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ABSTRACT 46 

 Cys2-His2 (C2H2) zinc finger domains were originally identified as DNA binding 47 

domains, and uncharacterized domains are typically assumed to function in DNA binding. 48 

However, a growing body of evidence suggests an important and widespread role for these 49 

domains in protein binding. There are even examples of zinc fingers that support both DNA and 50 

protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, 51 

Zif268, and YY1. C2H2 protein-protein interactions are proving to be more abundant than 52 

previously appreciated, more plastic than their DNA-binding counterparts, and more variable and 53 

complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 54 

zinc finger-mediated protein-protein interactions, focusing on what is known about the binding 55 

surface, contributions of individual fingers to the interaction, and function. An accurate 56 

understanding of zinc finger biology will likely require greater insights into the potential protein 57 

interaction capabilities of C2H2 zinc finger domains.  58 

 59 

 60 

61 
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INTRODUCTION 61 

 Zinc finger domains (ZFs) are protein structures stabilized by the coordinated binding of 62 

a zinc ion.  Although there are 20 different types of ZF domains, each categorized by the 63 

structure of their zinc stabilizing amino acids (1, 2), the most common type is the Cys2-His2 64 

(C2H2) type (Figure 1). The C2H2, or “classical” zinc finger, comprise a large group of proteins 65 

containing the consensus sequence (F/Y)-X-C-X2-5-C-X3-(F/Y)-X5-Ψ-X2-H-X3-4-H, where X is 66 

any amino acid and Ψ is any hydrophobic residue (3). This motif, which self-folds to form a ββα 67 

structure, obtains its name from the coordinated binding of a zinc ion by the two conserved 68 

cysteine and histidine residues (4-7). Natural variants that contain cysteine as the final zinc-69 

chelating residue (C2HC) also fold into the same structure (8). 70 

 71 

 Zinc finger proteins (ZFP) may contain between 1 and 40 ZF domains which are 72 

frequently arranged in groups or clusters of tandem repeats. C2H2 ZFs were initially identified in 73 

the DNA binding domain of transcription factor TFIIIA in Xenopus laevis, which has nine 74 

fingers (9). Since their discovery, the C2H2 ZFP have grown to be recognized as an important 75 

class of genomic regulators, in part because of their broad distribution, but also because of their 76 

significant expansion within the genomes of eukaryotes.  Found throughout all kingdoms, the 77 

C2H2 domain is not only ubiquitous, but is also one of the most common protein domains found 78 

within many eukaryotic proteomes (Table 1).  In humans, recent estimates propose that 79 

approximately 3% of genes code for C2H2 proteins, making them the second most prevalent 80 

protein motif (2, 10, 11). Understanding the functionalities that ZFs impart therefore provides 81 

insights into one of the largest superfamilies of proteins in the human genome.  82 

 83 
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The many C2H2 ZFPs that have not yet been functionally characterized are generally 84 

assumed to have DNA binding capabilities. However, C2H2 domains have proven to be as 85 

diverse functionally as they are abundant, having been shown capable of interacting with RNA 86 

and protein (12-15).  In multi-finger proteins, typically only 3-4 ZFs are involved in DNA 87 

binding. The remaining fingers are frequently involved in other types of interactions (16-23). In 88 

other cases, such as the 3-finger proteins Zif268/EGR1 and SP1, the ZFs seem to play a dual role 89 

of providing both DNA and protein binding functions (24-26). Therefore, while it may be 90 

reasonable to predict that an uncharacterized C2H2 ZFP might bind DNA, this assumption is 91 

likely insufficient to describe the full interaction potential, and thus the full function, of the 92 

protein. 93 

 94 

Recently, several structural and functional studies of ZF-mediated protein-protein 95 

interactions (PPI) have been published. Previous descriptions of this field focused on a few well-96 

characterized examples (e.g., FOG1, the IKAROS family, ATF2, rOAZ), prompting questions of 97 

whether PPIs represented a limited or widespread functionality of C2H2 ZFs. Here we review 98 

the current information of more than 100 PPIs mediated by C2H2 domains. Where information is 99 

available, the binding surface and contribution of specific fingers to the interaction are described. 100 

This information suggests the role of ZFs in mediating PPIs has probably been underappreciated 101 

and likely under-annotated. The full significance of PPIs to the biology of C2H2 ZFPs remains to 102 

be explored. 103 

 104 

 105 

 106 
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SURFACE DIVERSITY 107 

 Over the past twenty years, numerous studies have examined the DNA-protein 108 

interactions mediated by C2H2 domains. Early biochemical (27) and structural (7) studies of ZF 109 

protein such as Sp1, Krox-20 and Zif268 revealed that amino acids in positions -1, 2, 3 and 6 of 110 

the α-helix contact specific nucleotides within the major groove of DNA (Figure 2).  Since then, 111 

numerous studies have confirmed a critical role for these amino acid positions in DNA binding 112 

(3).  A small group of “non-canonical” zinc fingers appear to use more diverse sets of DNA 113 

interactions (3).  However, the ZF-DNA contacts are virtually always mediated by amino acids 114 

located in the N-terminal portion of the α-helix.  115 

 116 

 Unlike ZF-DNA interactions, the interacting residues responsible for specific ZF PPIs 117 

have been significantly less studied. In most cases, little is known about the binding surface due 118 

to a lack of structural information. Only a handful of the C2H2 domains known to be involved in 119 

protein-protein interactions have solved structures, and only a few scanning mutagenesis studies 120 

have been conducted to examine the location of critical residues. However, there is compelling 121 

evidence to expect a diverse assortment of protein binding surfaces. This evidence comes quite 122 

unexpectedly from a class of scorpion toxins that bind potassium channels. Many of these toxins 123 

have a nearly identical structure to C2H2 ZFs, and some bind their target channel using amino 124 

acids similar to those used by C2H2 ZFs to bind DNA (reviewed in (28)). However, others 125 

contact their cognate channel using amino acids projecting from the β-strands, while others use 126 

residues from the loop region between the α-helix and β-strands.  127 

 128 
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 In the following sections we present structural information regarding the binding surface 129 

of PPIs mediated by C2H2 and C2HC ZFs. Indeed, there are examples of ZFs using the “DNA 130 

face” of the α-helix, an alternative face of the α-helix, the β-strands, the loop region, and even 131 

more complex combinations of these elements. Given the variety of interaction surfaces 132 

presented by the relative few interfaces that have been characterized, it seems reasonable to 133 

expect that ZFs have the potential to interact with many proteins, and that ZF PPIs may be more 134 

common that previously thought.  135 

  136 

α-Helix Binding Using DNA Binding Residues 137 

 The best characterized ZF PPIs are those between Friend of Gata1 (FOG1) and its 138 

binding partners, the globin transcription factor GATA1 and Transforming Acidic Coiled-coil 3 139 

(TACC3).  FOG1 contains a total of nine zinc finger domains (Table 2); however, only four are 140 

of the classic C2H2 type, with the remaining fingers substituting a conserved cysteine for the 141 

final histidine (29). FOG1 is known to interact with GATA1 using fingers 1, 5, 6, and 9, which 142 

are variant C2HC fingers (16). Recently, Liew et al. (30) determined the structure of the 143 

interaction between the C2HC finger 1 of the Drosophila FOG and a segment of the murine 144 

