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Abstract

Down syndrome (DS) is the most common genetic cause of intellectual disability in children. With 

aging, DS is associated with an increased risk for Alzheimer's disease (AD). The development of 

AD neuropathology in individuals with DS can result in further disturbances in cognition and 

behavior and may significantly exacerbate caregiver burden. Early detection may allow for 

appropriate preparation by caregivers. Recent literature suggests that declines in gait may serve as 

an early marker of AD-related cognitive disorders; however, this relationship has not been 

examined in individuals with DS.

The theory regarding gait dyspraxia and cognitive decline in the general population is reviewed, 

and potential applications to the population with individuals with DS are highlighted. Challenges 
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and benefits in the line of inquiry are discussed. In particular, it appears that gait declines in aging 

individuals with DS may be associated with known declines in frontoparietal gray matter, 

development of AD-related pathology, and white matter losses in tracts critical to motor control. 

These changes are also potentially related to the cognitive and functional changes often observed 

during the same chronological period as gait declines in adults with DS. Gait declines may be an 

early marker of cognitive change, related to the development of underlying AD-related pathology, 

in individuals with DS. Future investigations in this area may provide insight into the clinical 

changes associated with development of AD pathology in both the population with DS and the 

general population, enhancing efforts for optimal patient and caregiver support and propelling 

investigations regarding safety/quality of life interventions and disease-modifying interventions.
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1. Down Syndrome and Alzheimer's Disease

Down syndrome (DS, or trisomy 21) is the most common genetic cause of intellectual 

disability in children, which results from triplication of all or part of chromosome 21 

(Dierssen, 2012; Lejeune et al., 1959; Millan Sanchez et al., 2012). In addition to the well-

established physical phenotype related to DS (Roizen and Patterson, 2003), DS carries 

increased risk for multiple clinical disorders, including congenital cardiac and 

gastrointestinal malformations, leukemias and immune disorders, as well as disorders of the 

endocrine/metabolic systems (Bull, 2011; Cenini et al., 2012; Lott and Dierssen, 2010; 

Roizen and Patterson, 2003). Individuals with DS also have an elevated risk for developing 

Alzheimer's disease (AD) as they age (Cosgrave et al., 2000; Holland et al., 2000; Lott and 

Dierssen, 2010; Lott et al., 2011). AD is the leading known cause of dementia in aging 

individuals (Reitz, 2012) and has been strongly associated with apolipoprotein E (APOƐ) 

genotype in the general population (Strittmatter and Roses, 1996). Further, APOƐ genotype 

appears to interact with the β-amyloid precursor protein (APP) (Bachmeier et al., 2013; 

Maloney and Lahiri, 2011). The markedly increased susceptibility to AD in DS (or DSAD) 

is thought to be related to the triplication of all or part of chromosome 21, resulting in 

overexpression of multiple genes implicated in AD, APP in particular (Lott and Dierssen, 

2010; Rumble et al., 1989).

In the general population, the pathological changes associated with AD development, 

including Aβ production via APP cleavage, likely begin years before the onset of noticeable 

clinical symptoms (Sperling et al., 2011). Although this process is thought to begin in 

middle age in the general population, Aβ accumulation in people with DS can begin in 

childhood (Lott and Dierssen, 2010). This is followed by strikingly accelerated deposition 

and aggregation into senile plaques beginning at approximately age 30 in DS (Mann and 

Esiri, 1989). In fact, the accumulation of Aβ plaques and neurofibrillary tangles that follows 

is so rapid that nearly all individuals with DS have the pathological changes of AD by age 

40 (Mann and Esiri, 1989; Wisniewski et al., 1985).
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Not all individuals with DS show clinical signs of dementia despite established AD 

pathology on autopsy (Nieuwenhuis-Mark, 2009; Zigman et al., 1996), but when dementia is 

present, it is often characterized by disturbances in memory, apraxia, agnosia, and changes 

in personality with behavioral disorders (Lott and Dierssen, 2010). These cognitive disorders 

often result in markedly compromised functional skills, including basic activities of self-care 

such as feeding and bathing (Carr and Collins, 2014; Cosgrave et al., 2000; McKenzie et al., 

1998). As such, dementia in intellectually disabled (ID) individuals can significantly 

increase caregiver burden, as caregivers may not be prepared to meet the needs of loved 

ones with both ID and dementia (Bittles and Glasson, 2004). This highlights the critical 

practical value of detecting both cognitive and functional changes as expediently and 

accurately as possible. Accurate early detection can enhance care efforts as well as 

furthering understanding of the mechanisms driving such declines. If successful, such efforts 

can catalyze development of both population-appropriate compensation strategies and 

disease-based interventions for DSAD.

