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Inverse dynamics toolpath compensation for

CNC machines based on model predictive control

Benjamin W. L. Margolis and Rida T. Farouki
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA.

July 14, 2020

Abstract

The use of model predictive control (MPC) as a form of inverse dynamics compensation for multi–axis
CNC machines, to subdue the inaccuracies incurred by axis inertia and damping, is investigated by both
simulation studies and experimental performance analysis using a 3–axis milling machine governed by an
open–architecture software controller. The results indicate that MPC is a viable tool for inverse dynamics
compensation with a controller sampling frequency f = 1024 Hz running on a 500 MHz processor, with
only modest prediction horizons offering excellent performance in terms of feedrate accuracy and contour
error suppression. Unlike inverse dynamics schemes based upon linear time–invariant dynamic models,
the MPC scheme provides the flexibility to compensate for non–linear physical effects such as backlash
in the machine axes and hard constraints on axis accelerations imposed by motor torque constraint.
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1 Introduction

Manufacturing processes such as computer numerical control (CNC) machining and 3D printing are critically
dependent on precision multi–axis motion control to fabricate engineering parts that satisfy stringent toler-
ances and complex geometrical or functional requirements. Feedback controllers, in which high–frequency
comparison of commanded and measured machine positions is employed to modulate actuation of the axis
drives, are essential to ensure accurate traversal of complex paths at high speeds.

Classical PID controllers are commonly employed in motion control systems, with gains optimized to
improve accuracy and responsivity while maintaining system stability. However, this optimization may not
suffice for applications requiring high–speed execution of complex curvilinear paths, in which the smoothing
influence of inertia and damping of the machine axes can significantly degrade the tracking accuracy.

The adverse effect of inherent machine dynamics can be addressed through inverse dynamics compen-
sation (IDC) schemes. Such schemes employ system identification tools, which determine basic machine
physical parameters (e.g., the inertia and damping of each axis) based upon the response to test inputs. A
machine dynamic model can then be solved in an “inverse” manner — i.e., to determine the required input
to achieve a desired output, subject to the influence of inertia and damping. The result is a compensatory
term, to be added to the nominal commanded machine position, in each sampling interval of the controller.
IDC schemes cannot compensate for “disturbance” effects that are unpredictable, or for which there is no
sensory information. By compensating for known physical machine limitations,1 however, IDC relieves the
burden on the feedback controller, and allows it to focus on minimizing the influence of disturbances.

1In high–speed machining [5, 11, 18, 20] axis inertia and damping may be the dominant limitations on tracking accuracy.
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An IDC scheme for curvilinear paths was proposed in [9], and it was shown that a closed–form expression
for the compensation term is possible in the case of a P controller. Experimental tests [17] have indicated
that significant improvement in tracking accuracy is possible, even when the P gain is successively reduced
toward the open–loop limit. A further extension of this approach, to accommodate PI and PID controllers,
was subsequently developed in [27]: in these cases, the correction term includes a single irreducible integral,
which can nevertheless be evaluated in real time by means of an efficient adaptive quadrature scheme.

These previous IDC schemes were all based on second–order linear time invariant (LTI) models of the
machine dynamics, which cannot satisfactorily model important effects that influence tracking accuracy (such
as backlash of the machine axes, incurred at reversals of the sense of motion of each axis). In the present study,
we investigate the use of model predictive control (MPC) as a form of inverse dynamics compensation. MPC
is a powerful and versatile scheme for controlling complex dynamical systems by solving an optimal control
problem over a finite future time horizon that recedes with each time step [16]. Since MPC solves an optimal
control problem at every time step, there is flexibility in modeling the objective function, system dynamics,
and trajectory constraints. However this requires the availability of appropriate numerical algorithms to
solve the modeled optimal control problem in real time.

