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Abstract

Data Exchange Problems: Algorithms and Complexity

by

Nebojsa Milosavljevic

Doctor of Philosophy in Engineering-Electrical Engineering & Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Co-Chair

Professor Michael Gastpar, Co-Chair

In this thesis we study the data exchange problem where a set of users is interested in
gaining access to a common file, but where each has only partial knowledge about it as side-
information. Assuming that the file is broken into packets, the side-information considered
is in the form of linear combinations of the file packets. Given that the collective information
of all the users is sufficient to allow recovery of the entire file, the goal is for each user to
gain access to the file while minimizing some communication cost. We assume that users
can communicate over a noiseless broadcast channel, and that the communication cost is
a sum of each user’s cost function over the number of bits it transmits. For instance, the
communication cost could simply be the total number of bits that needs to be transmitted.
In the most general case studied in this thesis, each user can have any arbitrary convex cost
function. We provide a polynomial time deterministic algorithm (in the number of users and
packets) that finds an optimal communication scheme that minimizes the communication
cost. To further lower the complexity, we also propose a simple randomized algorithm
inspired by our deterministic algorithm which is based on a random linear network coding
scheme. In the later chapters we consider a general form of side-information, where each
user observes independent realizations of some joint random process. For such scenario, we
provide a polynomial-time algorithm (in the number of users and packets) that finds an
optimal communication rate allocations for all the users. Next, we study two extensions to
the original data exchange problem. First, we consider the problem where not all users in the
system are interested in obtaining the file, but they are willing to help users who are. Also,
we explore the problem where each user can communicate only to its immediate neighbors
through a wireline network. For both the problems, we provide a polynomial time algorithm
that is inspired by the original data exchange problem.
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Chapter 1

Introduction

1.1 Data Exchange Problem

In recent years cellular systems have witnessed significant improvements in terms of data
rates, and are nearly approaching the theoretical limits in terms of the physical layer spectral
efficiency. At the same time, the rapid growth in the popularity of data-enabled mobile
devices, such as smart phones and tablets, and the resulting explosion in demand for more
throughput are challenging our abilities to deliver data, even with the current highly efficient
cellular systems. One of the major bottlenecks in scaling the throughput with the increasing
number of mobile devices is the “last mile” wireless link between the base station and the
mobile devices – a resource that is shared among many users served within the cell. This
motivates the study of paradigms where cell phone devices can cooperate among themselves
to get the desired data in a peer-to-peer fashion without solely relying on the base station.

An example of such a setting is shown in Figure 1.1, where a base station wants to deliver
the same file to multiple geographically-close users over an unreliable wireless downlink. In
the example of Figure 1.1, we assume that the file consists of six equally sized packets w1,
w2, w3, w4, w5 and w6 belonging to some finite field Fq. Suppose that after a few initial
transmission attempts by the base station, the three users individually receive only parts of
the file (see Figure 1.1), but collectively have the entire file. Now, if all users are in close
vicinity and can communicate with each other, then, it is much more desirable and efficient,
in terms of resource usage, to reconcile the file among users by letting all of them “talk”
to each other without involving the base station. The cooperation among the users has the
following advantages:

• Local communication among users has a smaller footprint in terms of interference,
thus allowing one to use the shared resources (code, time or frequency) freely without
penalizing the base station’s resources, i.e., higher resource reuse factor.

• Transmissions within the close group of users is much more reliable than from the base
station to any terminal due to geographical proximity of terminals.
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Figure 1.1: An example of the data exchange problem. A base station has a file formed of six packets w1, . . . , w6 ∈ Fq and wants
to deliver it to three users over an unreliable wireless channel. The base station stops transmitting once all users collectively
have all the packets, even if individually they have only subsets of the packets (Stage 1). Users can then cooperate among
themselves to recover their missing packets by broadcasting over a noiseless public channel (Stage 2). It can be shown that
the minimum number of symbols in Fq needed for the file recovery at all users is 5. A communication scheme that achieves
this minimum is: user 1 transmits w1, user 2 transmits w2 + w4, while user 3 transmits w3, w5, w6. Now, if the goal is to
allocate these 5 transmissions to the users as uniformly as possible, user 1 transmits w1, user 2 transmits w2 + w4, w5, and
user 3 transmits w3, w6.

• This cooperation allows file recovery even when the connection to the base station is
either unavailable after the initial phase of transmission, or it is too weak to meet the
delay requirement.

Let us consider the example in Figure 1.1, and let user 1, user 2 and user 3 transmit
R1, R2 and R3 symbols in Fq, respectively. It can be shown that the minimum total number
of symbols in Fq needed to recover the file is 5. One possible communication scheme that
achieves it is: user 1 transmits w1, user 2 transmits w2 + w4, while user 3 transmits w3,
w5, w6. Note that the load of the communication of the system is unevenly distributed
among the users, i.e., user 3 transmits 3 out of 5 symbols in Fq. The next question we
ask here is out of all communication schemes that deliver the entire file to the users in the
minimum number of transmissions, which one distributes the load of communication to the
users as fair as possible. For instance, for the same minimum number of transmissions, we
can have the following scheme: user 1 transmits w1, user 2 transmits w2+w4, w5, and user 3
transmits w3, w6. Intuitively, this scheme is more fair1 than the previous one since it spreads
the transmissions more uniformly among the users. And, it can be shown that such scheme

1To be precise, the fairness cost that we consider belongs to the broader class of separable convex costs
that is studied in this work.
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minimizes a convex fairness cost.

1.2 Source Model

In the example from Figure 1.1, we considered only a simple form of side-information, where
different users observe subset of uncoded “raw” packets of the original file. Content dis-
tribution networks [6, 5, 24] are increasingly using codes, such as linear network codes or
Fountain codes [25], to improve the system efficiency. In such scenarios, the side-information
representing the partial knowledge gained by the users would be coded and in the form of
linear combinations of the original file packets, rather than the raw packets themselves. We
refer to this model of side-information as a linear packet model.

Each packet takes a value from a finite field Fq. In a broader sense, we can think of the
case where each packet’s value is a realization of uniform distribution over {0, 1, . . . , q − 1}.
This gives rise to considering an “information theoretic” version of this problem, where
every user observes independent realizations of some random process. More specifically, say
there are m users, and user i observes n independent realizations of the ith component of
an arbitrary discrete memoryless process defined by a joint probability mass function (pmf)
PX1,X2,...,Xm

. The goal is for each user to reconstruct all n realizations of all m components
of the joint process while minimizing the communication cost. In the literature [11], this
model is known as the discrete memoryless multiple source (DMMS) model.

1.3 Thesis Overview and Contributions

This thesis is outlined as follows:

• Chapter 1: In the remainder of this chapter, we outline the main contributions of
this thesis, and we summarize the previous work.

• Chapter 2: In this chapter we study the data exchange problem under the linear
packet model and the separable convex communication cost. Such cost captures all
the communication objectives discussed earlier: 1. Minimization of the (weighted) sum
of bits users need to exchange, 2. Fairness. In this chapter, we make the following
contributions:

1. We propose a deterministic polynomial time algorithm for finding an optimal
communication scheme w.r.t. the communication cost. An important step of this
algorithm is to iteratively determine how much should each user transmit in an
optimal scheme. We provide two methods to solve this problem. The first one is
based on minimizing a submodular function, in which case the total complexity
of the algorithm is O((m6 · N3 + m7) · logN), where m is the total number of
users, and N is the number of packets in the file. The second technique is based
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on subgradient methods, in which case the total complexity of the algorithm can
be bounded by O((N2 ·m4 logm + N5 ·m4) · logN) given that we use constant
step size in the subgradient algorithm.

2. We devise a randomized algorithm inspired by the deterministic scheme that
reduces complexity to O(m ·N4 logN). The randomized algorithm is based on
a random linear network coding scheme, and it achieves the optimal number of
transmissions with high probability. To be more precise, the probability of not
achieving the optimum is inversely proportional to the underlying field size |Fq|.
Our randomized algorithm can be regarded as a generalization of the algorithm
proposed in [34], where the authors considered linear communication cost.

3. For the data exchange problem with the additional capacity constraints on each
user, we provide both deterministic and randomized algorithm of the same com-
plexity as in 1. and 2.

The challenging part of the deterministic algorithm is that the underlying optimiza-
tion problem has exponential number of constraints coming from the cut-set bound
region. By using combinatorial optimization techniques such as Dilworth truncation
and Edmonds’ algorithm, we devise an efficient, polynomial time solution.

• Chapter 3: We study the data exchange problem under the DMMS model, and the
linear communication cost. In this chapter, we make the following contributions:

1. We propose a combinatorial algorithm of polynomial complexity that finds an
optimal rate allocation w.r.t. the communication cost. The complexity of the
algorithm is O(m7 · γ + m8), where γ is the complexity of computing entropy
function.

2. For the linear communication cost, we propose a non-combinatorial algorithm of
polynomial complexity that computes an approximately optimal rate allocation.
This algorithm recovers a primal optimal solution from an LP dual optimal solu-
tion by using dual subgradient methods, and averaging technique for the primal
solution recovery. As mentioned above, the algorithm provides a near optimal
solution to the problem that is within ε distance from the optimal one, and it is
of complexity O((m4 logm+m4γ) · ⌈ 1

ε2
⌉).

• Chapter 4: We study two extensions of the original data exchange problem. First, the
data exchange problem with helpers, where some users are not interested in gaining
access to the file, but they are willing to help other users in doing so. The second
problem can be regraded as an extension of the data exchange problem with helpers,
where all users can communicate to its immediate neighbors through a wireline network.
The communication network is represented by an acyclic directed graph, and users
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interested in the file are its sinks. In the literature, this problem is known as a multi-
source multicast problem. For both of these problems, we propose a non-combinatorial
algorithm of polynomial complexity that is based on the techniques we developed in
Chapter 3.

1.4 Previous Work

Data exchange problem was originally introduced by by El Rouayheb et al. in [13], for
the “raw” packet model. The communication cost considered was the total number of bits
transmitted over a noiseless broadcast channel. A randomized algorithm was proposed in
[39], while Tajbakhsh et al. [41] formulated this problem as a linear program (LP). The
solution proposed in [41] is approximate.

The linear cost data exchange problem was studied by Ozgul et al. [34], where the
authors proposed a randomized algorithm. A deterministic polynomial time algorithm was
proposed by Milosavljevic et al. in [28], and by Courtade and Wesel in [8]. For the general
separable convex communication cost, in [29] we proposed polynomial time deterministic and
randomized algorithms. For the data exchange problem with helpers, in [30] we proposed a
deterministic polynomial time algorithm based on dual subgradient methods, and averaging
technique for the primal solution recovery.

In [9, 16], the authors considered the data exchange problem where users can only broad-
cast messages to their immediate neighbors. In [9] it was shown that the problem is NP-hard,
while an approximate solution is provided in [16]. In [26], Lucani et al. considered the prob-
lem of data exchange when the channel between different users can have erasures.

For the general DMMS model, in [11], Csiszár and Narayan posed a related security
problem referred to as the “multi-terminal key agreement” problem. They showed that
obtaining the file among the users in minimum number of bits exchanged over the public
broadcast channel is sufficient to maximize the size of the secret key shared between the
users. This applies to the both versions of the data exchange problem:

• When all users in the system are interested in agreeing on a key, this problem is
equivalent to the data exchange problem.

• When a subset of users is interested in agreeing on a key, and the rest of the users are
willing to help, the problem is equivalent to the data exchange problem with helpers.

This result establishes a connection between the Multi-party key agreement and the data
exchange problems. In [28], [30] we proposed a deterministic polynomial-time algorithm that
computes optimal communication rates of each user w.r.t. the linear cost.

Minimum linear communication cost problem was also studied in the network coding
literature. Lun et al. [27] proposed a polynomial time algorithm for the single source mul-
ticast problem over a directed acyclic graph. Ramamoorthy in [37] proposed an efficient
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algorithm to the multi-source multicast problem based on purely convex optimization tech-
niques. In Chapter 4, for the multi-source multicast problem, we propose a polynomial time
algorithm that is based on both the convex and combinatorial optimization techniques, and
we theoretically show its convergence.
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Chapter 2

Data Exchange Problem - Linear

Packet Model

2.1 System Model and Preliminaries

In this chapter, we consider a setup with m users that are interested in gaining access to
a file. The file is broken into N linearly independent packets w1, . . . , wN each belonging to
a field Fq, where q is a power of some prime number. Each user i ∈ M , {1, 2, . . . , m}
observes some collection of the linear combinations of the file packets as shown below.

xi = Aiw, i ∈ M, (2.1)

where Ai ∈ Fℓi×N
q is a given matrix, and w =

[

w1 w2 . . . wN

]T
is a vector of the file

packets. In the further text, we refer to (2.1) as a linear packet model.
Let us denote by vi, a transmission of user i ∈ M. In [11] it was shown that in order for

each user to recover the file, interaction among them is not needed. Hence, without loss of
generality, we can assume that vi is a function of user i’s initial observation. We define

Ri , |vi|q (2.2)

to be the size of user’s i transmission represented in number of symbols in Fq. To decode
the file, user i collects transmissions of all the users and creates a decoding function

ψi : F
ℓi
q × FR1

q × · · · × FRm

q → FN
q , (2.3)

that reconstructs the file, i.e.,

ψi(xi,v1, . . . ,vm) = w. (2.4)

Definition 1. A rate vector R = (R1, R2, . . . , Rm) is an achievable data exchange (DE) rate
vector if there exists a communication scheme with transmitted messages (v1,v2, . . . ,vm)
that satisfies (2.4) for all i = 1, . . . , m.
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Remark 1. Using cut-set bounds, it follows that all the achievable DE -rate vectors neces-
sarily belong to the following region

R ,
{

R ∈ Rm : R(S) ≥ N − rank(AM\S), ∀S ⊂ M
}

, (2.5)

where

R(S) ,
∑

i∈S

Ri, and AM\S ,
⋃

i∈M\S

Ai.

Theorem 1. For a sufficiently large field size |Fq|, any integer DE-rate vector R ∈ Zm that
belongs to the cut-set region R, can be achieved via linear network coding, i.e., it is sufficient
for each user i ∈ M to transmit Ri properly chosen linear combinations of the data packets
it observes.

Proof. In order for each user in M to reconstruct the file, it is necessary for all of them to
receive a sufficient number of linear combinations over Fq so that the observation rank of
each user is full. For instance, in order for user 1 to recover all N packets of the file, it is
sufficient for him to select N − ℓ1 linear equations from the remaining m − 1 users. In this
case, user 2 can send to user 1

R2 = rank
(

A{1,2}

)

− rank
(

A{1}

)

(2.6)

of its linear equations, after which user 1 will have observation rank rank
(

A{1,2}

)

. Following
this procedure, we have that the number of linear equations sent by the remaining users is

R3 = rank
(

A{1,2,3}

)

− rank
(

A{1,2}

)

(2.7)

...

Rm = rank (AM)− rank
(

AM\{m}

)

= N − rank
(

AM\{m}

)

. (2.8)

Observe that the number of linear equations each user sends depends upon the ordering of
users in equations (2.6) through (2.8). Let j(2), . . . , j(m) be any ordering of 2, . . . , m. Then,
by applying the same approach as above, we obtain other feasible rate tuples.

Rj(2) = rank
(

A{1,j(2)}

)

− rank
(

A{1}

)

(2.9)

Rj(3) = rank
(

A{1,j(2),j(3)}

)

− rank
(

A{1,j(2)}

)

(2.10)

...

Rj(m) = N − rank
(

AM\{j(m)}

)

. (2.11)
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From (2.9)-(2.11), observe that

m
∑

i=t

Rj(i) = N − rank
(

A{1,j(2),...,j(t−1)}

)

, t = 2, . . . , m.

By using this method of ordering, we can reconstruct any vertex of the region

m
∑

i=t

Rj(i) ≥ N − rank
(

A{1,j(2),...,j(t−1)}

)

, t = 2, . . . , m,

for all permutations j(2), . . . , j(m) of the set M\ {1}. (2.12)

The region in (2.12) is equivalent to

∑

i∈S

Ri ≥ N − rank
(

AM\S

)

, ∀S ⊆ M s.t. {1} /∈ S.

Let us denote the above region by R1. Similarly, for users 2 through m, we can define regions
R2, . . . ,Rm. Let us denote by Rint the set of all integer vectors Z

m that belong to the cut-set
region R defined in (2.5). Then, it is not hard to show that

Rint = R1 ∩ R2 ∩ · · · ∩ Rm. (2.13)

From the discussion above, we know that if R ∈ Rint, then it is sufficient for user i to send
Ri linear equations separately to all the users, which makes the total of (m− 1)Ri equations
over Fq sent by user i. The key property of the linear network codes is that there exists one
set of Ri linear equations that user i can broadcast and simultaneously satisfy demands of
all the remaining users in M, provided that the field size |Fq| is large enough [1]. Hence,
every rate tuple that belongs to Rint can be achieved via linear network coding.

In Section 2.5 we show that any field size |Fq| larger than the number of users is sufficient
to guarantee the existence of such solution. In general, finding the minimum field size can
be a hard problem.

In order for each user to recover the entire file, it is necessary to receive a sufficient
number of linear combinations of the other users’ observations. Hence, vi, i ∈ M, defined
above is a vector of Ri symbols in Fq. Therefore, vi can be written as follows

vi = Bixi = BiAiw = Uiw, (2.14)

where Bi is an Ri × ℓi transmission matrix with elements belonging to Fq. In order for each
user to recover the file, the transmission matrices Bi, i ∈ M should satisfy,

rank

([

Ai

U

])

= N, ∀i ∈ M, (2.15)
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where U ,
⋃m

i=1Ui. Hence, the decoding function ψi of user i ∈ M involves inverting the
matrix given in (2.15) in order to obtain w.

In this work, we design a polynomial complexity scheme that achieves the file exchange
among all the users while simultaneously minimizing a separable convex cost function
∑m

i=1 ϕi(Ri), where ϕi, i ∈ M is a non-decreasing convex function. Such assumption on
monotonicity of function ϕi is consistent with the nature of the problem at hand; sending
more bits is always more expensive than sending fewer. From (2.5) and the above men-
tioned cost function, the problem considered in this work can be formulated as the following
optimization problem:

min
R∈Zm

m
∑

i=1

ϕi(Ri), (2.16)

s.t. R(S) ≥ N − rank(AM\S), ∀S ⊂ M.

Optimization problem (2.16) is a convex integer problem with 2m − 2 constraints. It was
shown in [7] that only n of these constraints are active but the challenge is how to determine
which of them are. Solving the optimization problem (2.16) answers the question of how
many symbols in Fq each user has to transmit in an optimal scheme. In this chapter we
provide a polynomial time algorithm that solves problem (2.16). Once we obtain an optimal
rate allocation, the actual transmissions of each user can be solved in polynomial time by
using the algebraic network coding framework [22], [17].

2.2 Deterministic Algorithm

Our goal is to solve problem (2.16) efficiently. To do so, we will split it into two subproblems:

1. Given a total budget constraint β, i.e., R(M) = R1 + R2 + · · ·Rm = β, determine
whether β is feasible or not. If β is feasible, find the feasible rate split among the users
that will achieve the total budget β and minimize the cost

∑m
i=1 ϕi(Ri).

2. Find β that minimizes the objective function.

The bottleneck here is how to solve Problem 1 efficiently. The optimal value of β can then
be found using binary search (see Algorithm 4) since the objective function is w.r.t. β. First,
let us identify these two problems by rewriting problem (2.16) as follows

min
β∈Z+

h(β), (2.17)

where

h(β) , min
R∈Zm

m
∑

i=1

ϕi(Ri), (2.18)

s.t. R(M) = β, R(S) ≥ N − rank(AM\S), ∀S ⊂ M.
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Note that the optimizations (2.17) and (2.18) are associated with Problem 2 and Problem 1
defined above, respectively. Next we will explain our approach to solving these two problems.

2.2.1 Optimization with a Given Sum-Rate Budget β

Now, let us focus on the set of constraints of optimization problem (2.18). First, we introduce
some concepts from combinatorial optimization theory.

Definition 2 (Polyhedron). Let yβ be a set function defined over the set M = {1, 2, . . . , m},
i.e., yβ : 2M → Z such that ϕβ(∅) = 0, where 2M is the power set of M. Then the integer
polyhedron P (yβ,≥) and the integer base polyhedron B(yβ,≥) of yβ are defined as follows

P (yβ,≥) , {R ∈ Zm | R(S) ≥ yβ(S), ∀S ⊆ M}, (2.19)

B(yβ,≥) , {R ∈ P (yβ,≥) | R(M) = yβ(M)}. (2.20)

Analogously, we can define P (yβ,≤), and B(yβ,≤).

Note that the set of constraints of problem (2.18), for any fixed β ∈ Z+, constitutes the
integer base polyhedron B(yβ,≥) of the set function

yβ(S) =

{

N − rank(AM\S) if S ⊂ M,

β if S = M.
(2.21)

Example 1. Let us consider the source model from Figure 1.1, where the three users observe

the following parts of the file w =
[

w1 w2 w3 w4 w5 w6

]T
:

x1 =
[

w1 w2

]T
,

x2 =
[

w2 w4 w5 w6

]T
,

x3 =
[

w3 w4 w5 w6

]T
. (2.22)

For β = 5, polyhedron P (y5,≥) (see Figure 2.1) is defined by the following set of inequalities

R1 ≥ y5({1}) = 1, R2 ≥ y5({2}) = 0, R3 ≥ y5({3}) = 1,

R1 +R2 ≥ y5({1, 2}) = 2, R1 +R3 ≥ y5({1, 3}) = 2, R2 +R3 ≥ y5({2, 3}) = 4,

R1 +R2 +R3 ≥ y5({1, 2, 3}) = 5. (2.23)

The base polyhedron B(y5,≥) (see Figure 2.1(b)) can be interpreted as the intersection of
the polyhedron P (y5,≥) with a hyperplane R1 +R2 +R3 = y5({1, 2, 3}) = 5.

Definition 3 (Dual set function [14]). For a set function yβ, its dual set function fβ : 2M → Z

is defined as follows

fβ(S) , yβ(M)− yβ(M\ S), ∀S ⊆ M. (2.24)
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(a) Polyhedron P (y5,≥) (b) Base Polyhedron B(y5,≥)

Figure 2.1: For the source model given by (2.22), and the set function y5 obtained from (2.21), polyhedron and base polyhedron
are shown above.

Thus, the dual of function yβ, as defined in (2.21), is given by

fβ(S) =

{

β −N + rank(AS) if ∅ 6= S ⊆ M,

0 if S = ∅.
(2.25)

Lemma 1 (Dual Polyhedron [14]). If B(yβ,≥) 6= ∅, then B(yβ,≥) = B(fβ,≤).

Proof. Let R ∈ B(yβ,≥). The base polyhedron B(yβ,≥) is defined by the following set of
inequalities

R(S) ≥ yβ(S), ∀S ⊂ M, (2.26)

R(M) = yβ(M). (2.27)

Equality 2.27 can be rewritten as

R(M) = R(S) +R(M\ S) = yβ(M). (2.28)

Since R(M\S) ≥ yβ(M\ S) (by (2.26)), from (2.28) it follows that

R(S) ≤ yβ(M)− yβ(M\ S) = fβ(S). (2.29)

By Definition 3,

fβ(M) = yβ(M). (2.30)

From (2.29) and (2.30) it immediately follows that R ∈ B(fβ,≤). Similarly, starting from
a rate a rate vector that belongs to B(fβ ,≤), it is straightforward to show that such rate
vector belongs to B(yβ,≥).
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Corollary 1. If B(yβ,≥) 6= ∅, then P (yβ,≥) ∩ P (fβ,≤) = B(yβ,≥) = B(fβ ,≤).