2. Gait and Cognitive Change

Along with the significant advances in amyloid imaging techniques and spinal fluid 

biomarkers as tools for early diagnosis of AD (McKhann et al., 2011; Neltner et al., 2012; 

Sperling et al., 2011), there is a growing body of literature from the general population 

suggesting that gait declines often emerge before other clinical symptoms of dementia. The 

association of disorders of gait with the development of dementia over time, suggests that 

the mechanisms underlying gait change and cognitive change may be closely related 

(Mielke et al., 2013). Specifically, although declines in gait speed and other motor skills are 

certainly expected throughout the typical aging process, gait disturbances beyond those 

expected with age have been associated with multiple types of dementing diseases, including 

AD (Sheridan et al., 2003) and different subtypes of Mild Cognitive Impairment (MCI) 

(Pedersen et al., 2014).

Mild Cognitive Impairment (MCI) refers to an early period of cognitive decline during 

which symptoms do not markedly hinder essential activities of daily living (Albert et al., 

2011; Mura et al., 2014; Petersen, 2004). In AD, clinical dementia is often preceded by 

amnestic MCI, a disorder characterized by largely isolated episodic memory deficits. 

Subsequent conversion to dementia is determined clinically, when evidence for increasing 

cognitive and functional impairments are accompanied by objective evidence of a 

neurocognitive decline (McKhann et al., 2011; Sperling et al., 2011). Burrachio and 

colleagues demonstrated that individuals in the general population converting to MCI 

showed more rapid declines in gait compared to participants who did not convert to MCI, 

and this alteration in gait was observed more than a decade before the usual clinical signs of 

MCI emerged (Buracchio et al., 2010). In a different analysis involving a 7-year follow-up 

of 647 autonomously living older women, decreased gait speed was shown to be an 

independent risk factor for dementia after statistical adjustment for multiple demographic 

factors, including physical activity levels, comorbidities such as body composition, and self-

reported disabilities (van Kan et al., 2012). Some studies have even reported that changes in 

balance and spatiotemporal gait parameters are more closely connected to cognitive decline 

in statistical models than chronological age (Achache et al., 2013). Thus, the successful 
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identification of a gait disorder may help predict the onset of dementia in the general 

population.

To help detect those aging individuals who demonstrate gait decline as a predominant risk 

factor for cognitive decline, Verghese and colleagues (2012) proposed the construct of 

Motoric Cognitive Risk syndrome (MCR). The development of the MCR was based on their 

findings regarding gait, cognition, and functional status from a cohort of 997 community-

dwelling adults who were at least 70 years old. Their preliminary criteria for MCR include: 

(a) the presence of subjective cognitive complaints (b) without the presence of dementia on 

formal neuropsychological measures, (c) preserved activities of daily living, and (d) slow 

gait, demonstrated as gait speed one standard deviation or more below other peers in the 

cohort grouped by age and sex.

Though MCR is young in its conceptualization and validation, initial evidence suggested 

that individuals meeting criteria for MCR syndrome have more than a threefold greater risk 

of developing dementia of any type and greater than a twelvefold greater risk of developing 

vascular dementia (Verghese et al., 2012). A larger-scale investigation of 26,802 adults ages 

60 and older from 17 different countries and 5 continents also indicated that individuals 

meeting MCR criteria (9.7% of the total sample) demonstrated significantly weaker 

cognitive performances than individuals who did not meet criteria (Verghese et al., 2014). 

These individuals also were at higher risk for worsened cognitive impairment and frank 

dementia at follow up, which occurred at least 5.1 years later in these participant groups. 

Beyond MCR specifically, disordered gait has also been associated with other practical 

outcomes, including falls (Hausdorff et al., 2001) and overall mortality (Toots et al., 2013). 

If these patterns of gait and cognitive changes hold true for people with DS, then 

measurement of gait change may represent a straightforward, noninvasive method for 

illuminating underlying pathological and clinical changes related to both DSAD and AD.

3. Gait Dyspraxia in Dementia

The term “apraxia” was first used by (Steinthal, 1881) to describe the impairment of a 

patient's ability to correctly carry out motor programs. Steinthal suggested that apraxia is 

“...not that the movement ...of the limb is restricted, but the relation of the movement to the 

object to be handled; the relation of the movement to the purpose is disturbed...”. Praxis 

requires the adequate operation of and successful integration of multiple cortical and 

subcortical regions, including the frontal and parietal cortices and their associated white 

matter tracts. Disruptions in praxis can hinder a variety of basic and complex skills, 

including volitional movements of the eyelids, mouth, and tongue, speech production, the 

ability to mime practical movements (like lighting a match or brushing one's teeth), and gait. 

Dyspraxias, including gait dyspraxias, are often observed in people with dementia in both 

the general population and in individuals with DS (Chandra et al., 2015; Dalton and Fedor, 

1998).

