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Abstract
A growing body of evidence supports the hypothesis that hu-
mans infer future states of perceived physical situations by
propagating noisy representations forward in time using ratio-
nal (approximate) physics. In the present study, we examine
whether humans are able to predict (1) the resting geometry
of sand pouring from a funnel and (2) the dynamics of three
substances—liquid, sand, and rigid balls—flowing past obsta-
cles into two basins. Participants’ judgments in each experi-
ment are consistent with simulation results from the intuitive
substance engine (ISE) model, which employs a Material Point
Method (MPM) simulator with noisy inputs. The ISE outper-
forms ground-truth physical models in each situation, as well
as two data-driven models. The results reported herein expand
on previous work proposing human use of mental simulation in
physical reasoning and demonstrate human proficiency in pre-
dicting the dynamics of sand, a substance that is less common
in daily life than liquid or rigid objects.
Keywords: Intuitive physics; mental simulation; substance
representation; prediction

Introduction
Consider KerPlunk, a children’s game in which marbles are
suspended in the air by a lattice of straws within a cylindrical
tube. The goal of the game is for each player to take turns re-
moving straws while minimizing the number of marbles that
fall through the lattice. The task requires players to reason
about the interaction between rigid bodies and obstacles in
3D space. But what if the marbles were replaced by balls of
liquid or sand? Could humans predict how those substances
would move? Would those predictions agree with a genera-
tive model based on ground-truth, Newtonian physics?

Recent computational evidence has demonstrated that hu-
man predictions do agree with Newtonian physics, given
noisy perception and prior beliefs about spatially represented
variables: i.e., the noisy Newton hypothesis (Bates, Yildirim,
Tenenbaum, & Battaglia, 2015; Battaglia, Hamrick, & Tenen-
baum, 2013; Gerstenberg, Goodman, Lagnado, & Tenen-
baum, 2015; Hamrick, Battaglia, Griffiths, & Tenenbaum,
2016; Kubricht et al., 2016; Sanborn, 2014; Sanborn, Mans-
inghka, & Griffiths, 2013; K. Smith, Battaglia, & Vul, 2013).
The hypothesis suggests that humans rationally infer the val-
ues of physical variables and utilize normative conservation
principles (approximately) to make predictions about future
scene states. Computationally, this is achieved by sampling
the initial locations, motions from noisy sensory input, and
sampling physical attributes in a physical scene, propagating
these variables forward in time according to approximated
physical principles, and aggregating queries on the final scene
states to form predicted response distributions.

Bates et al. (2015) extended the noisy Newton framework
from block tower judgments (Battaglia et al., 2013) to liq-
uid dynamics using an intuitive fluid engine (IFE). In their
IFE, ground-truth physics was approximated using smoothed
particle hydrodynamics (SPH (Monaghan, 1992), a particle-
based computational method for simulating non-solid dy-
namics. Their model predictions matched human judgments
about future fluid states and outperformed alternative mod-
els that did not employ probabilistic simulation or account
for physical uncertainty. Furthermore, the authors found that
their participants’ predictions were sensitive to latent fluid
attributes (stickiness and viscosity), suggesting that humans
have rich knowledge about the intrinsic properties of liquid.

The present study argues for the same general class of
model as Bates et al.’s (2015) IFE and extends their work
by examining (1) whether human predictions about future
states of multiple substances (i.e., rigid balls, liquid, and
sand) differ, and (2) whether those differences can be consis-
tently modeled using approximate, probabilistic simulation
based on a hybrid particle/grid simulator adapted from previ-
ous work (Kubricht et al., 2016). Although granular materials
(e.g., sand) are encountered in everyday life, they are far less
common than liquid; can humans accurately predict how sand
will interact with obstacles and support surfaces? We present
two experiments exploring the human capacity to predict the
dynamics of substances varying in familiarity and physical
properties, examining how human judgments and model pre-
dictions vary for different substances. Experiment 1 examines
human predictions about the resting composition of sand af-
ter pouring from a funnel. In Experiment 2, participants make
predictions about the flow of liquid, sand, and rigid balls past
obstacles using a design similar to Bates et al.’s (2015) study.