Example 2. Let us consider the same source model as in Example 3. For β = 4, the
polyhedron P (y4,≥) is defined by

R1 ≥ y4({1}) = 1, R2 ≥ y4({2}) = 0, R3 ≥ y4({3}) = 1,

R1 +R2 ≥ y4({1, 2}) = 2, R1 +R3 ≥ y4({1, 3}) = 2, R2 +R3 ≥ y4({2, 3}) = 4,

R1 +R2 +R3 ≥ y4({1, 2, 3}) = 4. (2.31)

It can be verified that no rate vector (R1, R2, R3) exists such that R1+R2+R3 = 4. Therefore,
B(y4,≥) = ∅, and P (y4,≥) = P (y5,≥).

The polyhedron of the dual set function f4 (see Definition 3) is defined by

R1 ≤ f4({1}) = 0, R2 ≤ f4({2}) = 2, R3 ≤ f4({3}) = 2,

R1 +R2 ≤ f4({1, 2}) = 3, R1 +R3 ≤ f4({1, 3}) = 4, R2 +R3 ≤ f4({2, 3}) = 3,

R1 +R2 +R3 ≤ f4({1, 2, 3}) = 4. (2.32)

From Lemma 1, since B(y4,≥) = ∅, it also holds that B(f4,≤) = ∅, and we observe that
P (y4 ≥) ∩ P (f4,≤) = ∅ (see Figure 2.2(a)). The maximum sum-rate over polyhedron
P (f4,≤) is 3.

On the other hand, for β = 5, B(y5,≥) is not an empty set, and by Lemma 1 B(y5,≥)
= B(f5,≤). Polyhedron P (f5,≤) is defined by

R1 ≤ f5({1}) = 1, R2 ≤ f5({2}) = 3, R3 ≤ f5({3}) = 3,

R1 +R2 ≤ f5({1, 2}) = 4, R1 +R3 ≤ f5({1, 3}) = 5, R2 +R3 ≤ f5({2, 3}) = 4,

R1 +R2 +R3 ≤ f5({1, 2, 3}) = 5. (2.33)

The direct consequence of Lemma 1 is that P (y5,≥) ∩ P (f5,≤) = B(y5,≥) = B(f5,≤) (see
Figure 2.2(b)).

From Lemma 1 it follows that if the optimization problem (2.18) is feasible, i.e., if
B(yβ,≥) 6= ∅, then it is equivalent to

min
β∈Z+

min
R∈Zm

m
∑

i=1

ϕi(Ri), s.t. R ∈ B(fβ,≤). (2.34)

For now, let us assume that parameter β is chosen such that the optimization problem (2.34)
is feasible, i.e., B(fβ,≤) 6= ∅. We will explain later how the condition B(fβ ,≤) 6= ∅ can be
efficiently verified.

The main idea behind solving the optimization problem in (2.34) efficiently, is to utilize
the combinatorial properties of the set function fβ.
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(a) P (y4,≥) and P (f4,≤) for β = 4. (b) P (y5,≥) and P (f5,≤) for β = 5.

Figure 2.2: For β = 4, B(y4,≥) = ∅. Therefore, P (y4,≥)∩P (f4,≤) = ∅ (see Figure 2.2(a)). For β = 5, B(y5 ≥) 6= ∅. Therefore,
P (y5,≥) ∩ P (f5,≤) = B(y5,≥) = B(f5,≤) (see Figure 2.2(b)).

Definition 4. We say that a set function f : 2M → Z is intersecting submodular if

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ),

∀S, T ⊆ M s.t. S ∩ T 6= ∅. (2.35)

When the inequality conditions in (2.35) are satisfied for all sets S, T ⊆ M, the function f
is fully submodular.

Lemma 2. The function fβ is intersecting submodular for any β. When β ≥ N , fβ is fully
submodular.

Proof. When S ∩T 6= ∅, the following inequality holds due to the submodularity of the rank
function

fβ(S) + fβ(T )

= rank(AS) + rank(AT )− 2(N − β)

≥ rank(AS∪T ) + rank(AS∩T )− 2(N − β)

= fβ(S ∪ T ) + fβ(S ∩ T ). (2.36)

To show that the function fβ is submodular when β ≥ N , it is only left to consider the case
S ∩ T = ∅. Since fβ(∅) = 0, we have

fβ(S) + fβ(T )

= rank(AS) + rank(AT )− 2(N − β)

≥ rank(AS∪T )− (N − β) = fβ(S ∪ T ). (2.37)
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The inequality in (2.37) directly follows from the submodularity of the rank function

rank(AS) + rank(AT )− rank(AS∪T ) ≥ 0 ≥ β −N.

This completes the proof.

Theorem 2 (Dilworth Truncation [14]). For every intersecting submodular function fβ there
exists a fully submodular function gβ such that both functions have the same polyhedron, i.e.,
P (gβ,≤) = P (fβ,≤), and gβ can be expressed as

gβ(S) = min
P

{

∑

V∈P

fβ(V) : P is a partition of S

}

. (2.38)

The function gβ is called the Dilworth truncation of fβ.

The base polyhedron of any fully submodular function always exists, i.e., there exists
a rate vector R such that R(M) = gβ(M). Since, P (gβ,≤) = P (fβ,≤), it follows that
B(gβ,≤) = B(fβ ,≤) whenever gβ(M) = fβ(M) = β, i.e., when B(fβ,≤) 6= ∅ which implies
feasibility of the optimization problem (2.34).

Continuing with Example 2, the Dilworth truncation of the set function f4 is given by

g4({1}) = 0, g4({2}) = 2, g4({3}) = 2,

g4({1, 2}) = 2, g4({1, 3}) = 2, g4({2, 3}) = 3,

g4({1, 2, 3}) = 3. (2.39)

Note that f4({1, 2, 3}) 6= g4({1, 2, 3}), and hence, β = 4 is not a feasible sum-rate for the
problems (2.18) and (2.34). Also, from Figure 2.2(a) we can see that there is a “duality gap”
between the polyhedrons P (f4,≤) and P (y4,≥) indicating infeasibility of β = 4.

On the other hand, for β = 5, Dilworth truncation of a set function f5 is given by

g5({1}) = 1, g5({2}) = 3, g5({3}) = 3,

g5({1, 2}) = 4, g5({1, 3}) = 4, g5({2, 3}) = 4,

g5({1, 2, 3}) = 5. (2.40)

Now, f5({1, 2, 3} = g5({1, 2, 3}) = β = 5 which indicates that β = 5 is a feasible sum-rate for
the problems (2.18) and (2.34). This can be also verified by observing that there is no gap
between the polyhedrons P (f5,≤) and P (y5,≥) in Figure 2.2(b). Hence, the optimization
problem (2.18) can be written as

min
R∈Zm

m
∑

i=1

ϕi(Ri), s.t., R ∈ B(gβ,≤) (2.41)

provided that gβ(M) = β.
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Remark 2. Parameter β is feasible w.r.t. the problem (2.18) if gβ(M) = β. Otherwise,
gβ(M) < β. This is the direct consequence of the Dilworth truncation (2.38).

Depending upon a cost function, in the sequel, we provide several algorithms that are
efficiently solving problem (2.17). First, we analyze a special case when the cost function is
linear,

ϕi(Ri) = αiRi, αi > 0, ∀i ∈ M. (2.42)

The condition αi > 0, i ∈ M ensures that ϕi is a non-decreasing function.

2.2.2 Linear Cost - Edmonds’ Algorithm

When the cost function is linear, the optimization problem (2.41) has the following form

min
R∈Zm

m
∑

i=1

αiRi, s.t., R ∈ B(gβ,≤). (2.43)

Due to the submodularity of function gβ, the optimization problem (2.43) can be solved
analytically using Edmonds’ greedy algorithm [12] (see Algorithm 1).

Algorithm 1 Edmonds’ Algorithm

1: Set j(1), j(2), . . . , j(m) to be an ordering of 1, 2, . . . , m, such that

αj(1) ≤ αj(2) ≤ · · · ≤ αj(m).

2: Initialize R∗ = 0.
3: for i = 1 to m do

4:
Rj(i) = gβ({j(1), j(2), . . . , j(i)})− gβ({j(1), j(2), . . . , j(i− 1)}).

5: R∗ = R is an optimal rate vector w.r.t. the problem (2.43).
6: end for

The greediness of this algorithm is reflected in the fact that each update of the rate vector
is sum rate optimal:

R∗
j(1) = gβ({j(1)})

R∗
j(1) +R∗

j(2) = gβ({j(1), j(2)})

...
m
∑

i=1

R∗
j(i) = gβ({j(1), . . . , j(m)}).
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In other words, at each iteration, the individual user’s rate update reaches the boundary of
polyhedron P (gβ,≤). Optimality of this approach is the direct consequence of submodularity
of function gβ [12].

Remark 3. The optimal rate vector R∗ belongs to the base polyhedron B(gβ,≤). In other
words,

m
∑

i=1

R∗
i = gβ(M). (2.44)

Remark 4. Step 1 of Algorithm 1 involves sorting a vector of m elements. The best algo-
rithm to our knowledge is merge sort which can execute sorting in O(m logm) time. There-
fore, the complexity of Edmonds’ algorithm is O(m logm+m · ϑ), where ϑ is the complexity
of computing function gβ(S) for any given set S ⊆ M.

Example 3. Let us consider the same source model as in Example 3, and let the cost
function be R1 + 3R2 + 2R3, and β = 5. The intersecting submodular function fβ, and
its Dilworth truncation gβ are given in (2.33) and (2.40), respectively. The rate vector is
updated in an increasing order w.r.t. the weight vector. In this case, the order is 1 → 3 → 2.

Figure 2.3: Edmonds’ algorithm applied to the three-user problem described in Example 3, with the cost function R1+3R2+2R3.
To minimize the cost, the order in which we greedily update communication rates should be increasing w.r.t. the weight vector,
i.e., 1 → 3 → 2. The optimal DE -rate vector is R∗

1 = 1, R∗
2 = 1, R∗

3 = 3.

2.2.3 Proof of Correctness of Edmonds’ Algorithm

To show why Edmonds’ algorithm provides optimal rate vector w.r.t. the problem (2.43),
we introduce some additional concepts from combinatorial optimization theory.
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Definition 5. For a submodular function gβ, define saturation function sat : P (gβ,≤) → 2M

by

sat(R) = {i | i ∈ M, R+ d · e(i) /∈ P (gβ,≤) for any d > 0} (2.45)

In other words, sat(R) is a set of all j ∈ M such that an increase in Rj will produce
R /∈ P (gβ,≤).

Definition 6. For a submodular function gβ, dependence function dep : P (gβ,≤)×M → 2M

is defined as follows

dep(R, i) =

{

{u | u ∈ M, R+ d · (e(i)− e(u)) ∈ P (gβ,≤) for some d > 0} if i ∈ sat(R)

∅ if i /∈ sat(R).

(2.46)

If R and i ∈ sat(R), then dep(R, i) denotes the set of all u ∈ M such that increase
in Ri by d > 0 and decrease in Ru by d will produce a rate vector that still belongs to
P (gβ,≤). This is particularly interesting when we focus on the base polyhedron B(gβ,≤).
Since such manipulation preserves the sum-rate, i.e., R(M) = gβ(M), the dependance
function provides a set of rate vector updates that can be performed over the base polyhedron.
For instance, lets consider the optimal rate allocation from Figure 2.3: R∗

1 = 1, R∗
2 = 1,

R∗
3 = 3. As mentioned before, such rate vector belongs to the base polyhedron B(g5,≤),

and thus any positive update of its components will produce a vector that does not belong
to P (g5,≤). Hence, sat(R∗) = M. On the other hand, dep(R∗, 2) = {3}. This means that
coordinates 2 and 3 can be updated according to (2.46) in order to produce other optimal
solutions: R∗

1 = 1, R∗
2 = 2, R∗

3 = 2, and R∗
1 = 1, R∗

2 = 3, R∗
3 = 1.

Lemma 3. Let R ∈ P (gβ,≤). If R(U) = gβ(U), and R(V) = gβ(V), then R(U ∪ V) =
gβ(U ∪ V), and R(U ∩ V) = gβ(U ∩ V).

Proof.

gβ(U) + gβ(V) = R(U) +R(V) =

= R(U ∪ V) +R(U ∩ V)

(a)

≤ gβ(U ∪ V) + gβ(U ∩ V)

(b)

≤ gβ(U) + gβ(V),

where (a) comes from the fact that R ∈ P (gβ,≤), and (b) is due to submodularity of
gβ. Therefore, (a) and (b) have to hold with equality. From R(U ∪ V) ≤ gβ(U ∪ V), and
R(U ∩ V) ≤ gβ(U ∩ V), the proof of this lemma immediately follows.
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In the next theorem, we show that any type of greedy algorithm, where a positive rate
vector updates are confined to be inside polyhedron P (gβ,≤), will eventually result in a rate
vector that belongs to the base polyhedron B(fβ,≤) (see Algorithm 2).

Definition 7. Let us define by e(i) an m dimensional vector where all its coordinates are
zero except for the ith coordinate which is equal to 1.

Algorithm 2 Greedy Algorithm

1: Initialize R = 0.
2: Select i ∈ M any v ∈ Z+ such that R+ v · e(i) ∈ P (gβ,≤), and set R = R+ v · e(i)
3: If R cannot be updated then stop, otherwise go to Step 2.

Theorem 3. When Algorithm 2 terminates, R ∈ B(gβ,≤).

Proof. Note that after some finite number of realizations of Step 2 of Algorithm 2, the
boundary of polyhedron P (gβ) is reached. In other words there exists some non-empty set
sat(R).

For every i ∈ sat(R), there exists a set S ⊆ M such that i ∈ S, and R(S) = gβ(S). This
can be proved by contradiction. Assume that for some i ∈ sat(R) it holds that

R(T ) < gβ(T ), ∀T ⊆ M, s.t. i ∈ T . (2.47)

This would mean that it is possible to increase Ri by some positive amount and still have
R ∈ P (gβ,≤). This implies that i /∈ sat(R) which is a contradiction.

Therefore, we have established that

∀i ∈ sat(R), ∃Si ⊆ sat(R) s.t. R(Si) = gβ(Si). (2.48)

Note that Si ⊆ sat(R) in (2.48), because otherwise sat(R) would also include elements from
Si \ sat(R)

Observe that S1 ∪ S2 ∪ · · · ∪ S|sat(R)| = sat(R), and by Lemma 3 it follows that

R(sat(R)) = gβ(sat(R)). (2.49)

While keep on executing Algorithm 2 we eventually saturate all elements in the set M, i.e.,
sat(R) = M. Hence, by (2.49), it follows that

R(M) = gβ(M), (2.50)

or in other words R ∈ B(gβ,≤).
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Theorem 3 shows that any type of greedy algorithm leads to a rate vector that belongs
to the base polyhedron B(gβ,≤). Now, let us show that the rate allocation provided by
Algorithm 1 is feasible, i.e.,

R∗(S) ≤ gβ(S), ∀S ⊆ M. (2.51)

We show this by induction on the size of S. Without loss of generality, let us assume that
α1 ≤ α2 ≤ · · · ≤ αm. For each i ∈ M,

R∗
i

(a)
= gβ({1, 2, . . . , i})− gβ({1, 2, . . . , i− 1})

(b)

≤ gβ({i})− gβ(∅)

= gβ({i}), (2.52)

where (a) follows from Algorithm 1, and (b) is due to submodularity of function gβ. There-
fore, (2.51) is true for all S ⊆ M such that |S| = 1. Assume that (2.51) holds for all S such
that |S| = p− 1, and let S = {i1, i2, . . . , ip}, where i1 < i2 < · · · < ip. Then,

R∗(S) = R∗(S \ {ip}) +R∗
ip

(a)

≤ gβ(S \ {ip}) +R∗
ip

= gβ(S \ {ip}) + gβ({1, 2, . . . , ip})− gβ({1, 2, . . . , ip − 1})

(b)

≤ gβ(S), (2.53)

where (a) is due to induction hypothesis, and (b) is due to submodularity of function gβ.
Therefore, Algorithm 1 would lead to the rate vector that belongs to the base polyhedron

B(gβ,≤). It remains to prove that Algorithm 1 minimizes the cost
∑m

i=1 αiRi. We show this
by proving (by induction) that each iteration i of Edmonds’ algorithm outputs the rate vector
that is optimal w.r.t. the cost

∑i
j=1 αjRj. Since we assumed that α1 ≤ α2 ≤ · · · ≤ αm, for

i = 2,

R1 = gβ({1}),

R2 = gβ({1, 2})− gβ({1}), (2.54)

is an optimal rate allocation. To see this, we first observe that R1 cannot be increased
furthermore. Therefore, the only manipulation we can perform over vector (R1, R2) is to
decrease R1 by some amount while increasing R2 by the same amount. More formally, if
dep(R, 2) = {1}, let d ∈ Z+ be such that (R1 − d, R2 + d) ∈ B(gβ,≤). Since α1 ≤ α2, it
immediately follows that

α1R1 + α2R2 ≤ α1(R1 − d) + α2(R2 + d). (2.55)
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Now, let Algorithm 1 be optimal at iteration i = m − 1. After one more iteration, we
obtain

Rm = gβ(M)− gβ(M\ {m}). (2.56)

Since
∑m−1

j=1 αjRj is the minimal cost, any attempt to change vector components

(R1, R2, . . . , Rm−1)

would lead to the higher cost. Therefore, we only need to check whether the increase of Rm

and decrease of one of the components in M\ {m} by the same amount would lead to the
lower cost. More formally, for k ∈ M \ {m}, if k ∈ dep(R, m), let dk ∈ Z+ be such that

R+ dk(e(m)− e(k)) ∈ B(gβ,≤), ∀k ∈ M \ {m}. (2.57)

Since αk ≤ αm, ∀k ∈ M \ {m}, it follows that for any dk that satisfies (2.57) we have

m
∑

j=1

αjRj ≤
m−1
∑

j=1,j 6=k

αjRj + αi(Rk − dk) + αm(Rm + dk). (2.58)

Therefore, Algorithm 1 computes an optimal rate allocation w.r.t. the linear cost.
The main problem in executing Edmonds’ algorithm efficiently is that the function gβ is

not available analytically. To compute this function for any given set S ⊆ M we need to solve
minimization problem (2.38). Such minimization has to be performed over all partitions of
the set S, which annuls the efficiency of the proposed method.

To overcome this problem note that we have access to the function fβ (see (2.21)), and
by Theorem 2, we know that P (gβ) = P (fβ). As pointed out before, each rate update
reaches the boundary of polyhedron P (gβ). Since we don’t explicitly have function gβ, this
polyhedron boundary can be calculated by applying the Dilworth truncation formula (2.38).
For the three-user problem in Example 3 this procedure would go as follows

R∗
1 = f5({1}) = 1,

R∗
3 = min{f5({1, 3})− R∗

1, f5({3})} = 3,

R∗
2 = min{f5({1, 2, 3})−R∗

1 − R∗
3, f5({1, 2})− R∗

1, f5({2, 3})−R∗
3, f5({2})} = 1.

Generalization of this procedure to an arbitrary number of users is straightforward (see
Algoruthm 3). We refer the interested reader to the references [14] and [31] where this
algorithm is explained in more details for an arbitrary intersecting submodular functions.

In each iteration i, the minimization problem (2.59) is over all subsets of {j(1), . . . , j(i)}.
Using the fact that all the subsets considered in (2.59) contain a common element j(i) it is
easy to see that fβ(S)−R(S) is fully submodular over the domain set {j(1), j(2), . . . , j(i)}.
Now the polynomial time solution of Algorithm 3 follows from the fact that minimization of
a fully submodular function can be done in polynomial time [33].
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Algorithm 3 Modified Edmonds’ Algorithm

1: Set j(1), j(2), . . . , j(m) to be an ordering of 1, 2, . . . , m, such that

αj(1) ≤ αj(2) ≤ · · · ≤ αj(m).

2: Initialize R = 0.
3: for i = 1 to m do

4:
Rj(i) = min

S
{fβ(S ∪ j(i))−R(S) : S ⊆ {j(1), j(2), . . . , j(i− 1)}} . (2.59)

5: end for

6: R∗ = R is an optimal rate vector w.r.t. the problem (2.43).

Remark 5. The complexity of Algorithm 3 is O(m · SFM(m)), where SFM(m) is the
complexity of minimizing submodular function. The best known algorithm to our knowledge
is proposed by Orlin in [33], and has complexity O(m5 · γ + m6), where γ is complexity
of computing the submodular function. For the submodular function defined in (2.59), γ
equals to the complexity of computing rank, and it is a function of the file size N . When
users observe linear combinations of the file packets, the rank over Fq can be computed by
Gaussian elimination in O(N3) time. For the “raw” packet model, rank computation reduces
to counting distinct packets, and therefore its complexity is O(N).

Remark 6. From Remark 2 and the fact that Edmonds’ algorithm provides a rate vector
with sum-rate gβ(M), it immediately follows that if Algorithm 3 outputs a rate vector R∗

such that R∗(M) < β, then B(fβ) = ∅, and such β is not a feasible sum-rate w.r.t. the
problem (2.34). Hence, for any given β, the feasibility of such sum-rate can be verified in
O(m · SFM(m)) time.

2.3 Finding the Optimal Value of β

So far we have shown how to compute function h(β) defined in (2.18) for any β when
ϕi(Ri) = αiRi. To complete our solution, i.e., to solve the problem defined in (2.17), it
remains to show how to minimize function h(β) efficiently.

Theorem 4. Function h(β), defined in (2.18), is convex when β is a feasible sum-rate w.r.t.
the optimization problem (2.18).

Proof. Consider two feasible sum-rates β1 and β2 w.r.t. the problem (2.18). We show that
for any λ ∈ [0, 1] such that λβ1 + (1 − λ)β2 ∈ Z+ it holds that h(λβ1 + (1 − λ)β2) ≤
λh(β1) + (1− λ)h(β2). Let R

(1) and R(2) be the optimal rate tuples w.r.t. h(β1) and h(β2),
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respectively. Note that

λh(β1) + (1− λ)h(β2)

=

m
∑

i=1

(

λϕi(R
(1)
i ) + (1− λ)ϕi(R

(2)
i )
)

(a)

≥
m
∑

i=1

ϕi(λR
(1)
i + (1− λ)R

(2)
i ) =

m
∑

i=1

ϕi(R
(λ)
i ), (2.60)

where (a) follows from the convexity of ϕi, ∀i ∈ M, and R(λ) , λR(1)+(1−λ)R(2). Now, we
show that R(λ) is a feasible DE -rate vector for the problem (2.18) when β = λβ1+(1−λ)β2.