Gait dyspraxia is characterized by diminished capacity to correctly use the legs for 

ambulation when this deficit cannot be attributed to sensory impairment, motor weakness, 

poor coordination, or other identifiable causes. It may also extend to other purposeful 
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movements involving the legs and feet such as volitional kicking (Campbell, 2013). Gait 

dyspraxia has largely been identified and measured via neurological examination, on which 

individuals may demonstrate difficulties initiating walking movements, executing turns, 

irregular patterns of raising and lowering the legs, or a shuffling, “magnetic” quality to their 

steps (Campbell, 2013) and these may occur in the absence of other neurological signs 

(Liston et al., 2003).

As regards gait, the neural mechanisms of the corticospinal tract, basal ganglia, and 

cerebellum have been well-established, and advances in neuroimaging have shed light on 

higher cortical activity involved in gait. Studies using single positron emission topography 

(SPECT) have shown that in addition to expected activations of the basal ganglia, cerebellar 

vermis, and supplementary motor area (SMA), activations were also observed in the medial 

primary sensorimotor area (PSM) in the frontal lobes, visual cortex, and small loci in the left 

medial temporal lobe with walking (Fukuyama et al., 1997). These authors highlighted the 

key role of frontal structures, including the medial PSM and SMA, in higher-order gait 

control given their known projections to subcortical structures involved in locomotion, such 

as the putamen, thalamus, and pons. Later studies using positron emission topography (PET) 

have confirmed these findings with walking and running (Barthélemy et al., 2011). 

Additional studies employing both structural and functional imaging of gait-related motor 

networks in individuals without DS have also implicated a neural network involving the 

bilateral SMA, superior parietal lobules, pedunculopontine nuclei, and the cerebellum (Allali 

et al., 2013; Bakker et al., 2008; Malouin et al., 2003; Miyai et al., 2001).

Further studies have suggested more specific roles for cortical structures in gait modulation, 

especially emphasizing that frontal lobe activation appears to be important in the planning 

and adaptation of gait. Anterior prefrontal activity has been identified during anticipation of 

gait movement via functional magnetic resonance imaging (fMRI), with additional 

activation in the SMA and cingulate motor areas with motor programming (Sahyoun et al., 

2004). In addition, premotor cortex and bilateral prefrontal cortices demonstrate increased 

activation in individuals adapting their locomotor speed, particularly at higher speeds when 

motor demands were the greatest (Suzuki et al., 2004).

These studies highlight the critical need for multi-modal sensorimotor integration in gait 

control, with cohesive incorporation of visual, proprioceptive, and vestibular senses as well 

as higher-order control of the resulting motor programs for successful ambulation. These 

investigations also highlight frontal involvement in adjusting gait execution to increased 

environmental demands. This, unsurprisingly, suggests that the frontal lobes play a key role 

in higher-order gait control, particularly when an individual is ambulating in more 

demanding, unusual, or difficult conditions.

The areas of the frontal lobes that appear to be particularly critical to gait regulation are the 

premotor and SMA as well as other supportive structures, including the frontostriatal 

networks and the corpus callosum (Goldmann Gross and Grossman, 2008; Liston et al., 

2003; Meyer and Barron, 1960). Some role for the parietal lobes has also been mentioned 

(Meyer and Barron, 1960), though lesions in this area may interfere with gait by inducing 

impairments of sensory processing. The strong emphasis on frontal structures and 
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frontostriatal connectivity suggests that true gait dyspraxia likely arises from difficulties in 

the higher-order planning, organization, and sequencing of the more automatically 

programmed movements necessary for ambulation. In fact, the apparently critical role of the 

frontal lobes in such gait patterns has led some to describe these impaired gait impairments 

as “higher-level gait disorders” in order to distinguish these gait disorders from gait 

disturbances related to other known causes, such as cerebellar ataxia or peripheral 

neuropathy (Briggs and O'Neill, 2014; Liston et al., 2003; Nutt et al., 1993).

Diseases such as cerebrovascular disease that disrupt the frontal structures and frontostriatal 

pathways induce dyspraxia of gait (Briggs and O'Neill, 2014). Individuals with DS also 

often demonstrate gait disturbances that become more pronounced during the aging process 

and during the emergence of DSAD. “Slow and shuffling” gait has been described in the 

aging DS population (Lai and Williams, 1989), and further decompensation of gait has been 

described in DSAD (Crapper et al., 1975; Lott and Head, 2001; Lott and Lai, 1982; 

Menéndez, 2005; Prasher, 1995; Prasher and Filer, 1995). Anecdotally, these individuals 

often begin to have difficulties navigating obstacles, even those with which they are well 

familiar (e.g., stairs in the home). They may also demonstrate more fearful and avoidant 

behaviors when faced with familiar and unfamiliar obstacles alike. Individuals with DS-

related cognitive decline may therefore be experiencing declines in gait praxis as part of 

their disease course, especially considering the pertinent neuropathological changes 

documented in DSAD that are discussed below.