Previous studies on the use of MPC in real–time motion control focus primarily on developing a model to
minimize predicted contour error [6, 12, 19, 23, 24, 25]. However, due to the coupling and nonlinearity of the
objective function, this approach creates challenges for real–time application. Additionally, most of these
studies are focused on using MPC for motor control, based on an optimization approach at each time step
to determine the voltage or current for each motor. Yang et al. [24] do compute a trajectory compensation,
but it is pre–computed offline. The study [25] also pre–computes the compensation using MPC, presumably
because the algorithm used to solve the optimization problem cannot operate in real time. Uchiyama et al.
[6] develop a linear system of equations to minimize the objective analytically, that can be solved in real time
but cannot accommodate constraints. Some approaches to formulating the problem as a quadratic program,
solved by the Hildreth method [21], are presented in [12, 19, 23] with promising results, but the experimental
results depend on sufficiently long sampling intervals or relatively powerful computational resources.

By comparison, this study computes a trajectory compensation for each machine axis independently
using high performance interior point methods. This approach relies upon the resulting precision in each
axis to achieve the goal of a small contour error, rather than explicit real–time monitoring of the contour
error [4]. Treating each axis independently trades the need for a single, computationally more burdensome
optimization for multiple optimizations that can be performed more efficiently. Since computation times
for optimization problems nominally scale with the cube of the problem size, this trade–off should reduce
computation time while providing sufficiently accurate performance.

The plan for the remainder of this paper follows. In Section 2 a model is presented for the system dynamics
of each machine axis, and the IDC scheme based upon MPC is described in Section 3. The performance of
this IDC scheme is assessed in Section 4 using simulation studies, and Section 5 presents the results of an
experimental performance analysis using a 3–axis CNC milling machine governed by an open–architecture
software controller. Section 6 describes results from augmenting the basic MPC compensation scheme with
axis acceleration limits. Finally, Section 7 summarizes the key findings of the present study, and identifies
aspects of the scheme that deserve further investigation.

2 Machine Dynamics

The axes of multi–axis CNC machines are usually driven by independent servo systems. The individual axis
drives can be modelled as linear dynamic systems governed by PID controllers [1, 8, 26]. We focus here on
the case of a P controller, for which the actual position axis position p (measured by the position encoder)
is determined from the commanded position c through a differential equation of the form

a2 p̈ + a1 ṗ + p = c , (1)

with a2 = J/Kkp, a1 = B/Kkp where J and B denote the axis inertia and damping, kp is the proportional
gain, and K represents the overall current amplifier, motor torque, and transmission ratio gains [9]. The
input to the controller is the axis position error e = c− p. Correspondingly, the Laplace forms c(s) and p(s)
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of the commanded and actual axis positions are related [9] by the transfer function

p(s)
c(s)

=
Kkp

Js2 +Bs+Kkp
, (2)

To implement the MPC scheme, the coefficients a2, a1 (which are assumed to be the same for both the x
and y axes) must be determined. System identification procedures for CNC axis drive systems are typically
based [7] on a series of time or frequency domain response tests. In the present context, a number of curved
paths were executed at various feedrates, with the real–time reference point and position encoder data being
recorded for each axis. The data were input to a Matlab program, to determine a best–fit transfer function
of the form (2), from which the a2 and a1 values in (1) may be identified. Further details on the system
identification scheme may be found in [17].

Several additional transformations must be performed on this standard CNC axis model to find a discrete–
time state–space representation suitable for MPC. First, the transfer function (2) must be converted to a
state–space model of the form

ẋ = Fx+Gu ,

where x ∈ Rn is the state, u ∈ Rp is the controlled input, and F and G are the appropriately sized state
and and input matrices. Since this state–space model will be used internally in the MPC formulation, the
system output is omitted from the discussion for brevity. To develop the state–space model, the axis linear
velocity, v = ṗ, is identified to define the state x = [p v]T and input u = [c], which gives the state–space
model in control canonical form,

ẋ =
[

0 1
− 1
a2
−a1
a2

]
x+

[
0
1
a2

]
u.