Computational Models
MPM Physical Simulator
The Material Point Method (MPM) (Sulsky, Zhou, &
Schreyer, 1995) is commonly used in computer graphics to
simulate the behavior of solids and fluids. The MPM has pro-
duced physically accurate and visually realistic simulations
of the dynamics of liquid (Jiang, Schroeder, Selle, Teran, &
Stomakhin, 2015) and sand (Klár et al., 2016), in addition
to general continuum materials such as stiff elastic objects
(Jiang, Schroeder, Teran, Stomakhin, & Selle, 2016).

The Appendix presents a mathematical overview of our
MPM simulator, which provides a unified, particle-based
simulation framework that handles rigid balls, liquid, and
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sand with essentially the same numerical algorithm, albeit
with appropriately differing material parameters. The MPM
method is physically accurate, numerically stable, and com-
putationally efficient, enabling us to synthesize a large set of
stimuli in a short amount of time by simply varying material
parameters and the locations of the initial objects and col-
liding geometries. Running all the simulations in the same
framework for the purposes of the present study also enables
fair comparisons among the three types of substances, since
we avoid potential inconsistencies in the numerical accura-
cies of multiple simulators specialized to particular materials.

Intuitive Substance Engine
Although the MPM simulator provides accurate and stable
kinematics and dynamics for liquid, sand, and rigid balls us-
ing a unified framework, this high-precision, deterministic
process does not account for the variability of human judg-
ments in various intuitive physics tasks. Inspired by previous
implementations of the noisy Newton framework (e.g., Bates
et al., 2015; Battaglia et al., 2013), we combined our MPM
simulator with noisy inputs, yielding an Intuitive Substance
Engine (ISE) that accounts for uncertainty in human percep-
tion and reasoning in physical situations involving the three
substances examined in this study. Details on how noisy per-
ceptual inputs are defined and sampled are provided in the
Model Results section of each experiment.

It is important to note that our ISE (employing MPM simu-
lation) is roughly equivalent to Bates et al.’s (2015) IFE (em-
ploying SPH simulation) in that both models apply the noisy
Newton framework to substance dynamics. Indeed, SPH is a
viable method for simulating the dynamics of both granular
materials and liquids, although MPM provides a more effi-
cient and accurate means of doing so. We do not envision
that the predictions of the two methods would differ substan-
tially from one another when applied to a given set of stimuli.

Data-Driven Models
Two data-driven models based on statistical learning meth-
ods were constructed as competing models—the generalized
linear model (GLM) (McCullagh, 1984) and Extreme Gradi-
ent Boosting (XGBoost) (Chen & Guestrin, 2016). GLM is
a classic machine learning method, commonly expressed by
Y = XB+U, where X is the feature input matrix, B is the pa-
rameter matrix (learned using a training dataset), and U is the
error between the ground truth matrix Y and prediction XB.

XGBoost is a recently-published machine learning method
which has been utilized by multiple research teams to achieve
outstanding performance in several Kaggle competitions. Es-
sentially, it is a type of tree ensemble model: i.e., a set of
classification and regression trees (CART). Formally, ŷi =
∑

K
k=1 fk(xi), where K is the number of trees, fk is a func-

tion in the functional space F comprising the set of all pos-
sible CARTS. The objective function is defined as R(θ) =
∑

n
i=1 l(yi, ŷi) +∑

K
k=1 Ω( fk), where θ includes the model pa-

rameters to be learned during training, l is the loss function,
which measures the cost between ground truth yi and predic-
tion ŷi, and ∑

K
k=1 Ω( fk) is a regularization term that prevents

the model from over-fitting the training data.

Figure 1: Intermediate frames from the demonstration video
in Experiment 1 from the (A) zoomed-out and (B) zoomed-in
perspective. (C) Sand pile choices in Experiment 1’s judg-
ment task.

Experiment 1
The first experiment was designed to determine whether hu-
mans are able to predict the resting geometry of sand after it
is poured from a funnel onto a surface, and whether dynamic
visualizations of the pouring behavior facilitate mental simu-
lation of sand-surface interactions.