GATA-1. The variant C2HC was found to be structurally identical to C2H2 ZFs, except for 145 

subtle differences in the C-terminal end of the α-helix (Figure 3A; (8)). (The reader should not 146 

confuse these C2HC variants with the C-X2-C-X4-H-X4-C class of ZF. This latter class, which 147 

includes the well-studied NCp7 nucleocapsid ZFs of HIV, is also referred to as C2HC but has a 148 

completely different protein structure (31)). As shown in Figure 3B, the residues in the α-helix 149 

of the FOG C2HC domain contact GATA, primarily through polar and hydrophobic interactions.  150 

Interestingly, despite similarities in both sequence and structure, C2HC and C2H2 domains are 151 
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not interchangeable.  Matthews et al. (32) demonstrated that mutation of the C2HC domains of 152 

FOG fingers 1 and 9 to C2H2 domains inhibited their ability to interact with GATA without 153 

disrupting their ability to fold. 154 

 155 

 The function of the N-terminal cluster of FOG1 was unknown until recently.  This cluster 156 

of fingers is comprised of one variant C2HC finger, followed by three classic C2H2 fingers.  157 

DNA binding studies failed to demonstrate DNA binding by the cluster, suggesting that these 158 

fingers do not participate in DNA interactions (33).  After conducting yeast-two hybrid and 159 

immunoprecipitation experiments to find and map the PPI between the third (classic) zinc finger 160 

of FOG1 and TACC3, Simpson et al. (22) combined NMR and alanine mutagenesis to pinpoint 161 

critical amino acid involved in the interaction. Interestingly, they demonstrated that amino acids 162 

in the α-helix of FOG1 formed the binding surface for the interaction and that residues in 163 

positions normally involved in contacting DNA, positions -1, 2, 3, and 6, were also utilized for 164 

protein interactions (Figure 4). Additionally, they showed that the interacting surface was longer 165 

than that required for DNA binding. It included residues along the entire length of the α-helix, as 166 

well as residues located before and after the helix that were oriented into the binding face (22).   167 

 168 

Protein interactions between members of the Ikaros family of proteins have also been 169 

examined and partially mapped to specific amino acid positions.  Ikaros is the founding member 170 

of a family of proteins composed of five proteins - Ikaros, Aiolos, Helios, Eos and Pegasus - all 171 

of which maintain a conserved, characteristic domain architecture, containing two clusters of 172 

C2H2 domains, an N-terminal cluster comprised of 3-4 domains and a C-terminal cluster of two 173 

fingers (Tables 2 and 3).  Forming either self-associations or associations with other members of 174 
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the family, all members of this family use their C-terminal fingers mediate PPIs; and, use their 175 

N-terminal fingers to bind DNA (19, 21, 34, 35). (Table 3).  Trichophinophalageal syndrome 1 176 

(Trps1) contains two C-terminal ZF domains that are homologous to the C-terminal fingers in the 177 

Ikaros family.  Interestingly, Trps1, which is not a member of the Ikaros family, forms a PPI 178 

with the family member Eos, although not the others (36, 37).  179 

 180 

Westman et al. (38) solved the structure of the C-terminal cluster of two domains in Eos 181 

and used alanine mutagenesis to determine amino acids critical for interactions with Ikaros, 182 

Pegasus, Trps1, and itself.  As with zinc finger 3 from FOG1, Westman et al. demonstrated that 183 

the binding surface for the PPI ran along the α-helix region of finger 5. Scanning mutagenesis 184 

again highlighted the importance of amino acids in positions 2, 3, 5, and 6 for maintaining the 185 

interaction, particularly in finger 5. Additionally, as shown in figures 5A and B, they determined 186 

that amino acids located in the turn between the β-sheets in both fingers also participated in the 187 

interaction, and that these residues were also likely oriented towards the binding surface. The 188 

alanine substitutions had dissimilar effects on the various PPIs, indicating an underlying 189 

selectivity in these interactions (Figure 5C).   190 

 191 

α-Helix Binding, Non-DNA Binding Residues 192 

One of the earliest examples of a PPI between C2H2 domains was observed between 193 

finger 1 and finger 2 in the crystal structure of glioma-assocated protein 1 (Gli1) (39).  The 194 

five-finger Gli1 protein forms several complex interactions, with most fingers able to interact 195 

with both protein and DNA (Tables 2 and 4) (39).  Fingers 2-5 bind DNA (39).  Fingers 3-5 196 

mediate a PPI with multiple members of the Zic family of proteins; however, neither the 197 
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contribution of individual fingers nor the binding surface has been elucidated (Table 4, (40)). 198 

Remarkably, while finger 2 is binding DNA, it also forms numerous inter-finger contacts with 199 

finger 1 (Figure 6A, (39)).   200 

 201 

More recently, Wang et al. (41) reported a similar finding in the Saccharomyces 202 

cerevisiae protein Zap1 after solving the structure using NMR. Zap1 contains seven C2H2 203 

domains arrayed in two clusters (Table 2). The C-terminal cluster of Zap1 contains five domains 204 

and is known to bind DNA (41). The N-terminal cluster contains two domains that interact with 205 

each other.  A comparison of the Gli1 and Zap1 structures revealed striking similarities in their 206 

interaction surfaces (41). In each case the interaction occurs in the α-helical region; however, 207 

amino acid positions typical to DNA-protein interactions are not used. Instead the interacting 208 

face is located about a quarter-turn counterclockwise to the DNA binding surface (when looking 209 

down the axis of the alpha helix) (Figures 6A and B). Despite similarities in the binding faces, 210 

there is little overlap in the positional location of amino acids required for the interactions, with 211 

the exception of α-helix position 8, located in the C-terminal end of the helix (39, 41).  In both 212 

Gli1 and Zap1, amino acids at position 8 in both finger 1 and finger 2 form inter-finger contacts 213 

(41). 214 

 215 

 216 

β-Sheet Binding 217 

Not all PPIs depend on α-helical amino acids; nor do all C2H2 PPIs preclude DNA 218 

binding.  One example of this is seen in early endosome antigen 1 (EEA1).  EEA1 contains 219 

only one C2H2 domain located in the N-terminal region of the protein. It also contains a FYVE 220 
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domain in the C-terminal region (Table 2).   While both the C2H2 and FYVE domains are 221 

important for PPI with Rab5, the C2H2 domain is sufficient for interaction with Rab5 (42).  By 222 

combining scanning alanine mutagenesis with surface plasmon resonance (SPR) to measure PPI 223 

affinity, Merithew et al. (42) was able to localize the PPI to the first β-sheet (Figure 7).  In 224 

particular, mutation of either the phenylalanine or the isolucine residues located at the beginning 225 

of the β sheet, immediately before the first cysteine, caused a 100-fold decrease in affinity.  226 

Other substitutions, located on the same binding face but different regions of the C2H2 fold, had 227 

less of an effect on affinity, decreasing it by 10-fold (42).   228 

 229 

Zac1, a protein involved in regulating apoptosis and cell-cycle arrest, contains seven 230 

C2H2 domains, some of which mediate PPIs (Table 2, (43-45)).  By combining gel-shift 231 

experiments with scanning mutagenesis, Hoffmann et al. (43) demonstrated that fingers 2-4 and 232 