4. Neuropathological Correlates of Gait Dyspraxia in DS-Related AD

Whereas some of the gait changes that occur during the aging process in DS may be 

attributed to orthopedic disorders and sensory changes (e.g., cataracts), including elevated 

rates of ophthalmic disorders, osteoporosis, and osteoarthritis (Krinsky-McHale et al., 2012; 

Torr et al., 2010), these orthopedic disorders cannot fully explain the declines in higher-

order gait control that may be associated with DS. Although the pathological bases for gait 

dyspraxia have not been fully elucidated in DS, available evidence suggests that these 

changes may result from the accumulation of DSAD-related pathology, which may induce 

structural changes in associated cortical areas and in critical white matter pathways (see 

Figure 1).

4.1. Development of AD Pathology

Individuals with DS frequently have orthopedic abnormalities from childhood that may 

affect their gait, including muscular hypotonia, ligamental laxity, and subsequent changes in 

body structure, including low arched/flat feet (Galli et al., 2014). This has been shown to 

result in gait patterns that differ between individuals with DS and individuals without DS 

(Smith et al., 2011). However, it is important to note that individuals with DS also tend to 

demonstrate gait change beyond these baseline differences during a chronological period in 

which AD pathology is rapidly accumulating (see Figure 1). First, this pathology may have a 

predilection for the striatum as demonstrated by Handen and colleagues (2012), which may 

lead to disruption in motor control at the level of the basal ganglia.
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In addition, neurodegenerative change during this chronological period in DS may also 

hinder higher-order gait control. For instance, younger individuals with DS, particularly 

preadolescents, often demonstrate a greater capacity to adapt their gait in response to 

changes in the environment or task demands, such as increased treadmill speed or obstacles 

in one's path when compared to older adults with DS (Smith et al., 2011; Smith and Ulrich, 

2008). Longitudinal examinations of gait in individuals with DS have shown that such occur 

around the age of 35 years (Smith et al., 2011), a period when people with DS are also 

undergoing the rapid development of AD pathology (Mann and Esiri, 1989). This 

confluence of gait changes and known pathological changes related to DSAD suggests that 

the development of AD pathology may be adversely influencing gait. As such, these changes 

in ability to adapt gait to environmental demands may be one of the earliest signs of 

developing dementia in aging adults with DS.

4.2. Frontoparietal Gray Matter Decline

Individuals with DS demonstrate structural variations in cortical regions critical to praxis in 

general and gait praxis specifically. These differences are evident before the development of 

dementia with additional change occurring during the aging process. Voxel-based 

morphometric evaluations have demonstrated that individuals with DS (without dementia) 

have reduced gray matter volume compared to non-DS controls in the frontal lobes and 

cerebellum, regions important in praxis and gait coordination (White et al., 2003). During 

the aging process, individuals with DS experience regional gray matter loss in the bilateral 

frontal and parietal cortices, including the right precentral gyrus and the left postcentral 

gyrus (Teipel et al., 2004). As these changes are observed in aging individuals with DS 

before the onset of clinical dementia, they could be contributing to changes in gait praxis 

due to declines in primary motor control, motor sequencing, sensory perception, and 

sensorimotor integration as regulated by these cortical regions.

4.3. White Matter Integrity Decline

This confluence of gait change and the development of pathological cortical degeneration 

additionally appears to be accompanied by changes in the integrity of white matter pathways 

involved in gait. Intact frontal-subcortical white matter networks are critical for normal, 

adaptive gait (Beauchet et al., 2012; Parihar et al., 2013), and a loss of white matter integrity 

in these frontal-subcortical circuits has been associated with gait impairments in the general 

population. Studies using fluid-attenuated inversion recovery (FLAIR) magnetic resonance 

imaging (MRI) have shown that patients with large volume white matter hyperintensities – 

termed leukoaraiosis (LA) by Hachinski et al. (Hachinski et al., 1987) – often have slower 

gait and significant declines in gait over time (Willey et al., 2013). Gait disorders are 

particularly apparent when LA is found in the frontal white matter, demonstrated by lower 

fractional anisotropy (FA) and higher displacement values on MRI (Willey et al., 2013).

LA involving specific white matter tracts, and especially those important for motor control, 

may be associated with gait disorders. This includes the corticospinal tract, basal ganglia-

thalamic-cortical networks, cortical projections from the superior cerebellar peduncles [28], 

and intrahemispheric longitudinal fasciculi. The resulting gait impairments are thought to 

represent the functional consequence of motor network disconnection secondary to lesions 
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in the white matter tracts critical for functional connectivity in the motor system (Allali et 

al., 2010; Srikanth et al., 2010; Verghese et al., 2002).