Participants
A total of 108 undergraduate students (81 females), of mean
age = 20.2 years, were recruited from the University of Cali-
fornia, Los Angeles (UCLA), Department of Psychology sub-
ject pool and were compensated with course credit.

Materials and Procedure
Participants first viewed a demonstration video of sand falling
from a funnel suspended 10 cm above a level surface. The
pouring event was viewed three times from a zoomed-out
perspective (Fig. 1A) and then a zoomed-in perspective
(Fig. 1B). The duration of the video was 29 sec. After view-
ing the demonstration video, participants were presented with
a sand-filled funnel suspended 1/2, 1, 2, and 4 cm above the
surface in a randomized order.

Forty-three participants were assigned to the Static Con-
dition and viewed a static image (zoomed-out) in which
the funnel was positioned at a particular height. Sixty-five
were assigned to the Dynamic Condition and viewed a video
(zoomed in and out; looped three times; 35 sec duration) of
sand pouring from a funnel that was positioned at different
heights above the surface. In the Dynamic Condition, the re-
gion of the surface where the sand fell was occluded by a gray
rectangle.

After viewing each situation, participants were asked to in-
dicate which of four sand piles would result from the sand
pouring from the funnel at the indicated height (Fig. 1C).
For each trial, the stimulus images (for the Static Condition)
and final video frames (Dynamic Condition) remained on the
screen until a response was made. The pile choices were
shown from the zoomed-in perspective and represented the
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Figure 2: Model prediction results compared to human judg-
ments. (Upper) Static Condition. (Lower) Dynamic Condi-
tion. Each bar, 1, 2, 3, and 4, corresponds to testing trials
with funnel height 1/2, 1, 2, and 4 cm, respectively.

ground-truth resting geometries resulting from each situation:
i.e., Piles 1, 2, 3, and 4 correspond with the pile resulting from
funnels suspended 1/2, 1, 2, and 4 cm above the surface, re-
spectively. The experiment consisted of 4 trials. The stimulus
videos can be viewed at https://vimeo.com/216585992.

Human Results
At each funnel height, the proportion of participants choos-
ing each sand pile did not differ between the Dynamic and
Static Conditions: χ2(3) = 2.21, 2.34, 2.41, and 1.13 for fun-
nel heights of 1/2, 1, 2, and 4 cm, respectively. These results
suggest that dynamic visualizations of sand pouring from
the funnel in each situation did not alter participants’ judg-
ments about the sand’s resting geometry. However, the par-
ticipants’ pile choices did vary across different heights (χ2(9)
= 176.54), indicating that funnel height influenced their pre-
dictions on the resting geometry of falling sand.

As shown in Fig. 2, participants’ pile choices shifted
toward higher-numbered, flatter piles as funnel height in-
creased. These results indicate that participants’ predictions
were sensitive to funnel height, but inconsistent with ground-
truth resting states. In the next section, predictions from the
three computational models (ISE, GLM, and XGBoost) are
compared to human performance to determine whether the
noisy Newton framework can account for participants’ devi-
ations from ground-truth judgments.

Model Results
ISE Predictions: The input variables for our ISE in Exper-
iment 1 were funnel height (i.e., initial sand height) with per-
ceptual uncertainty and sand friction angle with mental sim-
ulation uncertainty. Given the ground-truth values of initial
funnel height and friction angle (HiT ,θiT ), N = 10,000 noisy
samples {(Hi,θi), i = 1, ...,N} were generated and passed
to our MPM simulator, which returned the final height of the

sand pile for each sample. Instead of choosing from 4 piles
(i.e., the task presented to the participants), the MPM simula-
tor compares the estimated height of the final sand pile, for-
mally D(Hi,θi) = Hp ∈ R > 0, with the heights of the 4 pile
options given to human participants. The pile option with
the minimum height difference was chosen as the predicted
judgment for each sample. Finally, by aggregating predic-
tions across the 10,000 samples, our ISE outputs a predicted
response distribution for each trial.