6-7 bound DNA using residues in positions -1, 2, 3, and 6 of the α-helix (43).  Using co-233 

immunoprecipitation of in vitro translated proteins, they further demonstrated that Zac1 formed 234 

homodimers. Homodimerization was dependent on fingers 1 and 2 (43), indicating a role in both 235 

protein and DNA binding for finger 2.  As summarized in figure 8, a series of protein deletions 236 

enabled Hoffmann et al. (43) to narrow the site of the PPI to a span of amino acids starting in the 237 

linker region between fingers 1 and 2 through the first β-strand of finger 2.  The importance of 238 

specific amino acids was not elucidated.   239 

 240 

Similar to GLI and Zap1, intra-finger PPIs can also be mediated by amino acids in the β-241 

sheets.  Major histocompatibility complex enhancer binding protein 1 (MBP1) contains five 242 

C2H2 domains arranged into a cluster of two fingers, a single finger, and a second cluster of two 243 



C2H2 ZF interactions with proteins  Brayer and Segal - review 

 10 

fingers. This protein also forms inter-finger bonds (Table 2, Figure 9).  However, the intra-244 

protein interaction observed in MBP1 is very different than that seen in GLI and Zap1 (Figures 6 245 

and 9). Omichinski et al. (46) solved the structure of a synthetic peptide corresponding to the C-246 

terminal pair of C2H2 domains of MBP1.  As can be seen in figure 9, inter-finger contacts are 247 

made between a threonine located in the C-terminal end of the helix of finger 5, a valine in linker 248 

region, and a lysine located in the loop between the β-sheet and α-helix of finger 6 (46). 249 

Although these fingers are known to interact with DNA (47-50) and the inter-finger contacts do 250 

not involve residues typically involved in DNA interaction, the effect of the interaction on DNA 251 

binding is not known.  252 

 253 

 254 

INTERACTION DIVERSITY 255 

 256 

Many fingers, many partners  257 

Human Olf1/Early B-cell Factor 1-associated zinc finger protein (OAZ) was one of 258 

the first proteins recognized for its ability to mediate hetero-PPIs with its C2H2 ZF domains.  A 259 

large zinc finger protein containing 30 C2H2 domains arranged into six clusters (Table 3), OAZ 260 

uses two different sets of zinc fingers to interact with two different DNA sequences (51, 52).  261 

Using yet other sets of zinc finger domains, OAZ can homodimerize or interact with at least 262 

three other proteins (51-53). Working with the rat ortholog, rOAZ, Tsai and Reed (52, 53) 263 

determined that fingers 1-7 bind DNA, and fingers 25-29 mediate homodimerization as well as 264 

an interaction with Olf1/Early B-cell Factor (O/E1). Tsai and Reed (52) also examined the 265 

contribution of particular fingers to the interactions. Using “broken-finger” mutants, in which 266 
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asparagine was substituted for the first histidine residue, they found zinc finger 29 to be critical 267 

for interactions with O/E1. However, this mutant had no significant effect on homodimerization. 268 

Tsai and Reed (52) were unable to localize the homodimerization surface, and concluded that the 269 

interaction surface was likely either distributed across several fingers or the fingers had 270 

redundant functions. 271 

 272 

More recently, Hata et al. (51) reported fingers 9-13 of human OAZ bound to a different 273 

DNA target than the target of fingers 2-8 (homologous to fingers 8-12 and 1-7, respectively, of 274 

rOAZ).   They also reported human OAZ interacting with SMAD1 and SMAD4 to regulate 275 

mesoderm and neural development (51).  This interaction was mediated using fingers 14-19 276 

(homologous to fingers 13-18 in rOAZ).  Importantly, they found that the OAZ interaction with 277 

O/E1 inhibited the OAZ-SMAD1/4 interaction, suggesting that these were two separate 278 

transcriptional pathways (51).   279 

 280 

Another protein that interacts with a number of different proteins using C2H2 domains is 281 

promyelocytic leukemia zinc finger (PLZF).  The protein was first discovered as a fusion 282 

protein with retinoic acid receptor alpha (RARα) in acute promyelocytic leukemia patients with 283 

a t(15;17) translocation (54, 55).  PLZF contains nine C2H2 domains as a single cluster located 284 

in the C-terminus and an N-terminal Broad-Complex, Tramtrack and Bric-a-Brac (BTB) domain 285 

(Table 3).  Fingers 3-7 are known to bind a GTACAGTT(C/G)CAT DNA consensus sequence 286 

(56). PLZF also forms PPIs with several different proteins, each of which requires different 287 

combinations of fingers and produces various outcomes.  Using GST-pull down assays, Martin et 288 

al. (57) demonstrated binding of PLZF fingers 1-3 to full length retinonic acid receptor alpha 289 
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(RARα)  (57, 58). The authors also examined the ability of PLZF to interact with other nuclear 290 

receptors, including 9-cis retinoic acid receptor alpha (RXRα), estrogen receptor alpha (ERα), 291 

glucocorticoid receptor (GR) and vitamin D receptor (VDR). The first three fingers of PLZF 292 

were able to interact with ERα, GR, and VDR but not RXRα, although the basis of this 293 

specificity was not determined (57, 58). In this role, since interaction with PLZF caused a 294 

decrease in the transcriptional activities of RARα, ERα, GR and VDR, PLZF appeared to be 295 

acting as a transcriptional repressor (57). However, when examining the effect of the interaction 296 

on transcription, the authors noted that although PLZF seemed to have similar affinity for ERα, 297 

GR, and VDR based on the GST-pull down results, the effect on transcription activation by the 298 

nuclear receptor varied (57).    299 

 300 

PLZF also acts as a transcriptional inhibitor via its interaction with Gata2 (59).  Tsuzuki 301 

and Enver (59) also found another C2H2 protein, Fanconi anemia-related zinc finger protein 302 

(FAZF), which interacts with Gata2 using its zinc finger domains. Although FAZF only contains 303 

three C2H2 domains, FAZF is structurally similar to PLZF because it also contains an N-304 

terminal BTB domain and C-terminal C2H2 domains (Table 3). Despite having nearly 70% 305 

homology to the three fingers of FAZF, the last three fingers of PLZF (7-9) failed to pull-down 306 

Gata2. FAZF fingers 1-3 were able to interact with Gata2 (59).  307 

 308 

 Nanba et al. (60) reported a third PPI for PLZF with a distinct function. They found that 309 

fingers 6-7 of PLZF interact with C-terminal remnant of heparin-binding epidermal growth 310 

factor-like protein (HB-EGF-C).  HB-EGF-C is formed following the proteolytic cleavage of 311 

membrane bound proHB-EGF. Upon cleavage, it translocates to the nucleus where it interacts 312 
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with PLZF (60, 61).  The interaction of PLZF with HB-EGF-C results in nuclear export of PLZF 313 

(60).  Unlike the examples above, the PPI appears to disrupt PLZF mediated repression of cyclin 314 

A. Thus this interaction results in transactivation (60).   315 

  316 

A few fingers, many partners 317 

 In addition to proteins that use different zinc fingers to interact with different proteins, 318 

there are also examples of proteins that seem to use the same zinc finger(s) to interact with 319 

several different proteins.  One of these, specificity protein 1 (Sp1), is ubiquitously expressed in 320 

human tissues and contains three C2H2 domains (Table 3).  Sp1 binds to the consensus sequence 321 