This continuous–time state space model can be transformed to a discrete–time state space model, representing
the axis dynamics sampled on the digital computer, of the form

xk+1 = Φxk + Γuk .

The discrete–time state and input matrices are determined using the zero–order hold transformation

Φ = e∆t F , Γ =
∫ ∆t

0

eτ F dτ G

where ∆t is the sampling rate of the continuous–time system and e(·) represents the matrix exponential of
(·). Finally, to enable control of the input slew rate, the discrete–time state is augmented to x̃ = [p v c]T

and the controlled input becomes ũ = [∆c] where ∆c = ck+1 − ck is the control increment. Then the final
state space model has the form

x̃k+1 =
[
Φ Γ

]
x̃k +

[
Γ
1

]
ũk.

For convenience, we will use A and B to refer to the state and input matrices of this augmented model and
omit the tilde on the augmented state and input variables in the sequel.

3 Model Predictive Control

The basic idea of Model Predictive Control is to apply the first portion of the solution to an optimal control
problem over the prediction horizon at every time step. One approach is to formulate the optimal control
problem as a quadratic program (QP) because of the availability of reliable, efficient, and accurate solvers.
As discussed in [22], several strategies can be implemented to reduce computational burden so that the QP
can be solved fast enough to be used in real–time applications. We can express the QP at the kth time step
as

minimize
{xk+i},{uk+i}

H∑
i=1

(xk+i − rk+i)
T
Q (xk+i − rk+i) + uTk+iRuk+i

subject to xk+i+1 = Axk+i +B uk+i, i = 0, . . . ,H − 1
Cxk+i ≤ d, i = 0, . . . ,H

(3)
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where ri, xi, and ui are the reference state, predicted state, and predicted input at the ith time step, H
is the prediction horizon, and Q and R are weighting matrices for `2 norms in the objective function. C
and d are the inequality matrix and vector defining inequality constraints that can be used to enforce safety
or performance limits. In this pilot study, we construct the inequality matrix and vector to ensure that
|ck+i − xk+1| ≤ τ for i ∈ {0, . . . ,H}, where τ = 0.05 in is a safety limit on the machine test–bed. The
compensation value at the kth time step is c∗k+1 − rk+1, where the ∗ superscript indicates the value of the
variable that solves the minimization problem.

This QP formulation uses both the state and input as optimization variables over the prediction horizon
and enforces the system model using affine equality constraints. Although this requires more variables to
solve, it introduces a sparsity structure in the linear systems equations to be solved during optimization that
ultimately reduces the number of floating point computations involved. This QP formulation is also analogous
to a collocation method of solving differential equations. Using weights matrices Q = diag ([1 0 0]) and
R = [0], placing the entire weight of the objective on the predicted positions, this QP can be interpreted
as “find the trajectory that most closely matches the reference positions over the prediction horizon while
satistfying the system dynamics and safety constraints.” Since the reference positions were generated by
sampling a continuous path with continuous velocities and accelerations, tracking the reference positions
closely will also track the desired velocities at each time step.

We can determine the compensation in open–loop and at each time step the values for xk and uk come
from the solution found at the previous time step, with initial values coincident with the reference path.

4 Simulation Study

In this section the results of a simulation study to determine the best horizon length are shown. Simulations
of the system dynamics with an MPC controller were performed with the SimuPy simulation framework [14].
For the simulation study, at each time step the quadratic program (3) is solved using cvxopt, a Python
library for convex optimization [2]. The controller is modeled as a discrete–time system with an update
rate of 1024 Hz. For this study, the asymptotic values for the axis parameters from [17] were used, namely
a2 = 2.828 × 10−5 and a1 = 1.089 × 10−2. The simulation and experimental results presented below are
expressed in units commonly employed in the US manufacturing industry: inches (in) for path length; inches
per minute (ipm) for feedrate, and in/s2 for acceleration. The equivalent metric values may be obtained by
noting that 1 in = 25.4 mm, 100 ipm = 42.33 mm/s, and 1 in/s2 = 25.4 mm/s2.