Examination of white matter integrity via diffusion tensor imaging (DTI) indicates that 

adults with DS indeed show reduced white matter integrity as compared to control 

participants (Powell et al., 2014), particularly in the frontal and parietal lobes (Head, Powell, 

et al., 2012; Powell et al., 2014). Furthermore, these declines have been noted in middle age 

in DS (by the age of 35 years), congruent with the emergence of gait adaptability declines in 

DS (Head, Powell, et al., 2012; Smith et al., 2011).

Furthermore, the loss of white matter integrity in DS is associated with a decline in 

performance on objective tasks of cognitive capacity as well as praxis. Regression analyses 

have revealed reduced FA in the corpus callosum and key frontoparietal association tracts in 

individuals with DS. As demonstrated in Figure 2, lower FA values are reliably associated 

with performance on the Brief Praxis Test (BPT) (Dalton et al., 1999; Powell et al., 2014). 

This measure includes both purposeful object manipulation (e.g., opening and closing a 

padlock) and lower body motor control (e.g., standing on one leg). New analysis from our 

group has also demonstrated that reduced FA is associated with weaker performance on the 

Severe Impairment Battery (SIB), a measure of overall cognitive performance in 

significantly impaired individuals (Panisset et al., 1994; Schmitt et al., 1997), and a subscale 

of the SIB measuring praxis (SIB Praxis). These findings suggest that individuals with DS 

exhibiting significant compromise of their subcortical white matter demonstrate reductions 

in cognitive performance and apraxia (with some lower body control elements).

5. Mechanisms of White Matter Decline

Given these white matter changes, which can be widespread (Figure 3) in aging individuals 

with DS, as well as their apparent adverse influence on cognition and gait the potential 

mechanisms, underlying white matter changes may be of particular importance in the 

understanding of the aging process and the development of dementia in people with DS. 

Although the pathological processes affecting white matter integrity in individuals with DS 

require further investigation, some valuable information is available from studies in the 

general population.

In the general population, white matter volumes decline with normal aging (Stricker, 2002; 

Walhovd et al., 2005), and regional white matter declines with normal aging are associated 

with declines in regional cerebral glucose uptake (Kochunov et al., 2009). Because axons in 

the white matter arise from cortical neurons, it may be that gray matter loss associated with 

cortical atrophy may also result in subsequent decline in related white matter regions 

(O'Sullivan et al., 2001).

White matter changes may also result from pathology more directly involving the white 

matter itself. As mentioned, LA, a term used to describe hyperintense regions of white 

matter as visualized via T2- and fluid attenuated inversion recovery (FLAIR)-weighted 

MRI, likely represents pathology of the white matter. These radiological changes 

(hyperintensity on T2 or FLAIR imaging) correlate with several pathologic changes, 

including partial loss of myelin, axons, and oligodendroglial cells (Janota et al., 1989; 
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Kirkpatrick and Hayman, 1987; van Swieten and van Gijn, 1991), which thereby disrupts 

cortical-subcortical circuits (Filley, 1998).

These changes suggest an underlying cerebrovascular disorder that may be related to 

neurodegenerative disease (Breteler et al., 1994; Liao et al., 1996; Lindgren et al., 1994; 

Longstreth et al., 1996; Schmidt et al., 1999; Ylikoski et al., 1993). LA has been associated 

with a vasculopathy that alters the vessels supplying blood to the white matter. However, 

this vascular pathology that produces ischemia to the white matter appears to be secondary 

not only to hyaline fibrosis of arterioles, but also to amyloid deposition (Englund and Brun, 

1990; Englund et al., 1988). Congruently, this pathology is often observed in people who 

have AD without DS, with a threefold greater incidence of LA in patients with AD than in 

age-matched controls (Almkvist et al., 1992; Bondareff et al., 1988; Erkinjuntti et al., 1987; 

Fazekas et al., 1989; Fazekas et al., 1987; Fazekas et al., 1996; Hogervorst et al., 2002; 

Kozachuk et al., 1990; McDonald et al., 1991; Mirsen et al., 1991; Wahlund et al., 1994; 

Waldemar et al., 1994). However, Chalmers et al. (2005) studied 125 autopsied cases of AD 

and found that the contribution of vascular disease to LA was relatively minor in most cases. 

Instead, the severity of frontal white matter damage was more closely related to 

parenchymal deposition of amyloid.

This concept may be of great salience in adults with DS, since they demonstrate strikingly 

accelerated rates of amyloid deposition as compared to adults without DS (discussed above). 