Since R(1)(M) = β1 and R(2)(M) = β2, it follows that

R(λ)(M) = λR(1)(M) + (1− λ)R(2)(M)

= λβ1 + (1− λ)β2. (2.61)

Since

R(i)(S) ≥ N − rank(AM\S), ∀S ⊂ M, i = 1, 2,

we have

R(λ)(S) = λR(1)(S) + (1− λ)R(2)(S)

≥ N − rank(AM\S), ∀S ⊂ M. (2.62)

From (2.61) and (2.62) it follows that R(λ) is a feasible DE -rate vector w.r.t. optimization

problem (2.18) when β = λβ1 + (1 − λ)β2. Therefore,
∑m

i=1 ϕi(R
(λ)
i ) ≥ h(λβ1 + (1− λ)β2).

Hence, from (2.60), it follows that

h(λβ1 + (1− λ)β2) ≤ λh(β1) + (1− λ)h(β2), (2.63)

which completes the proof.

In order to minimize function h, first, we identify the set of sum-rates β that are feasible
w.r.t. the problem (2.17). More precisely, we need to find the minimum sum-rate, since
every β that is larger than or equal to such value is feasible as well. Hence, we proceed by
analyzing the sum-rate objective, i.e., when ϕi(Ri) = Ri.

For any fixed parameter β ∈ Z+, Algorithm 3 provides an optimal rate allocation w.r.t.
the linear cost. It is only left to find β that minimizes h(β) in (2.17). Let us first consider
the sum-rate cost, i.e., ϕi(Ri) = Ri. From the equivalence of the Algorithms 1 and 3,
and from Remark 3 it follows that for any given parameter β, the output rate vector R∗ of
Algorithm 3 satisfies

m
∑

i=1

R∗
i = gβ(M). (2.64)
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Thus, for a randomly chosen parameter β we can verify whether it is feasible w.r.t. the
problem (2.18) by applying Remark 2, i.e., if

∑m
i=1R

∗
i = β, then such sum-rate can be

achieved. Therefore, we can apply a simple binary search algorithm to find the minimum
sum-rate. Note that the minimum sum-rate is always less than or equal to the file size N .
Hence, we can confine our search accordingly (see Algorithm 4).

Algorithm 4 Minimum Sum-Rate Algorithm (binary search)

1: Initialize βstart = 0, βend = N .
2: while βend − βstart > 1 do

3: β = ⌈βstart+βend

2
⌉.

4: Execute Algorithm 3 with parameter β.
5: if

∑m
i=1R

∗
i = β, then

6: βend = β.
7: else βstart = β.
8: end while

9: βend is the minimum sum-rate.

Remark 7. The complexity of Algorithm 4 is O(m · SFM(m) · logN).

For the general linear cost function ϕi(Ri) = αiRi, we showed in Theorem 4 that h(β)
is convex for β greater than the minimum sum-rate (obtained from Algorithm 4). In Sec-
tion 2.4.1, Lemma 8, we show that the search space for β that minimizes function h can
be limited to the file size N . Hence, in order to solve the minimization problem (2.17) we
can apply a simple binary search algorithm that finds the minimum of h(β) by looking for a
slope change in function h.

Algorithm 5 Minimum Linear Cost Algorithm

1: Initialize βstart = β∗
sum, βend = N , where β∗

sum is the minimum sum-rate obtained from
Algorithm 4.

2: β = ⌈βstart+βend

2
⌉.

3: Execute Algorithm 3 for β − 1, β, and β + 1.
4: if h(β) ≤ h(β − 1) and h(β) ≤ h(β + 1), then
5: R∗ that corresponds to the sum-rate β is an optimal rate allocation
6: else if h(β − 1) ≥ h(β) ≥ h(β + 1), then
7: βstart = β + 1.
8: else if h(β − 1) ≤ h(β) ≤ h(β + 1), then
9: βend = β − 1.
10: Go to Step 2.

Remark 8. Since for any fixed β, h(β) can be found by using Algorithm 3, and β∗
sum can be

found by applying Algorithm 4, the complexity of Algorithm 5 is O(m · SFM(m) · logN).
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2.4 Using Subgradient Methods to Solve Step 4 of Al-

gorithm 3

In this section we propose an alternative solution to the minimization problem (2.59) in
Algorithm 3 that does not involve minimization of a submodular function. The underlying
linear optimization problem has the following form

min
R∈Zm

m
∑

i=1

αiRi, s.t. R ∈ B(fβ,≤), (2.65)

given that β is a feasible sum rate. Without loss of generality, let us assume that α1 ≤ α2 ≤
· · · ≤ αm. In this case, the minimization in Step 3 of Algorithm 3 can be written as

R∗
i = min

S
{fβ(S)− R(S) : i ∈ S, S ⊆ {1, 2, . . . , i}} , i = 1, 2, . . . , m. (2.66)

Minimization (2.66) can be interpreted as a maximal update along the ith coordinate such
that R∗

i still belongs to polyhedron P (fβ). This problem can be separately formulated as
the following minimization problem

R∗
i = max

R∈Ri
Ri, (2.67)

s.t. Rk ≥ R∗
k, k = 1, 2, . . . , i− 1,

R(S ∪ {i}) ≤ fβ(S ∪ {i}), ∀S ⊆ {1, 2, . . . , i− 1}.

Note that in an optimal solution, the condition Rk ≥ R∗
k, k = 1, . . . , i−1, holds with equality

because any possible increase of Rk can lead to the smaller value of Ri. Moreover, since the
above minimization is over an integer submodular polyhedron, the optimal solution is also
an integer number. Therefore, minimization problems (2.67) and (2.66) are equivalent.

Let us denote by R(i) the rate region that corresponds to the optimization problem (2.67)

R(i) = {R ∈ Ri | R(S ∪ {i}) ≤ fβ(S ∪ {i}),

∀S ⊆ {1, 2, . . . , i− 1}}. (2.68)

To solve optimization problem (2.67), we apply the dual subgradient method. First, the
Lagrangian function of the problem (2.67) is

L(R,λ) = Ri +

i−1
∑

k=1

λk(Rk − R∗
k), R ∈ R(i), (2.69)

where λk ≥ 0, k = 1, 2, . . . , i− 1. Then, the dual function δ(λ) equals to

δ(λ) = max
R∈R(i)

L(R, λ)

= max
R∈R(i)

{

Ri +

i−1
∑

k=1

λkRk

}

−
i−1
∑

k=1

λkR
∗
k. (2.70)
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Due to the maximization step in (2.70) over multiple hyper-planes, it immediately follows
that δ(λ) is a convex function. By the weak duality theorem [3],

δ(λ) ≥ R∗
i , ∀λk ≥ 0, k = 1, 2, . . . , i− 1. (2.71)

Hence,

min
λ

{δ(λ) | λk ≥ 0, k = 1, 2, . . . , i− 1} ≥ R∗
i (2.72)

Since optimization problem (2.67) is linear, there is no duality gap, i.e.,

R∗
i = min

λ

{δ(λ) | λk ≥ 0, k = 1, 2, . . . , i− 1} . (2.73)

To solve optimization problem (2.73), we apply the dual subgradient method [4] as follows.
Starting with a feasible iterate λk[0], k = 1, 2, . . . , i − 1, w.r.t. the optimization prob-
lem (2.73), and the step size θj , every subsequent iterate λk[j + 1] for all k = 1, 2, . . . , i− 1,
can be recursively computed as follows

λk[j + 1] =
{

λk[j]− θj(R̃k[j]−R∗
k)
}

+
, (2.74)

where R̃k[j] is an optimal solution to the problem

max
R∈R(i)

Ri +
i−1
∑

k=1

λk[j]Rk. (2.75)

Note that R̃k[j], k = 1, 2, . . . , i− 1, is a derivative of the dual function δ(λ[j]).

Lemma 4. An optimal solution to the problem (2.75) can be obtained as follows. Let
t(1), t(2), . . . , t(i − 1) be an ordering of 1, 2, . . . , i− 1 such that λt(1) ≥ λt(2) ≥ · · · ≥ λt(i−1).
Then,

R̃i[j] =

{

fβ({i}), if λt(1) ≤ 1,

0, otherwise.

R̃t(k) = fβ(St(k) ∪ {i})−
k−1
∑

u=1

R̃t(u)[j]− R̃i[j], k = 1, 2, . . . , i− 1, (2.76)

where St(k) , {t(1), t(2), . . . , t(k)}.

Proof. Let us construct the set function g : 2{1,2,...,i} → Z as follows

g(S) =











0 if S = ∅,

fβ(S) if i ∈ S,

fβ(S ∪ {i}) if i /∈ S.



CHAPTER 2. DATA EXCHANGE PROBLEM - LINEAR PACKET MODEL 27

First, we show that R(i) = P (g,≤). Let R ∈ P (g,≤). Then, for any S ⊆ {1, 2, . . . , i − 1},
it follows that

R(S ∪ {i}) ≤ g(S ∪ {i}) = fβ(S ∪ {i}). (2.77)

Therefore, R ∈ R(i).
Now, let R ∈ R(i). From (2.68) we have

R(S ∪ {i}) ≤ fβ(S ∪ {i}) = g(S ∪ {i}), ∀S ⊆ {1, 2, . . . , i− 1} (2.78)

Since the rate vector is positive, (2.78) implies that

R(S) ≤ fβ(S ∪ {i}) = g(S), ∀S ⊆ {1, 2, . . . , i− 1}. (2.79)

From (2.78) and (2.79) it follows that R ∈ P (g,≤). Hence, R(i) = P (g,≤).
Next, we show that function g is fully submodular. For any S, T ⊆ {1, 2, . . . , i}, let us

consider the following 3 cases

Case 1: i ∈ S, i /∈ T

g(S) + g(T ) = fβ(S) + fβ(T ∪ {i})

(a)

≥ fβ(S ∪ T ) + fβ((S ∩ T ) ∪ {i})

= g(S ∪ T ) + g(S ∩ T ),

where (a) is due to intersecting submodularity of function fβ .

Case 2: i /∈ S, i /∈ T

g(S) + g(T ) = fβ(S ∪ {i}) + fβ(T ∪ {i})

≥ fβ(S ∪ T ∪ {i}) + fβ((S ∩ T ) ∪ {i})

= g(S ∪ T ) + g(S ∩ T ).

Case 3: i ∈ S, i ∈ T

g(S) + g(T ) = fβ(S) + fβ(T )

≥ fβ(S ∪ T ) + fβ(S ∩ T )

= g(S ∪ T ) + g(S ∩ T ).

Therefore, function g is indeed fully submodular. Hence, problem (2.75) is a linear optimiza-
tion problem over a submodular polyhedron, and it can be solved via Edmonds’ algorithm.
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If λt(1) ≤ 1, then

R̃i[j] = g({i}) = fβ({i}),

R̃t(k)[j] = g(St(k) ∪ {i})− g(St(k−1) ∪ {i})

= fβ(St(k) ∪ {i})−
k−1
∑

u=1

R̃t(u)[j]− R̃i[j], k = 1, 2, . . . , i− 1. (2.80)

If for some r ∈ {1, 2, . . . , i− 1}, λt(r) ≥ 1 ≥ λt(r+1), then

R̃i[j] = g(St(r) ∪ {i})− g(St(r)) = 0,

R̃t(k)[j] = g(St(k) ∪ {i})− g(St(k−1) ∪ {i})

= fβ(St(k) ∪ {i})−
k−1
∑

u=1

R̃t(u)[j], k = 1, 2, . . . , i− 1. (2.81)

This completes the proof of this lemma.

Remark 9. The complexity of the algorithm proposed by Lemma 4 is O(i log i+ i ·N3).

The reason why we apply subgradient methods instead of a gradient descent is because
function δ(λ)[j] even though convex, is not differentiable. From Lemma 4, it follows that for
a given λ[j], there may be more than one maximizer of the problem (2.75). Due to possibility
of having more than one direction along which we can update vector λ[j] according to (2.74),
subgradient method is not technically a descent method; the function value δ(λ[j]) may often
increase in the consecutive steps. For that reason, at each step we keep track of the smallest
solution up to that point in time

λ̃[j] = argmin{δ(λ[0]), δ(λ[1]), . . . , δ(λ[j])}. (2.82)

Before we go any further, note that the primal optimization problem (2.67) is over real
vectors. However, the minimization (2.65) is an integer optimization problem. As pointed
out above, the optimal solution of the problem (2.67) is equal to the solution of the prob-
lem (2.65). Therefore, we can choose the number of iterations l of the dual subgradient
method such that we get “close enough” to an integer solution. In other words,

∣

∣

∣
δ(λ̃[l])−R∗

i

∣

∣

∣
≤ ε, (2.83)

where ε < 0.5. Then,

R∗
i = round(δ(λ̃[l])). (2.84)
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Convergence Analysis

In this section we explore the relationship between the number of iterations of the dual
subgradient method l, and the step size θj , such that it is guaranteed that (2.84) provides
the optimal solution. Following the notes on subgradient methods provided in [4], let λ∗ be
an arbitrary optimal vector that minimizes the dual function δ. Then,

i−1
∑

k=1

(λk[j + 1]− λ∗k)
2 =

i−1
∑

k=1

(

{

λk[j]− θj(R̃k[j]−R∗
k)
}

+
− λ∗k

)2

≤
i−1
∑

k=1

(

λk[j]− θj(R̃k[j]− R∗
k)− λ∗k

)2

=

i−1
∑

k=1

(λk[j]− λ∗k)
2 − 2θj

i−1
∑

k=1

(R̃k[j]− R∗
k)(λk[j]− λ∗k) + θ2j

i−1
∑

k=1

(

R̃k[j]− R∗
k

)2

≤
i−1
∑

k=1

(λk[j]− λ∗k)
2 − 2θj (δ(λ[j])− δ(λ∗)) + θ2j

i−1
∑

k=1

(

R̃k[j]−R∗
k

)2

, (2.85)

where the last inequality is due to convexity of function δ(λ), i.e.,

δ(λ[j])− δ(λ∗) ≤
i−1
∑

k=1

(R̃k[j]− R∗
k)(λk[j]− λ∗k), (2.86)

since R̃k[j] − R∗
k is a partial derivative of δ(λ[j]) at coordinate λk[j], k = 1, 2, . . . , i − 1.

Summing both sides of inequality (2.85) over j from 0 to l − 1, we obtain

i−1
∑

k=1

(λk[l]− λ∗k)
2 ≤

i−1
∑

k=1

(λk[0]− λ∗k)
2 − 2

l−1
∑

j=0

θj (δ(λ[j])− δ(λ∗))

+

l−1
∑

j=0

θ2j

i−1
∑

k=1

(

R̃k[j]−R∗
k

)2

. (2.87)

Therefore,

2

l−1
∑

j=0

θj (δ(λ[j])− δ(λ∗)) ≤
i−1
∑

k=1

(λk[0]− λ∗k)
2 +

l−1
∑

j=0

θ2j

i−1
∑

k=1

(

R̃k[j]− R∗
k

)2

. (2.88)

Since,

l−1
∑

j=0

θj (δ(λ[j])− δ(λ∗)) ≥
l
∑

j=0

θj min
j∈{0,1,...,l−1}

(δ(λ[j])− δ(λ∗)) , (2.89)
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from (2.88) and (2.82) we obtain

δ(λ̃[l − 1])− δ(λ∗) = min
j∈{0,1,...,l−1}

δ(λ[j])− δ(λ∗)

≤

∑i−1
k=1(λk[0]− λ∗k)

2 +
∑l−1

j=0 θ
2
j

∑i−1
k=1

(

R̃k[j]−R∗
k

)2

2
∑l−1

j=0 θj

≤

∑i−1
k=1(λk[0]− λ∗k)

2 +
∑l−1

j=0 θ
2
j

(

∑i−1
k=1

(

R̃k[j]
)2

+
∑i−1

k=1 (R
∗
k)

2

)

2
∑l

j=0 θj

≤

∑i−1
k=1(λk[0]− λ∗k)

2 +
∑l−1

j=0 θ
2
j

(

(

∑i−1
k=1 R̃k[j]

)2

+
(

∑i−1
k=1R

∗
k

)2
)

2
∑l−1

j=0 θj

≤

∑i−1
k=1(λk[0]− λ∗k)

2 + 2N2
∑l−1

j=0 θ
2
j

2
∑l−1

j=0 θj
, (2.90)

where the last inequality holds because R(M) ≤ fβ(M) ≤ N for any achievable DE -rate
vector R. Continuing with (2.90), we have

δ(λ̃[l − 1])− δ(λ∗) ≤

(

∑i−1
k=1 λk[0]

)2

+
(

∑i−1
k=1 λ

∗
k

)2

+ 2N2
∑l−1

j=0 θ
2
j

2
∑l−1

j=0 θj
. (2.91)

Since λ
∗ is an arbitrary minimizer of the dual function δ, let us pick λ

∗ as suggested by the
following lemma.

Lemma 5. There exists an optimal solution to the problem (2.73) that satisfies

i−1
∑

k=1

λ∗k ≤ m. (2.92)

Proof. For any λ
∗, let us denote by R̃ an optimal solution of the problem (2.70) obtained

by applying Lemma 4. Since
∑i

k=1 R̃k = fβ({1, 2, . . . , i}), and
∑i

k=1R
∗
k ≤ fβ({1, 2, . . . , i}),

it follows that

i−1
∑

k=1

R̃k − R∗
k ≥ R∗

i − R̃i. (2.93)

The minimum value of the dual function δ is R∗
i . Therefore,

i−1
∑

k=1

λ∗k(R̃k −R∗
k) = R∗

i − R̃i. (2.94)
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From Algorithm 3 and Theorem 2, it follows that

i
∑

k=1

R∗
i = min

P

{

∑

S∈P

fβ(S) : P is a partition of {1, 2, . . . , i}

}

. (2.95)

Let us denote by S∗
i , a set that belongs to an optimal partitioning P∗ w.r.t. problem (2.95)

such that i ∈ S∗
i . In this case, we have

∑

k∈S∗
i

R∗
k = fβ(S

∗
i ). (2.96)

Now, let us select λ∗ as follows

λ∗k =

{

1 if k ∈ S∗
i ,

0 otherwise.

To verify that this choice of λ∗ is indeed a dual optimal solution, note that from Lemma 4,
we have

∑

k∈S∗
i

R̃k = fβ(S
∗
i ). (2.97)

Therefore,

∑

k∈S∗
i

R̃k −R∗
k = 0. (2.98)

Expression (2.94) can be rewritten as

∑

k/∈S∗
i

λ∗k(R̃k − R∗
k) = R∗

i − R̃i +
∑

k∈S∗
i \{i}

λ∗k(R̃k −R∗
k). (2.99)

From (2.97) and (2.98), it follows that both sides of equality are equal to 0, and thus λ∗ is
indeed a dual optimal solution. Hence,

i−1
∑

k=1

λ∗k ≤ i− 1 ≤ m. (2.100)

Initial, feasible λ[0] can be chosen as follows

λk[0] = 0, ∀k ∈ {1, 2, . . . , i− 1}. (2.101)
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Combining (2.91), (2.92) and (2.102), we obtain

δ(λ̃[l − 1])− δ(λ∗) ≤
m2 + 2N2

∑l−1
j=0 θ

2
j

2
∑l−1

j=0 θj
. (2.102)

There are many ways to choose the step size that satisfies (2.102). Here, we briefly
examine the constant step size, where θj = θ, j = 0, 1, 2, . . .. For other choices on selecting an
appropriate step size θj , we refer the interested reader to the notes on subgradient methods.
When θj = θ, the inequality (2.102) becomes

δ(λ̃[l − 1])− δ(λ∗) ≤
m2 + 2N2lθ2

2lθ
. (2.103)

Hence, the condition (2.83) is satisfied when

m2 + 2N2lθ2

2lθ
<

1

2
. (2.104)

It can be easily verified that (2.104) holds when

θ <
1

2N2
, (2.105)

l >
m2

θ(1− 2N2θ)
. (2.106)

Putting all these results together, the minimization (2.66) can be obtained by running
Algorithm 6.

Remark 10. From Remark 9 it follows that the complexity of Algorithm 6 is SFM(m) =
O(lm logm+ lmγ). For a constant step size θ, from (2.105) and (2.106) it follows that the
complexity of Algorithm 6 can be bounded by O(N2m3 logm+N2m3γ).

Remark 11. Note that Algorithm 6 can be applied to solve problem (2.65) when fβ is an
arbitrary intersecting submodular function over integers.

2.4.1 General Separable Convex Cost

In the previous section, for the linear cost function, we applied Edmonds’ algorithm in order
to obtain the optimal rate allocation. Edmonds’ algorithm is greedy by its nature since
all rate updates are reaching the boundary of polyhedron P (gβ,≤). This effectively means
that Edmonds’ algorithm provides rate allocations that are vertices of the base polyhedron
B(gβ,≤). While this was an optimal approach in the case of linear objectives, for the general
separable convex cost function the optimal rate vector may not belong to a vertex of B(gβ,≤).
We will show this in Example 4.
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Algorithm 6 Minimization (2.66) of Algorithm 3

1: Select parameters l, and θj , j = 0, 1, . . . , l − 1 such that

m2 + 2N2
∑l−1

j=0 θ
2
j

2
∑l−1

j=0 θj
<

1

2
. (2.107)

2: Set λk[0] = 0, k = 1, 2, . . . , i− 1, and λ̃[0] = λ[0].
3: for j = 0 to l − 1 do

4:

λk[j + 1] =
{

λk[j]− θj(R̃k[j]−R∗
k)
}

+
, k = 1, 2, . . . , i− 1,

where R̃[j] is computed according to Lemma 4.
5:

λ̃[j + 1] = argmin
{

δ(λ[j + 1]), δ(λ̃[j])
}

.

6: end for

7:

R∗
i = round

(

δ(λ̃[l])
)

.
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The general convex cost optimization problem

min
R∈Zm

m
∑

i=1

ϕi(Ri), s.t. R ∈ B(gβ,≤) (2.108)

is known as a resource allocation problem under submodular constraints [20], and it can be
solved by applying the following intuitive approach: instead of applying greedy scheme, we
will incrementally update by one symbol in Fq a communication rate of a user that has the
minimal discrete derivative (see Algorithm 7).

Algorithm 7 Minimizing separable convex cost under submodular constraints

1: Set Ri = 0, ∀i ∈ M
2: for j = 1 to β do

3: Find i∗ ∈ M such that

i∗ = argmin
i∈M

{di(Ri + 1) | R+ e(i) ∈ P (gβ,≤)} ,

where di(Ri+1) , ϕi(Ri+1)−ϕi(Ri), and e(i) is the unit basis m-dimensional vector
with ith coordinate equals to 1.

4: Set Ri∗ = Ri∗ + 1.
5: end for

6: R∗ = R is an optimal rate vector w.r.t. the problem (2.108).

Definition 8. Let us define set Tj to be the set of all users that are in iteration j of
Algorithm 7 allowed to update their transmission rates

Tj , {i | R+ e(i) ∈ P (gβ,≤)} . (2.109)

The question is how to efficiently recover set Tj in each round of Algorithm 7. First, we
observe that P (gβ,≤) = P (fβ,≤) according to Theorem 2. Second, note that in Algorithm 3,
the minimization (2.59) outputs the maximum rate vector update along one coordinate.
Therefore, we only need to verify whether such update is at least equal to one symbol in Fq.
In other words, i ∈ Tj if

min
S⊆M\{i}

{fβ(S ∪ {i})− R(S ∪ {i})} ≥ 1. (2.110)

Putting these results together, we can obtain a polynomial time solution to problem (2.18)
by applying Algorithm 8.

