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Fine‑grained data reveal 
segregated mobility networks 
and opportunities for local 
containment of COVID‑19
Chao Fan1*, Ronald Lee2, Yang Yang2 & Ali Mostafavi1*

Deriving effective mobility control measures is critical for the control of COVID‑19 spreading. In 
response to the COVID‑19 pandemic, many countries and regions implemented travel restrictions and 
quarantines to reduce human mobility and thus reduce virus transmission. But since human mobility 
decreased heterogeneously, we lack empirical evidence of the extent to which the reductions in 
mobility alter the way people from different regions of cities are connected, and what containment 
policies could complement mobility reductions to conquer the pandemic. Here, we examined 
individual movements in 21 of the most affected counties in the United States, showing that mobility 
reduction leads to a segregated place network and alters its relationship with pandemic spread. Our 
findings suggest localized area‑specific policies, such as geo‑fencing, as viable alternatives to city‑
wide lockdown for conquering the pandemic after mobility was reduced.

The COVID-19 pandemic has caused enormous public health and economic  impacts1. Close proximity contact 
is one of the major drivers of the  pandemic2. In the absence of effective vaccines and drugs, many countries 
have enacted non-pharmacologic measures, such as travel restrictions, non-essential business lockdown, and 
stay-at-home orders to limit human mobility, intending to reduce cross-region epidemic  transmission3,4. While 
mobility reduction measures are deemed an effective approach to disease  containment5, empirical knowledge of 
the relationship between heterogeneous mobility reductions and pandemic spread in different stages is  scarce6.

Multiple  studies7–9 that have theoretically modeled and simulated the course of the COVID-19 pandemic 
with restricted mobility scenarios have demonstrated that mobility reduction could effectively delay the spread 
of SARS-CoV-2 across  locations10. But as actual population movements reduced  heterogeneously11, the results 
from theoretical models and simulations would be less useful if their assumptions on mobility reduction were 
inconsistent with the empirical evidence. This limitation may lead to an overestimation of the effectiveness of 
existing containment measures based on mobility reduction and create barriers to generate complementary 
 policies12. The main goal of mobility reduction is to achieve sufficient spatial isolation among different regions 
of cities and their  residents13.

In this study, we use fine-grained mobile phone data, which contain more than 1.15 billion dwelling points 
for 3.7 million anonymized devices from 21 of the most infected counties in the U.S., such as Harris County, San 
Francisco County, counties in New York City; and the city of Washington, D.C. based on the cumulative number 
of infected cases in March 2020. To characterize the spatial reach of people, analogously to ref.14, we computed 
the radius of gyration ( rg ) for each individual device and the lengths of trips. Comparing to the baseline in 
January 2020, consistent with previous  research15, we observed disproportionate reductions in mobility across 
distance categories during the outbreak of the COVID-19 pandemic. The variation in mobility reductions alters 
the way spatial census block groups (CBGs) are connected in a city and could have an influence on the trajec-
tory of the pandemic. Our finding—that CBGs are connected in a sparser mobility network—suggests that a 
substantial spatial divide is achieved due to mobility reductions, and such a divide provides opportunities for 
area-specific containment policies, such as geo-fencing or ZIP-code lockdown, to further isolate CBGs with a 
greater incidence of infections.
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Results
Figure 1A shows the relative changes in the number of trips ( nt ) from the baseline for 21 metropolitan counties 
in the United States from March 1 to June 27, 2020. Note an abrupt decline, especially for the long-distance trips, 
occurring at the end of March and during April, when the stay-at-home orders were implemented. The largest 
reduction (around -60% below the baseline for long-distance trips and -40% below the baseline for short-distance 
trips) occurred in late April. The discrepancy between short- and long-distance trip patterns, slightly declining 
in the re-opening period, remained stable over the course of the pandemic.