This accelerated deposition of amyloid may be related to factors such as internal jugular 

vein reflux, which may hinder amyloid clearance and result in increased cerebral amyloid 

burden (Reed-Cossairt et al., 2012). Together, these factors may promote the particular 

pathological expression of AD pathology called cerebral amyloid angiopathy (CAA). CAA 

has been connected to multiple pathological phenotypes of AD (Allen et al., 2014) and 

interferes with vascular function by limiting vessel dilation and constriction in response to 

perfusion demands. Indeed, cerebral amyloid angiopathy (CAA) is commonly observed with 

APP duplication as in DS (Mendel et al., 2010; Sleegers et al., 2006). CAA is not 

uncommonly observed on autopsy in DS as well as via in vivo imaging studies (see images 

B & D in Figure 3) using appropriate imaging approaches, such as susceptibility weighted 

imaging (SWI) (Haacke et al., 2007) and arterial spin labeling (ASL) (Dumas et al., 2012).

6. Structural and Functional Considerations: Executive Functioning and 

Gait

If AD-associated pathological alterations of white matter promote disconnection of the 

cortical-subcortical motor networks, resulting in the abnormalities of gait associated with 

this disorder, then the cognitive functions supported by these and related networks would be 

expected to decline in concert with the subcortical white matter changes. This premise may 

have significant implications in the clinical manifestations of dementia in both the general 

population and in the population with DS.

Specifically, we might anticipate declines in executive functions when frontal-subcortical 

connections are compromised (Bruce-Keller et al., 2012; Bruce-Keller et al., 2012; Parihar 

et al., 2013). There appears to be substantial evidence for this, including in other well-
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established pathologies involving frontostriatal and frontothalamic circuits, including 

disorders of white matter caused by diseases such as multiple sclerosis and vascular 

dementia (Bonelli and Cummings, 2008). For example, patients with Tourette's syndrome 

and Obsessive-Compulsive Disorder (OCD) also reveal sign of frontal executive 

dysfunction. In addition to reduced volume in key subcortical regions, including the caudate 

nucleus, children with Tourette's syndrome demonstrate reduced white matter connectivity 

between the caudate nucleus and prefrontal cortex. This reduced connectivity was further 

associated with reduced capacities for behavioral inhibition (Makki et al., 2009). Finally, 

children with OCD demonstrate reduced connectivity in dorsal striatal-thalamic regions to 

key regions of the anterior cingulate. Greater reductions in connectivity were associated with 

greater symptom severity in this group (Fitzgerald et al., 2011).

As it does appear that compromise of the frontostriatal and frontothalamic circuits can result 

in disordered executive functions, it has been suggested that changes in executive functions, 

including higher-order regulation of personality and behavior, may emerge early in the 

course of dementia in DS (Ball et al., 2006; Carr and Collins, 2014). If these changes are 

occurring secondary to the frontal-subcortical pathology demonstrated early in the course of 

dementia in patients with DS, a decline of executive functions very well may signal clinical 

decline in aging adults with DS. However, the details of this relationship between executive 

functioning and DSAD remain unresolved.

Methodological issues can pose a challenge in the study of executive functions and DSAD. 

as many common neurocognitive measures used to assess executive functions may be 

inappropriate for the developmental level of individuals with DS (Lott and Dierssen, 2010). 

Further, declines in executive functioning may be difficult to quantify in individuals with 

DS given the developmental abnormalities present in the frontal lobes in this group. It has 

been demonstrated that the frontal lobes demonstrate reduced growth and delayed 

myelination evident from the first few months postnatally (Pennington et al., 2003). 

Congruently, younger individuals with DS demonstrate significant deficits in executive 

functions compared to controls without DS, impairments that are clearly measurable decades 

before DSAD is generally diagnosed in the 5th decade of life (Lanfranchi et al., 2010). This 

may render the measurement of purported executive decline difficult in aging adults with 

DS, particularly those with more pronounced intellectual disabilities resulting in existing, 

significant executive impairments.

Given these diagnostic difficulties, it is not surprising that there is limited established 

evidence for the anticipated relationships among white matter decline, executive 

dysfunction, and gait problems in DS-specific groups. However, studies in the general 

population have revealed specific associations between some aspects of executive 

functioning and gait impairments (Allali et al., 2010; Beauchet et al., 2012; IJmker and 

Lamoth, 2012; Kearney et al., 2013; McGough et al., 2011; Persad et al., 2008; Springer et 

al., 2006; van Iersel et al., 2008; Watson et al., 2010; Yogev-Seligmann et al., 2008). For 

example, associations occur between impairments on the Trail Making Test, Part B and 

impairments of gait, including falls, in elderly individuals [50, 52]. In addition, older 

individuals with less efficient gait, but without dementia or other known neurological 

disorders affecting gait such as stroke and/or parkinsonism, have demonstrated larger 
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differences between the times required to complete the Trail Making Test, Part A and the 

corresponding Part B. Unlike Part A, Part B requires alternating number-letter sequencing, 

thus placing greater demands on working memory, a function mediated by the frontal lobes 

(Ble et al., 2005).