For simplicity, we employ only paths defined by planar parametric test curves r(ξ) = (x(ξ), y(ξ)). Since
the MPC scheme involves independent control of each machine axis, the extension to spatial paths is straight-
forward once the dynamic coefficients for the third axis are determined by the system identification tool. If
c = (x(ξc), y(ξc)) is the commanded position along r(ξ), generated at each time step for a specified feedrate
by the real–time interpolator, and p = (xp, yp) is the actual machine position (as measured by the axis
position encoders) at each instant, the position error e = c − p may be resolved into components parallel
and perpendicular to the tangent of r(ξ) at the point c. These components are called the instantaneous feed
error (i.e., lag/lead along the path) and contour error (geometrical deviation from the commanded path).

In Figures 1 and 2, the simulated response for the sharp turn test curve is shown for various feedrates
without compensation is compared to the computed compensation to highlight their inverse relationship.
Note that the simulated response to the compensated test curve is omitted because it would be indistinguish-
able from the reference path at the resolution of the figures. This curve exhibits a pronounced curvature
extremum that serves to emphasize the limitations of the machine intrinsic dynamics. To highlight the
contour error and compensation term, a “zoomed in” view is also shown. In these figures, only a nominal
MPC compensation is shown because the difference from MPC parameters is difficult to distinguish visually.

Figures 3–6 illustrate the feedrate error, position error, contour error, and feed error for the simulated
response, both without compensation and with MPC–based compensation using various prediction horizons.
Throughout this discussion, the current time step is included in the horizon, so a value H = 2 corresponds
to the minimal MPC horizon, determining the optimal compensation based on a 1–step look ahead. In
Figures 7–9, we show the root–mean–square (rms) values for the position, contour, and feed errors plotted
against the horizon length. The uncompensated cases are excluded from the rms plots because the errors
are many orders of magnitude worse than in the compensated case.
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Figure 1: Simulated machine response without compensation (left) and simulated MPC compensation (right)
at various feedrates.
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Figure 2: Close-up view of simulated machine response without compensation (left) and simulated MPC
compensation (right) at various feedrates.
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Figure 3: Simulated feedrate error for various prediction horizons and feedrates. Note the orders of magnitude
difference in y–axis scale.

6



0 2 4 6 8 10
distance along path (in)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

po
sit

io
n 

er
ro

r (
in

)

200 ipm
400 ipm
600 ipm
800 ipm

0 2 4 6 8 10
distance along path (in)

0.0000000

0.0000005

0.0000010

0.0000015

0.0000020

0.0000025

0.0000030

po
sit

io
n 

er
ro

r (
in

)

200 ipm
400 ipm
600 ipm
800 ipm

0 2 4 6 8 10
distance along path (in)

0

1

2

3

4

5

6

po
sit

io
n 

er
ro

r (
in

)

1e 7
200 ipm
400 ipm
600 ipm
800 ipm

0 2 4 6 8 10
distance along path (in)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

po
sit

io
n 

er
ro

r (
in

)

1e 7
200 ipm
400 ipm
600 ipm
800 ipm

Figure 4: Simulated position error for various prediction horizons and feedrates.
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Figure 5: Simulated contour error for various prediction horizons and feedrates.
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Figure 6: Simulated feed error for various prediction horizons and feedrates.
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Figure 7: The rms position error vs horizon length for various feedrates.
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Figure 8: The rms contour error vs horizon length for various feedrates.
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Figure 9: The rms feed error vs horizon length for various feedrates.
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Figure 3 shows that the MPC compensation subdues the extremum feedrate error by several orders of
magnitude relative to the uncompensated case (note the difference in the vertical axis scales), with increasing
horizon smoothing the deviation near the point extremum curvature. However, the duration of the deviations
is so small that the rms feedrate error for the entire traversal is not significantly influenced.