The complexity of (2.110) is SFM(m), since the function fβ(S) − R∗(S) is fully sub-
modular. This check can be done either by minimizing submodular function as suggested
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Algorithm 8 Minimizing separable convex cost under intersecting submodular constraints

1: Set Ri = 0, ∀i ∈ M
2: for j = 1 to β do

3: Construct set Tj as follows

Tj =

{

i : min
S⊆M\{i}

{fβ(S ∪ {i})− R(S ∪ {i})} ≥ 1

}

. (2.111)

4: Find i∗ ∈ Tj such that

i∗ = argmin
i∈Tj

{di(Ri + 1)}.

5: Set Ri∗ = Ri∗ + 1.
6: end for

7: R∗ = R is an optimal rate vector w.r.t. the problem (2.108).

in (2.110) or by running the dual subgradient algorithm similar to the one proposed in Sec-
tion 2.4. Here, we briefly explain the differences. First, rate region R(i) defined in (2.68),
now has the following form

R(i) = {R ∈ Rm | R(S ∪ {i}) ≤ fβ(S ∪ {i}), (2.112)

∀S ⊆ M\ {i}}.

Let us denote by R∗ ∈ Rm the current rate allocation in round j of Algorithm 8. Then, if
the maximization

max
R∈R(i)

Ri, (2.113)

s.t. Rk ≥ R∗
k, k = 1, 2, . . . , m, (2.114)

is at least 1, then i ∈ Tj . Problem (2.113) can be solved by following the same steps in
solving the dual problem as in Section 2.4.

At each iteration, Algorithm 8 calls (2.111) m times, and there are total of β iterations,
which is of the order of the file size N .

Remark 12. The complexity of Algorithm 8 is O(m ·N · SFM(m)).

2.4.2 Proof of Correctness of Algorithm 7

Now we provide a sketch of proof of optimality of Algorithm 7 based on Chapters 4 and 9
in [20]. Notice that from time to time, after increasing Rk by one for some k ∈ M in Step 4,
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some set S ⊆ M becomes newly saturated, i.e.,

∃S ⊆ M, s.t. R(S) = gβ(S). (2.115)

Once (2.115) occurs for some k ∈ M, it never occurs again for the same k. The sets that
were saturated before this update remain saturated. Moreover, observe that using Lemma 3,
we can form the maximal size saturated set that includes k as follows

Sk =
⋃

R(S)=gβ(S)

S. (2.116)

For the current rate vector R note that by the proof of Theorem 3, it follows that sat(R) =
Sk. It is important to mention that saturation may not happen in each round of Algo-
rithm 7. Let there be p such instances, where p = m if no vector components were saturated
before execution of Algorithm 7, i.e., if sat(0) = ∅. Without loss of generality, we denote
by {S0,S1, . . . ,Sp}, the ordered set of the maximal size saturated sets which occur while
executing Algorithm 7, where S0 = sat(R), when R = 0. Obviously, Sp = M. Also, it is
easy to show that

R∗(Si) = gβ(Si), i = 1, 2, . . . , p, (2.117)

where R∗ is an optimal rate vector obtained by applying Algorithm 7. From (2.115) it follows
that

S0 ⊂ S1 ⊂ · · · ⊂ Sp. (2.118)

Lemma 6. The optimal rate vector R∗ can be obtained by solving the following set of resource
allocation problems

min
∑

i∈Sk\Sk−1

ϕi(Ri) (2.119)

s.t.
∑

i∈Sk\Sk−1

Ri = gβ(Sk)− gβ(Sk−1),

where k = 1, 2, . . . , p.

Proof. From the previous discussion, we know that i ∈ Sk, and i /∈ Sk−1, where Sk−1 ⊂ Sk.
Also, observe that before Sk gets saturated, u /∈ sat(R) holds for all u ∈ Sk\Sk−1. Therefore,
all the elements u ∈ Sk \ Sk−1 can be updated such that R+ e(u) ∈ P (gβ,≤). Hence, in the
Step 3 Algorithm 7 selects i∗ ∈ Sk \ Sk−1 such that

di∗(Ri∗ + 1) = min {di(Ri + 1) | i ∈ Sk \ Sk−1} . (2.120)

Since R∗(Sk) = gβ(Sk), and R
∗(Sk−1) = gβ(Sk−1), we conclude that

R∗(Sk \ Sk−1) = gβ(Sk)− gβ(Sk−1). (2.121)

This completes the proof.
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To complete the proof of correctness of Algorithm 7, it is left to show that subsequent
application of (2.120) computes an optimal rate allocation for the problem (2.119). To prove
this claim, let us consider the Lagrangian relaxation of the problem (2.119):

L(λ) = min
∑

i∈Sk\Sk−1

ϕi(Ri)− λ
∑

i∈Sk\Sk−1

Ri, (2.122)

where λ is a given real number. Let us denote by R∗
k(λ) an optimal solution of prob-

lem (2.122) for a given λ. Then, R∗
k(λ) is also a minimizer of the problem

min
∑

i∈Sk\Sk−1

ϕi(Ri) (2.123)

s.t.
∑

i∈Sk\Sk−1

Ri =
∑

i∈Sk\Sk−1

R∗
k,i(λ).

In other words, if we find λ for which
∑

i∈Sk\Sk−1

R∗
k,i(λ) = gβ(Sk)− gβ(Sk−1), (2.124)

then R∗
k(λ) is an optimal solution of problem (2.119). To find such λ note that by the

convexity of ϕi, di is a non-decreasing function. Hence,

di(1) ≤ di(2) ≤ · · · ≤ di(gβ(Sk)− gβ(Sk−1)).

Next, we observe that the objective function L(λ) of (2.122) can be written as follows:
∑

i∈Sk\Sk−1

(ϕi(Ri)− λRi) =
∑

i∈Sk\Sk−1

[ϕi(0) + (di(1)− λ) + · · ·+ (di(Ri)− λ)] . (2.125)

Let us denote by Dmin the set of gβ(Sk)− gβ(Sk−1) smallest elements (discrete derivatives)
in

{di(Ri) | i = 1, . . . , m, Ri = 1, . . . , gβ(Sk)− gβ(Sk−1)} .

Then, by setting λ = λ∗ to be the largest di(Ri) in Dmin, we have

di(Ri)− λ∗ ≤ 0 if di(Ri) ∈ Dmin,

di(Ri)− λ∗ ≥ 0 if di(Ri) /∈ Dmin.

Therefore, problem (2.125) is minimized by the following rate vector R∗(λ)

R∗
k,i(λ

∗) =











0 if di(1) /∈ Dmin

gβ(Sk)− gβ(Sk−1) if di(gβ(Sk)− gβ(Sk−1)) ∈ Dmin

Ri if di(Ri) ∈ Dmin, and di(Ri + 1) /∈ Dmin.
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Since

∑

i∈Sk\Sk−1

R∗
i (λ) = |Dmin| = gβ(Sk)− gβ(Sk−1),

R∗
k(λ) is an optimal solution of the problem (2.119). Using these results, we can now show

that Algorithm 9 computes an optimal rate allocation of problem (2.119).

Algorithm 9 Minimizing separable convex cost for the fixed sum-rate

1: Set Ri = 0, ∀i ∈ M
2: for j = 1 to gβ(Sk)− gβ(Sk−1) do
3: Find i∗ ∈ Sk \ Sk−1 such that

i∗ = argmin
i∈Sk\Sk−1

{di(Ri + 1)} .

4: Set Ri∗ = Ri∗ + 1.
5: end for

6: R∗
k = R is an optimal rate vector w.r.t. the problem (2.119).

The initial rate vector in Step 1 of Algorithm 9 is set to zero for each k = 1, . . . , p,
by subtracting the optimal rate vector from the previous round k − 1. The correctness of
Algorithm 9 is obvious since Step 3 computes gβ(Sk) − gβ(Sk−1) smallest di(Ri)’s in non-
decreasing order. To complete proof of correctness of Algorithm 7, it is left to show that
Step 3 of Algorithm 7 and Step 3 of Algorithm 9 are equivalent. This is proved in the
following lemma.

Lemma 7. Let R∗ be an output rate vector of Algorithm 7. Then,

di(R
∗
i ) ≤ min {dt(R

∗
t + 1) | t ∈ M \ Sk−1} , (2.126)

where i ∈ Sk \ Sk−1, and k = 1, . . . , p.

Proof. Let R̂ denote the vector obtained just before Ri = R∗
i − 1 is increased in Step 3 of

Algorithm 7. Since none of the sets Sk, . . .Sp are saturated, we have that t ∈ M \ Sk−1

satisfies R̂+ e(t) ∈ P (gβ,≤). Therefore,

di(R
∗
i ) = di(R̂i + 1) = min

{

dt(R̂t + 1) | t ∈ M \ Sk−1

}

.

This proves the lemma since dt(R̂t + 1) ≤ dt(R
∗
t + 1) for t ∈ M \ Sk−1 by R̂t ≤ R∗

t and the
convexity of ϕt.
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From Lemma 7 it follows that no new rate vectors are generated by expanding search
space of Step 3 in Algorithm 9 from Sk \ Sk−1 to M \ Sk−1. Since sets S1, . . .Sk−1 were
already saturated in the previous iterations of Algorithm 7, we conclude that Step 3 of
Algorithm 7 and Step 3 of Algorithm 9 are equivalent. This completes the proof of correctness
of Algorithm 7.

Lemma 8. Let us denote by β∗ the minimizer of the function h defined in (2.18). Then,
β∗ ≤ N .

Proof. By Lemma 2 we know that set functions fN and fN+1, defined in (2.25), are fully
submodular,

fN(S) =

{

rank(AS) if ∅ 6= S ⊆ M,

0 if S = ∅.
(2.127)

fN+1(S) =

{

1 + rank(AS) if ∅ 6= S ⊆ M,

0 if S = ∅.
(2.128)

Let us denote by R∗ an optimal vector obtained by applying Algorithm 7. In Section 2.2.3
we showed that all faces of a submodular polyhedron P (gβ,≤) are achievable, i.e., for any
S ⊆ M, there exists a rate vector R such that R(S) = gβ(S). Comparing fN and fN+1,
we see that all “faces” of polyhedron P (fN+1,≤) expended by 1 compared to polyhedron
P (fN ,≤) (and they are all achievable). Hence, while applying Algorithm 7 for β = N + 1,
we can see that the optimal rate vector R̃ will differ from R∗ in one coordinate:

R̃j =

{

R∗
j + 1 if j = argmin {di(R

∗
i + 1) | R∗ + e(i) ∈ P (fN+1,≤)}

R∗
j otherwise.

(2.129)

Evaluating costs for β = N and β = N + 1, we obtain

h(N) =
m
∑

i=1

ϕi(R
∗
i ) =

∑

i 6=j

ϕi(R
∗
i ) + ϕj(R

∗
j ). (2.130)

h(N + 1) =
m
∑

i=1

ϕi(R̃i) =
∑

i 6=j

ϕi(R
∗
i ) + ϕj(R

∗
j + 1). (2.131)

Comparing (2.127) and (2.128), we conclude that h(N) ≤ h(N + 1) since ϕj is a non-
decreasing function. Since h is a convex function (see Theorem 4), it immediately follows
that β∗ ≤ N .

For the general non-decreasing set of functions ϕi, i ∈ M, from Theorem 4 we know
that function h is convex. Moreover, by Lemma 8 it follows that the minimizer of h is
at most equal to N . Therefore, in order to minimize h, we can apply Algorithm 5 which
calls Algorithm 7 approximately logN times. Thus, the overall complexity of the proposed
solution is O(m · SFM(m) ·N logN).
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2.4.3 Fairness under the Fixed Sum-Rate Budget

In this section we study the problem where for the fixed feasible sum-rate budget β, the
goal is to distribute communication load to users as evenly as possible. Linear cost function
is by its nature “unfair,” since it can potentially result in a communication scheme where
only a small group of users transmit packets. For the fixed sum-rate budget, the “fairness”
can be achieved by introducing an uniform, non-decreasing (in the integer domain) objective
ϕi(Ri) = Ri logRi, i = 1, . . . , m, and it is illustrated in the example below.

Example 4. Consider the same three-user problem as in Example 3

x1 =
[

w1 w2

]T
,

x2 =
[

w2 w4 w5 w6

]T
,

x3 =
[

w3 w4 w5 w6

]T
,

where wi ∈ Fq, i = 1, . . . , 6.

Figure 2.4: Algorithm 7 applied to the three-user problem from Example 4, with the cost function
∑3

i=1 Ri logRi and the fixed
sum-rate R1 + R2 + R3 = 5. To minimize the cost, in each iteration we update the rate of the user who has transmitted the
least amount of symbols in Fq such that the update still belongs to polyhedron P (fβ ,≤).

In case of a linear objective 2R1 +R2 + 3R3, for a given sum-rate β = 5, we showed hat
the optimal DE -rate vector, obtained by using Algorithm 3, belongs to a vertex of the base
polyhedron B(fβ ,≤):

R∗
1 = 1, R∗

2 = 3, R∗
3 = 1. (2.132)
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Let us now analyze the case when the objective is ϕi(Ri) = Ri logRi, i = 1, 2, 3. Following
the notation of Algorithm 7, we have that

di(Ri + 1) = (Ri + 1) log(Ri + 1)−Ri logRi. (2.133)

It is not hard to show that the above function di(·) is increasing. Hence, the minimization
step in Algorithm 8 can be written as

i∗ = argmin
i∈Tj

Ri, (2.134)

where Tj can be computed from (2.110), and j = 1, . . . , β is an iteration of Algorithm 8.
The condition (2.134) proves that ϕi(Ri) = Ri logRi is a good measure for fairness, since it
is enforcing the transmission vector R to be as uniform as possible. A dual set function f5,
that corresponds to this source model, has the following evaluations:

f5({1}) = 1, f5({2}) = 3, f5({3}) = 3,

f5({1, 2}) = 4, f5({1, 3}) = 5, f5({2, 3}) = 4,

f5({1, 2, 3}) = 5. (2.135)

The execution steps of Algorithm 7 are shown below (see also Figure 7 for the reference).

• Set R1 = R2 = R3 = 0.

• j = 1 : Check if user 1 belongs to T1:

min{f5({1})− R1, f5({1, 2})−R1 − R2, f5({1, 3})−R1 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 1 ≥ 1.

Hence 1 ∈ T1. Check if user 2 belongs to T1:

min{f5({2})− R2, f5({1, 2})−R1 − R2, f5({2, 3})−R2 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 3 ≥ 1.

Hence 2 ∈ T1. Check if user 3 belongs to T1:

min{f5({3})− R2, f5({1, 3})−R1 − R3, f5({2, 3})−R2 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 3 ≥ 1.

Hence 3 ∈ T1. Updates of the rate vector R are selected according to the rule (2.134):

argmin {Ri | i ∈ T1 = {1, 2, 3}} = {1, 2, 3}.

Set R1 = R1 + 1 = 1.
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• j = 2 : Check if user 1 belongs to T2:

min{f5({1})− R1, f5({1, 2})−R1 − R2, f5({1, 3})−R1 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 0 ≥ 1.

Hence 1 /∈ T2. Check if user 2 belongs to T2:

min{f5({2})− R2, f5({1, 2})−R1 − R2, f5({2, 3})−R2 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 3 ≥ 1.

Hence 2 ∈ T2. Check if user 3 belongs to T2:

min{f5({3})− R2, f5({1, 3})−R1 − R3, f5({2, 3})−R2 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 3 ≥ 1.

Hence 3 ∈ T2. Vector R is updated according to the rule:

argmin {Ri | i ∈ T2 = {2, 3}} = {2, 3}.

Set R3 = R3 + 1 = 1.

• j = 3 : Check if user 1 belongs to T3:

min{f5({1})− R1, f5({1, 2})−R1 − R2, f5({1, 3})−R1 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 0 ≥ 1.

Hence 1 /∈ T3. Check if user 2 belongs to T3:

min{f5({2})− R2, f5({1, 2})−R1 − R2, f5({2, 3})−R2 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 3 ≥ 1.

Hence 2 ∈ T3. Check if user 3 belongs to T3:

min{f5({3})− R2, f5({1, 3})−R1 − R3, f5({2, 3})−R2 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 2 ≥ 1.

Hence 3 ∈ T3. Vector R is updated according to the rule:

argmin {Ri | i ∈ T3 = {2, 3}} = {2}.

Set R2 = R2 + 1 = 1.
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• j = 4 : Check if user 1 belongs to T4:

min{f5({1})− R1, f5({1, 2})−R1 − R2, f5({1, 3})−R1 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 0 ≥ 1.

Hence 1 /∈ T4. Check if user 2 belongs to T4:

min{f5({2})− R2, f5({1, 2})−R1 − R2, f5({2, 3})−R2 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 2 ≥ 1.

Hence 2 ∈ T4. Check if user 3 belongs to T4:

min{f5({3})− R2, f5({1, 3})−R1 − R3, f5({2, 3})−R2 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 2 ≥ 1.

Hence 3 ∈ T4. Vector R is updated according to the rule:

argmin {Ri | i ∈ T4 = {2, 3}} = {2, 3}.

Set R3 = R3 + 1 = 2.

• j = 5 : Check if user 1 belongs to T5:

min{f5({1})− R1, f5({1, 2})−R1 − R2, f5({1, 3})−R1 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 0 ≥ 1.

Hence 1 /∈ T5. Check if user 2 belongs to T5:

min{f5({2})− R2, f5({1, 2})−R1 − R2, f5({2, 3})−R2 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 1 ≥ 1.

Hence 2 ∈ T5. Check if user 3 belongs to T5:

min{f5({3})− R2, f5({1, 3})−R1 − R3, f5({2, 3})−R2 − R3,

f5({1, 2, 3})− R1 − R2 −R3} = 1 ≥ 1.

Hence 3 ∈ T5. Vector R is updated according to the rule:

argmin {Ri | i ∈ T5 = {2, 3}} = {2}.

Set R2 = R2 + 1 = 2.

• An optimal DE -rate vector is R∗
1 = 1, R∗

2 = 2, R∗
3 = 2.
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2.5 Code Construction

In Theorem 1, we showed that in order to achieve optimal communication rates, it is sufficient
for each user to transmit the optimal number of linear combinations of its observations. In
this section, we show how to efficiently design the transmission scheme. We explain the code
construction on the three user problem from Example 3, where

x1 =
[

w1 w2

]T
,

x2 =
[

w2 w4 w5 w6

]T
,

x3 =
[

w3 w4 w5 w6

]T
. (2.136)

For the objective function minR1 +R2 +R3, we showed that the optimal DE -rate vector is
R∗

1 = 1, R∗
2 = 1, and R∗

3 = 3. This means that in an optimal scheme users 1, 2 and 3 transmit
1, 1, and 3 linear combinations of their own observations in Fq, respectively. We design the
coding scheme by first constructing the corresponding multicast network (see Figure 2.5). In
this construction, notice that there are several types of nodes. First, there is a super node
S that has all the packets. Each user in the system is a transmitter, while in addition, each
user is also a receiver. To model this, we denote s1, s2 and s3 to be the “transmitting” nodes,
and r1, r2 and r3 to be the “receiving” nodes. The side-information observed by users 1, 2
and 3 gets directly routed from s1, s2 and s3 to the receivers r1, r2 and r3 through direct
edges (dashed edges in Figure 2.5). To model the broadcast nature of each transmission, we
introduce the “dummy” nodes t1, t2 and t3, such that the capacity of the links (si, ti) is the
same as link capacity (ti, rj), j 6= i, and is equal to R∗

i , ∀i ∈ M.

Figure 2.5: Multicast network constructed from the source model and the sum-rate optimal DE -rate vector R∗
1 = 1, R∗

2 = 1,
R∗

3 = 2. Hence, in an optimal scheme users 1, 2 and 3 are transmitting 1, 1, and 3 linear combinations of their own observations
in Fq, respectively. Each user receives side-information from “itself” (through the links si → ri, i = 1, 2, 3) and from the other
users (through the links ti → rj , i, j ∈ {1, 2, 3}, i 6= j).



CHAPTER 2. DATA EXCHANGE PROBLEM - LINEAR PACKET MODEL 45

Now, when we have a well-defined network it is only left to figure out transmissions on
all the edges. For instance, this can be achieved using Jaggi et al. algorithm [21]. The first
step of this algorithm is to determine N = 6 disjoint paths from the super-node S to each
receiver r1, r2 and r3 by using the Ford-Fulkerson algorithm [2]. Such paths are designed
to carry linearly independent messages from the super node to the receivers. When each
user observes some subset of the file packets (as it is the case in this example), we can
directly apply Jaggi’s algorithm to this problem by slightly modifying the upper portion of
the multicast network from Figure 2.5 (see Figure 2.6). Note that in this case, we were
able to model observations of each user simply by adding one more layer of nodes which
represent individual file packets, and then connecting these packet nodes with each user
according to (2.136). In other words, the entire source model and the communication model
can be represented by multicast acyclic graph. Therefore, Jaggi’s algorithm would find actual
transmissions of each user in polynomial time.

Figure 2.6: When each user observes subset of the file packets, we can model the observations by adding an extra layer of N = 6
nodes to the graph in Figure 2.5. Each extra node represents one file packet, and all extra edges are of capacity 1. Then, users’
observations can be modeled by connecting nodes from this layer to the users’ nodes s1, s2 and s3 according to (2.136).

In the case of general linear packet model, it is not possible to represent users’ observations
just by adding one extra layer of nodes to the multicast graph as in Figure 2.6. This is
because there is an underlying correlation between all the linear combinations that appear
in the users’ observation vectors, and it would be suboptimal to treat all these combinations
independently. For that reason, it is more suitable to apply Harvey’s algorithm [17] which
is based on matrix representation of transmissions in the network [22], and simultaneous
matrix completion problem over finite fields.

Before we go any further let us consider the simplest version of a simultaneous matrix
completion problem on the following example.

Example 5. Let the three users have access to the following parts of the three packet file
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w =
[

w1 w2 w3

]T
,

x1 =

[

w1 + w2

w2 + w3

]

,

x2 =

[

w2 + w3

w1 + w3

]

,

x3 =

[

w1 + w2

w1 + w3

]

, (2.137)

where w1, w2, w3 ∈ Fq, q > 2. It can be shown that the minimum sum-rate is 2, with the
rate allocation R∗

1 = 1, R∗
2 = 1, R∗

3 = 0. In general, we can represent transmission of user 1
as

v1 = α1(w1 + w2) + α2(w2 + w3) = α1w1 + (α1 + α2)w2 + α2w3, (2.138)

where α1, α2 ∈ Fq. Similarly, transmission of user 2 is

v2 = β1(w2 + w3) + β2(w1 + w3) = β2w1 + β1w2 + (β1 + β2)w3, (2.139)

where β1, β2 ∈ Fq. After all the users transmitted optimal number of packets, each of them
updates its observation matrix.

A1 =





1 1 0
0 1 1
β2 β1 β1 + β2



 , A2 =





0 1 1
1 0 1
α1 α1 + α2 α2



 , A3 =









1 1 0
1 0 1
α1 α1 + α2 α2

β2 β1 β1 + β2









.