Increased stride time variability, an accepted measure of lower limb movement reliability, 

has been associated with poorer skills in information updating and monitoring (Beauchet et 

al., 2012). Individuals prone to falls also have weaker performance on tasks correlated with 

executive functioning, such as the Stroop and go/no-go tasks (a test for response inhibition), 

and show larger gait changes (specifically, swing time variability) in dual task walking 

conditions (Springer et al., 2006). Reduced response inhibition (Stroop Interference) and 

mental flexibility (TMT-B) are associated with to poorer performance on a timed “up & go” 

test (McGough et al., 2011). In addition, brief reports describe navigation errors and a lack 

of speed adjustment in elderly individuals prone to falls when faced with a complex, novel 

navigation task (Foran et al., 2010), suggesting reduced spatial integration and executive 

control of gait in vulnerable individuals. Evidence also suggests a dose-response relationship 

between cognitive load and gait: Increasing the difficulty of the task to be performed 

simultaneously with walking results in greater cognitive load, and thus, a greater decrement 

in gait performance (Foran et al., 2010).

Discrepancies in practical performance related to age may be related to changes in the 

networks used to perform these tasks. Functional imaging conducted during gait imagery has 

noted differences in regional activation in elderly versus young individuals. As mentioned, 

younger individuals recruit bilateral supplementary cortices, superior parietal lobules, 

cerebellum, pedunculopontine nuclei, and hippocampal/parahippocampal gyri while 

completing imagery tasks. In contrast, older individuals rely more heavily on activation of 

the bilateral prefrontal regions (left BA10 and right BA11), left hippocampus, the right 

supplementary motor area (BA6), the substantia nigra, and the putamen. These differences 

in activation may represent compensation for declines in the network normally recruited by 

younger individuals: however, heavier reliance on this alternate network may also leave 

elderly individuals vulnerable to network-related declines associated with those 

compensatory regions, including active spatial navigation, environmental condition 

monitoring, and higher order, precise gait control (Allali et al., 2013).

7. Challenges and Benefits in the Line of Inquiry

Enhanced understanding of the mechanisms inducing gait changes in aging adults with DS 

could lead to potential interventions designed to prevent and treat the underlying disorders 

that lead to impaired gait in this vulnerable population. It may also allow insight into the 

progression of cognitive decline and its treatment, not only for individuals with DS, but also 

for the larger population of elders affected by AD. Despite the promise inherent in such 

investigations, there are significant challenges as noted below.

First, the exact mechanism(s) driving key white matter changes remains undetermined. The 

connection between white matter decline and the usual conceptualization of vascular 

cognitive impairment/vascular dementia appears important when examining white matter 
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change in non-DS adults. However, individuals with DS have significantly lower rates of 

some critical vascular risk factors commonly associated with cerebrovascular disease in the 

general population, including hypertension, arterial disease, and atherosclerosis. There also 

appears to be higher rates of obstructive sleep apnea, obesity, type 2 diabetes, and abnormal 

lipid levels reported for people with DS (Lott and Dierssen, 2010; Reed-Cossairt et al., 

2012). Thus, individuals with DS may display a somewhat different constellation of risk 

factors for white matter decline than aging adults in the general population.

Further, it has been suggested that the white matter changes associated with cognitive and 

functional declines in DS potentially occur in parallel to white matter pathology often 

observed in AD (Head, Silverman, et al., 2012). The white matter changes observed in AD 

patients may be, at least in part, a product of amyloid-induced oligodendrocyte toxicity (Xu, 

J. et al., 2001). However, there are a myriad of vascular abnormalities common in DS, 

including gross cardiovascular defects such as ventricular and atrial septal defects (Roizen 

and Patterson, 2003) and cerebrovascular disorders such as Moyamoya disease (Kainth et 

al., 2013; Outwater et al., 1989). This evidence argues that the relationship between vascular 

functioning and white matter decline in DS dementia is highly complex, bearing careful 

inquiry.

Further investigations of these disorders are needed, including examining changes over time 

within individuals utilizing longitudinal rather than cross-sectional designs. This 

examination will more completely determine the relationship between changes in cognitive 

and functional status and changes in gait over time in the DS population. In addition, 

knowledge from the general population regarding pathologic gait changes may have limited 

applicability to the DS population. For instance, increased variability in gait parameters such 

as stride length and stride time is a sign of motor decline in the general population and non-

DS populations with dementia (IJmker and Lamoth, 2012); however, individuals with DS 

may show more specific and difficult to detect declines specifically in their ability to adapt 

their gait to environmental demands. This may complicate the identification of the most 

valuable gait parameters and development of DS-appropriate methodologies to examine 

such changes in DS over the lifespan. Further, any gait data obtained in DS groups must be 

interpreted carefully within DS-specific parameters. Motor declines must be demonstrated 

over and above declines in physical strength and known, commonly occurring orthopedic 

and sensory disorders. In addition, the expected overlap of motor declines with executive 

functioning declines may be difficult to demonstrate given the significant floor effects of 

many commonly-used executive and other neurocognitive measures in this intellectually 

disabled groups (Lott and Dierssen, 2010).