5’-GGGCGG-3’ in GC-rich promoters found in many genes (3-5).  Sp1 serves mainly as an 322 

activator of transcription for housekeeping genes and genes involved in growth regulation, but it 323 

can also act as a repressor in certain circumstances (62-74).  The ability of Sp1 to act as a 324 

repressor or activator depends, in part, on promoter access. Of particular interest are recent 325 

findings demonstrating interactions between the C2H2 domains of Sp1 and proteins responsible 326 

for various types of chromatin remodeling proteins, including p300, SWI/SNF, and TAF1 (75). 327 

Suzuki et al. (73) found that the zinc finger domains of Sp1 interacted with the acetyltransferase 328 

region of p300. This interaction lead to acetylation of Sp1 and DNA binding by the zinc fingers. 329 

DNA binding by the zinc fingers in turn inhibited both the interaction with p300 and the 330 

subsequent acetylation of the zinc fingers (73). Similarly, Kadam et al. (76) demonstrate a PPI 331 

between members of the ATP-dependent chromatin-remodeling complex SWI/SNF and Sp1 zinc 332 

fingers. Specifically, GST-pull down assays showed Sp1 zinc fingers were able to interact with 333 

BRG1, BAF170 and BAF155 (76).  Finally, Sp1 zinc fingers have also been shown to interact 334 

with the histone chaperon protein TAF1, resulting in the inability of Sp1 to bind DNA (75).    335 
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 336 

The function of Sp1 has been shown to vary depending on the co-regulators with which it 337 

interacts. This is true even for the interactions mediated by the zinc fingers.  Interactions between 338 

the zinc fingers of Sp1 and nuclear corepressor protein (NCoR), BCL6 interacting corepressor 339 

protein (BCoR), and silencing mediator for retinoid and thyroid receptor protein (SMRT) result 340 

in repression of transcription (68). Contrary to these results, the interaction between E2F1 and 341 

the zinc fingers of Sp1 results in activation (77). Rotheneder et al. (77) narrowed the site of the 342 

E2F1-Sp1 interaction to the start of zinc finger 1 through the β-sheets of zinc finger 2. It is 343 

unclear to what extent Sp1 might use different combinations of fingers for each protein-protein 344 

interaction.  345 

 346 

Ying Yang 1 (YY1) regulates a broad range of genes, both cellular and viral.  YY1’s 347 

functional versatility is likely due to its plasticity in recognizing DNA, the wide distribution of 348 

its binding sites in both distal and proximal promoter regions, its ubiquitous expression, and its 349 

interactions with a wide variety of co-factors (78-80).  Containing four C2H2 domains, YY1 can 350 

act as either a transcriptional activator or repressor, and is also known to participate in a wide 351 

variety of PPIs (Table 3). YY1 interacts with Sp1, resulting in transcriptional activation (25, 26).  352 

Like Sp1, the binding surface of YY1 was narrowed to the start of finger 1 through the β-sheet of 353 

finger 2, although in this interaction all three fingers of Sp1 were used (25, 26).   354 

 355 

 YY1 also interacts with ATFa2, a member of the ATF/CREB family, using the same 356 

region.  Zhou et al. (81) demonstrated that YY1 can interact with ATFa2 in vitro and in vivo, 357 

using fingers 1 and 2.  The interaction resulted in repression of transcription from the c-fos 358 
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promoter (81). YY1-associated factor 2 (YAF2) also interacts with the finger 1-finger 2 region of 359 

YY1. However, this interaction results in proteolytic cleavage of YY1 rather than directly 360 

activating or repressing transcription (82).  361 

 362 

Not all interactions involving YY1 are limited to the first two zinc fingers (Table 3). For 363 

example, Kurisaki et al. (83) demonstrated an interaction between YY1 and the DNA binding 364 

domain of SMADs. Subsequent to testing several truncated proteins, the authors found all four 365 

zinc fingers of YY1 were required for the interaction.  YY1 also displays specificity for the 366 

different SMADs, having highest affinity for SMAD4, then Smad1 and Smad3, and having the 367 

weakest affinity for Smad2 (83).  Because binding of YY1 to the SMADs inhibits their ability to 368 

bind DNA, YY1 acts as a transcriptional repressor in this context (83).   369 

 370 

Other domains, other interactions 371 

In addition to containing variable numbers of ZF domains, ZFPs frequently contain a 372 

wide variety of other types of domains.  KRAB, BTB, and SCAN are the most common types 373 

(84).  Not surprisingly, several examples of these multi-fingered, multi-domain proteins are 374 

involved in PPIs, often with several different binding partners.  In many cases, the relative 375 

contribution of each domain type is unclear.   376 

 377 

The homodimeriztion interface of recombination activating gene 1 (RAG1), which is 378 

comprised of both a C2H2 domain and a Ring domain, is the best example of a PPI involving a 379 

ZF and another type of domain. RAG1 is an important member of the V(D)J recombination 380 

protein complex. It contains two widely spaced C2H2 domains, referred to as ZFA and ZFB, and 381 
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a Ring domain located ~20 amino acids N-terminal to ZFA (Table 3).  Early studies determined 382 

that RAG1 forms homo-oligomers, mediated through ZFA in cooperation with the adjacent Ring 383 

domain (85). Structural analysis, however, revealed the dimer interface to be located in the linker 384 

region joining the C2H2 domain and the Ring domain (86).  The C2H2 domain is not part of the 385 

interface but acts as a critical scaffolding element (85, 86), similar to the structural role played by 386 

the C2H2 domain in the nuclease I-TevI (87). RAG1 also interacts with RAG2; however, this 387 

interaction is mediated by ZFB (88). The RAG1-RAG2 heterodimer is critical to the initiation of 388 

recombination since RAG2 serves to stabilize RAG1’s interaction with the DNA at the cleavage 389 

site, possibly by altering the conformation or orientation of RAG1 (89, 90). 390 

 391 

As discussed above in greater detail, Zac1 forms homodimers using the second of its 392 

seven C2H2 domains (43).  Zac1 also interacts with p300 through its zinc fingers (Table 3).  393 

Using deletion experiments, Hoffmann et al. (91) demonstrated that different combinations of 394 

Zac1 fingers interact with different regions of p300.  In particular, fingers 6-7 were required for 395 

the interaction with the KIX and CH3 domains of p300 whereas finger 2 was critical for the 396 

interaction with the HAT domain of p300.  While the zinc fingers of Zac1 are sufficient for 397 

binding to p300, proper function also requires the interaction of the C1 region of Zac1 with the 398 

KIX domain of p300 (91).  It appears that simultaneous binding of the zinc fingers and C1 with 399 

p300 confers an allosteric change to p300 increasing histone and acetyl-CoA binding, and 400 

therefore increasing catalytic activity (91).  Amazingly, this complex set of interactions appears 401 

to also occur when fingers 2, 6, and 7 are simultaneously binding DNA (91).    402 

 403 
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B-cell lymphoma 6 protein (BCL6) is a transcriptional repressor that is required for B 404 

and T cell development and also has roles in oncogenesis (92-95).  Dhordain et al. (93) 405 

characterized a PPI between BCL6 and PLZF. As detailed in the previous section, PLZF is 406 

involved in many protein interactions using different combinations of its zinc fingers.  Unlike the 407 

previously described interactions, which rely exclusively on C2H2 domains, PLZF’s interaction 408 

with BCL6 relies on the combination of a BTB domain and zinc fingers (93).  Similarly, both the 409 