To model physical uncertainty in participants’ mental sim-
ulations, our ISE sampled funnel heights and friction angles
from noisy distributions. Gaussian noise (0 mean, σ2

H vari-
ance) was added to the ground-truth funnel height in each
situation. Gaussian noise was also added to the ground-truth
friction angle θiT , but in logarithmic space (see Sanborn et al.,
2013): θi = f−1( f (θiT )+ ε), where θiT is the ground truth
value of the initial sand height, f (θiT ) = log(ω ·θiT +k), and
ε represents Gaussian noise with 0 mean and σ2

ε variance. The
results reported herein used the following model parameters:
σH = 0.12HiT , σε = 0.6, ω = 0.8 and k = 1.5.
Data-Driven Predictions: To predict human judgments,
both GLM and XGBoost were tested on the ith pile (i =
1,2,3,4) and trained on the remaining three piles. During
training, 10,000 samples were drawn for each remaining pile
(30,000 samples) and passed to our MPM simulator. Sam-
ples were generated using the sampling method described in
the previous section. After training on the 30,000 samples,
both data-driven models were tested on another 10,000 sam-
ples generated from noisy input based on the configuration of
pile i. The final distribution was formed by aggregating the
predictions across the 10,000 samples.

Table 1: Root-mean-square deviation (RMSD) values for the
ground-truth (GT), ISE, GLM, and XGBoost models for Ex-
periments 1 and 2. Lower values of RMSD indicate better
model fits.

GT ISE XGBoost GLM
Experiment 1 (Static) 0.458 0.101 0.267 0.171
Experiment 1 (Dynamic) 0.445 0.104 0.237 0.148
Experiment 2 (Liquid) 0.145 0.081 1.382 0.077
Experiment 2 (Sand) 0.170 0.080 1.422 0.120
Experiment 2 (Balls) 0.186 0.102 2.067 0.191

Model Comparisons: Fig. 2 depicts the predictions of the
ISE, XGBoost, and GLM models compared to human judg-
ments. All four models achieved high correlations with hu-
man performance (Static: r(12) = 0.91, 0.84, and 0.27; Dy-
namic: r(12) = 0.88, 0.88, and 0.30 for ISE, XGBoost, and
GLM, respectively). Human performance was much less cor-
related with ground-truth predictions (Static: r(12) = 0.17;
Dynamic: r(12) = 0.19). The ISE model predictions were
more correlated with the human data than the competing data-
driven model predictions in the Static condition but were
only slightly more correlated than XGBoost predictions in
the Dynamic condition. Hence, this paper uses The root-
mean-square deviation (RMSD) between human responses
and model results to compare the model fits. We found that
RMSD between human responses and ISE predictions for the
4 judgment trials was less than that between ground-truth pre-
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dictions in both Static and Dynamic Conditions (see Table 1).
We also examined modeling performance using the Bayesian
information criterion (BIC) to account for the different num-
ber of free parameters in each model. We found that the
ISE provides a better fit to the human data than the ground-
truth and data-driven models in both conditions. For ground-
truth, ISE, XGBoost, and GLM models, Static BIC =−25.0,
−62.3, −31.2, −45.4, and Dynamic BIC = −25.9,−61.3,
−35.0, −50.0, respectively. The model with the lowest BIC
value is preferred.

Although XGBoost captures most of the trends in the hu-
man judgments, it appears to over-fit the data in some cases.
In the Static Condition, XGBoost’s predicted response pro-
portion for Pile 1 in the Trial 1 (1/2 cm funnel height) is
greater than the proportion in Trial 2 (1 cm funnel height),
which is consistent with human judgments. In the Dynamic
Condition, however, XGBoost’s predicted response propor-
tion for Pile 1 is greater in Trial 1 than in Trial 2, which is in-
consistent with trends in human performance. Alternatively,
GLM showed very poor performance, predicting an increas-
ing probability of Pile 1 choices for larger funnel heights.
This trend is in the opposite direction of that observed in the
human data, most likely due to the small number of training
trials used to make each prediction.

Experiment 2
Our results from the first experiment indicate that humans are
able to predict the resting geometry of sand piles, even though
they may not have very rich experience interacting with sand
in daily-life. The second experiment was conducted to deter-
mine 1) whether humans can reason about complex interac-
tions between sand and rigid obstacles and 2) whether their
predictions about the resting state of sand in novel situations
differ from predictions about other substances, such as liquid
and rigid balls.

