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Introduction 
In recent years, researchers have made great strides 

developing a mechanistic understanding of object 
recognition in mature brains. Despite this progress, 
fundamental questions remain about the origins and 
development of object recognition. To what extent is the 
‘initial state’ of object recognition innately constrained? 
What are the learning algorithms that transform the initial, 
naïve state into a mature state? Here, we describe a new 
experimental approach for studying the origins and 
development of object recognition, by performing parallel 
controlled-rearing experiments on newborn chicks and 
autonomous artificial agents. This approach can be used to 
isolate the core computational components that underlie 
visual intelligence. 

The Learning Problem 
What are the core learning mechanisms in newborn 

brains? What role does experience play in calibrating those 
mechanisms over time? Despite significant interest in these 
questions, the field lacks a mechanistic understanding of 
how visual intelligence develops in newborn brains.  

In computational neuroscience, the vast majority of 
studies have compared artificial neural network (ANN) 
models to mature visual systems (e.g., Schrimpf et al., 
2018). ANN models are typically trained with supervised 
learning, in which the model learns from millions of labeled 
training images. However, animals learn largely through 
unsupervised learning. Human infants receive labeled object 
input only when they begin understanding language, and 
nonhuman animals receive no labeled training input during 
development. Building accurate models of the visual system 
therefore requires building ANN models that learn like 
newborn brains, using unsupervised learning algorithms.      

There are three challenges in building ANN models that 
learn like newborn brains. First, newborn subjects are hard 
to study. Most methods for studying cognition in newborn 
subjects are low powered and produce noisy measurements. 
This makes it challenging to obtain the precise benchmarks 
needed to build accurate ANN models. Second, it is not 
possible to control the environment in which most newborn 
subjects are raised. Thus, we do not know which visual 
experiences were used to ‘train’ their visual system during 
development. Since the outputs of ANN models change 

radically as a function of training input, accurate 
comparisons of ANN models and newborn brains require 
training the models and brains with the same visual 
experiences. Third, animals have bodies and choose their 
own input during development through active exploration. 
To directly compare ANN models and newborn brains, we 
must embody ANN models and allow the models to choose 
their own input during learning. 

To overcome these three challenges, we developed two 
new tools for reverse engineering the origins of object 
recognition. These tools allow us to obtain precise 
benchmarks from newborn animals (§ 1) and then use those 
benchmarks to directly compare the learning abilities of 
embodied ANN models and newborn brains (§ 2). 

1. Controlled Rearing Studies of Newborn Chicks 
Reverse engineering the origins of object recognition 

requires precise benchmarks showing how specific visual 
inputs shape the development of object recognition. To 
obtain these benchmarks, we use newborn chicks as a model 
system. Unlike most animals, chicks are uniquely suited for 
studying the earliest stages of visual development (Wood & 
Wood, 2015). Chicks are mobile on the first day of life, 
require no parental care, and can be raised in strictly 
controlled environments immediately after hatching. Thus, 
it is possible to study how specific experiences shape object 
recognition. Since cortical mechanisms are largely 
conserved across birds and mammals (e.g., Karten, 2013), 
studies of chicks can also reveal general insights into 
vertebrate visual development.  

We developed a high-powered controlled-rearing method 
for studying newborn object recognition, using automated 
image-based tracking software and virtual stimuli. We raise 
newborn chicks in strictly controlled virtual worlds and 
record their behavior 24/7 as they learn to recognize objects. 
Computers perform all stimuli presentation and behavioral 
coding, so we can monitor the chicks’ behavior 
continuously across the first 3-4 weeks of life. As a result, 
we can obtain precise measurements of performance, chart 
how object recognition changes over time, and examine 
individual differences across newborn subjects. Fueled by 
video game engines, we can also raise chicks in interactive 
virtual reality worlds with realistic 3D objects and scenes.  

We have made discoveries in two areas. First, invariant 
object recognition can emerge rapidly in newborn brains. 
For instance, when newborn chicks are reared in a world 
with a single object, they can recognize that object across 
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novel viewing situations, including changes in viewpoint, 
background, and motion speed (Wood, 2013; 2015; Wood 
& Wood, 2015; 2016). Newborn chicks can also perform 
“one-shot learning.” When chicks are reared with a single 
view of a single object, they can recognize that object across 
novel viewpoints (Wood & Wood, 2020). Likewise, when 
chicks are reared with a single object on a single 
background, they can recognize the object across novel 
backgrounds.  

These results compliment a growing body of work 
showing that biological brains can learn new concepts from 
just one or a handful of examples (e.g., Lake, 
Salakhutdinov, & Tenenbaum, 2015). The discovery that 
newborn chicks can perform one-shot learning suggests that 
this ability does not require extensive post-natal experience 
in order to develop. One-shot learning appears to scaffold 
object recognition during the earliest stages of learning. 

The second area of discovery is that newborn brains need 
a specific type of training data in order to develop invariant 
object recognition; namely, experience with a naturalistic 
visual environment (Wood, 2016; Wood & Wood, 2016; 
2018; Wood, Prasad, Goldman, & Wood, 2016). To learn 
correctly, newborn chicks need input of object views that 
change slowly and smoothly over time, adhering to the 
spatiotemporal properties of objects in the real world. 
Without slow and smooth visual input, chicks build 
‘incorrect’ object representations that fail to generalize 
across new viewing situations. Thus, newborn brains learn 
to see by leveraging the slow and smooth input from natural 
visual environments—a key prediction of unsupervised 
temporal learning models in computational neuroscience. 

2. Controlled Rearing Studies of Artificial Chicks 
The methods and results described above provide the 

foundations for reverse engineering the origins of object 
recognition. By using high-powered methods to study the 
origins of vision, we can collect precise data showing how 
newborn brains transform sensory inputs into behavioral 
outputs. These input-output patterns can then serve as 
benchmarks for building end-to-end (pixels-to-actions) 
artificial agents that learn how to see like newborn animals.  

To this end, our lab developed a machine learning 
platform for linking biological intelligence to artificial 
intelligence. This platform allows us to raise newborn 
animals and artificial agents in the same environments, and 
test their visual recognition behavior with the same tasks.  

Our project involves three steps: First, we build artificial 
brains (deep neural networks) with visual systems that learn 
through biologically-plausible mechanisms (e.g., predictive 
coding, episodic memory, curiosity-driven learning). These 
brains are embodied in virtual chick bodies. Second, we 
raise the artificial chicks in the same virtual reality 
environments as real chicks, and test their behavior with the 
same tasks. Thus, we directly compare the learning abilities 
of biological brains and artificial brains that have received 
the same training data. Third, by plugging different artificial 

brains into the artificial chicks, we can isolate the core 
learning mechanisms that underlie visual intelligence.  

Using this approach, we have recently identified a class of 
ANN models that develops some of the same visual abilities 
as newborn brains. When artificial brains contain deep 
neural networks that learn through curiosity-driven learning, 
and the artificial chicks are raised in realistic environments, 
the artificial chicks spontaneously develop ego-motion, 
object parsing, and object recognition. Moreover, the 
artificial chicks spontaneously learn to detect and imprint to 
animate agents. We argue that a relatively simple set of core 
computational components is sufficient to produce 
foundational visual behaviors.   
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