BTB and zinc fingers domains of BCL6 are involved in the interaction (93).  410 

 411 

 412 

UNCHARTED DOMAINS 413 

The examples above (Tables 2-3) describe PPIs mediated by C2H2 domains using a wide 414 

variety of binding surfaces. Unfortunately, the binding surface for the vast majority of ZF-415 

mediated PPIs has not been determined. Table 4 presents a survey of over 100 PPIs in which 416 

C2H2 domains are ostensiblely involved in the interface. In many cases, the interactions were 417 

not localized to a specific finger since clusters of multiple fingers were frequently treated as a 418 

single binding unit. In other cases, the interaction was found in a high throughput assay and not 419 

verified, or the protein fragment tested contained one or more C2H2 domains in conjunction with 420 

a large flanking sequence and the binding interface was not assigned to one region. These 421 

examples provide strong evidence that C2H2 ZFs are frequently involved in PPIs. 422 

 423 

 424 

 425 

 426 
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ENGINEERING ZINC FINGER PPIs 427 

 The DNA binding properties of C2H2 ZF domains have been extensively studied and it is 428 

now possible to engineer ZFP that will bind to almost any desired DNA sequence (3, 96). This 429 

has led to the generation of artificial proteins that can be used as research tools and therapeutics 430 

(97-99). Synthetic proteins can be generated by altering specific residues within the framework 431 

of a standard C2H2 domain, typically that of either Zif268 or Sp1. Alternatively, engineered 432 

proteins can be constructed by mixing and matching naturally occurring C2H2 domains to create 433 

a protein with novel DNA binding properties (100). 434 

 435 

McCarty et al. (101) reported the first successful attempt to create novel interactions by 436 

mixing together C2H2 domains from separate proteins.  Working with Hunchback, a Drosophila 437 

protein that forms homodimers with a C-terminal pair of C2H2 domains, they examined the 438 

ability of both Ikaros and Hunchback to form heterodimers. They also examined chimeric 439 

domains containing residues from both proteins.  Neither Ikaros nor Hunchback was able to 440 

heterodimerize. However, of the 12 chimeras tested, seven were able to interact with either 441 

Ikaros or Hunchback.  In addition, of the three chimeras that did not interact with Ikaros, two 442 

were able to homodimerize.  443 

 444 

 Going one step further, Giesecke et al. (102) created an artificial gene network able to 445 

activate transcription from an endogenous gene in human cells (102).  Initially, they created 446 

novel PPIs by shuffling the zinc finger domains from the Ikaros family.  Treating the two PPI C-447 

terminal fingers as individual domains, they mixed and matched fingers from human Eos, Ikaros, 448 

Pegasus, and Trps1, as well as Hunchback from Caenorhabditis elegans, Drosophila 449 
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melanogaster, Helobdella triserialis, and Locusta migratoria, to generate an assortment of two-450 

domain chimeric binding surfaces.  Using a bacterial two-hybrid system, they were able to detect 451 

combinations of fingers yielding unique protein-protein interactions, as well as linking together 452 

the synthetic two-domain regions to create extended four-finger binding domains (102).  Finally, 453 

by linking one synthetic PPI domain to a synthetic DNA binding domain and another synthetic 454 

PPI domain to an RNA Pol II activator (p65), they were able to stimulate VEGF-A expression in 455 

HEK293 cells.    456 

   457 

 458 

PREDICTING FUNCTION 459 

 It had been previously observed that certain amino acid linker sequences connecting 460 

tandem repeats of C2H2 were highly correlated with ZF-DNA binding (103, 104). In mammals, 461 

tandem ZFs are frequently separated by linkers of 5 amino acids, with roughly 50% of these 462 

having the sequence TGEKP (3).  The conserved linker plays an important role in DNA binding, 463 

with each residue playing an identifiable role in stabilizing the interaction. Although some 464 

known DNA-binding ZFs don’t have this linker (for example, Tramtrack ZF1-2 (105)), and some 465 

that do not bind DNA do have it (for example, Gli ZF2-3 (39)), the presence of a TGEKP-like 466 

linker is currently the best predictor of DNA-binding. Tables 2 and 3 of this review list the best-467 

characterized ZF-mediated PPIs. A survey of the linkers from these ZFs shows that many of 468 

them also have TGEKP-like linkers (Table 5). Specifically, linkers between Gli ZF2-3, Bcl6 469 

ZF2-4, PLZF ZF5-8, Sp1 ZF1-3, Zac1 ZF6-7, and YY1 ZF2-4 contain close variations of this 470 

motif.  Interestingly, with the possible exception of Gli ZF2-3, all of these ZF are involved in 471 

DNA binding as well (56, 66, 91, 106, 107). This observation leads to several conclusions. First, 472 
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while a TGEKP linker may be a useful predictor of DNA-binding function, its inclusion or 473 

exclusion does not appear to have prognostic value for ZF PPIs. Second, not only do C2H2 ZF 474 

domains deserve appropriate recognition as mediators of PPIs, it must also be appreciated that 475 

several of these domains appear to mediate both DNA and protein recognition. Indeed, some ZF 476 

may be capable of binding to both DNA and protein at the same time, such as those in Zac1 (91).   477 

 478 

 These conclusions suggest that one can not hope distinguish ZFs that bind DNA from 479 

those that bind protein, because some ZF actually do both. Nor is it likely that a “protein-binding 480 

signature” can be identified that could be used to predict protein binding, as the TGEKP linker 481 

predicts DNA binding. ZF-PPIs are far more diverse in their modes of interaction than are the 482 

comparatively restricted ZF-DNA interactions, and are thus less likely to leave such an obvious 483 

calling card. This assertion is supported by the study that adjoins this review, in which we 484 

performed a bioinformatics-based search for such a protein-binding signature among known 485 

protein-binding ZFs and even clusters of partially related protein-binding ZFs (108). We were 486 

unable to identify any pattern that was obviously distinct from that of known DNA-binding ZFs. 487 

It is also not possible to predict protein binding as a default of not having a TGEKP linker. Some 488 

ZF may have structural roles or no biological role, and it has also been known for a long time 489 

that some ZFs bind to RNA (20, 87). The most cited example is the 9-finger TFIIIA, which 490 

contains two clusters of three DNA-binding ZFs, three or four RNA-binding ZFs, and some 491 

fingers that appear to be involved in both DNA- and protein-binding (20, 109-111). 492 

Unfortunately, our knowledge of the prevalence and diversity of ZF-RNA interactions is 493 

comparatively even more limited than for ZF-PPIs. Only a handful of examples have been 494 

described (12, 13), and structures of the well-characterized TFIIIA-5S RNA interaction have 495 
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only recently been described (14, 15). Like ZF-PPIs, the role of ZF-RNA interactions has 496 

probably been underappreciated and deserves further investigation. Complexities such as the 497 

potential to bind DNA, RNA, or protein, and perhaps any combination of these, make it 498 

exceptionally challenging to accurately predict the function of C2H2 ZF domains.  499 