Figure 4 shows that the position error for the uncompensated case is proportional to the feedrate, and
approximately five orders of magnitude worse than the MPC–compensated response. With the MPC com-
pensation, increasing the horizon seems to smooth out spikes in error which may be numerical in nature. As
with the feedrate error, local extrema in the position error occur near the curve point of maximal curvature,
and the magnitude of these extrema decrease as the horizon length is increased. Again, because of the short
duration of these errors, they do not have a significant impact on the overall rms position error.

Figure 7 shows that the rms position error is, on average, smallest for a horizon of three time steps. The
outlier to this trend is the 800 ipm case, which has a local maximum. One possible explanation is that the
longer look–ahead causes the error to be distributed over more sampling intervals, and since the error is so
small the numerical noise is significant. In general, the literature does support the empirical observation
that MPC performance on nonlinear systems is not monotonic with horizon length [3, 13] so it may also be
that the high feedrate and large curvature drive a nonlinear behavior.

The contour error plots in Figure 5 exhibit patterns similar to the position error plots in Figure 4, likely
because the position error is so small with MPC that the contour error must also be very small. This verifies
the hypothesis that treating the machine axes independently can be used to ensure a small contour error,
provided the position error on each axis is sufficiently small.

Figure 6 shows the signed feed error. Without compensation, the feed error is non–positive (lagging the
reference) as expected for a causal feedback system. However with compensation, the feed errors tend to be
positive. Figure 9 shows that the rms feed error is almost monotonic in performance, with H = 2 performing
about as well as H = 3. The slope of the rms feed error curve in Figure 9 is steeper than the rms contour
error curve in Figure 8, indicating that as the horizon increases, the feed error dominates the contour error.

Based on the results from the simulation study, a prediction horizon of H = 3 is selected for the exper-
imental study. This horizon length showed the best position error performance. Since computational cost
scales linearly with horizon length, the relatively short horizon will also help reduce computation time so
the compensation can be calculated in real time.

5 Experimental Implementation

The MPC–based inverse dynamics scheme was implemented on the 3–axis CNC milling machine shown in
Figure 10. This machine is controlled by the OpenCNC open–architecture software, which incorporates a
low–level PID controller for each axis and provides a programming interface to send position commands to
each axis and measure their actual positions using position encoders at a sampling frequency of 1024 Hz.
The control computer is based on a 500 MHz processor running Windows NT, augmented by an extension
compatible with execution of real–time processes. It has sufficient RAM to record approximately 40 seconds
of machine run–time data.

A custom C language solver that takes advantage of the sparse structure of the QP (3) was generated
using cvxgen [15] and integrated into the OpenCNC architecture. Initially, it was assumed that the 1024 Hz
update rate was enforced through an interrupt. After testing and comparison with the simulation results,
however, it was determined that the 1024 Hz update rate is an upper bound. Furthermore, it was found
that executing the QP solver twice (once for each axis) caused the control loop to update slower than the
expected 1024 Hz. In turn, this created the appearance of a machine dynamics faster than expected. To
remedy this, the feedback gain kp was reduced to 10,000 resulting in model parameters a2 = 4.681 × 10−5

and a1 = 1.936 × 10−2. The reduced feedback gains were chosen to dampen the effect of the control loop
timing delay and to amplify the difference between the machine position errors with and without MPC.

Two test curves were employed in the experiments. Figure 11 shows, for various feedrates, the commanded
path both without and with the compensation term (computed in real time by the control computer) for the
sharp turn test curve, which is essentially the same curve used in the simulation study but augmented by
lead–in and lead–out segments to minimize transient effects. Figure 11 shows plots of the actual executed
paths for this test curve, and a “zoomed in” view of the system response is provided in Figure 13. Figure 14
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Figure 10: Experimental testbed — gantry mill with OpenCNC control system.

