research questions. In RQ1 we asked
how well we can predict an individual’s IQ. Using data from
the BIS-HB IQ test, we tested the predictive performance of
the linear regression and random forest models given previ-
ously obtained task scores of the individual. We achieved
highly satisfactory results within a margin of error of 2 and 4
IQ points respectively, giving a positive answer to our ques-
tion. Typically, random forests are rather robust and likely
to outperform other models, however here we witnessed a
better performance by the linear regression, though marginal.
One plausible explanation lies in the relationships between
the variables. While random forests have demonstrated their
ability to deal with complex problems, a simple linear rela-
tionship may be better explained by linear regression. An-
other point is that random forest regressors lack the ability
to extrapolate to values beyond the limited intervals they are
exposed to during training - something a linear regression is
certainly able to do. Additionally, we evaluated the perfor-
mance of a random forest when fitted on all 278 items, ob-
serving only a minor increase in error. In RQ2 we ask which
BIS-HB tasks and items are the most predictive. To answer
that, we a) identified and recomputed the linear regression
models including only significant tasks, maintaining a sim-
ilar performance. Similarly, b) for random forest, we per-
formed RFE and determined a reduced subset of tasks and
items, the latter being substantially smaller (from 278 to 72
for Sample 1 and 99 for Sample 2), all while the predictive
performance remained unharmed, if not slightly improved.
We identified tasks and items with limited impact, indicating
the need for further analysis to understand their differences
and the factors contributing to their relevance. We have pre-
viously recognised an existing short form of the BIS-HB test
that consists only of reasoning tasks. Through our analysis,
we show that the other facets need not be abandoned, as they
still hold valuable predictive power. As even the ‘downsized’
models, i.e., those consisting of only the most predictive test
components, still assessed intelligence using all operations
across all content-domains we partially confirmed the theoret-

ical concept of intelligence as defined by the BIS-HB. When
analysing the results, a natural question to ask is how much
of a deviation from the true value are we willing to accept and
still be satisfied with the performance? Given that in our arti-
cle we propose and take the first step towards this approach,
setting such a cut-off value would not be sensible. We are ac-
knowledging and presenting the potential trade-off between
predictive accuracy and amount of tasks/items, whose worth
is decided on a case-by-case basis.

In our exploration of the principles of artificial intelligence
and machine learning, we can distinguish between deductive
reasoning and inductive learning (Aggarwal, 2021). The de-
ductive approach starts with a hypothesis based on theoretical
assumptions, while the inductive approach derives patterns
from observations. We suggest that both approaches should
be used to optimise intelligence testing. While hypothesis
and tasks derived from a strong theoretical background are
undoubtedly valuable, it would be tremendously beneficial
to take steps in a different direction which would facilitate
not only making intelligence tests more accessible and min-
imize testing of same factors, but also enrich our knowledge
regarding intelligence and its assessment. Naturally, a find-
ing that a specific task does not have a high predictive power
does not immediately negate the theoretical significance of
the related component as an aspect of intelligence. By ob-
serving patterns in the data, even finding individual clusters
and applying predictive models, we open the doors to new
findings and understandings. Naturally, the methods that we
presented, along with many other approaches can be applied
to other tests as well and help us identify the importance of
certain task features.

A limitation of the used dataset that is worth discussing is
the lack of the exact responses that participants provided. For
many of the items we only had dichotomous information on
the answer correctness. If specific answers are provided, that
would allow us to develop concrete, detailed models that in-
corporate solving-rules and facilitate error-analysis, which in
turn would allow to even simulate the steps that individuals
take. With that, the prediction task would develop further to
predict the exact answer. Another point that should be ac-
knowledged is the difference in ratios of non-significant tasks
in Samples 1 and 2. The reason behind that likely lies in the
general difference in results, even between the same individ-
uals. However, this point is beyond the scope of our article,
as it has been discussed appropriately in Breit et al. (2023).

In conclusion, our work has successfully demonstrated a
predictive approach to intelligence tests. Not only did we
predict individuals’ IQ scores, but we also identified less pre-
dictive tasks and items whose exclusion did not significantly
affect performance. In doing so, we motivate the develop-
ment of a new predictive analysis paradigm in the field of
intelligence testing, with the aim of optimising existing and
future psychometric tests.
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