In order to construct the coding scheme it is necessary to find coefficients α1, α2, β1, β2
such that the rank of each updated observation matrix is full, i.e., N = 3. This problem is
called the simultaneous matrix completion problem.

Polynomial time solution to the simultaneous matrix completion problem, as suggested
in [17], exists if all indeterminate elements, in this example α1, α2, β1, β2, appear no more
than once in each observation matrix. However, this is not true in the case of the linear
packet model; for instance in Example 5, β1 appears twice in matrix A1.

Therefore, in order to have a polynomial time code construction, it is necessary to con-
struct new matrices assigned to each user, where all indeterminate elements appear at most
once in each matrix, and possibly more times across different matrices. This can be done
by using algebraic approach to the multicast network coding problem as in [22], which we
briefly explain in the remainder of this section.

Going back to the source model (2.136), let us annotated all the edges from Figure 2.5
(see Figure 2.7). We denote by Y (ei) transmission process through link ei, i ∈ {1, 2, . . . , 35}.
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Figure 2.7: Annotated edges for the multicast network in Figure 2.5.

It is obvious that for the first layer of links e1 − e10, Y (ei) corresponds to the underlying
source distribution. More formally,

Y (e1) = w1, Y (e2) = w2,
Y (e3) = w2, Y (e4) = w4, Y (e5) = w5, Y (e6) = w6,
Y (e7) = w3, Y (e8) = w4, Y (e9) = w5, Y (e10) = w6.

(2.140)

In the linear multicast network, each node transmits on its outgoing edge a linear combination
of the symbols received on the incoming edges. Hence, the transmissions on the remaining
edges can be modeled as

Y (e11) = γe1,e11Y (e1) + γe2,e11Y (e2),

Y (e12) = γe3,e12Y (e3) + γe4,e12Y (e4) + γe5,e12Y (e5) + γe6,e12Y (e6),

Y (e13) = γe7,e13Y (e7) + γe8,e13Y (e8) + γe9,e13Y (e9) + γe10,e13Y (e10), (2.141)

Y (e14) = γe7,e14Y (e7) + γe8,e14Y (e8) + γe9,e14Y (e9) + γe10,e14Y (e10),

Y (e15) = γe7,e15Y (e7) + γe8,e15Y (e8) + γe9,e15Y (e9) + γe10,e15Y (e10),

where γei,ej is a coefficient in Fq that defines a linear operation performed by the node between
edges ei and ej. Note that edges e26 − e35 are just routing the side information of nodes s1,
s2 and s3 to nodes r1, r2 and r3, respectively. Therefore, we model these transmissions in
the following way

Y (e26) = Y (e1), Y (e27) = Y (e2),
Y (e28) = Y (e3), Y (e29) = Y (e4), Y (e30) = Y (e5), Y (e31) = Y (e6),
Y (e32) = Y (e7), Y (e33) = Y (e8), Y (e34) = Y (e9), Y (e35) = Y (e10).

(2.142)
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The remaining edges e16 − e25 are simply routing information observed by nodes t1, t2 and
t3, i.e.,

Y (e16) = Y (e11), Y (e17) = Y (e11),
Y (e18) = Y (e12), Y (e19) = Y (e12),
Y (e20) = Y (e13), Y (e23) = Y (e13),
Y (e21) = Y (e14), Y (e24) = Y (e14),
Y (e22) = Y (e15), Y (e25) = Y (e15).

(2.143)

It is only left to write down linear combinations observed by each receiver r1, r2 and r3. The
goal is for each receiver to obtain all N = 6 data packets. Using the same notation as in
[22] let us denote by

[

Zri,w1 Zri,w2 Zri,w3 Zri,w4 Zri,w5 Zri,w6

]

, i = 1, 2, 3, the output
process at sink ri which correspond to each individual packet that has to be decoded. To
that end, for the receivers r1, r2 and r3, the corresponding output process can be written as
follows

Z(r1, wi) = δe18,wi
Y (e18) + δe20,wi

Y (e20) + δe21,wi
Y (e21)

+ δe22,wi
Y (e22) + δe26,wi

Y (e26) + δe27,wi
Y (e27),

Z(r2, wi) = δe16,wi
Y (e16) + δe23,wi

Y (e23) + δe24,wi
Y (e24) + δe25,wi

Y (e25)

+ δe28,wi
Y (e28) + δe29,wi

Y (e29) + δe30,wi
Y (e30) + δe31,wi

Y (e31),

Z(r3, wi) = δe17,wi
Y (e17) + δe19,wi

Y (e19) + δe32,wi
Y (e32)

+ δe33,wi
Y (e33) + δe34,wi

Y (e34) + δe35,wi
Y (e35), i = 1, 2, . . . , 6. (2.144)

In [22] authors derived the transfer matrix Mi from the super-node S to any receiver ri,
i = 1, 2, 3. It is a 6 × 6 matrix with the input vector w. In order to construct matrix
Mi, i = 1, 2, 3, let us consider the following block matrices. Linear combinations described
in (2.140) correspond to the underlying source distribution. To that end, let us define a
6 × 35 matrix A which rows correspond to w, and columns correspond to the observations
on the network edges Y (ei), i = 1, 2, . . . , 35.

A =

















1 0 0 0 0 0 0 0 0 0 0 · · · 0
0 1 1 0 0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 1 0 0 0 0 · · · 0
0 0 0 1 0 0 0 1 0 0 0 · · · 0
0 0 0 0 1 0 0 0 1 0 0 · · · 0
0 0 0 0 0 1 0 0 0 1 0 · · · 0

















6×35

. (2.145)

For a general linear packet model defined in (2.1), matrix A can be written as follows

A =
[

AT
1 AT

2 · · · AT
m 0 · · · 0

]

. (2.146)
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A is an N × ℓ matrix, where ℓ can be easily obtained by inspecting Figure 2.5.

ℓ = 2
m
∑

i=1

ℓi +m
m
∑

i=1

R∗
i . (2.147)

Next, we describe transmissions Y (ei) for i = 13, 14, . . . , 35. In particular, let as define a
35× 35 matrix Γ as follows

Γi,j = γei,ej , (2.148)

where γei,ej are coefficients defined in (2.141), (2.142) and (2.143). All the coefficients γei,ej
that do not appear in (2.141), (2.142) and (2.143) are set to be zero. In general case, matrix
Γ is ℓ× ℓ and its entries are equal to

Γi,j =

{

γei,ej , if head(ei) = tail(ej),

0, otherwise.
(2.149)

Notice that some of the γei,ej ’s in (2.149) are set to zero or one according to (2.142)
and (2.143). Finally, let us define an output process matrix D(k) of dimension 33 × 6,
for each user k = 1, 2, 3. From linear combinations defined in (2.144) we construct matrix
D(k) as follows

Di,j(k) = δei,wj
, ∀wj ∈ w, k = 1, 2, 3. (2.150)

For all coefficients δei,wj
which do not appear in (2.144), Di,j equals to zero. In general case,

matrix D(k), k = 1, 2, . . . , m, is ℓ×N and its entries are equal to

Di,j(k) =

{

δei,wj
, if head(ei) = rk,

0 otherwise.
(2.151)

From the construction of matrices A, Γ, D(k), authors in [22] derived a transfer matrix
M(k) for each terminal k = 1, 2, . . . , m. This result is stated in next theorem

Theorem 5 (Transfer Matrix [22]). For a network defined by matrices A, Γ, D(k), k =
1, 2, . . . , m, the transfer matrix M(k) for each receiver rk is given as

M(k) = A(I− Γ)−1D(k), k = 1, 2, . . . , m, (2.152)

where I is the ℓ× ℓ identity matrix.

A multicast problem has a network coding solution if and only if each matrixM(k) is non-
singular. It should be noted that all unknown entries in matrices Γ, D(k) are independent
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from each other, i.e., all γi,j’s and δi,j’s are independent. In [17] it was shown that for the
expanded transfer matrix defined as

E(k) =

[

A 0

I− Γ D(k)

]

, k = 1, 2, . . . , m, (2.153)

it holds that det(M(k)) = ± det(E(k)). This means that if we pick entries γi,j and δi,j
such that the matrices E(k), k = 1, 2, . . . , m, have full rank, then we immediately obtain
a network coding solution. Note that matrix Γ appears in all matrices E(k), and that all
indeterminate elements in matrices Γ, and D(k) appear only once in each matrix E(k),
k = 1, 2, . . . , m. This simultaneous matrix completion problem can be solved in polynomial
time by using Harvey’s algorithm [17].

Lemma 9 (Harvey, [17]). Polynomial time solution for the simultaneous matrix completion
problem exists if and only if |Fq| > m. Complexity of the proposed algorithm is O(m4 ·
N3 log(m ·N)), where ℓ is defined in (2.147).

Hereafter, we assume that the field size |Fq| is large enough to accommodate for the
polynomial time solution. Summarizing this section, in order to obtain polynomial time
solution to the data exchange problem, it is necessary to complete the following steps

1. Compute an optimal rate allocation R∗ w.r.t. the communication cost.

2. Based on R∗ construct a multicast acyclic graph as shown in Figures 2.5 and 2.7.

3. Compute matrices A, Γ and D(k) for k = 1, 2, . . . , m.

4. Apply Harvey’s algorithm to the extended matrices E(k), k = 1, 2, . . . , m, to find
indeterminate elements in the matrices Γ, B(k).

2.6 Randomized Algorithm

In this section we combine Algorithm 7 with the linear network coding scheme to produce a
randomized solution to the optimization problem (2.18) of linear complexity (in number of
users). First, note that Algorithm 7 is incremental by its nature, i.e., in each iteration we
update the rate vector by one symbol in Fq. Say that user i updates its rate at round j of
Algorithm 7. Along with the rate update, let user i transmit an appropriately chosen linear
combination of its observations; using the notation from Section 2.1, we have

v
(j)
i = b

(j)
i ·Ai ·w, (2.154)

where b
(j)
i ∈ Fℓi

q , is the vector of coefficients that lead to the optimal communication scheme.
We note that those coefficients are not known a priori; they can be figured out by applying the
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algorithm proposed in Section 2.5 only after the entire optimal DE -rate vector is recovered.
For now, let us just assume that we have access to the vectors b

(j)
i for all iterations j =

1, . . . , β, and for all users i ∈ M that are scheduled to update their communication rates.
Later, we will use random linear network coding argument to relax these assumptions.

In the expression (2.154), let us define u(j) ∈ FN
q as

u(j) , b
(j)
i ·Ai. (2.155)

Then, we can write (2.154) as

v
(j)
i = u(j) ·w. (2.156)

By generating transmissions along with the rate updates, we can actually reduce the com-
plexity of verifying whether the rate vector update still belongs to the polyhedron P (fβ,≤).
This result is stated in the following theorem.

Theorem 6. Let the set Tj be defined as in (2.109). Then,

Tj = {i ∈ M | rank
(

Ai ∪ u(1) ∪ · · · ∪ u(j−1)
)

> N − (β − j + 1)}. (2.157)

Proof. Let us start by considering round j = 1 of Algorithm 7. All rates are set to zero, i.e.,
R∗

i = 0, i = 1, . . . , m. To check whether user i belongs to set T1, we need to verify whether
its update belongs to polyhedron P (fβ,≤)

R∗(S) + 1 ≤ fβ(S), ∀S, s.t. i ∈ S, (2.158)

where fβ is defined in (2.25). Since R∗ is a zero vector, we can write the condition (2.158)
as

1 ≤ β −N + rank(AS), ∀S ⊆ M, s.t. i ∈ S, (2.159)

which is equivalent to

1 ≤ min
i∈S⊆M

{β −N + rank(AS)}. (2.160)

It is easy to see that S = {i} is the minimizer of the above problem. Hence, i ∈ T1 if

rank(Ai) > N − β, (2.161)

which matches the theorem statement for j = 1.
Say that user i belongs to T1 and that he is scheduled to transmit in the first round

according to the cost function. Thus, user i transmits

v
(1)
i = u(1) ·w, (2.162)
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where u(1) is appropriately chosen vector. All the remaining users update their observation
matrix by appending vector u(1) to it

Ak ∪ u(1), ∀k ∈ M \ {i}. (2.163)

In the next round we reduce parameter β by 1, and again ask the same question whether
user i belongs to T2 for the updated set of observations. Combining (2.161) and (2.163) it is
easy to see that in round j, the condition (2.161) becomes

rank
(

Ai ∪ u(1) ∪ · · · ∪ u(j−1)
)

> N − (β − j + 1), (2.164)

which completes the proof.

So far we have assumed that the vectors u(j) are provided to us deterministically, and
that they render optimal communication scheme. However, this assumption is unjustifi-
able since we saw in Section 2.5 that in order to construct a deterministic communication
scheme we need to know optimal DE -rate vector beforehand. To go around this problem we
invoke a random linear network coding scheme. The basic idea behind the random linear
network coding argument is that if user i is scheduled to transmit in round j, then we can
choose vectors b

(j)
i in (2.154) uniformly at random over Fℓi

q . The following lemma provides
a relationship between probability of generating optimal transmissions and the field size q.

Lemma 10. For the random linear network coding scheme, the probability of choosing an
optimal sequence of vectors u(j), j = 1, 2, . . . , β, is at least 1 − const

q
, provided that the field

size is large enough.

The proof of Lemma 10 directly follows from Lemma 4 in [18]. The idea is to relate this
problem to a multicast problem as in Section 2.5, and analyze determinant of the extended
matrices E(k), k = 1, . . . , m given in (2.153). Then, by choosing the indeterminate elements
in matrix Γ given in (2.149), randomly over Fq, we obtain exactly the same formulation as
in [18].

Putting all these results together, from Algorithm 7 we can devise its Randomized coun-
terpart as follows (see Algorithm 10).

Remark 13. The complexity of Algorithm 10 is O(m · γ ·N), where γ is the complexity of
computing rank.

Remark 14. When β is not a feasible sum-rate w.r.t. the optimization problem (2.18), then
after β iterations of Algorithm 10 there exists a user that cannot reconstruct all the packets.
In other words

∃i ∈ M, s.t. rank
(

Ai ∪ u(1) ∪ · · · ∪ u(β)
)

< N.
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Algorithm 10 Randomized Algorithm

1: Set Ri = 0, ∀i ∈ M
2: for j = 1 to β do

3: Determine Tj as defined in (2.157).
4: Find i∗ ∈ Tj such that

i∗ = argmin {di(Ri + 1) | i ∈ Tj} .

5: Let i∗ transmit, and create a transmission v
(j)
i∗ by creating a vector b

(j)
i∗ uniformly at

random over Fℓi∗
q .

6: Set Ri∗ = Ri∗ + 1.
7: end for

8: R∗ = R is an optimal rate vector w.r.t. the problem (2.108).

In order to solve the optimization problem (2.17), we can apply a binary search algo-
rithm similar to Algorithm 5. Thus, the overall complexity of the proposed algorithm is
O(m · γ ·N logN).

Example 6. Let us consider the same problem as in Example 4

x1 =
[

w1 w2

]T
,

x2 =
[

w2 w4 w5 w6

]T
,

x3 =
[

w3 w4 w5 w6

]T
,

where wi ∈ Fq, i = 1, . . . , 6, and q is some large prime number. For the uniform objective
∑3

i=1Ri logRi with a fixed sum-rate
∑3

i=1Ri = 5, Algorithm 10 executes the following steps:

• Set R1 = R2 = R3 = 0.

• j = 1 : Updates of the rate vector R∗ are selected according to the rule (2.134):

argmin {Ri | i ∈ T1 = {1, 2, 3}} = {1, 2, 3},

User 1 transmit some random linear combination of its observation, say v
(1)
1 = w1+7w2.

Set

R1 = R1 + 1 = 1.

• j = 2 : Vector R is updated according to the rule:

argmin {Ri | i ∈ T2 = {2, 3}} = {3}.
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User 3 transmit some random linear combination of its observation, say v
(2)
3 = w3 +

w4 + 5w5 + 11w6. Set

R3 = R3 + 1 = 1.

• j = 3 : Vector R is updated according to the rule:

argmin {Ri | i ∈ T3 = {2, 3}} = {2}.

User 2 transmit some random linear combination of its observation, say v
(3)
2 = 4w2 +

3w4 + 13w5 + 8w6. Set

R2 = R2 + 1 = 1.

• j = 4 : Vector R is updated according to the rule:

argmin {Ri | i ∈ T4 = {2, 3}} = {3}.

User 3 transmit some random linear combination of its observation, say v
(4)
3 = 9w3 +

5w4 + 14w5 + 17w6. Set

R3 = R3 + 1 = 2.

• j = 5 : Vector R is updated according to the rule:

argmin {Ri | i ∈ T5 = {2, 3}} = {2}.

User 2 transmit some random linear combination of its observation, say v
(5)
2 = 11w2 +

2w4 + 18w5 + 6w6. Set

R2 = R2 + 1 = 2.

• R∗ = R is an optimal DE -rate vector w.r.t. the uniform objective and the condition
R(M) = 5.

It can be verified that after this round of communication all the users are able to recover the
file.
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2.7 Introducing Capacity Constraints

In this section we explore a data exchange problem where the transmissions of each user
can be further restricted. For instance, we can limit the total number of packets sent from
each user. This is particularly useful in the scenarios where communication consumes a lot
of power, and we want to “spare” users with low battery. Say that user i is not allowed to
transmit more than ci packets in Fq. Then, optimization problem (2.17) becomes

min
β∈Z+

h(β), (2.165)

where h(β) can be obtained from (2.41) by adding capacity constraints.

h(β) = min
R∈Zm

m
∑

i=1

ϕi(Ri), s.t., R ∈ B(gβ,≤), (2.166)

Ri ≤ ci, ∀i ∈ M,

provided that gβ(M) = β. Otherwise, the sum-rate β is infeasible w.r.t. the problem (2.166).
In Section 2.2 we pointed out that the optimality of all the algorithms we studied is

guaranteed due to the fact that the constraint set of the problem (2.18) constitutes a base
polyhedron of a submodular function. In this section we show that by adding individual ca-
pacity constraints, the constraint set in (2.18) also forms a base polyhedron of a submodular
function. This implies that in such a case we can still apply every algorithm developed so
far in order to obtain an optimal DE -rate vector.

We begin our analysis by defining the restriction of a submodular function (see [20] for
the reference).

Definition 9. For a submodular function gβ : 2M → Z, and a vector c ∈ Zm, define a
function gcβ : 2M → Z by

gcβ(S) , min {gβ(V) + c(S \ V) | V ⊆ S} , ∀S ⊆ M. (2.167)

The set function gcβ is called the restriction of gβ by vector c.

Theorem 7 (Theorem 8.2.1 in [20]). Let gcβ be the restriction of a submodular function gβ
by vector c. Then, gcβ is submodular.

Proof. For a set function gcβ, let us denote by VS the minimizer set of the optimization
problem (2.167). Then, for any S, T ⊆ M, we have

gcβ(S) + gcβ(T ) = gβ(VS) + c(S \ VS) + gβ(VT ) + c(T \ VT )

(a)

≥ gβ(VS ∪ VT ) + c ((S ∪ T ) \ (VS ∪ VT ))

+ gβ(VS ∩ VT ) + c ((S ∩ T ) \ (VS ∩ VT ))

(b)

≥ gcβ(S ∪ T ) + gcβ(S ∩ T ) (2.168)
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where (a) is due to the submodularity of gβ, and (b) follows from (2.167). Hence, from (2.168)
we can see that gcβ is submodular function.

Theorem 8. For a submodular function gβ defined in (2.38) and a capacity vector c, the
base polyhedron B(gcβ,≤) of the restriction of gβ by c, is given by

B(gcβ,≤) = {R | R ∈ B(gβ,≤), Ri ≤ ci, ∀i ∈ M} , (2.169)

provided that the sum-rate β and the capacity vector c are feasible w.r.t. the optimization
problem (2.166).

Proof. Let R be any feasible rate vector w.r.t. the problem (2.166), i.e.,

R(S) ≤ gβ(S), ∀S ⊆ M, (2.170)

R(S) ≤ c(S), ∀S ⊆ M, (2.171)

R(M) = gβ(M) = β. (2.172)

Let us denote by g⋆β the dual function of gβ (see Definition 3),

g⋆β(S) = gβ(M)− gβ(M\ S) = β − gβ(M\ S), ∀S ⊆ M. (2.173)

By Lemma 1, vector R must satisfy

R(S) ≥ g⋆β(S) = β − gβ(M\ S), ∀S ⊂ M,

R(M) = g⋆β(M) = β. (2.174)

From (2.171) and (2.174) it follows that

gβ(M)− gβ(M\ V) ≤ R(V) ≤ c(V), ∀V ⊆ M. (2.175)

From (2.175), we have that

gβ(M) ≤ gβ(M\ V) + c(V), ∀V ⊆ M. (2.176)

Hence, (2.167) implies that

gcβ(M) = gβ(M) = β. (2.177)

Hence, R(M) = gcβ(M). Since Ri ≤ ci, it follows that

R(S) = R(V) +R(S \ V) ≤ gβ(V) + c(S \ V), ∀V,S s.t. V ⊆ S ⊆ M. (2.178)

Finally (2.178) implies that

R(S) ≤ min {gβ(V) + c(S \ V) | V ⊆ S} , ∀S ⊆ M. (2.179)
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Hence, R ∈ B(gcβ,≤).
Conversely, let R be such that R ∈ B(gcβ,≤). Then,

R(S) ≤ gcβ(S) ≤ gβ(S) + c(∅) = gβ(S), ∀S ⊆ M, (2.180)

R(S) ≤ gcβ(S) ≤ gβ(∅) + c(S) = c(S), ∀S ⊆ M, (2.181)

R(M) = gcβ(M) = β (2.182)

where the second inequality in (2.180) and (2.181) directly follows from (2.167). From (2.180),
(2.181), and (2.182) it follows that

R ∈ B(gβ,≤), s.t. Ri ≤ ci, ∀i ∈ M. (2.183)

This completes the proof.

Corollary 2. For a submodular function gβ defined in (2.38) and a capacity vector c,
polyhedron P (gcβ,≤) of the restriction of gβ by c, is given by

P (gcβ,≤) = {R | R ∈ P (gβ,≤), Ri ≤ ci, ∀i ∈ M} , (2.184)

provided that the sum-rate β and the capacity vector c are feasible w.r.t. the optimization
problem (2.166).

From Theorem 8 it follows that the constraint set of (2.166) forms a submodular polyhe-
dron B(gcβ,≤), which further implies that all the algorithms developed so far can be applied
to obtain an optimal DE -rate vector. For instance, with capacity constraints, Step 4 of
Algorithm 1 becomes

R∗
j(i) = min{cj(i), gβ({j(1), j(2), . . . , j(i)}) (2.185)

− gβ({j(1), j(2), . . . , j(i− 1)})}.

This modification propagates to Algorithm 3 as well. Similarly, at iteration j, Step 3 of
Algorithms 7 and 10 is modified as follows

i∗ = argmin{di(R
∗
i + 1) | i ∈ Tj , s.t., R

∗
i + 1 ≤ ci}. (2.186)

Example 7. Let us consider the same problem as in Example 3

x1 =
[

w1 w2

]

,

x2 =
[

w2 w4 w5 w6

]

,

x3 =
[

w3 w4 w5 w6

]

,
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where wi ∈ Fq. Let the cost function be R1+3R2+2R3, the sum-rate β = 5, and the capacity
constraints ci ≤ 2, i = 1, 2, 3. Then, by applying Algorithm 3 with the modification (2.185),
we obtain the following result.