shows, for various feedrates, the commanded path both without and with the compensation term (computed
in real time by the control computer) for the clover test curve for each feedrate, with the deviation from the
uncompensated curve magnified.2 Figure 15 shows the uncompensated and compensated system response
with magnified contour errors.
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Figure 11: Experimental predictive curve compensation for the sharp turn curve at feedrates of 200, 400,
600, and 800 ipm

Figure 16 shows the measured feedrates for the sharp turn test curve without and with compensation.
For the cases with nominal feedrates below 800 ipm, the measured feedrate with compensation is significantly
better than without compensation. For the 800 ipm case there is still significant deviation in the feedrate with
compensation, likely due to acceleration limits of the machine. The feedrate tends to exceed the specified
feedrate with compensation, due to the optimization of the predicted position error over the moving horizon.
In contrast, the feedrate tends to be reduced near the point of the curve with maximal curvature without
compensation, as expected for a causal system based only on feedback control. Figure 17 shows the measured
feedrates for the clover test curve without and with compensation. The MPC–based compensation reduces

2Magnified views of the compensated sharp turn test curve are omitted, since their extreme behavior in the vicinity of the
curvature maximum makes them difficult to interpret.
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Figure 12: Contour of system response for the sharp turn test curve at feedrates of 200, 400, 600, and 800
ipm without (left) and with (right) predictive compensation.
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Figure 13: Close-up of contour for the sharp turn test curve at feedrates of 200, 400, 600, and 800 ipm
without (left) and with (right) predictive compensation.
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Figure 14: Predictive curve compensation magnified ×20 for the clover test curve at feedrates of 200, 400,
600, and 800 ipm.
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Figure 15: Contour error magnified ×20 for the clover curve at feedrates of 200, 400, 600, and 800 ipm
without (left) and with (right) predictive compensation.
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Figure 16: Measured feedrates for the sharp turn test curve at feedrates of 200, 400, 600, and 800 ipm
without (left) and with (right) predictive compensation.

0 500 1000 1500 2000 2500 3000
distance along path (in)

0

200

400

600

800

fe
ed

ra
te

 (I
PM

)

200 IPM
400 IPM
600 IPM
800 IPM

0 500 1000 1500 2000 2500 3000
distance along path (in)

0

200

400

600

800
fe

ed
ra

te
 (I

PM
)

200 IPM
400 IPM
600 IPM
800 IPM

Figure 17: Measured feedrates for the clover test curve at feedrates of 200, 400, 600, and 800 ipm without
(left) and with (right) predictive compensation.
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Figure 18: Measured total position error for the sharp turn test curve at feedrates of 200, 400, 600, and
800 ipm without (left) and with (right) predictive compensation.
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Figure 19: Measured total position error for the clover test curve at feedrates of 200, 400, 600, and 800
ipm without (left) and with (right) predictive compensation.
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Figure 20: Measured contour error for the sharp turn test curve at feedrates of 200, 400, 600, and 800 ipm
without (left) and with (right) predictive compensation.
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Figure 21: Measured contour error for the clover test curve at feedrates of 200, 400, 600, and 800 ipm
without (left) and with (right) predictive compensation.

16



0 200 400 600 800 1000 1200
distance along path (in)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

fe
ed

 e
rro

r (
in

)

200 IPM
400 IPM
600 IPM
800 IPM

0 200 400 600 800 1000 1200
distance along path (in)

0.08

0.06

0.04

0.02

0.00

0.02

0.04

fe
ed

 e
rro

r (
in

)

200 IPM
400 IPM
600 IPM
800 IPM

Figure 22: Measured feed error for the sharp turn test curve at feedrates of 200, 400, 600, and 800 ipm
without (left) and with (right) predictive compensation.
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Figure 23: Measured feed error for the clover test curve at feedrates of 200, 400, 600, and 800 ipm without
(left) and with (right) predictive compensation.
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the variation of the feedrate for the 600 and 800 ipm cases. At lower nominal feedrates, the measured feedrate
without compensation is about as consistent as with compensation.