Participants
A total of 90 undergraduate students (66 females), mean age
20.9, were recruited from the UCLA Department of Psychol-
ogy subject pool, and were compensated with course credit.

Materials and Procedure
The procedure in Experiment 2 was similar to the design in
Bates et al.’s (2015) experiment: i.e., participants viewed a
volume of a substance suspended in the air above obstacles
and were asked to predict the proportion that would fall into
two basins separated by a vertical divider below (Fig. 3). The
present experiment differed from previous work in that par-
ticipants reasoned about the resting state of one of three dif-
ferent substances: liquid, sand, or sets of rigid balls. Also,
whereas the previous study used polygonal obstacles, those in
the present study were circles varying in size. Depth informa-
tion was also not present in the rendered situations. The stim-
ulus videos can be viewed at https://vimeo.com/216585992.

Situations were generated by sampling between 2 and 5
obstacle locations from a uniform distribution bounded by the
width and height of the chamber. The diameter, d, of each ob-
stacle was sampled from a uniform distribution bounded by
[0.15,0.85] relative to the randomly-generated center points.

Figure 3: Initial (top) and final (bottom) state of liquid (left),
sand (middle), and a set of rigid balls (right) for a testing trial
in Experiment 2 with 5 obstacles. The percentages indicate
the amount of each substance that fell into the left and right
basins. Only the initial state of each substance was shown in
the testing trials.

The center points were generated by uniformly sampling the
entire space. If the generated obstacles were placed outside
the boundary, the configuration was rejected and re-sampled.
Our MPM simulator was used to determine the ground-truth
proportion of each substance in the left and right basins for
each of the generated situations. For each substance, forty
testing trials (10 trials with 2, 3, 4, and 5 obstacles) were cho-
sen from the generated set such that the ground-truth propor-
tion of substance in the left basin was approximately uniform
across trials. The testing trials were the same for each sub-
stance.

Participants were randomly assigned to either the liquid,
sand, or rigid balls condition. Thirty participants were as-
signed to each condition in a between-subjects experimental
design. Prior to the testing trials, participants completed five
practice trials with two obstacles in each situation in a ran-
domized order. After answering 1) which basin the major-
ity of the substance would fall into and 2) the expected pro-
portion that would fall into the indicated basin, participants
viewed a video (13 second duration) of the situation unfold-
ing and were told the resulting proportion in the ground-truth
simulation. After completing the practice trials, participants
completed 40 testing trials in a randomized order by answer-
ing the same two questions in each trial. No feedback was
given following the completion of each testing trial.

Human Results
Participants’ predicted proportions in the testing trials were
strongly correlated with ground-truth predictions in the liq-
uid, sand, and rigid balls conditions (r(38)=0.86, 0.82, and
0.88; RMSD = 0.145, 0.170, 0.186, respectively). The devi-
ation for each trial was calculated by subtracting the ground-
truth proportion from each participant’s proportion response.
The deviation differed significantly between the three sub-
stance conditions (F(2) = 3.64, p = 0.03), indicating that
the difference between human predictions and the ground-
truth status varied according to the substance type. To de-
termine whether participants’ response proportions differed
between substances, a random factor ANOVA was conducted
for a chosen set of trials. The chosen set excluded those trials
where the majority of each substance fell into the same basin
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Figure 4: Model prediction results compared to human pre-
dictions. From left to right: Ground-truth (GT), ISE, GLM,
and XGBoost.

(left or right) according to the ground-truth simulation. We
found that the response proportions showed significant differ-
ences depending on substance type (F(2) = 8.43, p < 0.01).
The next section examines whether an ISE and two data-
driven models can capture differences in human performance
between the three substances.