 500 

 501 

 502 

CONCLUDING REMARKS 503 

 The C2H2 protein domain is one of the simplest folds found in nature, yet it is proving to 504 

be profoundly intricate in its protein-protein interactions.  Long recognized as a DNA binding 505 

domain, an appreciation of C2H2 domains as protein-binding domains is growing.  With recent 506 

advances, including structural information and more complete mutagenesis studies, the 507 

characterization of C2H2 and C2HC ZF-mediated PPIs is starting to approach our understanding 508 

of ZF-DNA interactions.  However, the complexity and variety of PPIs add further challenges to 509 

this task. DNA-binding C2H2 domains rely on a binding surface comprised of a small number of 510 

amino acids invariably located in the N-terminal region of the α-helix.  In contrast, protein-511 

binding C2H2 domains utilize many different regions of the fold, including the β-sheets, the 512 

linker regions, as well as residues in the α-helix.  Different surfaces of the α-helix can be used, 513 

and the overall protein binding surface is frequently larger than that observed for DNA binding.  514 

 515 

 Given the wider variety of interaction shapes and surfaces, one might speculate that 516 

C2H2 ZF interactions with proteins might actually be more common than interactions with 517 

DNA. In the research article that adjoins this review, we present experimental evidence that 518 
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suggests this speculation may in fact be true (108). We used an unbiased approach to investigate 519 

if clusters of ZF from the protein hOAZ could bind DNA or protein. We observed that several 520 

ZF clusters interacted with protein, including one previously known to bind DNA. However, 521 

none of the other ZF clusters were found to support DNA binding. This data suggested that 522 

DNA-binding might be more a more difficult task for the ZFs to accomplish than protein 523 

binding, consistent with the more restricted interaction mode for DNA discussed in this review. 524 

Most studies attempting to characterize the functions of ZFPs have been concerned only with 525 

their DNA-binding activity. A reexamination of these proteins for potential PPI activity might 526 

provide additional and more accurate information about their biological functions. 527 

 528 

 Finally, the manipulation of DNA-binding ZFs to create diverse sets of custom DNA-529 

binding proteins, research tools and drug therapies has resulted in a much greater understanding 530 

of how these domains interact with DNA. The recent works of Westman (38), McCarty (101), 531 

and Giesecke (102) have demonstrated that protein-binding ZFs can also be manipulated to 532 

create modified and selective protein-binding surfaces. It is hoped that continued engineering 533 

efforts will eventually produce custom protein-interaction tools as well as greater insights into 534 

the structural features underlying C2H2 ZF PPI function and specificity.   535 

 536 

 537 
538 
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FIGURE LEGENDS  541 

Figure 1: The canonical C2H2 zinc finger structure. A ribbon diagram of the third C2H2 542 

domain from TFIIIA in Xenopus laevis (PDB accession number 1TF3) is showing the canonical 543 

stabilization of the ββα fold by the coordination of a zinc ion (yellow) by two cysteine (green) 544 

and two histadine (blue) residues.   545 

 546 

Figure 2:  A DNA-binding zinc finger.  A ribbon diagram shows a DNA-binding C2H2 547 

finger from Zif268 (PDB accession 1ZAA).  Amino acids involved in contacting DNA are 548 

highlighted at positions -1 (green), 2 (blue), 3 (red), and 6 (orange).   549 

 550 

Figure 3:  C2HC zinc finger domains.  (A) Superimposed ribbon diagrams of the third 551 

C2H2 domain from TFIIIA in Xenopus laevis (PDB 1TF3, shown in blue) and the first C2HC 552 

domain of Drosophila FOG (PDB 1y0j, shown in grey) demonstrate that C2HC has the same 553 

structure as the classic C2H2 domains.  (B) Ribbon diagram of the protein-protein interaction 554 

between the first C2HC domain of Drosophila FOG and the N-terminal treble-cleft zinc finger of 555 

murine GATA-1 (30). FOG amino acids critical to the interaction are displayed in red. 556 

 557 

Figure 4: A protein-binding finger.  A ribbon diagram shows the third finger of FOG1 558 

(PDB accession 1SRK).  Amino acids critical to the interaction with TACC3 as determined by 559 

NMR titration (red), mutation analysis (green), or both (orange) are shown.  560 

 561 

Figure 5:  Critical amino acids in Eos-mediated protein interactions. Homology models of 562 

(A) finger 5 and (B) finger 6 of Eos (based on PDB accession 1SRK and 1PAA, respectively) 563 
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showing amino acids critical to PPIs with Eos, Ikaros, Pegasus, or Trps1.  Amino acid positions 564 

in which alanine substitution disrupted homodimerization and/or interaction with Ikaros and 565 

Pegasus are shown in red.  Since most alanine substitutions disrupted the interaction between 566 

Eos and Trps1, the positions for which alanine mutation still allowed interactions are shown in 567 

green.  (C) Scanning alanine mutagenesis revealed amino acids critical to the Eos with either Eos 568 

(E), Ikaros (I), Pegasus (P), and Trps1 (T) – as indicated on the left. Domain structural elements 569 

are indicated above with arrows representing β-sheets and tubes representing α-helices.  Alanine 570 

mutations with a strongly (red) or moderately/weakly (blue) negative effect on yeast growth in a 571 

yeast two hybrid are shown.  Alanine mutations that still allowed interactions are shown in 572 

green.  Positions not affected by alanine substitution are black, positions that were not tested are 573 

light gray.     574 

 575 

Figure 6:  α-helix inter-finger protein contacts.  Ribbon diagrams depict fingers 1 (blue) 576 

and 2 (orange) of (A) Gli1 (2GLI) and (B) Zap1 (1ZW8).  Interacting amino acids are shown as 577 

sticks.  Positions typically involved in DNA binding by C2H2 domains are shown in yellow.  578 

 579 

Figure 7:  Amino acids in EEA1 important for dimerization with Rab5.  A homology 580 

model of EEA1 (based on 1PAA) shows the amino acids contributing to Rab5 binding.  Critical 581 

residues determined by alanine mutation and surface plasmon resonance are colored according to 582 

fold decrease in binding affinity following mutation to alanine.  Red ~ 100 fold decrease, green ~ 583 

30 to 40 fold decrease, blue ~ 5 fold.  584 

 585 
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Figure 8:  Location of PPI binding surfaces in Zac1.  A homology model of Zac1 (based 586 

on 1UBD) shows amino acids in fingers 1-2 critical for homodimerization.  Residues colored red 587 

and green delineate finger regions that are strongly or moderately required, respectively.    588 

 589 

Figure 9:  Inter-finger contacts by MBP1 finger 5 (blue) and finger 6 (orange).  Critical 590 

amino acids are shown as sticks.  Residues that typically contact DNA are colored yellow.  Zinc 591 

ions shown as gray circles. 592 

  593 

594 
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 1070 
Table 1 

Distribution and Abundance of the C2H2 Zinc Finger Domain Across Taxa 

Taxon 

Number of Proteins 
with C2H2 
Domains1,2 

Ranking 
within 

Proteome2 
Coverage 

(%)3 
Archaea 68   
Bacteria 153   
Eukaryotes 13617   

Arabidopsis thaliana 164 50 0.5 
Caenorhabditis elegans 216 13 1 
Danio rerio 216 9 1.8 
Drosophila melanogaster 349 2 2.1 
Gallus gallus 74 18 1.4 
Homo sapiens 1055 2 2.8 
Mus musculus 837 4 2.5 
Rattus norvegicus 183 8 1.5 
Saccharomyes cerevisiae 47 19 0.8 

Viruses 74     
1reference (112)    
2reference (10)    
3Percentage of proteome containing proteins with C2H2 domains (10)  

 1071 
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Table 2 
Binding surfaces for protein-protein interactions involving C2H2 domains. 