Similarly, population with large rg substantially decreased, leading to an increase in population with the 
smallest rg (Fig. 1B). This result provides evidence for the main outcome of stay-at-home orders, which was 
reducing the spatial reach of residents with the result of a slowdown in the spread of the virus. Such a pattern 
of mobility change also influences social contact activities across CBGs of cities. Figure 1C presents the relative 
change in the number of edges for the distances between the CBGs where two connected individuals originate. 
Notably, there is a sharp decrease (close to − 100%) in the number of edges connecting people from two CBGs 
distant from each other in March and April, while the neighbor contact activities (the edges connecting people 
from the same or close CBGs) did not change as much (about − 50%) and returned to the baseline values rapidly 
during re-opening.

The split between changes in short- and long-distance movements provides insights regarding the change in 
mobility networks. Figure 1D presents the consequence of the mobility change pattern reflected in the transfor-
mation of mobility networks. We observed a striking increase in the length of shortest paths across CBGs from 
March 2 (before implementing orders) to April 27, 2020 (when mobility metrics bottomed). As geographical 
distances between pairs of CBGs grew, the average length of shortest paths increased more rapidly on April 27. 
This result explicitly shows that the mobility network on April 27 was more segregated than that on March 2. 
This empirical evidence uncovers the main way mobility reductions help with pandemic mitigation: through 
division of spatial units (CBGs) and their residents. This isolation could further alter the relationship between 
urban mobility and pandemic spread (Fig. 2B,C).

To further shed light on the dynamic interplay between urban mobility reduction and pandemic spread, 
we first estimate the daily effective reproduction number ( Rt ) as a proxy indicator for pandemic spread in each 
county. Then we select a date in April or May to split the study period into two stages (Fig. 2A). These two stages 
represent the time at which the relationship between mobility and pandemic spread changed. Here, we consider 
that all the dates in April and May 2020 could be the splitting dates. Hence, we selected each date as the stage 
splitting date and evaluated the R-squares of the model in two stages based on the selected dates. We illustrate 
the results generated by ordinary least squares (OLS) regressions for the association between Rt and relative 
change in population size in the smallest rg (Fig. 2D) and relative change in nt (Fig. 2E). We find that when 
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Figure 1.  Empirical assessment of urban mobility changes during the COVID-19 pandemic across 21 
metropolitan counties in the United States. (A) Relative changes in the number of trips (7-day average) based 
on distance categories. (B) Relative changes in the size of population (7-day average) based on the categories of 
the radius of gyration. (C) Relative change in number of edges based on the categories of the distance between 
two people’s CBGs. (D) Average length of shortest paths in urban mobility networks on two typical dates as a 
function of geographical distance between two CBGs.
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the dates in the beginning of April are selected as stage splitting dates, the relationship between Rt and relative 
change in population size in the smallest rg (Fig. 2D) was significantly strong in the first stage from March 1 to 
the beginning of April, while the relationship was particularly weak in the second stage from the beginning of 
April to the end of May. This observation allows us to determine dates when the pandemic situation shifts the 
relationship between movement radius and effective infections. In the application of our findings, the difference 
of the R-squares at two stages is an important metric to determine the stage splitting date.

In addition, we observe that including more data in the first stage weakens the associations between the two 
metrics. The population size in the smallest rg , however, can still explain more than 60% of the variation of the 
Rt in the second stage. The number of trips does not maintain its strong association with the pandemic spread 
(Fig. 2E). This result could be because the number of trips increased during the second stage, but the division 
among the spatial units, to some degree, remained. Furthermore, Fig. 2F shows that the coefficients of the regres-
sion models changed, in particular, for the number of trips in the second stage. Since Rt was in general larger 
than 1, the segregation in mobility networks is not sufficient for conquering the disease. This result offers a need 
of localized area-specific measures, such as geo-fencing and ZIP code-level lockdown, to not only maintain 
short-distance movements and spatial divide, but also to deeply restrict activities of populations in areas with a 
more extensive number of reported cases.