R∗
1 = min{c1, f5({1})} = 1,

R∗
3 = min {c3,min{f5({1, 3})−R∗

1, f5({2})}} = 2,

R∗
2 = min{c2,min{f5({1, 2, 3})− R∗

1 −R∗
3, f5({1, 3})− R∗

1,

f5({2, 3})− R∗
3, f5({2})}} = 2.

Without capacity constraints, as it was the case in Example 3, user 3 would transmit 3
packets in Fq.
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Chapter 3

Data Exchange Problem - General

Correlations

In this chapter we study data exchange problem under the general source correlation
model. All the techniques we developed in Chapter 2 will be useful in devising polynomial
time algorithms in this chapter.

3.1 System Model and Preliminaries

We consider a setup where m users are interested in gaining access to a file or a random
process. Let X1, X2, . . . , Xm, m ≥ 2, denote the components of a discrete memoryless
multiple source (DMMS) with a given joint probability mass function. Each user i ∈ M =
{1, 2, . . . , m} observes n i.i.d. realizations of the corresponding random variable Xi, denoted
by Xn

i . Let us denote XM , {X1, X2, . . . , Xm}. In [11], Csiszár and Narayan showed
that in order for each user in M to learn Xn

M in a setup with general DMMS interactive
communication is not needed. As a result, in the sequel without loss of generality we can
assume that the transmission of each user is only a function of its own initial observations.
In particular, let Fi , fi(X

n
i ) represent the transmission of the user i ∈ M, where fi(·) is a

mapping of the observations Xn
i to a message that user i transmits. Each user can recover

the realization of Xn
M if and only if the transmission vector F , (F1, F2, . . . , Fm) satisfies,

lim
n→∞

1

n
H(Xn

M|F, Xn
i ) = 0, ∀i ∈ M. (3.1)

We define the data exchange rate vector in the similar way as in Section 2.1.

Definition 10. A rate vector R = (R1, R2, . . . , Rm) is an achievable data exchange (DE)-
rate vector if there exists a communication scheme with a transmission vector F that satisfies
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(2.4), and is such that

Ri = lim
n→∞

1

n
H(Fi), ∀i ∈ M. (3.2)

In [11], using the cut-set bounds it is shown that all the achievable DE -rate vectors
necessarily belong to the following rate-region

R , {R : R(S) ≥ H(XS |XSc), ∀S ⊂ M} , (3.3)

where XS , {Xi | i ∈ S} and R(S) =
∑

i∈S Ri. Also, using a random coding argument, it
can be shown that any rate vector that belongs to R can be achieved [11]. In [35] and [36]
the authors provide explicit structured codes based on syndrome decoding that achieve the
rate region for a Slepian-Wolf distributed source coding problem. This approach was further
extended in [40] to a multiterminal setting. Achievable schemes proposed in [35], [36] and
[40] require coding over large block sizes, and asymptotically converge to the optimum.

Each user wants to learn the realization of the joint process Xn
M while minimizing the

communication cost
∑m

i=1 ϕi(Ri), where ϕi, i ∈ M, is a nondecreasing differentiable convex
function. In this chapter, we propose a polynomial time algorithm that finds an optimal DE -
rate vector w.r.t. the cost. This can be formally stated as the following convex optimization
problem

min
R

m
∑

i=1

ϕi(Ri), (3.4)

s.t. R(S) ≥ H(XS |XSc), ∀S ⊂ M.

3.2 Combinatorial Algorithm

In this section we propose an efficient combinatorial algorithm that solves optimization
problem (3.4). Most of the techniques developed in Chapter 2 will be useful here. Like in
Section 2.2, we can rewrite the optimization problem 3.4 as follows

min
β∈R+

h(β), (3.5)

where

h(β) , min
R∈Rm

m
∑

i=1

ϕi(Ri), (3.6)

s.t. R(M) = β, R(S) ≥ H(XS |XSc), ∀S ⊂ M,
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where Sc , M\ S. From Theorem 4, it follows that h is a convex function. It is clear that
the rate region provided in (3.6) constitutes a base polyhedron of a set function

yβ(S) =

{

H(XS |XSc) if S ⊂ M,

β if S = M.
(3.7)

Then, by Definition 3, the dual set function fβ has the following form

fβ(S) =

{

β −H(XSc|XS) if ∅ 6= S ⊆ M,

0 if S = ∅.
(3.8)

From Lemma 1, it follows that as long as β is a feasible sum-rate w.r.t. problem (3.6),
i.e., B(yβ,≥) 6= ∅, it holds that B(yβ,≥) = B(fβ,≤). Moreover, using the same proof
as in Lemma 2, we can easily show that fβ is an intersecting submodular function. From
Theorem 2 it follows that there exists a fully submodular function gβ, such that P (fβ,≤) =
P (gβ,≤), and it can be expressed as

gβ(S) = min
P

{

∑

V∈P

fβ(V) : P is a partition of S

}

. (3.9)

Let us denote by P∗
β to be an optimal partitioning w.r.t. optimization (3.9) when S = M.

Remark 15. Since P (fβ,≤) = P (gβ,≤), it follows that B(gβ,≤) = B(fβ ,≤) whenever
gβ(M) = fβ(M) = β. In other words, as long as P∗

β = {{M}}, we have that β is feasible
sum-rate w.r.t. problem (3.6).

3.2.1 Optimal Partitioning w.r.t. Dilworth Truncation

In this Section we briefly explain how to obtain an optimal partition P∗
β w.r.t. (3.9) by using

Algorithm 3. From Remark 3, it follows that an optimal rate vector R∗ obtained by applying
Algorithm 3 satisfies:

m
∑

i=1

R∗
i = gβ(M) =

∑

V∈P∗
β

fβ(V). (3.10)

Let us denote by Si, i = 1, 2, . . . , m, the minimizer set of the problem (2.59) in iteration i
of Algorithm 3. By the “greediness” of Edmonds’ algorithm, and the equivalence of Algo-
rithms 1 and 3, it follows that

R∗(Si) = fβ(Si). (3.11)
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Lemma 11. For any two iterations i, j of Algorithm 3, if Si ∩ Sj 6= ∅, then

R∗(Si ∪ Sj) = fβ(Si ∪ Sj). (3.12)

The proof of Lemma 11 directly follows from Lemma 3, since whenever Si ∩ Sj 6= ∅,
intersecting submodular function fβ “behaves” as a fully submodular.

By making unions of the overlapping sets S1, . . . ,Sm we end up with the disjoint collection
of sets V1, . . . ,Vl, i.e., Vi ∩ Vj = ∅, ∀i 6= j ∈ {1, . . . , l}. From Lemma 11, it follows that

R∗(Vi) = fβ(Vi), ∀i ∈ {1, . . . , l}. (3.13)

From 3.13 and the fact that Edmonds’ algorithm provides a rate vector that belongs to the
basis polyhedron B(gβ,≤), it follows that

l
∑

i=1

R∗(Vi) = R∗(M) = gβ(M). (3.14)

By comparing (3.14) with (3.9), we obtain that P∗
β = {V1, . . . ,Vl} is an optimal partitioning

of set M w.r.t. (3.9).
Therefore, in order to construct an optimal partitioning of set M w.r.t. (3.9), we only

need to keep track of the minimizing sets in Algorithm 3, and whenever they intersect to
unionize them (see Algorithm 11).

Algorithm 11 Optimal Partitioning Algorithm

1: Let j(1), j(2), . . . , j(m) be any ordering of 1, 2, . . . , m.
2: Initialize P0 = ∅, R∗ = 0.
3: for i = 1 to m do

4: Let Si be the minimizer of

R∗
j(i) = min{fβ(S ∪ {i})− R∗(S) : S ⊆ {j(1), . . . , j(i− 1)}}.

5: Ti = Si ∪ [∪{V : V ∈ P i−1, Si ∩ V 6= ∅}]
6: P i = {Ti} ∪ {V : V ∈ P i−1, Si ∩ V = ∅}
7: end for

8: P∗
β = Pm.

Remark 16. Algorithm 11 compared to Algorithm 3, has an additional step that in itera-
tion i checks whether set Si intersects with any of the current partition sets. The complexity
of this step is O(m), which implies that the complexity of Algorithm 11 is O(m2 ·SFM(m)).
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Example 8. Let us consider a DMMS version of Example 3, where each user observes n
memoryless observations of the joint process

X1 =
[

W1 W2

]T
,

X2 =
[

W2 W4 W5 W6

]T
,

X3 =
[

W3 W4 W5 W6

]T
, (3.15)

where Wi ∼ Unif{0, 1, . . . , q − 1}, i = 1, 2, . . . , 6. Let the sum-rate β = 4 log q, where log q
factor is because H(Wi) = log q, i = 1, 2, . . . , 6. Then, the intersecting submodular function
fβ (see (3.8)) has the following form:

fβ({1}) = 0, fβ({2}) = 2 log q, fβ({3}) = 2 log q,

fβ({1, 2}) = 3 log q, fβ({1, 3}) = 4 log q, fβ({2, 3}) = 3 log q,

fβ({1, 2, 3}) = 4 log q. (3.16)

By Applying Algorithm 11, we obtain the following rate allocation

R∗
1 = fβ({1}) = 0,

R∗
2 = min{fβ({1, 2})− R∗

1, fβ({2})} = fβ({2}) = 2 log q,

R∗
3 = min{fβ({1, 2, 3})−R∗

1 − R∗
2, fβ({1, 3})− R∗

1, fβ({2, 3})− R∗
2, fβ({3})}

= fβ({2, 3})−R∗
2 = log q.

Therefore, S1 = {1}, S2 = {2}, and S∋ = {2, 3}. Hence, P∗
β = {{1}, {2, 3}}, and from (3.10)

we obtain

3
∑

i=1

R∗
i = gβ({1, 2, 3}) = fβ({1}) + fβ({2, 3}) = 3 log q. (3.17)

3.2.2 Sum-Rate Cost

Let us first consider a simple sum-rate cost, ϕi(Ri) = Ri, i ∈ M. Note that ϕi is a
nondecreasing function. Hence, by Lemma 8, it follows that the minimizer β∗ of function h,
defined in (3.6), is at most H(XM).

To minimize the sum-rate, we set ϕi(Ri) = Ri in (2.34):

min
0≤β≤H(XM)

min
R

m
∑

i=1

Ri, s.t. R ∈ B(fβ ,≤). (3.18)

Using Remark 2, we can rewrite the above problem as follows:

min
0≤β≤N

β, s.t. β = gβ(M). (3.19)
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Note that gβ(M) can be obtained from Algorithm 11 along with the optimal partitioning
P∗

β of set M according to (3.9). Next we show how to solve the optimization problem (3.19)
with at most m calls of Algorithm 11. From (3.9) it follows that for every β, the function
gβ(M) can be represented as

gβ(M) = |P∗
β |β −

∑

S∈P∗
β

(N − rank(AS)). (3.20)

Therefore, gβ(M) is a piecewise linear function in β. Moreover, function gβ(M) is also
concave, since it is obtained by minimizing the expression (3.9) over all possible partition
sets of M. Finally, since the cardinality of the optimal partitioning P∗

β ranges from 1
to m, the function gβ(M) can have at most m linear segments. Hence, the optimization
problem (3.19) can be solved in polynomial time by applying an algorithm explained using
Example 3. From (3.19) we have that the optimal sum-rate is a breakpoint of gβ(M) between

6

5

g¯(M)[log q]

1

3
¯[log q]

¯1

L1

L2
L3

65

Figure 3.1: Minimal sum-rate can be obtained by intersecting linear segments. First, we intersect the line L1 which corresponds
to β = 0, with the 45-degree line L2. The intersecting point β1 belongs to the linear segment with slope greater than 1. Then,
intersecting the segment L3 to which β1 belongs to with the 45-degree line L2, we obtain β2 = 5. Since the linear segment at
β2 has slope 1, we conclude that 5 log q is the minimum sum-rate.

the linear segment with slope 1 and the consecutive linear segment with the larger slope.
For every β one can obtain a value of gβ(M) and the corresponding optimal partition P∗

β

w.r.t. (3.9) by applying Algorithm 11.
We start our algorithm by intersecting the line L1 which belongs to the linear segment

when β = 0 and the 45-degree line L2 which corresponds to the last (rightmost) linear
segment. The slope of the line L1 as well as its value can be obtained in polynomial time by
applying Algorithm 11 for β = 0. Since the function gβ(M) is piecewise linear and concave,
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the point of intersection β1 must belong to the linear segment with slope smaller than |P∗
0 |,

i.e., |P∗
β1
| < |P∗

0 |. β1 can be obtained by equating β with
∑

S∈P∗
0
β −H(XSc|XS). Hence,

β1 =

∑

S∈P∗
0
H(XSc|XS)

|P∗
0 | − 1

= 4 log q. (3.21)

Next, by applying Algorithm 11 for β = β1, we get (gβ1(M),P∗
β1
). Since |P∗

β1
| > 1 (see

Figure 3.1), we have not reached the breakpoint of interest yet, because the minimum sum-
rate belongs to the linear segment of slope 1. Thus, we proceed by intersecting the line L3

which belongs to the linear segment when β = β1 with the the 45-degree line L2. Like in the
previous case, we obtain

β2 =

∑

S∈P∗
β1

H(XSc|XS)

|P∗
β1
| − 1

= 5 log q. (3.22)

Since |P∗
β2
| = 1, we have reached the breakpoint of interest, and thus R∗(M) = 5 log q. From

Algorithm 11 we also obtain an optimal DE -rate vector R∗
1 = log q, R∗

2 = log q, and R∗
3 =

3 log q. For an arbitrary gβ(M), an optimal DE -rate vector w.r.t. the optimization (3.18)
can be computed as shown in Algorithm 12.

Algorithm 12 Achieving the optimal sum-rate

1: Initialize β = 0.
2: while |P∗

β | > 1 do

3:

β =

∑

S∈P∗
β
H(XSc|XS)

|P∗
β| − 1

, (3.23)

where P∗
β , and thus R∗, are obtained from Algorithm 11.

4: end while

5: β is the minimum sum-rate.

It is not hard to see that Algorithm 12 executes at most m iterations, since with each
iteration the intersection point moves right to some other linear segment until it hits the
optimal β (see Figure 3.1). Therefore, Algorithm 12 calls Algorithm 11 at most m times.

Remark 17. The complexity of Algorithm 12 is O(m3 · SFM(m)).

It turns out that the sum-rate cost is the only objective for which we can obtain the exact
solution to problem (3.5), when the underlying source model is DMMS. For other costs, we
can only claim approximate solutions, that are guaranteed to be within some small distance
from the actual solution (see Section 3.2.3).



CHAPTER 3. DATA EXCHANGE PROBLEM - GENERAL CORRELATIONS 66

Regarding the linear packet model we explored in Chapter 2, we assumed that the packets
are indivisible, i.e., we were not allowed to split packets into smaller chunks. If we consider
the sum-rate cost, we can now answer the question: what is the optimal packet split in order
to achieve information-theoretic optimal solution.

From (3.23), we have that the minimum sum-rate can be written as

β∗ =

∑

S∈P∗
β∗
H(XSc|XS)

|P∗
β∗| − 1

. (3.24)

Therefore, the optimal sum-rate can be achieved by splitting packets into |P∗
β∗| − 1 equally

sized chunks, where P∗
β∗ is a partition of the largest cardinality at break-point β∗. This is

illustrated in the following example.

Example 9. Consider the example where three users observe the following parts of the file
w =

[

w1 w2 w3

]

:

x1 =
[

w1 w2

]

,

x2 =
[

w1 w3

]

,

x3 =
[

w2 w3

]

,

where wi ∈ F2n , i = 1, 2, 3, and n is an even number. It can be verified that by applying
Algorithm 12 we obtain the optimal sum rate

R∗
1 +R∗

2 +R∗
3 =

3

2
,

where R∗
1 = R∗

2 = R∗
3 =

1
2
. Hence, if we are allowed to split the packets into two equal parts

of length n
2
bits, then the total communication would require 3n

2
bits. However, if we were

not allowed to that, then by Algorithm 4, the total communication would require 2n bits.
In such a case, the optimal rate allocation is R∗

1 = R∗
1 = 1, R∗

3 = 0.

3.2.3 Minimizing Convex Function h(β)

When ϕ(Ri) = αiRi, αi > 0, i ∈ M, Algorithm 3 can be directly applied to the problem (3.6)
in order to obtain h(β), for any β. Additionally, we can also have capacity constraints on each
user. It should be noted that all the results from Section 2.7 are applicable to the DMMS
source model as well, and therefore, the capacity constraint problem won’t be examined here.

Since h(β) can be evaluated for any given β in polynomial time, what is left to do is
to minimize convex function h. This can be done y applying a simple gradient descent
method [3], which can reach the minimum of h within some precision ε. In other words, if
we denote by β∗

gd the minimizer of problem (3.5) obtained by applying a gradient descent
method, we have

|h(β∗
gd)− h(β∗)| ≤ ε, (3.25)
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where β∗ is the minimizer of (3.5).
We can achieve the same performance by discretizing β with some step ǫ, i.e.,

β̂[n] = nǫ, n = 0, 1, . . . ,

⌈

H(XM)

ǫ

⌉

. (3.26)

Note that by Lemma 8 we only need to consider β ≤ H(XM). Then, in order to minimize
function h we can apply an algorithm similar to Algorithm 5. Before that, we need to figure
out what is the minimum sum-rate, in order to obtain the set of feasible sum-rates β w.r.t.
the problem (3.5). This can be done by applying Algorithm 11. However, since we are
not interested in the exact solution to the problem (3.5), it is not necessary to compute
the minimum sum-rate exactly; an approximate solution based on Algorithm 4 is shown in
Algorithm 13.

Algorithm 13 An approximate solution to the minimum sum-rate problem

1: Initialize start = 0, end =
⌈

H(XM)
ǫ

⌉

.

2: while β̂[end]− β̂[start] > ε do

3: index = ⌈start+end
2

⌉.

4: Execute Algorithm 3 with parameter β̂[index].

5: if
∑m

i=1R
∗
i = β̂[index], then

6: end = index.

7: else start = index.
8: end while

9: β̂[end] is the minimum sum-rate.

Remark 18. The complexity of Algorithm 13 is O(m · SFM(m) · log H(XM)
ǫ

).

Finally, in order to solve problem (3.5) approximately, we can apply Algorithm 14.

Remark 19. The complexity of Algorithm 14 is O(m · SFM(m) · log H(XM)
ǫ

).

Let us denote by β̂∗ the sum-rate β that corresponds to the solution obtained by applying
Algorithm 14. Then,

|β̂∗ − β∗| ≤ ǫ, (3.27)

where β∗ is the actual minimum of function h. If we want to obtain a solution that is within
some ε distance from the optimal solution h(β∗), i.e.,

|h(β̂∗)− h(β∗)| ≤ ε, (3.28)
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Algorithm 14 Minimization of function h

1: Initialize start = index∗, end =
⌈

H(XM)
ǫ

⌉

, where β̂[index∗] is an approximate minimum

sum-rate obtained from Algorithm 13.

2: index = ⌈start+end
2

⌉.

3: Compute h(β̂[index− 1]), h(β̂[index]), and h(β̂[index+ 1]).

4: if h(β̂[index]) ≤ h(β̂[index− 1]) and h(β̂[index]) ≤ h(β̂[index+ 1]), then

5: R∗ that corresponds to the sum-rate β̂[index] is an optimal rate allocation

6: else if h(β̂[index− 1]) ≥ h(β̂[index]) ≥ h(β̂[index+ 1]), then

7: start = index+ 1.

8: else if h(β̂[index− 1]) ≤ h(β̂[index]) ≤ h(β̂[index+ 1]), then

9: end = index− 1.

10: Go to Step 2.

then, we only need to relate parameters ǫ and ε. It is easy to see that the condition (3.28)
is satisfied when

ǫ · max
0≤β≤H(XM)

dh(β)

dβ
= ε. (3.29)

3.3 Non-Combinatorial Algorithm

In this section we explore the linear cost data exchange problem under the DMMS source
model. The approach we take here is somewhat different from the combinatorial approach
studied so far in this thesis. As we have already pointed out in Section 3.2.3, we can only
reach an approximate solution to the problem (3.5) that is within some ε distance from the
optimal solution. The question we ask here is: if we are not obtaining the exact solution to
the problem, are there any other techniques, possibly less complex, that can reach the same
“approximate” solution. It turns out that under the linear cost, it is possible to devise an
algorithm of polynomial complexity based on convex optimization techniques. Therefore, we
consider the following optimization problem:

min
R∈Rm

m
∑

i=1

αiRi, (3.30)

s.t. R(S) ≥ H(XS |XSc), ∀S ⊂ M,

where αi ≥ 0, ∀i ∈ M.
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3.3.1 One User Data Exchange Problem

Lets for the moment depart from the original problem, and consider the case where there
is only one user interested in gaining access to the joint process, while the other users are
helping this user in gaining such knowledge. More precisely, say that only user k is interested
in learning the joint process. Then, this problem is known as a multi-terminal Slepian-Wolf
problem [10] for which the achievable rate region has the following form:

Rk =
{

R ∈ Rm−1 : R(S) ≥ H(XS |XSc, Xk), ∀S ⊆ Mk

}

, (3.31)

where Mk , M\ {k}, and Sc , Mk \ S. Hence, the underlying optimization problem has
the following form

min
R

∑

i∈Mk

αiRi, s.t. R ∈ Rk. (3.32)

Let us define a set function y(k) : 2Mk → R as follows

y(k)(S) = H(XS |XSc , Xk), ∀S ⊆ Mk. (3.33)

Then, the dual set function f (k) can be derived from Definition 3:

f (k)(S) = H(XMk
|Xk)−H(XSc|XS , Xk)

= H(XMk
|Xk)−H(XMk

|X1) +H(XS |Xk) = H(XS |Xk). (3.34)

Due to the submodularity of entropy function, it immediately follows that function f (k)

is fully submodular. Since the optimal solution of the problem (3.32) belongs to the base
polyhedron B(y(k),≥), it immediately follows that optimization problem (3.32) can be equiv-
alently represented as

min
R

∑

i∈Mk

αiRi, s.t. R ∈ B(f (k),≤). (3.35)

Therefore, problem (3.32) can be solved analytically by using Edmonds’ algorithm (see Al-
gorithm 15)

Remark 20. The complexity of Algorithm 15 is O(m logm+mγ), where γ is the complexity
of computing entropy function.

3.3.2 Multiple User Data Exchange Problem

Going back to the original data exchange problem, in this section we take a convex opti-
mization approach to solve the problem (3.30), where we use the single user solution as a
key building block.
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Algorithm 15 Edmonds’ algorithm applied to problem (3.32)

1: Set j(1), j(2), . . . , j(m− 1) to be an ordering of the elements in Mk such that

αj(1) ≤ αj(2) ≤ · · · ≤ αj(m−1).

2: for i = 1 to m− 1 do

3:
Rj(i) = f (k)({j(1), j(2), . . . , j(i)})− f (k)({j(1), j(2), . . . , j(i− 1)})

= H(Xj(i)|Xk, Xj(1), Xj(2), . . . , Xj(i−1)).