Model Results
ISE Predictions: In Experiment 2, the observable input
variables for our ISE for each substance were 1) the ini-
tial, horizontal position of the substance, and 2) the posi-
tions of the circular obstacles in each situation. The latent
substance attributes accepted by the engine were viscosity,
friction angle, and restitution coefficient for liquid, sand, and
the rigid balls, respectively. Gaussian noise was added to the
substance’s (ground-truth) horizontal position (0 mean, 0.35
variance) and the obstacles’ (ground-truth) positions in 2D
space (0 mean, 0.4 variance). Logarithmic Gaussian noise
was added to each substance’s ground-truth attribute value
via the logarithmic transformation specified in Experiment 1.
The results reported here utilized the following model param-
eters for all three substances: σε = 0.5, ω= 0.8, k = 1.2. Two
thousand samples (40 situations × 50 noisy samples) were
used for each substance.
Data-Driven Predictions: Similar to Experiment 1, both
GLM and XGBoost were tested. The training data were ran-
domly generated situations with basin proportions calculated
using resting state output from our MPM simulator. Input
features were the collection of both the observable input vari-
ables and latent substance attributes used in the ISE predic-
tion. In total, 6000 samples were used for training.
Model Comparisons: Fig. 4 depicts the comparison be-
tween human and model basin predictions from the ground-
truth (GT), ISE, GLM, and XGBoost models, and Table
1 depicts the root-mean-square deviation (RMSD) of each
model’s predictions from human ones. The human data were
highly consistent with ISE predictions (r(38) = 0.93, 0.93,
0.93; RMSD = 0.081, 0.080, 0.102 for liquid, sand, and rigid
balls, respectively). The ISE model predictions deviated from
the human data to a lesser degree than the GT model predic-
tions (r(38) = 0.87, 0.85, 0.88; RMSD = 0.145, 0.170, 0.186
for liquid, sand, and rigid balls, respectively), indicating a
superior account of human predictions across a range of sub-
stances. In comparison, GLM and XGBoost predictions were

less consistent with human predictions (GLM: r(38) = 0.77,
0.78, 0.65, RMSD = 0.077, 0.120, 0.191; XGBoost: r(38) =
0.67, 0.74, 0.71, RMSD = 1.382, 1.422, 2.067 for liquid,
sand and rigid balls, respectively). As in the previous exper-
iment, we compared each model’s BIC measure in each con-
dition to account for the number of free parameters in each
model. We found that the BIC values for the ground-truth,
GLM, and XGBoost models (GT: BIC = −154.5, −141.8,
−134.6; GLM: BIC = −194.0, −158.6, −121.4; XGBoost:
BIC = 36.9, 39.2, 69.2 for liquid, sand, and rigid balls, re-
spectively) were consistently greater than the values for the
ISE model (BIC = −190.0, −191.0, −171.6 for liquid, sand,
and rigid balls, respectively), further reinforcing the superior
performance of our simulation-based model.

It is worth noting that our ISE achieved consistent perfor-
mance across all three substances, whereas GLM and XG-
Boost were less capable of predicting human judgments about
rigid balls and liquid. In addition, our ISE used only one
third of the training samples that XGBoost and GLM needed,
demonstrating that a generative physical model with noisy
perceptual inputs is capable of learning with a smaller num-
ber of samples than data-driven methods.

Discussion
Results from Experiments 1 and 2 provide converging evi-
dence that humans can predict outcomes of novel physical
situations by propagating approximate spatial representations
forward in time using mental simulation. This stands in con-
trast to early research in rigid-body collisions suggesting that
human physical predictions do not obey ground-truth physics,
instead relying on heuristics (e.g., Gilden & Proffitt, 1994;
Runeson, Juslin, & Olsson, 2000). ISE predictions entailing
the noisy Newton framework outperformed both ground-truth
and data-driven models in both experiments, further confirm-
ing the role of perceptual noise and physical dynamics in hu-
man intuitive physical predictions.

Previous work has demonstrated that humans sponta-
neously employ mental simulation strategies when reason-
ing about novel physical situations (Clement, 1994; Hegarty,
2004; Schwartz & Black, 1996). Recent fMRI results sug-
gest that intuitive physical inferences are made using an inter-
nal physics engine encoded in the brain’s “multiple demand”
network (Fischer, Mikhael, Tenenbaum, & Kanwisher, 2016).
Although our ISE employed herein accounted for percep-
tual uncertainty in each situation, the simulations themselves
closely approximated normative physical principles. Adding
“stochastic noise” to physical dynamics, however, has been
shown to increase model performance when predicting hu-
man responses in simple physical situations (K. A. Smith
& Vul, 2013). While dynamic uncertainty can easily be
built into rigid-body collisions, employing this strategy in the
present physical simulations would preclude stable numerical
evaluation. Thus, future computational work should explore
methods for adding dynamic uncertainty into complex physi-
cal simulations while preserving their accuracy and stability.