Discussion and concluding remarks
The results provide an empirical assessment to uncover how the public reduces movements in response to the 
COVID-19 pandemic and consequences on the change of mobility networks and the association with pandemic 
spread. We found that long-distance movements have reduced substantially, while short-distance trips changed 
slightly. People started moving in a small radius of gyration in response to the pandemic and subsequent stay-
at-home orders. Such heterogeneous mobility reduction pattern greatly increased the length of shortest paths 
across CBGs and subsequently caused the mobility network of CBGs to be sparser and more segregated. This 
segregation in the mobility network of CBGs was the main outcome of mobility reduction policies. In this stage, 
CBGs were locally connected, instead of globally and densely connected as in normal conditions. Hence, the 
relationship between urban mobility and pandemic spread was reconfigured.

According to the findings in this study, we could summarize that the purpose of mobility reduction policies 
is to create spatial segregation by increasing the lengths of shortest paths in networks and reducing the spatial 
reach of larger populations at all scale, from global, to national, to city scale. This division in the spatial structure 
of urban mobility networks provides opportunities for localized area-specific policies for pandemic containment 
while the implementation of city-wide lockdown with reduced total number of trips would not be economically 
feasible. More localized containment such as geo-fencing, drawing a virtual perimeter that marks the limit of 

Figure 2.  Results of stage splitting and dynamic relationships between mobility change and pandemic spread. 
(A) An illustration of stage splitting. (B) Example (Oakland County) of relationship change between effective 
reproduction number and population in smallest rg . The stage splitting date is April 20, 2020. (C) Example of 
relationship change between Rt and number of trips. (D) The R2 for the OLS regression between the number 
of people in the category of the smallest radius of gyration and Rt in two stages based on stage-splitting dates 
in April and May. (E) The R2 for the regression between the number of total trips and Rt in two stages based on 
stage-splitting dates in April and May. (F) The coefficients β1,i values in two different stages for two metrics. The 
splitting date in this example is April 20, 2020.
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permitted scale of movement for residents, or ZIP code-level lockdown, could have a greater impact on pandemic 
containment when mobility networks are segregated. Specifically, clusters of CBGs with a large number of infec-
tions could be restricted in their CBGs. Other CBGs could lift their restrictions on local business and outdoor 
activities to recover the economy of cities.

As a first step to the long-standing question for the relationship between urban mobility and disease spread, 
this report provides the potential of the novel data to initiate new avenues of research in policy making for 
pandemic mitigation. Multiple directions could further expand our research. For example, considering the time 
lags between two variables in autocorrelation analysis would be helpful for predictive tasks such as predicting 
the number of cases in the future. In addition, evaluating the proposed mitigation strategies such as geofencing 
using epidemiological simulation could also be helpful to validate the effectiveness of the strategies.

Methods
This study utilized anonymized data provided by Veraset, Inc. Using data from 21 of the most highly infected 
metropolitan counties from January 1 through June 27, 2020. The data set contains anonymized device IDs, the 
timestamps and precise geographical coordinates of dwelling points. The dwelling points, also called stop points, 
in the anonymized mobile phone data shared by the data compony are defined as the points where the devices 
spent at least 5 min. It is obtained from granular device location points by clustering the points which are spatially 
and temporally proximate. In addition, we labeled the dwelling points with points of interest (POIs) and CBGs. 
The locations of POIs were provided by SafeGraph, Inc. The geographical boundaries of CBGs were provided by 
The Centers for Disease Control and Prevention (CDC) (2018 documentation). Before performing the analyses, 
we first filtered out the data points of the devices that only appear for a couple of days in the date set. The data 
points of the devices that have records in at least three-quarters of a month are included in the analyses of this 
study. Hence, the population size in the analyses of this study is consistent during the study period.