4: end for

First, we observe that an achievable DE -rate vector R has to simultaneously belong to
the rate regions Rk of each individual user k ∈ M. Thus, the rate region R defined in (3.3)
can be equivalently represented as

R = R1 ∩R2 ∩ · · · ∩ Rm. (3.36)

It is not hard to see that the following rate region is equivalent to (3.36)

R = {R ∈ Rm : Ri ≥ R
(k)
i , ∀i ∈ Mk, s.t. R(k) ∈ Rk, ∀k ∈ M}. (3.37)

Therefore, the optimal DE -rate vector R∗ w.r.t. problem (3.30) can be obtained as follows

min
R,R(1),...R(m)

m
∑

i=1

αiRi, (3.38)

s.t. Ri ≥ R
(k)
i , ∀i, k ∈ M, i 6= k,

R(k) ∈ Rk, ∀k ∈ M.

Optimization problem (3.38) has an exponential number of constraints, which makes it
challenging to solve in polynomial time. To efficiently solve problem (3.38) we consider
the Lagrangian dual of this problem. Now, we will go over the most important steps in
constructing the dual optimization problem.

The Lagrangian associated with problem (3.38) has the following form.

L(R,R(1), . . . ,R(m),Λ) =

m
∑

i=1

αiRi +

m
∑

k=1

∑

i∈Mk

λi,k(R
(k)
i −Ri), (3.39)

where Λ , {λi,k | i, k ∈ M, i 6= k}. Then, the Lagrange dual function δ(Λ) equals to

δ(Λ) = min
R,R(1),...,R(m)

L(R,R(1), . . . ,R(m),Λ), (3.40)

s.t. R(k) ∈ Rk, ∀k ∈ M.
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Let us denote by p∗ the optimal value of the primal problem (3.38). Then, it can easily be
shown that

δ(Λ) ≤ p∗, ∀λi,k ≥ 0, i, k ∈ M, i 6= k. (3.41)

Hence,

max
Λ

{δ(Λ) | λi,k ≥ 0, i, k ∈ M, i 6= k} ≤ p∗. (3.42)

Since optimization problem (3.38) is linear, it holds that

p∗ = max
Λ

{δ(Λ) | λi,k ≥ 0, i, k ∈ M, i 6= k}. (3.43)

In other words, we have

p∗ = max
Λ

{

min
R,R(1)∈R1,...,R(m)∈Rm

{

m
∑

i=1

αiRi +

m
∑

k=1

∑

i∈Mk

λi,k(R
(k)
i − Ri)

}}

= max
Λ

{

min
R,R(1)∈R1,...,R(m)∈Rm

{

m
∑

i=1

Ri(αi −
m
∑

k=1,k 6=i

λi,k) +

m
∑

k=1

∑

i∈Mk

λi,kR
(k)
i

}}

. (3.44)

Term

min
R,R(1)∈R1,...,R(m)∈Rm

m
∑

i=1

Ri(αi −
m
∑

k=1,k 6=i

λi,k)

in (3.44) goes to −∞ except when
∑m

k=1,k 6=i λi,k = αi, ∀i ∈ Mk, in which case it equals to 0.
Therefore,

p∗ = max
Λ

m
∑

k=1

{

min
R(k)∈Rk

∑

i∈Mk

λi,kR
(k)
i

}

, (3.45)

s.t.
m
∑

k=1,k 6=i

λi,k = αi, λi,k ≥ 0, ∀i, k ∈ M, i 6= k.

Note that the inner minimization problem in (3.45)

min
R(k)∈Rk

∑

i∈Mk

λi,kR
(k)
i (3.46)

can be solved analytically using Algorithm 15 for any k ∈ M. Optimization problem (3.45)
is a linear program (LP) with O(m2) constraints, and it can be solved in polynomial time
(w.r.t. the number of users). Here, we apply the dual subgradient method described below.
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Starting with a feasible iterate λi,k[0], k ∈ M, i ∈ Mk, w.r.t. the optimization prob-
lem (3.45), and the step size θ, every subsequent iterate λi,k[j + 1] can be recursively repre-
sented as an Euclidian projection of the vector

{

λi,k[j] + θR̃
(k)
i [j] : i, k ∈ M, i 6= k

}

(3.47)

onto the hyperplane

P =

{

Λ |
m
∑

k=1,k 6=i

λi,k = αi, λi,k ≥ 0, ∀i, k ∈ M, i 6= k

}

, (3.48)

where R̃(k)[j] is the optimal rate vector w.r.t the problem

min
R(k)∈Rk

∑

i∈Mk

λi,k[j]R
(k)
i . (3.49)

Observe that
{

R̃
(k)
i [j] : i, k ∈ M, i 6= k

}

is the derivative w.r.t. Λ[j] of the Lagrange dual function δ(Λ[j]). Therefore with each
iteration of the proposed method, we are taking small steps in the direction of the gradient
towards the optimal solution. The Euclidian projection ensures that every iterate λi,k[j] is
feasible w.r.t. the optimization problem (3.45). It is not hard to verify that the following
initial choice of λi,k[0] is feasible.

λi,k[0] =
αi

m− 1
, ∀i, k ∈ M, i 6= k. (3.50)

Now we briefly explain how to compute Euclidian projection in an efficient way. The
complete analysis of this method can be found in [27]. The Euclidian projection can be
formulated as the following optimization problem

min
Λ∈P

m
∑

i=1

m
∑

k=1,k 6=i

(

λi,k −
(

λi,k[j] + θR̃
(k)
i [j]

))2

. (3.51)

Therefore, the dual update defined in (3.47) can be written as follows:

{λi,k[j + 1] : i, k ∈ M, i 6= k} = argmin
Λ∈P

m
∑

i=1

m
∑

k=1,k 6=i

(

λi,k −
(

λi,k[j] + θR̃
(k)
i [j]

))2

. (3.52)

Algorithm 16 summarizes the Euclidian projection method proposed in [27].
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Algorithm 16 Euclidian projection

1: Let us define by ui,k the elements of the update vector (3.47)

ui,k = λi,k[j] + θR̃
(k)
i [j], ∀i, k ∈ M, i 6= k. (3.53)

2: for i = 1 to m do

3: Sort the elements ui,k, k ∈ M \ {i}, in the descending order

ui,k1 ≥ ui,k2 ≥ · · · ≥ ui,km−1.

4: Set t̂ be the smallest t such that

1

t

(

αi −
t
∑

r=1

ui,kr

)

≤ −ui,kt+1,

or set t̂ = m− 1 if no such t exists.
5: Set

λi,k[j + 1] =

{

ui,k +
αi−

∑t̂
r=1 ui,kr

t̂
, if k ∈ {k1, k2, . . . , kt̂}

0, otherwise.

6: end for

Remark 21. In Step 1 of Algorithm 16 we call Algorithm 15 m times. Thus, the com-
plexity of this step is O(m2 logm+m2γ). In the for loop, the most complex step is sorting
the elements of ui,k which can be done in O(m logm) time. Therefore, the complexity of
Algorithm 16 is O(m2 logm+m2γ).

The dual subgradient method can provide near optimal dual solution for a sufficiently
small step size θ, and possibly, large number of iteration. However, such method does not
directly provide a primal optimal solution. In [38] and [32], the authors proved that averaging
over all iterations of the dual subgradient algorithm can provide near optimal primal solution.
For instance,

R̂
(k)
i [l] =

1

l

l−1
∑

j=0

R̃
(k)
i [j], ∀i, k ∈ M, i 6= k (3.54)

is a near optimal collection of vectors R(k), k ∈ M, w.r.t. problem (3.38) after l iterations of
the dual subgradient method. Then, a near optimal DE -rate vector R̂ w.r.t. problem (3.38)
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can be obtained as follows

R̂i[l] = max
k∈M\{i}

R̂
(k)
i [l], ∀i ∈ M. (3.55)

3.3.3 Convergence Analysis of the Averaging Method

In this section we establish the relationship between the number of iterations l and the step
size θ in the dual subgradient method such that the solution obtained by averaging is within
ε distance from the primal optimal solution, i.e.,

∣

∣

∣

∣

∣

m
∑

i=1

αiR̂i[l]− p∗

∣

∣

∣

∣

∣

≤ ε. (3.56)

Theorem 9. For any choice of precision parameter ε, step size θ and number of iterations
l that satisfy condition (3.56) can be selected as follows.

θ =
ε

maxi∈M α2
i +m (H(XM))2

, (3.57)

l =
1

θ2
. (3.58)

Proof. First, note that all rate vectors R̃(k)[j], k ∈ M, j = 0, 1, 2, . . ., are feasible w.r.t
the primal problem (3.38). Hence, their linear combination (3.54) is also feasible. Finally,
according to (3.38), the maximization over k in (3.55) provides a feasible DE -rate vector
w.r.t. problem (3.38). Therefore, it immediately follows that

m
∑

i=1

αiR̂i[l] ≥ p∗. (3.59)

In order to obtain relationship between l and ε in (3.56), we can apply results from [32],
where the main condition that needs to be satisfied is that the domain set of the primal
problem (3.38) is compact. We haven’t explicitly mentioned that in the formulation of
problem (3.38), but all the rate vectors R, R(k), ∀k ∈ M can be trivially bounded. Note

that by enforcing 0 ≤ Ri ≤ H(XM), ∀i ∈ M, and 0 ≤ R
(k)
i ≤ H(XM), ∀i, k ∈ M, i 6= k, we

do not change the optimal solution of problem (3.38). Now, from [32] to obtain the following
bound.

m
∑

i=1

αiR̂i[l] ≤ p∗ +
1

2lθ

m
∑

i=1

m
∑

k=1,k 6=i

(λi,k[0])
2 +

θ

2

l−1
∑

j=0

m
∑

i=1

m
∑

k=1,k 6=i

(

R̃
(k)
i [j]

)2

. (3.60)
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To further bound (3.60) we bound each term individually as follows. From (3.50), the
following inequality holds.

m
∑

i=1

m
∑

k=1,k 6=i

(λi,k[0])
2 =

m
∑

i=1

m
∑

k=1,k 6=i

(

αi

m− 1

)2

≤ 2max
i∈M

αi. (3.61)

Since

m
∑

i=1

R̃
(k)
i [j] ≤ H(XM), ∀k ∈ M, k 6= i, j = 0, 1, 2, . . . (3.62)

it follows that

m
∑

i=1

(

R̃
(k)
i [j]

)2

≤ (H(XM))2 , ∀k ∈ M, k 6= i, j = 0, 1, 2, . . . (3.63)

Therefore,

l−1
∑

j=0

m
∑

i=1

m
∑

k=1,k 6=i

(

R̃
(k)
i [j]

)2

≤ lm (H(XM))2 . (3.64)

From (3.59), (3.60), (3.61) and (3.64) it follows that

p∗ ≤
m
∑

i=1

αiR̂i[l] ≤ p∗ +
maxi∈M α2

i

lθ
+
m (H(XM))2 θ

2
. (3.65)

Therefore,

∣

∣

∣

∣

∣

m
∑

i=1

αiR̂i[l]− p∗

∣

∣

∣

∣

∣

≤
maxi∈M α2

i

lθ
+m (H(XM))2 θ. (3.66)

By comparing (3.56) with (3.66), it follows that if we choose

ε =
maxi∈M α2

i

lθ
+m (H(XM))2 θ, (3.67)

the condition (3.56) is satisfied. Now, let l = 1
θ2
. Then, (3.67) becomes

ε = θ

(

max
i∈M

α2
i +m (H(XM))2

)

. (3.68)
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Remark 22. The choice of parameters θ and l in Theorem 9 guarantees that the condi-
tion (3.56) is satisfied. One can easily come up with the different solution with fewer number
of iterations.

Putting together all the results so far, minimum linear cost data exchange problem can
be solved in polynomial time by applying Algorithm 17.

Remark 23. The complexity of Algorithm 17 is O((m4 logm+m4γ) ·
⌈

1
ε2

⌉

).

Example 10. Let us consider a DMMS version of Example 9, where three users observe n
memoryless observations of the joint process W =

[

W1 W2 W3

]

:

X1 =
[

W1 W2

]

,

X2 =
[

W1 W3

]

,

X3 =
[

W2 W3

]

,

where Wi ∼ Unif{0, 1, . . . , q − 1}, i = 1, 2, 3. The goal is to minimize the sum-rate R1 +
R2 +R3. For the precision parameter ε = 0.01, from Theorem 9 it follows that θ = 0.00036,
and l = 7.84 · 106. We note that the guaranteed number of iterations required is very large,
but nevertheless it shows that the goal can be achieved in finite number of steps. Empirical
results on the number of iterations required are much more promising. After 100 iterations
of Algorithm 17, we obtain R̂1[100] = 0.51, R̂2[100] = 0.5, R̂3[100] = 0.5, and obviously
satisfied condition

∣

∣

∣

∣

∣

3
∑

i=1

R̂i[100]−
3
∑

i=1

R∗
i

∣

∣

∣

∣

∣

≤ ε, (3.69)

where R∗
1 = R∗

2 = R∗
3 = 0.5 according to Example 9.

Example 11. Consider the same DMMS source model as in Example 8,

X1 =
[

W1 W2

]T
,

X2 =
[

W2 W4 W5 W6

]T
,

X3 =
[

W3 W4 W5 W6

]T
, (3.70)

where Wi ∼ Unif{0, 1, . . . , q− 1}, i = 1, 2, . . . , 6. The goal is to minimize the sum-rate R1 +
R2+R3. We use the same precision parameter ε = 0.01 as in Example 10. From Figure 3.3(a)
we note that the optimal sum-rate cost is reached after first iteration of Algorithm 17, with
optimal DE -rate vector R̂1[0] = 1, R̂2[0] = 3, R̂3[0] = 1. After 100 iterations, Algorithm 17
converged to another optimal DE -rate vector R̂1[100] = 1.01, R̂2[100] = 1.98, R̂3[100] = 2.02.
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Figure 3.2: Algorithm 17 applied to Example 10, for the precision parameter ε = 0.01. After 100 iterations of Algorithm 17,
the solution obtained is R̂1[100] = 0.51, R̂2[100] = 0.5, R̂3[100] = 0.5, and it satisfies condition (3.69).
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Figure 3.3: Algorithm 17 applied to Example 11, for the precision parameter ε = 0.01. After 100 iterations of Algorithm 17,
the solution obtained is R̂1[100] = 1.01, R̂2[100] = 1.98, R̂3[100] = 2.02.
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Figure 3.4: Algorithm 17 applied to Example 12, for the precision parameter ε = 0.01. After 100 iterations of Algorithm 17,
the solution obtained is R̂1[100] = 2.01, R̂2[100] = 1, R̂3[100] = 1.

Example 12. Consider the following three user example,

X1 =
[

W3 W4 W5 W6

]T
,

X2 =
[

W1 W2 W3

]T
,

X3 =
[

W1 W2 W4

]T
, (3.71)
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where Wi ∼ Unif{0, 1, . . . , q − 1}, i = 1, 2, . . . , 6. The goal is to minimize the sum-rate
R1+R2+R3. For the parameter ε = 0.01 we again have that 100 iterations of Algorithm 17
are enough to achieve the goal, i.e., R̂1[100] = 2.01, R̂2[100] = 1, R̂3[100] = 1 (see Figure 3.4).
It can be verified that the optimal DE -rate vector is R∗

1 = 2, R∗
2 = 1, R∗

3 = 1.



CHAPTER 3. DATA EXCHANGE PROBLEM - GENERAL CORRELATIONS 80

Algorithm 17 Minimizing linear cost

1: For a precision ε, set parameters θ and l according to Theorem 9.
2: Set

λi,k =
αi

m− 1
, ∀i, k ∈ M, i 6= k.

3: for j = 0 to l − 1 do

4: Using Algorithm 15, compute R̃
(k)
i [j], ∀i, k ∈ M, i 6= k, the minimizer of

min
R(k)

∑

i∈Mk

λi,k[j]R
(k)
i , ∀k ∈ M.

5: Using Algorithm 16 compute

{λi,k[j + 1] : i, k ∈ M, i 6= k} = argmin
Λ∈P

m
∑

i=1

m
∑

k=1,k 6=i

(

λi,k −
(

λi,k[j] + θR̃
(k)
i [j]

))2

,

where

P =

{

Λ |
m
∑

k=1,k 6=i

λi,k = αi, λi,k ≥ 0, ∀i, k ∈ M, i 6= k

}

.

6: A near optimal DE -rate vector R̂ can be obtained via averaging method

R̂i[l] = max
k∈M\{i}

1

l

l−1
∑

j=0

R̃
(k)
i [j], ∀i ∈ M.

7: end for
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Chapter 4

Data Exchange Problem - Extensions

In this chapter we present two modified versions of the original data exchange problem.
First, we consider the problem with helpers, where some group of users is not interested
in gaining access to the file or joint process, but they are willing to help other users in
achieving their goal. Second, we consider a multisource multicast problem, where nodes
in the system are communicating among themselves through wires. The communication
network is represented by an acyclic graph, with possibly capacity constrained links.

4.1 Data Exchange Problem with Helpers

We consider a setup with m users out of which some subset of them is interested in gaining
access to a file or a random process. Let X1, X2, . . . , Xm, m ≥ 2, denote the components of a
discrete memoryless multiple source (DMMS) with a given joint probability mass function.
Each user i ∈ M , {1, 2, . . . , m} observes n i.i.d. realizations of the corresponding random
variable Xi.

Let A = {1, 2, . . . , t} ⊆ M be the subset of users interested in gaining access to the file,
i.e., learning the joint process XM , (X1, . . . , Xm). The remaining users {t + 1, . . . , m}
serve as helpers, i.e., they are not interested in recovering the file, but they are willing to
help users in the set A to obtain it. In [11], Csiszár and Narayan showed that to deliver the
file to all users in a setup with general DMMS, interactive communication is not needed. As
a result, in the sequel WLOG we can assume that the transmission of each user is only a
function of its own initial observations. Let Fi , fi(X

n
i ) represent the transmission of the

user i ∈ M, where fi(·) is any desired mapping of the observations Xn
i . For each user in A

in order to recover the entire file, transmissions Fi, i ∈ M, should satisfy,

lim
n→∞

1

n
H(Xn

M|F, Xn
l ) = 0, ∀l ∈ A, (4.1)

where F , (F1, F2, . . . , Fm).
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Definition 11. A rate vectorR = (R1, R2, . . . , Rm) is an achievable rate vector if there exists
a communication scheme with transmitted messages F = (F1, F2, . . . , Fm) that satisfies (4.1),
and is such that

Ri = lim
n→∞

1

n
H(Fi), ∀i ∈ M. (4.2)

It is easy to show using cut-set bounds that all the achievable rate vectors necessarily
belong to the following region

R , {R ∈ Rm : R(S) ≥ H(XS |XSc), ∀S ⊂ M, A 6⊆ S} , (4.3)

where R(S) ,
∑

i∈S Ri. Also, using a random binning argument, it can be shown that the
rate region R is an achievable rate region [11].

In this section, we aim to design a polynomial complexity algorithm that delivers the
file to all users in A while simultaneously minimizing a linear communication cost function
∑m

i=1 αiRi, where αi ≥ 0, ∀αi ∈ M. For the general DMMS source model, the question
of how many bits each user should transmit in an optimal scheme reduces to the following
optimization problem.

min
R∈Rm

m
∑

i=1

αiRi, (4.4)

s.t. R(S) ≥ H(XS |XSc), ∀S ⊂ M, A 6⊆ S.

After solving the above optimization problem, the explicit communication scheme can be
designed using methods proposed in [35], [36], [40].

For the linear packet model defined in Section 2.1, the cut-set region R̂ has the following
form

R̂ ,
{

R ∈ Qm : R(S) ≥ N − rank(AM\S), ∀S ⊂ M, A 6⊆ S
}

, (4.5)

From Theorem 1 it immediately follows that all rational vectors that belong to R̂ can be
achieved via linear network coding provided that the underlying field size is large enough,
and packet splitting is allowed. The number of symbols in Fq each user transmits in an
optimal scheme can be figured out by solving the following optimization problem

min
R

m
∑

i=1

αiRi, s.t. R ∈ R̂. (4.6)

After solving the above optimization problem, the corresponding communication scheme can
be designed using the same methods as in Section 2.5. Optimization problems (4.4) and (4.6)
are essentially the same. Methods and algorithms we use to solve these problems will be
explained on the DMMS version of this problem.
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4.1.1 Deterministic Algorithm

In order to construct an efficient algorithm that solves problem (4.4) we take similar ap-
proach as in Section 3.3. First, we observe that an achievable rate vector R ∈ R has to
simultaneously belong to the rate regions Rk, k ∈ A, of each user interested in gaining access
to the joint process, where

Rk =
{

R ∈ Rm−1 : R(S) ≥ H(XS |XSc, Xk), ∀S ⊆ Mk

}

, (4.7)

and Mk = M\{k}. Thus, the rate region R defined in (4.3) can be equivalently represented
as

R = R1 ∩ R2 ∩ · · · ∩ Rt. (4.8)

It is not hard to see that the following rate region is equivalent to (4.8)

R = {R ∈ Rm : Ri ≥ R
(k)
i , ∀i ∈ Mk, s.t. R(k) ∈ Rk, ∀k ∈ A}. (4.9)

Therefore, the optimal rate vector R∗ w.r.t. problem (4.4) can be obtained as follows

min
R,R(1),...R(m)

m
∑

i=1

αiRi, (4.10)

s.t. Ri ≥ R
(k)
i , ∀k ∈ A, ∀i ∈ Mk,

R(k) ∈ Rk, ∀k ∈ A.

As in Section 3.3, to efficiently solve problem (4.10) we consider the Lagrangian dual of this
problem.

p∗ = max
Λ

m
∑

k=1

{

min
R(k)∈Rk

∑

i∈Mk

λi,kR
(k)
i

}

, (4.11)

s.t.
m
∑

k=1,k 6=i

λi,k = αi, λi,k ≥ 0, ∀k ∈ A, ∀i ∈ Mk.

Note that the inner minimization problem in (4.11)

min
R(k)∈Rk

∑

i∈Mk

λi,kR
(k)
i (4.12)

can be solved analytically using Algorithm 15 for any k ∈ A. Optimization problem (4.11)
is a linear program (LP) with O(m2), and it can be solved in polynomial time (w.r.t. the
number of users) using the same dual subgradient method as in Section 3.3. Starting with
a feasible iterate λi,k[0], k ∈ A, i ∈ Mk, w.r.t. the optimization problem (4.11), and the
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step size θ, every subsequent iterate λi,k[j+1] can be recursively represented as an Euclidian
projection of the vector

{

λi,k[j] + θR̃
(k)
i [j] : ∀k ∈ A, ∀i ∈ Mk

}

(4.13)

onto the hyperplane

P =

{

Λ |
t
∑

k=1,k 6=i

λi,k = αi, λi,k ≥ 0, ∀k ∈ A, ∀i ∈ Mk

}

, (4.14)

where R̃(k)[j] is the optimal rate vector w.r.t the problem

min
R(k)∈Rk

∑

i∈Mk

λi,k[j]R
(k)
i . (4.15)

It is not hard to verify that the following initial choice of λi,k[0] is feasible.