  

Protein1 
Binding 
Surface Partner  Architecture2 Ref 

FOG1 α helix 
of F1 
of F3 

 
Gata1 
TACC3 

 (22) 

Eos α helix 
of Fs 5-6  

Eos 
Ikaros 
Pegasus 
Trps1 

 (38) 

Gli α helix,  
Fs 1-2 

Intra-
protein 

 
 

(39) 

Zap1 α helix,  
Fs 1-2 

Intra-
protein 

 
 

(41) 

EEA1 β1 of F1 Rab5  (42) 

Zac1 β1 of F2 Zac1  
  

(43) 

MBP-1 Linker Intra-
protein 

 
  

(46) 

1All proteins from human except Zac1 (Mus musculus) and Zap1 (Saccharomyces cerevisiae). 
2Linear representation of the domain structure of proteins. Black boxes, C2H2 zinc finger domain; gray boxes, variant C2HC 
zinc finger domains; FYVE,  FYVE zinc finger domain.  
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 1073 
Table 3 

C2H2 Domains Involved in Protein-Protein Interactions and Their Binding Partners. 

Protein1 
C2H2 

Domains Partner(s) Architecture2 Ref 
rOAZ 29 O/E1  (52) 

OAZ 14-10 SMAD-1, -4  (51) 

(57) PLZF 1-3 
 

1-6 
1-9 
6-7 

RARα, GR, 
ERα 
GATA2 
BCL6 
HB-EGF-C 

 
(59, 93) 
(60) 

FAZF 1-3 Gata2  (59) 

Sp1 1-3 
 
 
 
 

1-2 

BCoR, NCoR, 
SMRT,  
p300, 
SWI/SNF, 
TAF1,  
E2F1 

 (68) 
 
(73) 
(76) 
(75) 
(77) 

YY1 1 
1 

1-2 
1-4 

ATF/CREB 
Sp1 
YAF2 
SMAD4 

 (81)  
(25, 26)  
(82) 
(83) 

Rag1 A 
B 

Self 
Rag2 

 (85) 
(88) 

Zac1 6-7 p300  (91) 

BCL6 1-3 PLZF  (93) 

1All proteins from human except rOAZ (Rattus norvegicus).  
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Table 4 

Proteins Containing C2H2 Domains Implicated in Protein-Protein Interactions 

Protein Alias/Symbol Fingers Partner Ref 

Aiolos ZnFN1A3, IKZF3 5-6 Ikaros, Aiolos, 
Pegasus, Helios 

(18, 19, 21) 

AT-binding transcription 
factor 1 

ZFHX3, ATBF1 22-23 PIAS3 (113) 

1-2 ARP1 (114) B-cell CLL/lymphoma 11A  Bcl11a (MGI), 
EVI9, CTIP1 4 Self (115) 

2-4 Tat, HP1 (116) B-cell CLL/lymphoma 11B ZfphRit1 alpha, 
CTIP2 5-7 Tat, HP1  (116) 

1-3 PLZF (93) 

3-6 HDAC5/HDAC7 (107, 117) 

4-5 ETO (118) 

All LRF (119) 

All Miz1 (120) 

B-cell CLL/lymphoma 6  Znf 51, BCL6 

All c-Jun, JunD, JunB (121) 

Bone marow zinc finger 2 ZNF224, BMZF2 6-10 WT1 -KTS (122) 

All YB-1 (123) CCCTC-binding factor CTCF 

All YY1 (124) 

DAZ interacting protein 1, 
testis 1 

DZIPt1 1 DAZ (125) 

DAZ interacting protein 1, 
testis 2 

DZIPt2 1 DAZ (125) 

Early growth response 1 Zif263, ZNF225, 
Egr1 

All RELA (24) 

Early hematopoietic zinc 
finger 

ZNF521, Evi3 All SMAD1, SMAD4 (126) 

Ecotropic viral integration site 
1 

Evi1, PRDM3 1, 6 Gata1 (127) 

Eos ZNFN1A4, IKZF4 5-6 Eos, Ikaros, Pegasus, 
Trps1 

(17, 21, 38) 

Fanconi anemia zinc finger 
protein 

ZBTB32, FAZF, 
ZNF538 

All GATA2 (59) 

FLT3-interacting zinc finger 1 ZNF798, Fiz1 1-4 or 7-11 Flt3 (128) 

GLI-Kruppel family member 
GLI3 

Gli3 3-5 Smad1/2 (129) 

Glioma-associated oncogene 1 Gli1 3-5 Zic-1, -2, -3 (40) 
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Table 4 cont. 

Protein Alias/Symbol Fingers Partner Ref 

3-5 PU.1 (130) Growth factor independent 1 ZNF163, GFI1 

All MTG8 -human (131) 

Helios ZNFN1A2, IKZF2 5-6 Helios, Ikaros, 
Aiolos 

(18) 

Hunchback hb 5-6 hunchback (101) 

Ikaros ZNFN1A1, IKZF1 5-6 Ikaros, Aiolos, 
Helios, Eos, Pegasus 

(23, 101) 

KRAB box containing zinc 
finger protein 

Krim1 (RGD) 2 MYC (132) 

Kruppel-like factor 1 
(erythroid) 

KLF1, EKLF All FLI1 (133) 

Kruppel-like factor 13 KLF13, FKLF2 All CBP/p300 (134) 

Lola locus isoform 3D LOLA3D 1-2 JIL1 Kinase (135) 

Myc-associated zinc finger 
protein-related factor 

ZNF278, PATZ1, 
MAZR 

All MITF (136) 

NRC-interacting factor 1 Zfp335 5-6 NRC (137) 

Pegasus ZNFN1A5, IKZF5 4-5 Pegasus, Eos, Ikaros, 
Aiolos 

(21) 

polymerase (DNA directed), 
eta 

POLH 1 Ubiquitin (138) 

1-3 RARa, GR, ERa (57) 

1-6 GATA2 (59) 

6-7 HB-EGF-C (60) 

Promyelocytic leukemia zinc 
finger protein 

ZNF145, ZBTB16  

All BCL6 (93) 

RE1-silencing transcription 
factor 

REST, NRSF 9 Co-REST (139) 

Recombination activating gene 
1 

Rag1 B RAG2 (88) 

Recombination activating gene 
1 

Rag1 A Rag1 (85) 

ROAZ ZFP423 29 Olf-1 (52) 

Schnurri shn 1-2, 4-8 MAD (140) 

Senseless Sens 2-3 Scute (141) 

Sequoia seq All dsh (142) 
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Table 4 cont. 