A trip of a device/user is defined as the movement from one dwelling point to  another16. The number of trips 
is computed using the movements of devices between two dwelling points. Here, we considered all the trips 
including the trips repeated by a device in a day. That means, if one device moved between two points twice in a 
day, we consider these as two trips. We classified the trips into five distance categories based on the geographical 
distance between the starting and ending dwelling points. The baseline data for the number of trips is the aver-
age daily number of trips at the same day of the week in January 2020 in each county in order to take the weekly 
pattern into  account17. The change of the population size ( c ) is calculated by:

where pi represents the population size in a category of radius of gyration or the number of trips on date i rang-
ing from March 1 to June 27, 2020, and ps represents the average population size in the corresponding category 
of radius of gyration or the number of trips in the same day of week in January 2020.

Consistent with the ref.14, we computed the radius of gyration entered in the trajectory’s centre of mass for 
each unique device and computed daily population size in five radius categories. The individual devices’ radius 
of gyration in this study is defined as the characteristic distance traveled by the device during a  day14. In this 
study, we adopted the method from prior influential  research14 to calculate the radius of gyration for each indi-
vidual device:

where 
⇀
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 represents the i = 1, 2, . . . , n locations recorded for the device, and 
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 . Since the locations of the devices are recorded using geographical 

coordinates which are composed of latitudes and longitudes, we can calculate the radius of gyration  using18:

where r is the radius of the earth, φi and φcm are the latitudes of the location i and the center of mass respectively, 
and �i and �cm are the longitudes of the location i and the center of mass respectively. There are five categories for 
the radii of gyrations of the devices: rg < 0.25km ; 0.25km ≤ rg < 0.50km ; 0.5km ≤ rg < 1km ; 1km ≤ rg < 2km ; 
and 2km ≤ rg . The category of the smallest radius of gyration means the category of rg < 0.25km.

To construct mobility networks, we first represented the trips between CBGs as a weighted network 
G(V ,E,W) , where V  represents a set of nodes (CBGs), E represents a set of edges, and the weight ( wij ∈ W ) of 
an edge ( eij ) between CBGs i and j is the number of trips. The average shortest path metric is used to measure the 
connectedness of the nodes (census block groups) in the networks by taking into account the flow of population 
across different nodes. We consider two nodes to be “close” to each other when they are connected by a large 
flow value1. Since the analysis focuses on examining epidemic spread, the greater the population flow between 
two areas, the closer the two areas in terms of the ability of the virus to spread. Hence, we defined the distance 
between two CBGs in the mobility network as the inverse weight ( 1/wij ) along the edge connecting these two 
CBGs. Then we adopted Dijkstra’s  algorithm19 to calculate the shortest path length between each pair of CBGs.
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We employed an ordinary least squares regression  model20 to estimate the relations between county i ’s Rt 
values ( yi ) and mobility metrics ( xi ). Since the effective reproduction numbers and mobility metric values are 
time series, they are represented by vectors in the model. The OLS regression takes the following form:

where β0,i and β1,i are parameters and ǫi is an error term. We conducted the regression for each mobility metric 
and stage separately. Equation (4) above is a general form of the regression models. The ordinary least squares 
regression model employed in this study is used to illustrate the relationship between two variables. We do not 
aim to use this model for prediction. R-square is one of the most commonly adopted metric to evaluate the 
performance of the model, referring to existing  literatures21. To make the process straightforward, therefore, 
we used R-square to indicate the relationships between the dependent and independent variables in this study.

Data availability
The fine-grained anonymized movement data are available from Veraset, Inc. (provided upon request submitted 
at https:// www. veras et. com). The CBG data is provided by CDC (https:// www. atsdr. cdc. gov/ place andhe alth/). 
The geographical locations of POIs are provided by SafeGraph (freely provided upon request submitted at https:// 
www. safeg raph. com/ covid- 19- datac onsor tium). The COVID-19 case data were obtained from https:// github. 
com/ nytim es/ covid- 19- data. The Rt for each county was calculated using the method on rt.live. The code used 
to run the analyses and models is available on Github https:// github. com/ urban- resil ience- lab.
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