Results from the present study demonstrate that human
predictions about substance dynamics can be accurately pre-
dicted by a unified simulation method with uncertainty im-
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plemented into underlying physical variables. It is unlikely,
however, that the human brain numerically evaluates partial
differential equations to discern whether physical quantities
(e.g., mass and momentum) are conserved, nor is it likely that
the brain stores the locations of vast numbers of particles to
form physical predictions and judgments. Instead, our results
provide evidence that humans approximate the dynamics of
substances in a manner consistent with ground-truth physics
but succumb to biases invoked by perceptual noise when in-
ferring future environmental states. It remains unclear, how-
ever, whether the dynamics of rigid objects, liquids, and gran-
ular materials are approximated using separable mechanisms
or a single cognitive architecture with different assumptions
and constraints. The success of our unified simulation model
across different substance-types supports the latter perspec-
tive.
Acknowledgments Support for the present study was
provided by a NSF Graduate Research Fellowship, NSF
grant BCS-1353391, DARPA XAI grant N66001-17-2-4029,
DARPA SIMPLEX grant N66001-15-C-4035, ONR MURI
grant N00014-16-1-2007, and DoD CASIT grant W81XWH-
15-1-0147.

Appendix: Details of Our MPM Simulator
The governing partial differential equations utilize the principles of
conservation of mass and momentum:

Dρ

Dt
+ρ∇ ·v = 0,

Dv
Dt

= ∇ ·σ+ρg, (1)

where σ is the stress imparted on a particle, g is the gravitational ac-
celeration, and D

Dt is the material derivative with respect to time. The
equations are discretized spatially and temporally with a collection
of Lagrangian particles (or material points) and a background Eule-
rian grid. The material type of the simulated substances is naturally
specified from the constitutive model, which defines how a material
exerts internal stress (or forces) as a result of deformation.

Rigid balls are simulated as highly stiff elastic objects with the
neo-Hookean hyperelasticity model, described through the elastic
energy density function

Ψ(F) =
µ
2
(tr(FT F)−d)−µ log(J)+

λ

2
log2(J), (2)

where d is the dimension (2 or 3), F is the deformation gradient (i.e.,
the gradient of the deformation from undeformed space to deformed
space), J is the determinant of F, and µ and λ are Lamé parameters
that describe the material’s stiffness.

Liquid is modeled as a nearly incompressible fluid, with its state
governed by the Tait equation (Batchelor, 2000):

p = k
[(

ρ0

ρ

)γ

−1
]
, (3)

where p is the pressure, ρ and ρ0 are the current and original densi-
ties of the particles, γ = 7 for water, and k is the bulk modulus (i.e.,
how incompressible the fluid is). Through this Equation-of-State
(EOS), the stress inside a non-viscous fluid is given by σ = −pI,
where I is the identity matrix. We further adopt the Affine Particle-
In-Cell method (APIC) (Jiang et al., 2015) to greatly reduce numer-
ical error and artificial damping. This enables us to simulate flu-
ids with better accuracy compared to alternative computer graphics
methods.

The motion of dry sand is largely determined by the frictional
contact between grains. In the theory of elastoplasticity, the mod-
eling of large deformation (e.g., frictional contact) can be based on
a constitutive law that follows the Mohr-Coulomb friction theory.
Following (Klár et al., 2016), we simulate dry sand based on the
Saint Venant Kirchhoff (StVK) elasticity model combined with a
Drucker-Prager non-associated flow rule. Plasticity models the ma-
terial response as a constraint projection problem, where the feasible

region (or yield surface) of the final material stress is restricted to be
inside

tr(σ)cF +

∥∥∥∥σ− tr(σ)
d

∥∥∥∥
F
≤ 0, (4)

where d is the dimension and cF is the coefficient of internal friction
between sand grains. The stress (and thus deformation gradient) of
each sand particle is projected onto the yield surface so as to satisfy
the second law of thermodynamics.
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