λi,k[0] =

{

αi

t
if i 6∈ A

αi

t−1
if i ∈ A \ {k}

, ∀k ∈ A, ∀i ∈ Mk. (4.16)

Finally, in order to obtain a near optimal solution to problem (4.4) we take an average over
all iterations of the dual subgradient method

R̂i[l] = max
k∈A\{i}

1

l

l−1
∑

j=0

R̃
(k)
i [j], ∀i ∈ M. (4.17)

Using Theorem 9, we can relate parameters l and θ in order to satisfy the following condition
∣

∣

∣

∣

∣

m
∑

i=1

αiR̂i[l]− p∗

∣

∣

∣

∣

∣

≤ ε. (4.18)

Putting all these results together, minimum linear cost data exchange problem with helpers
can be solved in polynomial time by applying Algorithm 18.

Remark 24. The complexity of Algorithm 18 is O((m4 logm+m4γ) ·
⌈

1
ε2

⌉

).

Example 13. Consider the problem with 6 users, where each one of them observes n mem-
oryless observations of the joint process W =

[

W1 W2 W3

]

:

X1 = W1 +W2, X2 =W1 +W3, X2 = W2 +W3, X4 = W1, X5 =W2, X6 =W3,

where Wi ∼ Unif{0, 1, . . . , q − 1}, i = 1, 2, 3. Let A = {1, 2, 3}, and ε = 0.01. The goal is
to minimize the sum-rate

∑6
i=1Ri. It can be shown that the optimal rate vector w.r.t the
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Algorithm 18 Minimizing linear cost

1: For a precision ε, set parameters θ and l according to Theorem 9.
2: Set

λi,k[0] =

{

αi

t
if i 6∈ A

αi

t−1
if i ∈ A \ {k}

, ∀k ∈ A, ∀i ∈ Mk.

3: for j = 0 to l − 1 do

4: Using Algorithm 15, compute R̃
(k)
i [j], ∀k ∈ A, ∀i ∈ Mk, the minimizer of

min
R(k)

∑

i∈Mk

λi,k[j]R
(k)
i , ∀k ∈ A.

5: Using Algorithm 16 compute

{λi,k[j + 1] : k ∈ A, i ∈ Mk} = argmin
Λ∈P

m
∑

i=1

m
∑

k=1,k 6=i

(

λi,k −
(

λi,k[j] + θR̃
(k)
i [j]

))2

,

where

P =

{

Λ |
t
∑

k=1,k 6=i

λi,k = αi, λi,k ≥ 0, ∀k ∈ M, ∀i ∈ Mk

}

.

6: A near optimal rate vector R̂ can be obtained via averaging method

R̂i[l] = max
k∈A\{i}

1

l

l−1
∑

j=0

R̃
(k)
i [j], ∀i ∈ M.

7: end for

cost is R∗
1 = R∗

2 = R∗
3 = 1

4
, R∗

4 = R∗
5 = R∗

6 = 1
2
. After 300 iterations of Algorithm 18 (see

Figure 4.1), we obtain

R̂1[300] = R̂3[300] = 0.2525, R̂2[300] = 0.2492, R̂4[300] = R̂5[300] = R̂6[300] = 0.5017,

and obviously satisfied condition
∣

∣

∣

∣

∣

6
∑

i=1

R̂i[300]−
6
∑

i=1

R∗
i

∣

∣

∣

∣

∣

= 0.0091 ≤ ε. (4.19)
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Figure 4.1: Algorithm 18 applied to Example 13, for the precision parameter ε = 0.01. After 300 iterations of Algorithm 18,
the solution obtained is R̂1[300] = R̂3[300] = 0.2525, R̂2[300] = 0.2492, R̂4[300] = R̂5[300] = R̂6[300] = 0.5017, and it satisfies
condition (4.19).

4.2 Multi-source Multicast Problem

In this section we study data exchange problem with helpers under different communication
model; instead of noiseless broadcast channel, we consider a model where nodes in the system
are communicating among themselves through wires (see Figure 4.2). The communication
network is represented by an acyclic graph, with possibly capacity constrained links. This
is known as a multi-source multicast problem. There are two types of nodes in the network;
clients that are interested in recovering the whole content, and helpers that may have access
to some partial information about the file, and are willing to cooperate in order to distribute
the file to the clients. To further illustrate the problem set-up consider the following example.

A file consists of four equally sized packets w1, w2, w3, and w4 belonging to some finite
field Fq. Also, suppose that the data packets are distributed across the helper nodes, that
are connected as shown in Figure 4.2. The clients are interested in recovering the entire file.
The edges of the graph are denoted by e1, . . . , e7 as shown in Figure 4.2. The objective is to
minimize a communication cost such that the clients can recover the entire file. For instance,
it can be shown that the following coding scheme minimizes the total number of symbols
in Fq communicated: helper 1 transmits w1 on link e2, helper 2 transmits w2, w3 on link e3,
helper 3 transmits w3 on link e5, helper 4 transmits w1, w2, w4 on link e6 and w1, w2, w3, w4

on link e7.
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e3e1

e4

e6
e5

e2

e7

fw1;w2g fw2;w3g

fw3g

helper 1

client 1 client 2

helper 2

helper 3

helper 4 fw4g

Figure 4.2: An example of the multi-source multicast problem, where helper nodes observe subsets of the file packets
{w1, w2, w3, w4} as shown above. Assuming that nodes can communicate reliably over the capacity constrained links, the
goal is for the clients 1 and 2 (sinks of the graph) to gain access to the entire file while minimizing the communication cost.

4.2.1 System Model and Preliminaries

In this work we represent the network by a directed acyclic graph G = (V, E), where V is the
set of nodes, and E is the set of links that have capacity constraints. We define the capacity
function c : E → R to denote the maximum number of bits that can be transmitted over a
given link. We distinguish between two types of nodes: 1) helpers H = {1, 2, . . . , h} that
have partial information about the file or the joint process, and 2) clients T = {t1, t2, . . . , ts}
which are interested in recovering the file, and are sinks in the graph G. Let X1, X2, . . . , Xh,
denote the components of a discrete memoryless multiple source (DMMS) with a given
joint probability mass function. Each helper i ∈ H observes n i.i.d. realizations of the
corresponding random variable Xi, denoted by Xn

i . We note that the results of this section
can be applied in a straightforward manner when the clients have side information as well.
For the sake brevity, we focus on the case when clients have no side information.

The goal is for each client in T to gain access to all source nodes’ observations. In order
to achieve this goal, each helper i ∈ H is allowed to send information across the graph G
at rate which is limited by the capacity of the outgoing links of that node. Transmission of
each source node is a function of its own initial observation and all information it receives
from its neighbors. Let us denote transmission on the link e = (i, j) ∈ E by

Fe = fe (X
n
i , {Fa : ∀r, s.t. a = (r, i) ∈ E}) , (4.20)

where fe(·) is a mapping of the observations Xn
i and transmissions received from the neigh-

bors of i, {r : (r, i) ∈ E} to an outgoing message on the link e.
We denote by Mti ⊆ H the set of source nodes which are connected to the client ti ∈

T . In other words, there exists a path in graph G from every node in Mti to the client
ti ∈ T . Consequently, we define the graph Gti = (Vti , Eti) to be a subgraph of G, where
Vti = {Mti , ti}, and Eti ⊆ E is a set of links that connects all nodes in Mti among themselves
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and with client ti. For the multi-source multicast problem over graph G = (V, E) shown in
Figure 4.3, subgraphs Gt1 = (Vt1 , Et1) and Gt2 = (Vt2 , Et2) are shown in Figure 4.4.

Figure 4.3: Multi-source multicast problem with two clients. The underlying communication model is represented by acyclic
graph G = (V , E), where V = {1, 2, 3, 4, t1, t2}, and E = {e1, e2, . . . , e7}.

(a) Subgraph Gt1
= (Vt1

, Et1) (b) Subgraph Gt2
= (Vt2

, Et2)

Figure 4.4: Subgraphs Gt1 = (Vt1 , Et1 ) and Gt2 = (Vt2 , Et2) derived from the graph G = (V ,E) shown in Figure 4.3. Here,
Vt1 = {1, 2, 3, 4, t1}, Et1 = {e1, e2, . . . , e6}, Vt2 = {1, 2, 4, t2}, Et1 = {e2, e3, e7}.

Furthermore, we assume that

H
(

XMt1

)

= · · · = H
(

XMtk

)

= H (XH) , (4.21)

where XMti
,
(

Xmj
: mj ∈ Mti

)

, and XM , (Xm1 , . . . , Xml
). Equality (4.21) ensures that

every client in the network can potentially gain access to the entire process XH.
For each client ti ∈ T to learn the joint process, transmissions Fe, ∀e ∈ E , must satisfy,

lim
n→∞

1

n
H (Xn

H|{Fe : e = (j, ti) ∈ E , ∀j ∈ H}) = 0, ∀ti ∈ T . (4.22)
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Definition 12. A rate tuple R = (Re : e ∈ E) is an achievable multi-source multicast (MM)
rate vector if there exists a communication scheme with transmitted messages F = (Fe : e ∈
E) that satisfies (4.22), and

Re = lim
n→∞

1

n
H(Fe), ∀e ∈ E , (4.23)

where Re ≤ ce, ∀e ∈ E .

In this work, we design a polynomial time algorithm for the multi-source multicast prob-
lem that minimizes the linear cost function

∑

e∈E αeRe, where αe ≥ 0, ∀e ∈ E . We allow αe’s
to be arbitrary non-negative constants, to account for the case when communication across
some group of links in G is more expensive compared to the others. Thus, the problem can
be formulated as:

min
R

∑

e∈E

αeRe, s.t. R is an achievable MM -rate vector. (4.24)

4.2.2 Multi-Source Multicast Rate-Flow Region

In order to solve the optimization problem in (4.24) we first establish a region called a “rate-
flow region” that contains all possible optimal rate allocations. To identify this rate-flow
region for our example of Figure 4.2, in the case of arbitrarily correlated side-information at
the source nodes, we start by considering a single client t1.

Figure 4.5: Single client multi-source multicast problem over graph Gt1 = (Vt1 , Et1 ) with link rate allocation R∗.

Suppose the optimal solution w.r.t. problem (4.24) is achieved by R∗ = (R∗
1, . . . , R

∗
6) (see

Figure 4.5). Then, it follows that transmissions of helper node 2 have to satisfy

R∗
3 ≥ H(X2|X1, X3, X4), (4.25)

R∗
1 +R∗

2 +R∗
3 ≥ H(X1, X2|X3, X4).
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Let us now consider helper node 4. Its transmission includes information received from helper
nodes 1 and 2 combined with its own side information. Since the goal is to minimize the
total communication cost, it follows that for the optimal MM -rate vector R∗, transmission
of helper nodes 1 and 2 cannot be further compressed at helper node 4. Therefore, the
transmission of helper node 4 consists of 2 components: 1) routed information from helper
nodes 1 and 2, and 2) innovative side-information at helper node 4 w.r.t. all other source
nodes in the network. Hence, R∗ must satisfy

R∗
4 +R∗

6 − R∗
2 − R∗

3 ≥ H(X4|X1, X2, X3). (4.26)

In order for client t1 to learn the joint process, i.e., to gain access to XMt1
, the incoming

links to t1 necessarily have to carry entire information about the process. In other words

R∗
5 +R∗

6 = H(XMt1
), (4.27)

where the equality sign comes from the fact that the goal is to minimize the overall com-
munication cost, and thus, it is wasteful for client t1 to receive at rate larger than the joint
entropy of the process.

Considering all possible subsets of the source node set Mt1 , we have that an optimal
MM -rate vector R∗ must belong to the following rate-flow region

∂Rt1 = {∂R : ∂R(S) ≥ H(XS |XMt1\S
), ∀S ⊂ Mt1 ,

∂R(Mt1) = H(XMt1
)}, (4.28)

where

∂R(S) ,
∑

e∈∆+S

Re −
∑

e∈∆−S

Re, (4.29)

and ∆+S ⊆ Et1, (∆
−S ⊆ Et1) denotes the set of links leaving (entering) S. For instance, if

S = {m3, m4}, then the optimal rate vector R∗ satisfies

∂R∗(S) = R∗
5 +R∗

6 − R∗
1 −R∗

2 − R∗
3

≥ H(X3, X4|X1, X2). (4.30)

It can be verified that any rate vector that belongs to the rate-flow region ∂Rt1 can be
achieved using multi-terminal Slepian-Wolf random binning scheme [10]. Thus, the rate-flow
region ∂Rt1 contains all optimal MM -rate vectors w.r.t. the optimization problem (4.24).

Extension of this result to a multiple client case is straightforward: an optimal MM -rate
vector has to simultaneously belong to all rate-flow regions ∂Rti which correspond to the
graph Gti , ∀ti ∈ T . The achievability of every rate vector that belongs to ∂Rt1 ∩ ∂Rt2 ∩
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· · · ∩ ∂Rts can be easily shown using random binning argument. Hence, the optimization
problem (4.24) can be written as

min
R

∑

e∈E

αeRe, (4.31)

s.t. ∂R ∈ ∂Rt1 ∩ ∂Rt2 ∩ · · · ∩ ∂Rts ,

Re ≤ ce, ∀e ∈ E .

Before we address the question of efficiently solving the problem (4.31), first we need to
answer whether or not the problem is feasible.

4.2.3 Feasibility of the Multi-Source Multicast Problem

As in Section 4.2.2, first, we consider a single client case, i.e., when T = {t1}. Then, the
obtained result naturally extends to the setting with arbitrary number of clients. Now, let
us consider a set function yt1 : 2

Mt1 → R given by

yt1(S) = H(XS |XMt1\S
), ∀S ⊆ Mt1. (4.32)

According to Definition 3, the dual set function gt1 : 2
Mt1 → R is given by

gt1(S) = H(XS), ∀S ⊆ Mt1 . (4.33)

It can be easily shown that gt1 is a fully submodular function. Since B(yt1 ,≥) = B(gt1 ,≤),
the rate-flow region ∂Rt1 defined in (4.28) represents the base polyhedron of the function
gt1 .

Lemma 12. For a single client multi-source multicast problem over Gt1 = (Vt1 , Et1), where
Vt1 = {Mt1 , t1}, there exists an achievable MM-rate vector, i.e. ∂Rt1 6= ∅, and Re ≤ ce,
∀e ∈ Et1, if and only if

c(∆+S) ≥ H(XS |XMt1\S
), ∀S ⊆ Mt1 , (4.34)

where

c(∆+S) =
∑

e∈∆+S

ce, ∆+S ∈ Et1.

Proof. As we discussed in Section 4.2.2, the incoming links to t1 carry entire information
about the process. This combined with the fact that the goal is to minimize the communi-
cation cost, implies that for any optimal MM -rate vector R∗ it holds that

∑

e=(j,t1)∈Et1

R∗
e = H(XMt1

). (4.35)
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Therefore, without loss of generality we can assume that the capacities of the links incoming
to t1 satisfy

∑

e=(j,t1)∈Et1

ce = H(XMt1
), (4.36)

provided that the feasible rate-flow region exists. It is not hard to show that the capacity
function c(∆+S), ∀S ⊆ Mt1 is submodular (see Chapter 2 in [14]). Let us denote by ∂Ψ,
the set of the boundaries ∂R of a feasible rate-flow region:

∂Ψ , {∂R : Re ≤ ce, ∀e ∈ Et1} (4.37)

In [19] it was shown that

∂Ψ = B(c(∆+)). (4.38)

From (4.38) and (4.31) it follows that there exists a feasible MM -rate vector iff

B(c(∆+)) ∩ B(gt1) 6= ∅. (4.39)

Problem (4.39) is known as a common base problem [14] for which the solution exists if and
only if

c(∆+S) ≥ yt1(S), ∀S ⊆ Mt1 . (4.40)

This completes the proof of Lemma 12.

To verify whether there exists an achievable MM -rate vector it is necessary to check
whether all 2|Mt1 | inequalities in (4.34) are satisfied. Verifying this is, in general, exponen-
tially hard (in number of nodes). However, due to the supermodularity of the function gt1 ,
the existence of a common base, and thus the feasibility of the multi-source multicast prob-
lem, can be verified in polynomial time1 (see [23] and [14], Chapter 4). This algorithm also
provides an achievable MM -rate vector (given that it exists) that belongs to the rate-flow
region ∂Rt1 .

Extensions of the result of Lemma 12 to the case with arbitrary number of clients is
straightforward. We just need to check if the inequalities (4.34) are satisfied for all clients
in T .

Theorem 10. For the multi-source multicast problem over G(V, E), with the capacity func-
tion c, there exists an achievable MM-rate vector if and only if

c(∆+S) ≥ H(XS |XMti
\S), (4.41)

∀S ⊆ Mti , ∂∆
+S ∈ Eti , ∀ti ∈ T .

From [23], the common base problem, and hence the feasibility of the multi-source multi-
cast problem can be verified in O(s · |E|3) time.

1Complexity of the common base algorithm proposed in [23] is O(|Et1 |
3)
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4.2.4 Deterministic Algorithm for the Single Client Case

When T = {t1}, then, the optimization problem (4.31) can be written as

min
R∈R

|Et1
|

∑

e∈Et1

Re, (4.42)

s.t. ∂R ∈ B(gt1 ,≤), Re ≤ ce, ∀e ∈ Et1 .

Optimization problem (4.42) has a form of the minimum cost submodular flow problem
(see [14] for formal definitions), but with a few differences listed bellow.

1. In the submodular flow problem, function gt1 has to be defined over all vertices Vt1 of
graph Gt1 . However, in our case gt1 is a set function over the source vertices only.

2. In the submodular flow problem, gt1(Vt1) must evaluate to 0, whereas in our problem
function gt1 is not defined for Vt1 .

The first step of solving the problem (4.42) efficiently involves verifying its feasibility.
From the common base algorithm we obtain an achievable MM -rate vector that belongs to
B(gt1 ,≤) provided that B(gt1 ,≤) 6= ∅. Given any achievable MM -rate vector that belongs
to B(gt1 ,≤), one can construct the auxiliary network over graph Gt1( See Chapter III of [14]
for detailed explanation). It can be verified that from this step onwards, we can apply min-
cost submodular flow algorithm [14] which involves finding negative cycles of the auxiliary
network, and updating the network accordingly along with the achievable MM -rate vector.
Comparison between different minimum cost submodular flow algorithms is provided in [15].

4.2.5 Deterministic Algorithm for the Multiple Client Case

In this section we extend the results from the previous section to the case where the set
T contains arbitrary number of clients. Motivated by the results from Section 3.3, the
optimization problem (4.31) can be written as follows

min
R,R(1),...,R(s)

∑

e∈E

αeRe, (4.43)

s.t. Re ≥ R(ti)
e , ∀ti ∈ T , ∀e ∈ Eti ,

∂R(ti) ∈ ∂Rti , R
(ti)
e ≤ ce, ∀e ∈ Eti , ∀ti ∈ T ,

where ∂Rti is defined in (4.28) for i = 1. Equivalence between the optimization prob-
lems (4.31) and (4.43) follows from the fact that transmissions on graph G have to be such
that all clients in T learn the file simultaneously. To obtain a polynomial time solution to
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problem (4.43), like in Section 4.1, we consider the Lagrangian dual.

max
Λ

k
∑

l=1

zti(Λ), (4.44)

s.t.

k
∑

i=1

λe,ti = αe, λe,ti ≥ 0, ∀ti ∈ T , ∀e ∈ Eti ,

where

zti(Λ) = min
R(ti)∈R

|Eti
|

∑

e∈Eti

λ(ti)e R(ti)
e , (4.45)

s.t. ∂R(ti) ∈ ∂Rti , R(ti)
e ≤ ce, ∀e ∈ Eti.

For any given ti ∈ T , the objective function (4.45) of the dual problem (4.44) can be
computed in polynomial time as pointed out in Section 4.2.4. Hence, we can apply the dual
subgradient method to solve the problem (4.44) in polynomial time. Then, a near optimal
solution of the primal problem (4.31) can be recovered by applying averaging method as
already discussed in Section 3.3.2.

Starting with a feasible iterate λe,ti[0], ∀ti ∈ T , ∀e ∈ Eti, w.r.t. the optimization prob-
lem (4.44), and the step size θ, every subsequent iterate λe,ti[j + 1] can be recursively repre-
sented as an Euclidian projection of the vector

{

λe,ti[j] + θR̃(ti)
e [j] : ∀ti ∈ T , ∀e ∈ Eti

}

(4.46)

onto the hyperplane

P =







Λ |
t
∑

ti:e∈Eti

λe,ti = αe, λe,ti ≥ 0, ∀ti ∈ T , ∀e ∈ Eti







, (4.47)

where R̃(ti)[j] is an optimal rate vector w.r.t the problem (4.45). In order to obtain a
near optimal solution to problem (4.31) we take an average over all iterations of the dual
subgradient method

R̂e[l] = max
ti∈T

{

1

l

l−1
∑

j=0

R̃(ti)
e [j] : e ∈ Eti

}

, ∀e ∈ E . (4.48)

The maximization in (4.48) ensures that vector R̂[l] belongs to all rate-flow regions ∂Rti ,
∀ti ∈ T . Convergence analysis of this method can be done in the same way as in Section 3.3.3.
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Chapter 5

Conclusion

In this dissertation we investigated the problem of data exchange where multiple users,
interested in gaining access to the common file, have only partial information about it stored.
In Chapter 2, the information stored at each user was in the for of linearly coded data pack-
ets, while in the later chapters, we considered the more general discrete memoryless multiple
source (DMMS) model. The main problem studied in this work was to construct a com-
munication scheme that delivers the file to all users, while minimizing some communication
cost. In Chapters 2 and 3, the communication model we considered was a noiseless broadcast
channel, while in Chapter 4 we investigated a wireline model.

In Chapter 2, we proposed a deterministic polynomial time algorithm for finding an op-
timal communication scheme w.r.t. the separable convex communication cost. We provided
two methods to determine how much should each user transmit in an optimal scheme. The
first one is based on minimizing a submodular function, in which case the total complex-
ity of the algorithm is O((m6 · N3 + m7) · logN), where m is the total number of users,
and N is the number of packets in the file. The second technique is based on subgra-
dient methods, in which case the total complexity of the algorithm can be bounded by
O((N2 · m4 logm + N5 ·m4) · logN) given that we use constant step size in the subgradi-
ent algorithm. The second method, also provides an alternative solution to the Edmonds’
algorithm when the underlying set function is intersecting submodular and over integers.
We also devised a randomized algorithm inspired by the deterministic scheme that reduces
complexity to O(m ·N4 logN).

In Chapter 3, we studied the data exchange problem under the DMMS model, and the
linear communication cost. We proposed a combinatorial algorithm of polynomial complexity
that finds an optimal rate allocation w.r.t. the communication cost. The complexity of the
algorithm is O(m7 · γ +m8), where γ is the complexity of computing entropy function. We
also proposed a non-combinatorial algorithm of polynomial complexity that computes an
approximately optimal rate allocation. The complexity of this algorithm is O((m4 logm +
m4γ) · ⌈ 1

ε2
⌉), where ε is the upper bound on the distance from the optimal solution.
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In Chapter 4, we studied the data exchange problem with helpers under noiseless broad-
cast and wireline communication models. For both of these problems we proposed a non-
combinatorial algorithm of polynomial complexity that is based on the techniques we devel-
oped in Chapter 3.
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