Figures 18 and 19 show the measured position error for each test curve. For both test curves, the MPC–
based compensation produces position errors that are generally an order of magnitude better than without
compensation. Even for the 800 ipm case on the sharp turn, the peak position error is still about 4× smaller
than for the uncompensated case, and an order of magnitude smaller away from the curvature extremum.
The uncompensated cases show a local minimum of position error near the point of maximal curvature.

Figure 20 shows the measured contour error for the sharp turn without and with MPC compensation.
The compensation significantly reduces the contour error across most of the curve. For the higher feedrates,
the peak contour error with compensation approaches the peak contour error without compensation. This
behavior may be due to the feedrate dependence of model parameters as discussed in [17] or acceleration
limits of the machine axes. The contour errors for the clover curve shown in Figure 21 show that the
compensation is an order of magnitude better throughout the curve.

Figure 22 illustrates the measured feed error for the sharp turn curve without and with compensation.
Without compensation, the feed error is always non–positive as in the simulation study, but only temporarily
improves slightly near the point of maximal curvature at high feedrates. With compensation, the feed error
is generally an order of magnitude smaller than without. At the higher feedrates, the feed error with
compensation does exhibit a local extremum at the point of highest curvature, although the magnitude is
still smaller than without compensation by a factor of about 5. For the clover test curve, the feed error
with MPC on is an order of magnitude better than with MPC off throughout the curve, as shown in Figure
23.

6 Acceleration Limits

To verify that the source of the tracking errors of the compensated path are indeed due to acceleration limits,
a model of the acceleration limits was developed, incorporated as a constraint in the MPC optimization
problem (3), and simulated. The simple axis model described in Section 2 treats the motor as a resistive
element. To model the acceleration limits, we add a “back EMF” term so that the motor current i is related
to the control voltage u through

i = ka (u− keω)

where ka is the current amplifier gain, ke is the motor back EMF constant, and ω is the motor angular speed.
This results in the modified transfer function

p(s)
c(s)

=
Kkp

Js2 + (B + kakekt) s+Kkp
, (4)

where kt is the motor torque gain. Note that the difference between between the transfer functions (2) and
(4) is that the damping coefficient of the former depends only on the mechanical damping B while the latter
is augmented by the back EMF term. Therefore, the value a2 determined from system identification already
captures the damping from both mechanical and electromechanical sources. Following [10], we consider
acceleration limits due to current limits and voltage limits modeled as constraints of the form

|a| ≤ ai and |a| ≤ av −
B

J
|v| , (5)

where ai is the maximum acceleration due to the current limit, av is the maximum acceleration due to
the voltage limit, and B

J captures the acceleration effect of the mechanical damping. To estimate these
values, the measured axis acceleration and velocity from the data collected in Section 5 were plotted on the
acceleration-velocity phase plane and the hexagonal polytope defined by the constraints (5) was manually
adjusted to obtain a good fit of the data. The identified values are ai = 600 in/s2, av = 750 in/s2, and
B
J = 55. Note that the identified value of B

J implies that only about 1/7th of the measured damping is due
to mechanical effects with the majority of the effective damping due to the back EMF of the motor. A plot
of the acceleration-velocity phase plane of a portion of the data and the fit polytope is shown in Figure 24.

Initial attempts to incorporate the acceleration constraints led to convergence problems which were
ultimately remedied by dropping the acceleration constraint due to the voltage limit and adding a constraint
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Figure 24: Acceleration-velocity phase plane of experimental data with estimates for acceleration limits.

on the predicted position to ensure the solution remained in the workspace of the machine. A close-up view of
the compensated sharp turn test curve and the corresponding simulated response at a nominal feedrate of
800 ipm using MPC with several prediction horizons is shown in Figure 25. Comparing the responses to the
compensated curves with short horizons shown in this figure to the experimental results of the compensated
response shown in Figure 13 suggests that using the simplified acceleration limit is representative of the
actual machine dynamics. It is also worth noting that after the introduction of the acceleration constraint,
the compensated reference curves are no longer smooth. In contrast, the compensation computed without
constraints on the acceleration produced smooth compensation curves, such as shown in Figure 2.