Protein Alias/Symbol Fingers Partner Ref 

Serendipity SRY 6 Self (143) 

Smad- and Olf-interacting zinc 
finger protein 

ZNF423, OAZ 14-19 SMAD-1, -4 (51) 

1 E2F1 (77) 

All BCoR, NCoR, 
SMRT 

(68) 

All E2F (144) 

All Huntingtin (145) 

All MYC (146) 

All TAF1 (75) 

Sp1 transcription factor Sp1 

All YY1 (25, 26) 

Sp2 transcription factor Sp2 1 E2F1 (77) 

Sp3 transcription factor Sp3 1 E2F1 (77) 

Sp4 transcription factor Sp4 1 E2F1 (77) 

Transcription factor 8 Tcf8, ZEB1 5 Oct1 (147) 

Trichorhinophalangeal 
syndrome 1 

Trps1, zfp GC79 8-9 Eos (38) 

Uncoordinated protein 98 unc-98 All UNC-97 (pinch) (148) 

1-2 WTAP (149) 

1-2 CBP/p300 (150) 

All BMZF2, Ciao-1, 
Par4 

(122, 150) 

Wilms Tumor 1 (-KTS) WT1 (-KTS) 

All NHRPU (151) 

1-2 CBP/p300 (150) Wilms Tumor 1 (+KTS) WT1 (+KTS) 

2-4 U2AF65 (152) 

1 ATF/CREB (81) 

1-2 Sp1 (25, 26) 

1-2 YAF2 (82) 

2-4 TAFII55 (153) 

3-4 Adenovirus E1A (154, 155) 

All CTCF (124) 

Ying Yang 1 YY1 

All MYC (156) 
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All Smad4 (83) 

All TBP, CBP (153) 

  

All TFIIB (153) 

Zic family member 1 Zic1 3-5 Gli-1, -2, -3 (40) 

Zic family member 2 Zic2 3 Ku70, Ku80, PARP, 
RHA 

(157) 

Zinc finger 148 ZNF148, ZBP89 All p53 (158) 

Zinc finger and BRCA1-
interacting protein with a 
KRAB domain 1 

ZNF350, ZBRK1 7-8 BRCA1 (159) 

Zinc finger and BTB domain-
containing protein 7A 

ZBTB7A All BCL6 (119) 

Zinc finger protein 161 Zfp106, zf5 1-5 Self (160) 

zinc finger protein 219 zfp219 7-9 mSufu (161) 

Zinc finger protein 251 znf251 1-5 Smad1 (162) 

Zinc finger protein 295 znf295, zbtb21 1-9 Zfp161 (163) 

Zinc finger protein 41 znf41 9-16 Smad2 (162) 

Zinc finger protein 484 ZNF484 2-5 Smad8 (162) 

Zinc finger protein 512 ZNF512B 3-5 Many (162) 

Zinc finger protein 512 ZNF512 5-6 Many (162) 

Zinc finger protein 76 znf76 1-5 Smad1 (162) 

Zinc finger protein 8 znf8 1-6 Many (162) 

Zinc finger protein 8 Znf8 All Smad8a (162) 

Zinc finger protein 83 znf83 8-15 Smad3, Smad8 (162) 

Zinc finger, X-linked, 
duplicated A 

ZXDA All ZXDC (164) 

Zkscan17 (MGI) zfp496 All jumonji/jarid2 (165) 

     

1074  1074 
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Table 5 1076 
Linker Regions for Protein Interacting C2H2 Domains 1077 

Protein/Finger No. Finger Seq Linker Seq 1078 
Bcl6/F1 FFCNECDCRFSEEASLKRHTLQTH SDKP 1079 
Bcl6/F2 YKCDRCQASFRYKGNLASHKTVH TGEKP 1080 
Bcl6/F3 YRCNICGAQFNRPANLKTHTRIH SGEKP 1081 
Bcl6/F4 YKCETCGARFVQVAHLRAHVLIH TGEKP 1082 
EEA1 FICPQCMKSLGSADELFKHYEAVH DAGND* 1083 
Eos/F5 FKCEHCRILFLDHVMFTIHMGCH GFRDP 1084 
Eos/F6 FECNICGYHSQDRYEFSSHIVRGEH KVG** 1085 
Fog1/F3 FVCLICLSAFTTKANCERHLKVH TDTLS 1086 
Gli/F1 TDCRWDGCSQEFDSQEQLVHHINSEH IHGERKE 1087 
Gli/F2 FVCHWGGCSRELRPFKAQYMLVVHMRRH TGEKP 1088 
MBP1/F4 YICEECGIRCKKPSMLKKHIRTH TDVRP 1089 
MBP1/F5 YHCTYCNFSFKTKGNLTKHMKSKAH SKKCV 1090 
OAZ/F14 YPCNQCDLKFSNFESFQTHLKLH LELLLRK 1091 
OAZ/F15 QACPQCKEDFDSQESLLQHLTVH YMTTSTH 1092 
OAZ/F16 YVCESCDKQFSSVDDLQKHLLDMH TFVL 1093 
OAZ/F17 YHCTLCQEVFDSKVSIQVHLAVKH SNEKKM 1094 
OAZ/F18 YRCTACNWDFRKEADLQVHVKHSH LGNPAKA 1095 
OAZ/F19 HKCIFCGETFSTEVELQCHITTH SKK 1096 
PLZF/F1 EQCSVCGVELPDNEAVEQHRKLH SGMKT 1097 
PLZF/F2 YGCELCGKRFLDSLRLRMHLLAH SAGAKA 1098 
PLZF/F3 FVCDQCGAQFSKEDALETHRQTH TGTDMA 1099 
PLZF/F4 VFCLLCGKRFQAQSALQQHMEVH AGVRS 1100 
PLZF/F5 YICSECNRTFPSHTALKRHLRSH TGDHP 1101 
PLZF/F6 YECEFCGSCFRDESTLKSHKRIH TGEKP 1102 
Rag1/FA VKCPAKECNEEVSLEKYNHHISSH KESKEIFVHI*** 1103 
Rag1/FB YICTLCDATRLEASQNLVFHSITRSH AENLE* 1104 
rOAZ/F29 YDCSQCPQKFFFQTELQNHTMSQH AQ** 1105 
Sp1/F1 HICHIQGCGKVYGKTSHLRAHLRWH TGERP 1106 
Sp1/F2 FMCTWSYCGKRFTRSDELQRHKRTH TGEKK 1107 
Sp1/F3 FACPECPKRFMRSDHLSKHIKTH QNKKG* 1108 
YY1/F1 IACPHKGCTKMFRDNSAMRKHLHTH GPRV 1109 
YY1/F2 HVCAECGKAFVESSKLKRHQLVH TGEKP 1110 
YY1/F3 FQCTFEGCGKRFSLDFNLRTHVRIH TGDRP 1111 
YY1/F4 YVCPFDGCNKKFAQSTNLKSHILTH AKAKN* 1112 
Zac1/F2 YKCVQPDCGKAFVSRYKLMRHMATH SPQKS 1113 
Zac1/F6 HQCDHCERCFYTRKDVRRHLVVH TGCKD 1114 
Zac1/F7 FLCQFCAQRFGRKDHLTRHTKKTH SQELM* 1115 
Zap1/F1 LKCKWKECPESCSSLFDLQRHLLKDH VSQDFKHPMEP 1116 
Zap1/F2 LACNWEDCDFLGDDTCSIVNHINCQH GINFDIQFAN*** 1117 
* Truncated at 5 residues, last C2H2 domain in a string   1118 
** Protein ends   1119 
*** Linker is longer than 10 residues shown here   1120 
 1121 






