Cognitive declines must also be conceptualized carefully in light of known, frequent 

comorbidities experienced in DS, including abnormal thyroid function, obstructive sleep 

apnea, depression, and APOƐ genotype (Lott and Dierssen, 2010; Verghese et al., 2013). 

For instance, thyroid dysfunction has been associated with subsequent expression of nerve 

growth factors, cholinergic activity, and subsequent hippocampal function in DS (Smith et 

al., 2002). Obstructive sleep apnea can impair cognitive functions secondary to repetitive 

hypoxias (Gagnon et al., 2014). Presence of depression is associated with more than doubled 

risk of dementia, perhaps due to associated vascular and metabolic alterations (Byers and 
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Yaffe, 2011). APOƐ-4 genotype also greatly increases risk of incident dementia (Luck et al., 

2014). Research suggests that these factors interact in complex ways to affect dementia risk; 

for instance, individuals with both APOƐ-4 genotype and depression had a higher risk of 

developing dementia than either factor in isolation (Pink et al., 2014).

These comorbidities may complicate investigation of the potential links among gait praxis 

and dementia in DS, though the pursuit nonetheless appears promising. If successful, studies 

of gait dyspraxia in DS dementia could provide significant insight into not only the 

underlying pathology of this clinical syndrome, but also the challenges in practical 

functioning resulting from gait declines. Such investigations could provide valuable insight 

for intervention in AD, in both DS and the general population.

8. Summary

It is proposed that gait decline may serve as one of the earliest signs of developing dementia 

in aging adults with DS. This gait decline is thought represent a form of gait dyspraxia, as it 

may largely result from declines in the frontoparietal gray matter and frontostriatal white 

matter tracts. These neuropathological alterations occur during the aging process in DS and 

secondary to the rapid deposition of Aβ in this population. The chronological confluence of 

these changes in middle adulthood (around the age of 35 in DS) suggests that they are 

pathologically related. As AD pathology is rapidly accumulating, pathological changes in 

frontal-subcortical white matter become evident, and progressive disorders in the higher-

order regulation of gait tend to appear around this time point in adults with DS. Further 

studies of this potential relationship may provide significant insight into the 

neuropathological declines experienced by adults in DS. Such future studies could provide 

better means of clinical identification and intervention for DSAD.
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Highlights

1. Alzheimer's disease is common in individuals with Down Syndrome (DS).

2. Gait declines may be the earliest marker of neurodegenerative change.

3. Adults with DS may experience gait declines differently than non-DS adults.

4. Neuropathological changes in DS are thought to contribute significantly to gait 

declines.
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Figure 1. 
Possible Timeline of Gait Decline as an Early Clinical Sign of Dementia in Down Syndrome
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Figure 2. 
Linear regression of praxis on white matter integrity in DS in individuals with and without 

dementia (Powell et al., 2014)

A graph illustrating the association between average brain FA and individual Brief Praxis 

Test (BPT) scores from all significant voxels determined by diffusion tensor imaging (DTI) 

in a sample of 20 adults with DS (DS with dementia n = 10, DS without dementia n = 10). 

FA is strongly correlated with BPT scores in demented individuals, with higher FA scores 

significantly correlated with higher BPT scores (r = 0.83, n = 20, p < 0.001). Abbreviations: 

AD = Alzheimer's disease, BPT = Brief Praxis Test, DS = Down syndrome, DTI = diffusion 

tensor imaging, FA = fractional anisotropy.

Reprinted from Neurobiology of Aging, Vol. 35, Issue 7, Authors David Powell, Allison 

Caban-Holt, Gregory Jicha, William Robertson, Roberta Davis, Brian T. Gold, Frederick A. 

Schmitt, & Elizabeth Head. Frontal white matter integrity in adults with Down syndrome 

with and without dementia, pp. 1562-1569, copyright year 2014, with permission from 

Elsevier.
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Figure 3. 
Vascular change in an individual with Down syndrome.

Magnetic resonance imaging (MRI) images illustrating white matter change in an individual 

with Down syndrome (DS). Images A & C were obtained via fluid attenuated inversion 

recovery (FLAIR), with bright white areas of hyperintensity representing white matter 

lesions. Images B & D were obtained via T2* sequencing, with dark areas indicating 

hemosiderin deposition from chronic microhemorrhages, often occurring secondary to 

arterial amyloid deposition. Abbreviations: DS = Down syndrome, FLAIR = fluid attenuated 

inversion recovery, MRI = magnetic resonance imaging. Images provided by David Powell, 

Ph.D., from the University of Kentucky.
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