Figure 26 shows the contour error of the simulated response for several horizon lengths and the RMS
errors for each simulated horizon length. The RMS contour error is not monotonic in the prediction horizon
length although the compensation with the two longest horizons produce significantly better RMS contour
errors than the compensation with shorter horizons. This suggests that in order for MPC to improve the
performance under these types of actuator limits, the prediction horizon must be long enough that the
restriction imposed by the actuator limits affects the optimization problem of MPC early enough to respond
appropriately. To illustrate what “early enough” means, the plot of the compensated curves includes gray
dots on the original reference curve to illustrate a prediction length of a 64 time steps. This horizon length
is long enough to capture the entire corner of the curve. Inspection of the simulated response suggests that
MPC compensation with this horizon length can account for the significant acceleration requirements while
respecting the limits of the actuators. Compensation with longer prediction horizons was also simulated, with
essentially indistinguishable responses, suggesting that longer prediction horizons have diminishing returns
after some critical length. This behavior also suggests that the compensation and response from MPC may
asymptotically approach the optimal compensation given the demands of the test curve and actuator limits.

The contour error along the path length in Figure 26 and the close-up view of the contour response
in Figure 25 show oscillations present for the acceleration–limited compensated system. It is well known
that MPC compensation without constraints approaches optimal feedback control as the horizon extends
to infinity. However, it is surprising to see an MPC–controlled system with constraints and a short horizon
exhibit classical second–order dynamic characteristics including overshoot and decaying oscillations. It is
possible that the without the workspace constraints this dynamic behavior may have been unstable and the
constraints, which should have been redundant, created a virtual damping effect that helped convergence.

Figure 27 shows the simulated feedrates for the compensated test curves for several horizon lengths and
the RMS errors for each horizon length. The RMS feedrate error appears to decrease linearly with increasing
horizon length. This is likely a consequence of the square–error objective function of the MPC optimization
problem (3), since square–error minimization is related to mean minimization.
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Figure 25: Close-up contour of the compensated sharp turn test curve (left) with corresponding simulated
response (right) at a nominal 800 ipm for using MPC with several prediction horizons. The gray dots on the
original reference curve illustrate a prediction length of a 64 time steps.
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Figure 26: Simulated contour errror for the sharp turn test curve at feedrates of 800 ipm with predictive
compensation using acceleration constraints.
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Figure 27: Simulated feedrates for the sharp turn test curve at feedrates of 800 ipm with predictive com-
pensation using acceleration constraints.

7 Conclusion

A model predictive control (MPC) approach to inverse dynamics compensation (IDC) has been developed,
and the performance was analyzed through both simulations and experiments on a CNC milling machine.
The MPC approach to IDC was formulated as a quadratic programming optimization problem, and solved
using off–the–shelf tools. In the simulation study, significant improvements in performance were found with
even relatively short prediction horizons. In the experimental study, real–time performance enhancements
obtained with MPC were demonstrated, in terms of the overall position error, contour error, and feedrate
accuracy. The experimental study revealed potential areas of improvement, including the need to reduce
solver times to increase the compensation update rate, and the inclusion of axis acceleration limits to improve
tracking performance for high–curvature paths executed at high feedrates. Inverse dynamics compensation
based on MPC is a versatile approach to improving tracking accuracy in motion control, offering the ability to
also incorporate equality or inequality constraints and non-linear dynamic effects, which we hope to address
in future studies.

In addition to compensating for machine dynamics, another potential application of MPC is in mitigating
the effects of variable cutting forces, based on a priori knowledge of the tool and part geometry, depth and
width of cut, workpiece specific cutting energy, the desire to suppress tool chatter, etc. This is a challenging
problem, that will require a comprehensive independent investigation.
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